初中数学专题折叠问题

合集下载

数学初中折叠问题解题技巧

数学初中折叠问题解题技巧

数学初中折叠问题解题技巧
初中数学中的折叠问题是一种常见的问题类型,涉及到几何和代数等多个方面,具有一定的挑战性和趣味性。

下面是一些折叠问题的解题技巧:
1. 观察折叠过程,提取关键信息。

在折叠问题中,通常会涉及到两个或多个图形的折叠,需要观察折叠过程,并提取关键信息。

例如,在将一个矩形折叠成正方形的过程中,关键信息可能是矩形的长和宽,或者是正方形的边长。

2. 利用几何图形的性质,进行推理和计算。

折叠问题通常涉及到几何图形的性质,例如面积、周长、角等。

在解决问题时,需要利用这些性质进行推理和计算。

例如,在将一个矩形折叠成正方形的过程中,可以利用矩形的面积和周长推导出正方形的面积和周长,进而计算出折叠后的形状。

3. 利用代数知识,进行化简和求解。

折叠问题还可以利用代数知识进行化简和求解。

例如,在将一个矩形折叠成正方形的过程中,可以利用矩形的面积和周长推导出正方形的面积和周长,并将它们用代数式表示出来。

然后,通过解方程组或代数式的方法求解答案。

4. 寻找规律,构建模型。

有些折叠问题可以通过寻找规律,构建模型来解决。

例如,在将一个正多边形折叠成平面图形的过程中,可以尝试利用正多边形的边数来构建模型。

通过模型,可以更好地理解和解决问题。

折叠问题是初中数学中的一种重要问题类型,需要学生掌握一定
的几何和代数知识,并学会利用这些知识进行推理和计算。

同时,学生还需要具备较强的逻辑思维能力和分析问题的能力,才能有效地解决折叠问题。

初中数学中有关图形的折叠问题

初中数学中有关图形的折叠问题

专题复习图形的折叠问题折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.类型1 三角形中的折叠问题1.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=75°,则∠1+∠2=【 】A .150°B .210°C .105°D .75°2.已知,如图,Rt △ABC 中,∠C=90º,沿过点B 的一条直线BE 折叠△ABC,使C 恰好落在AB 边的中点D 处,则∠A=________.3.(2014·德阳)如图,△ABC 中,∠A =60°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC=70°,那么∠A′DE 的度数为________.4.如图,在Rt△ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′=________.5.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处,若点D 的坐标为(10,8),则点E 的坐标为________. A D B EC6.如图,在等腰△ABC 中,AB =AC ,∠BAC =50°.∠BAC 的平分线与AB 的中垂线交于点O ,点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是 .7.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠B .8.如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若C(3/2,√3/2),则该一次函数的解析式为________.9.如图,D 是等边△ABC 边AB 上的一点,且AD∶DB=1∶2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE∶CF=( )A.3/4B.4/5C.5/6D.6/7 10.如图,将△ABC 纸片的一角沿DE 向下翻折,使点A 落在BC 边上的A ′点处,且DE ∥BC ,下列结论:①∠AED =∠C ;②A 1D/DB=A 1E/EC ;③BC=2DE ;④ BD A E A C AD A E S S S ∆'∆''=+四形边。

2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)

2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)

几何中的折叠问题一、单选题1如图,在菱形ABCD中,AD=5,tan B=2,E是AB上一点,将菱形ABCD沿DE折叠,使B、C的对应点分别是B 、C ,当∠BEB =90°时,则点C 到BC的距离是()A.5+5B.25+2C.6D.35【答案】D【分析】过C作CH⊥AD于H,C 作C F⊥AD于F,HD=5,HC=25,再由折叠证明∠BED=∠B ED=135°,∠EDC=∠EDC =45°,△CHD≌△DFC ,C F= HD=5,【C作CH⊥AD于H,C 作C F⊥AD于F,由已知AD=5,tan B=2,=2,∴CD=5,tan∠CDH=HCHD∴设HD=x,HC=2x,∴在Rt△HDC中HC2+HD2=CD2,2x2+x2=52,解得x=5,∴HD=5,HC=25,由折叠可知∠BED=∠B ED,∠EDC=∠EDC ,CD=C D∵∠BEB =90°,∴∠BED=∠B ED=135°,∵AB∥DC,∴∠EDC=180°-∠BED=45°,∴∠EDC=∠EDC =45°∴∠CDC =90°∵∠CHD =∠C AD =90°,∴∠CDH +C DF =90°,∵∠CDH +∠HCD =90°,∴∠C DF =∠HCD ,∴△CHD ≌△DFC ,∴C F =HD =5,∴点C 到BC 的距离是C F +CH =5+25=35.故选:D .【点睛】本题考查了全等三角形的性质和判定、菱形的性质、图形的折叠以及正切定义的应用,解答关键是根据折叠的条件推出∠BED =∠B ED =135°.2如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l 与BC 交于点P ,且点P 到AB 的距离为3cm ,点Q 为AC 上任意一点,则PQ 的最小值为()A.2cmB.2.5cmC.3cmD.3.5cm【答案】C【分析】由折叠可得:PA 为∠BAC 的角平分线,根据垂线段最短即可解答.【详解】解:∵将△ABC 折叠,使AC 边落在AB 边上,∴PA 为∠BAC 的角平分线,∵点Q 为AC 上任意一点,∴PQ 的最小值等于点P 到AB 的距离3cm .故选C .【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.3如图,在▱ABCD 中,BC =8,AB =AC =45,点E 为BC 边上一点,BE =6,点F 是AB 边上的动点,将△BEF 沿直线EF 折叠得到△GEF ,点B 的对应点为点G ,连接DE ,有下列4个结论:①tan B =2;②DE =10;③当GE ⊥BC 时,EF =32;④若点G 恰好落在线段DE 上时,则AF BF=13.其中正确的是()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】过点A 作AH ⊥BC 于点H ,利用三线和一以及正切的定义,求出tan B ,即可判断①;过点D 作DK ⊥BC 于点K ,利用勾股定理求出DE ,判断②;过点F 作FM ⊥BC 于点M ,证明△EMF 为等腰直角三角形,设EM =FM =x ,三角函数求出BM 的长,利用BE =BM +EM ,求出x 的值,进而求出EF 的长,判断③;证明△AND ∽△CNE ,推出∠ENC =∠ECN ,根据折叠的性质,推出EF ∥CA ,利用平行线分线段成比例,即可得出结论,判断④.【详解】解:①过点A 作AH ⊥BC 于点H ,∵BC =8,AB =AC =45,∴BH =12BC =4,∴AH =AB 2-BH 2=8,∴tan B =AHBH=2;故①正确;②过点D 作DK ⊥BC 于点K ,则:四边形AHKD 为矩形,∴DK =AH =8,HK =AD =BC =8,∵BE =6,∴CE =2,∵CH =12BC =4,∴CK =4,∴EK =CE +CK =6,∴DE =EK 2+DK 2=10;故②正确;③过点F 作FM ⊥BC 于点M ,∵GE ⊥BC ,∴∠BEG =90°,∵翻折,∴∠BEF =∠GEF =45°,∴∠EFM =∠BEF =45°,∴EM =FM ,设EM =FM =x ,∵tan B =FMBM =2,∴BM =12FM =12x ,∴BE =BM +EM =12x +x =6,∴x =4,∴EM =FM =4,∴EF =2EM =42;故③错误;④当点G 恰好落在线段DE 上时,如图:设AC 与DE 交于点N ,∵▱ABCD ,∴AD ∥BC ,∴△AND ∽△CNE ,∴EN DN =CE AD=28=14,∴EN DE =15,∴EN =15DE =2=CE ,∴∠ENC =∠ECN ,∴∠BEN =∠ENC +∠ECN =2∠ECN ,∵翻折,∴∠BEN =2∠BEF ,∴∠BEF =∠ECN ,∴EF ∥AC ,∴AF BF =CE BE=26=13;故④正确,综上:正确的是①②④;故选D .【点睛】本题考查平行四边形的折叠问题,同时考查了解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理.本题的综合性强,难度较大,是中考常见的压轴题,熟练掌握相关性质,添加合适的辅助线,构造特殊三角形,是解题的关键.4如图,AB 是⊙O 的直径,点C 是⊙O 上一点,将劣弧BC 沿弦BC 折叠交直径AB 于点D ,连接CD ,若∠ABC =α0°<α<45° ,则下列式子正确的是()A.sin α=BCABB.sin α=CD ABC.cos α=AD BDD.cos α=CD BC【答案】B【分析】连AC ,由AB 是⊙O 的直径,可知∠ACB =90°,由折叠,AC和CD所在的圆为等圆,可推得AC =CD ,再利用正弦定义求解即可.【详解】解:连AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,由折叠,AC 和CD所在的圆为等圆,又∵∠CBD =∠ABC ,∴AC和CD所对的圆周角相等,∴AC=CD,∴AC =CD ,在Rt △ACB 中,sin α=AC AB =CDAB,故选:B .【点睛】本题考查圆周角定理和圆心角、弦、弧之间的关系以及正弦、余弦定义,解答关键是通过折叠找到公共的圆周角推出等弦.5如图,在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,以OA ,OC 为边构造矩形OABC ,点B 的坐标为8,6 ,D ,E 分别为OA ,BC 的中点,将△ABE 沿AE 折叠,点B 的对应点F 恰好落在CD 上,则点F 的坐标为()A.3213,3013B.3013,3213C.3013,2013D.2013,3013【答案】A【分析】先求得直线CD 的解析式,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m ,-32m +6 ,在Rt △EMF 中,再利用勾股定理得到关于m 的方程,解方程即可.【详解】解:∵点B 的坐标为8,6 ,四边形OABC 是矩形,D ,E 分别为OA ,BC 的中点,∴C 0,6 ,D 4,0 ,E 4,6 ,由折叠的性质可得:EF =BE =4,设直线CD 的解析式为y =kx +b ,则6=b 4k +b =0 ,解得:k =-32b =6,∴直线CD 的解析式为y =-32x +6,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m,-32m+6,则MF=CN=6--32m+6=32m,EM=4-m,在Rt△EMF中,EM2+MF2=EF2,∴4-m2+32m2=42,解得:m=3213或m=0(不合题意,舍去),当m=3213时,y=-32×3213+6=3013,∴点F的坐标为3213,30 13,故选:A.【点睛】本题是一次函数与几何综合题,考查了求一次函数解析式,勾股定理,翻折的性质,矩形的性质,中点的性质,熟练掌握知识点并灵活运用是解题的关键.6综合与实践课上,李老师让同学们以矩形纸片的折叠为主题开展数学活动.如图,将矩形纸片ABCD对折,折痕为EF,再把点A折叠在折痕EF上,其对应点为A ,折痕为DP,连接A B,若AB=2,BC =3,则tan∠A BF的值为()A.33B.3 C.32D.12【答案】A【分析】先证明EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,AD=A D=3,可得A E=A D2-DE2=32,AF=2-32=12,再利用正切的定义求解即可.【详解】解:∵矩形纸片ABCD对折,折痕为EF,AB=2,BC=3,∴EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,由折叠可得:AD=A D=3,∴A E=A D2-DE2=32,∴A F=2-32=12,∴tan ∠A BF =1232=33.故选A【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,求解锐角的正切,熟记轴对称的性质是解本题的关键.7如图,矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,将顶点D 折叠至线段AP 上一点D ,折痕为EF ,此时,点C 折叠至点C .下列说法中错误的是()A.cos ∠BAP =45B.当AE =53时,D E ⊥AP C.当AE =18-65时,△AD E 是等腰三角形 D.sin ∠DAP =45【答案】C【分析】根据矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质计算判断即可.【详解】∵矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,∴BP =12BC =32,∠B =90°,∴AP =AB 2+BP 2=22+32 2=52,∴cos ∠BAP =AB AP=252=45,故A 正确;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴sin ∠DAP =sin ∠APB =cos ∠BAP =45,故D 正确;设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,sin ∠DAP =45,∵D E ⊥AP ,∴sin ∠DAP =D E AE=x 3-x =45,解得x =43,∴AE =AD -DE =3-x =53,故B 正确;当D E =AE 时,∴x =3-x ,解得x =32;此时D ,A 重合,三角形不存在,不符合题意;当D E =AD 时,过点D 作D N ⊥AD 于点N ,则AN =NE ;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴cos ∠DAP =cos ∠APB =3252=35,设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,D E =AD =x ,∴AN AD=AN x =35,解得AN =35x ;∴AE =AD -DE =3-x =2AN =65x ,解得x =1511;∴AE =65×1511=1811;当AE =AD 时,过点D 作D H ⊥AD 于点H ,设DE =D E =x ,根据题意,得AE =AD =AD -DE =3-x ,∴D H =AD sin ∠DAP =453-x ,AH =AD cos ∠DAP =353-x ,∴HE =AE -AH =3-x -353-x =253-x ,根据勾股定理,得HE 2+D H 2=D E 2,∴253-x 2+453-x2=x 2解得x =65-12;∴AE =3-x =15-65;综上所述,AE =15-65或AE =1811,故C 错误,故选C .【点睛】本题考查了矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质,熟练掌握三角函数,勾股定理,矩形的性质,折叠的性质是解题的关键.8如图,AB 为半圆O 的直径,点O 为圆心,点C 是弧上的一点,沿CB 为折痕折叠BC交AB 于点M ,连接CM ,若点M 为AB 的黄金分割点(BM >AM ),则sin ∠BCM 的值为()A.5-12B.5+12C.5-14D.12【答案】A【分析】过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,根据折叠的性质可得:∠CMB=∠CM′B,BC⊥MM′,从而可得∠BDM=90°,再根据黄金分割的定义可得BMAB =5-12,然后利用直径所对的圆周角是直角可得∠ACB=90°,从而证明A字模型相似三角形△DBM∽△CBA,进而利用相似三角形的性质可得DMAC=BMAB=5-12,最后根据圆内接四边形对角互补以及平角定义定义可得:∠A=∠AMC,从而可得CA=CM,再在Rt△CDM中,利用锐角三角函数的定义进行计算,即可解答.【详解】解:过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,由折叠得:∠CMB=∠CM′B,BC⊥MM′,∴∠BDM=90°,∵点M为AB的黄金分割点(BM>AM),∴BMAB =5-12,∵AB为半圆O的直径,∴∠ACB=90°,∴∠ACB=∠MDB,∵∠DBM=∠CBA,∴△DBM∽△CBA,∴DMAC =BMAB=5-12,∵四边形ACM′B是半⊙O的内接四边形,∴∠A+∠CM′B=180°,∵∠AMC+∠CMB=180°,∠CMB=∠CM′B,∴∠A=∠AMC,∴CA=CM,在Rt△CDM中,sin∠BCM=DMCM=DMAC=5-12.故选:A.【点睛】本题考查了相似三角形的判定与性质,黄金分割,解直角三角形,翻折变换(折叠问题),圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题9如图,将一张矩形纸片ABCD折叠,折痕为EF,折叠后,EC的对应边EH经过点A,CD的对应边HG交BA的延长线于点P.若PA=PG,AH=BE,CD=3,则BC的长为.【答案】43【分析】本题考查了矩形与折叠问题,全等三角形的判定和性质,勾股定理.连接PF ,设BC =2x ,AH =BE=a ,证明Rt △PAF ≌Rt △PGF HL ,求得FA =FG =FD =x ,由折叠的性质求得BE =12x ,在Rt △ABE中,利用勾股定理列式计算,即可求解.【详解】解:连接PF ,设BC =2x ,AH =BE =a ,由矩形的性质和折叠的性质知FG =FD ,∠G =∠FAP =90°,AB =CD =3,AD =BC ,∵PA =PG ,PF =PF ,∴Rt △PAF ≌Rt △PGF HL ,∴FA =FG =FD =12AD =12BC =x ,由矩形的性质知:AD ∥BC ∴∠AFE =∠FEC ,折叠的性质知:∠FEA =∠FEC ,∴∠FEA =∠AFE ,∴AE =FA =x ,由折叠的性质知EC =EH =AE +AH =x +a ,∴BC =BE +EC =a +x +a =2x ,∴a =12x ,即BE =12x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+12x 2=x 2,解得x =23,∴BC =2x =43,故答案为:4310如图,在矩形ABCD 中,AB =3,AD =6,M 为AD 的中点,N 为BC 边上一动点,把矩形沿MN 折叠,点A ,B 的对应点分别为A ,B ,连接AA '并延长交射线CD 于点P ,交MN 于点O ,当N 恰好运动到BC 的三等分点处时,CP 的长为.【答案】1或5【分析】分两种情况:①当CN =2BN 时.过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形;②当BN =2CN 时,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,根据矩形的性质得GM =AM -AG =1.再由折叠的性质可得∠AOM =90°,然后根据相似三角形的判定与性质可得答案.【详解】解:①当CN =2BN 时.如图1,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =2.∵M 为AD 的中点,∴AM =3,∴GM =AM -AG =1.由折叠A 与A 对应,∴∠AOM =90°,∵∠MAO +∠APD =90°,∠MAO +∠AMO =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∵∠NGM =∠ADP =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD -DP =1.②当BN =2CN 时,如图2,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =4.∵M 为AD 的中点,∴AM =3,∴GM =AG -AM =1.由折叠A 与A 对应,∴∠AOM =90°∠MAO +∠AMO =90°,∠MAO +∠APD =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∠ADP =∠NGM =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD +DP =5.综上,CP 的长为1或5.故答案为:1或5.【点睛】此题考查的是翻折变换-折叠问题、矩形的性质,正确作出辅助线是解决此题的关键.11如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.12在矩形ABCD 中,点E 为AD 边上一点(不与端点重合),连接BE ,将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,连接并延长EF ,BF 分别交BC ,CD 于G ,H 两点.若BA =6,BC =8,FH =CH ,则AE 的长为.【答案】92【分析】连接GH ,证明Rt △FHG ≅Rt △CHG (HL ),可得FG =CG ,设FG =CG =x ,在Rt △BFG 中,有62+x 2=(8-x )2,可解得CG =FG =74,知BG =254,由矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,得∠AEB =∠FEB ,可得∠FEB =∠EBG ,EG =BG =254,故EF =EG -FG =92,从而得到AE =92.【详解】连接GH ,如图:∵四边形ABCD 是矩形,∴∠A =∠C =90°,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴BF =AB =6,AE =EF ,∠BFE =∠A =90°,∴∠GFH =90°=∠C ,∵GH =GH ,FH =CH ,∴Rt △FHG ≅Rt △CHG (HL ),∴FG =CG ,设FG =CG =x ,则BG =BC -CG =8-x在Rt △BFG 中,BF 2+FG 2=BG 2∴62+x 2=(8-x )2,解得:x =74,∴CG =FG =74,∴BG =8-x =25x,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴∠AEB =∠FEB ,∵AD ⎳BC ,∴∠AEB =∠EBG ,∴∠FEB =∠EBG ,∴EG =BG =254,∴AE =92,故答案为:92.【点睛】本题考查矩形中的翻折变换,涉及三角形全等的判定与性质,勾股定理及应用,掌握相关知识是解题的关键.13如图,在矩形ABCD 中,AD =23,CD =6,E 是AB 的中点,F 是线段BC 上的一点,连接EF ,把△BEF 沿EF 折叠,使点B 落在点G 处,连接DG ,BG 的延长线交线段CD 于点H .给出下列判断:①∠BAC =30°;②△EBF ∽△BCH ;③当∠EGD =90°时,DG 的长度是23 ④线段DG 长度的最小值是21-3;⑤当点G 落在矩形ABCD 的对角线上,BG 的长度是3或33;其中正确的是.(写出所有正确判断的序号)【答案】①②③【分析】利用正切函数的定义即可判断①正确;利用同角的余角相等推出∠HBC =∠BEF ,可判断②正确;推出点D 、G 、F 三点共线,证明Rt △EAD ≌Rt △EGD HL ,可判断③正确;当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,由于F 是线段BC 上的一点,不存在D 、G 、E 三点共线,可判断④不正确;证明△BGE 是等边三角形,可判断⑤.【详解】解:连接AC ,∵矩形ABCD 中,AD =23,CD =6,∴tan ∠ACD =AD CD=236=33,∴∠ACD =30°,∴∠BAC =30°,故①正确;由折叠的性质知EF 是BG 的垂直平分线,∴∠HBC +∠BFE =90°=∠BEF +∠BFE ,∴∠HBC =∠BEF ,∴△EBF ∽△BCH ,故②正确;由折叠的性质知∠EGF =∠ABC =90°,∵∠EGD =90°,∴点D 、G 、F 三点共线,连接DE ,在Rt △EAD 和Rt △EGD 中,AE =BE =EG ,DE =DE ,∴Rt △EAD ≌Rt △EGD HL ,∴DG =AD =23,故③正确;∵AE =BE =EG ,∴点A 、G 、B 都在以E 为圆心,3为半径的圆上,DE =23 2+32=21,∴当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,但F 是线段BC 上的一点,∴D 、G 、E 三点不可能共线,故④不正确;当点G 落在矩形ABCD 的对角线AC 上时,由折叠的性质知BE =EG ,∵E 是AB 的中点,由①知∠BAC =30°,∴BE =EG =EA ,∠BAC =∠EGA =30°,∴∠BEG =∠BAC +∠EGA =60°,∴△BGE 是等边三角形,∴BG 的长度是3;由于F 是线段BC 上的一点,则点G 不会落在矩形ABCD 的对角线BD 上,故⑤不正确;综上,①②③说法正确,故答案为:①②③.【点睛】本题考查了矩形与折叠问题,正切函数,相似三角形的判定,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.14如图,将矩形ABCD沿BE折叠,点A与点A 重合,连接EA 并延长分别交BD、BC于点G、F,且BG=BF.(1)若∠AEB=55°,则∠GBF=;(2)若AB=3,BC=4,则ED=.【答案】40°/40度5-10/-10+5【分析】(1)先证明∠DEF=180°-2×55°=70°,∠BFG=∠DEF=70°,利用BG=BF,可得答案;(2)如图,过F作FQ⊥AD于Q,可得CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,则∠DEG=∠DGE,设DE=DG=x,而BD=32+42=5,则BG=BF=5-x,CF=4-5-x=1,再求解EF=12+32=10,由折叠可得:A E=AE=4 =x-1,EQ=x-x-1-x,AF=10-4+x,利用cos∠BFA=cos∠FEQ,再建立方程求解即可.【详解】解:(1)∵∠AEB=55°,结合折叠可得:∠AEB=∠A EB=55°,∴∠DEF=180°-2×55°=70°,∵矩形ABCD,∴AD∥BC,∴∠BFG=∠DEF=70°,∵BG=BF,∴∠BGF=∠BFG=70°;∴∠GBF=180°-2×70°=40°;故答案为:40°.(2)如图,过F作FQ⊥AD于Q,∴四边形FCDQ是矩形,则CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,∴∠DEG=∠DGE,∴设DE=DG=x,∵矩形ABCD,AB=3,BC=4,∴BD=32+42=5,∴BG=BF=5-x,∴CF=4-5-x=x-1,∴EQ=x-x-1=1,∴EF=12+32=10,由折叠可得:A E=AE=4-x,∴AF =10-4+x,∵∠QEF=∠BFA ,∴cos∠BFA =cos∠FEQ,∴EQEF=A FBF,∴110=10-4+x5-x,解得:x=5-10,经检验符合题意;∴DE=5-10.故答案为:5-10.【点睛】本题考查的是轴对称的性质,矩形的性质与判定,勾股定理的应用,锐角三角函数的应用,等腰三角形的判定与性质,熟练的利用以上知识解题是关键.三、解答题15综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠△ABE到△AFE,如图(2)所示;操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分∠DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,AB=4,BC=6,按照(1)中的方式操作,得到图(6)或图(7).请完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;②当DN的长为1时,请直接写出BE的长.【答案】(1)①在,②AE⊥BN,相等;③不存在;(2)①BECN =23,理由见解析;②BE=2或165.【分析】(1)①E的对称点为E ,BF⊥EE ,MF⊥EE ,即可判断;②由①AE⊥BN,由同角的余角相等得∠BAE=∠CBN,由AAS可判定△ABE≌△BCN,由全等三角形的性质即可得证;③由AAS可判定△DAN≌△MAN,由全等三角形的性质得AM=AD,等量代换得AB=AM,与AB>AM矛盾,即可得证;(2)①由(1)中的②可判定△ABE∽△BCN,由三角形相似的性质即可求解;②当N在CD上时,△ABE∽△BCN,由三角形相似的性质即可求解;当N在AD上时,同理可判定△ABE∽△NAB,由三角形相似的性质即可求解.【详解】(1)解:①E的对称点为E ,∴BF⊥EE ,MF⊥EE ,∴B、F、M共线,故答案为:在;②由①知:B、F、M共线,N在FM上,∴AE⊥BN,∴∠AMB=90°,∴∠ABM+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCN=90°,AB=BC,∴∠CBN+∠ABM=90°,∴∠BAE=∠CBN,在△ABE和△BCN中,∠BAE=∠CBN ∠ABC=∠BCN AB=BC,∴△ABE≌△BCN(AAS),∴AE=BN,故答案为:相等;③不存在,理由如下:假如存在,∵AN平分∠DAE,∴∠DAN=∠MAN,∵四边形ABCD是正方形,AM⊥BN,∴∠D=∠AMN=90°,在△DAN和△MAN中,∠D=∠AMN∠DAN=∠MAN AN=ANN∴△DAN≌△MAN(AAS),∴AM=AD,∵AD=AB,∴AB=AM,∵AB是Rt△ABM的斜边,∴AB>AM,∴AB =AM 与AB >AM 矛盾,故假设不成立,所以答案为:不存在;(2)解:①BE CN=23,理由如下:由(1)中的②得:∠BAE =∠CBN ,∠ABE =∠C =90°,∴△ABE ∽△BCN ,∴BE CN =AB BC=23;②当N 在CD 上时,CN =CD -DN =3,由①知:△ABE ∽△BCN ,∴BE CN =AB BC =23,∴BE =23CN =2,当N 在AD 上时,AN =AD -DN =5,∵∠BAE =∠CBN =∠ANB ,∠ABE =∠BAN =90°,∴△ABE ∽△NAB ,∴BE AB =AB AN ,∴BE 4=45,∴BE =165,综上所述:BE =2或165.【点睛】本题考查了折叠的性质,矩形的性质,正方形的性质,全等三角形的判定及性质,三角形相似的判定及性质,掌握相关的判定方法及性质,“十字架”典型问题的解法是解题的关键.16在矩形ABCD 中,AD =2AB =8,点P 是边CD 上的一个动点,将△BPC 沿直线BP 折叠得到△BPC .(1)如图1,当点P 与点D 重合时,BC ′与AD 交于点E ,求BE 的长度;(2)当点P 为CD 的三等分点时,直线BC ′与直线AD 相交于点E ,求DE 的长度;(3)如图2,取AB 中点F ,连接DF ,若点C ′恰好落在DF 边上时,试判断四边形BFDP 的形状,并说明理由.【答案】(1)BE 的长度为5;(2)DE 的长度为113或83;(3)四边形BFDP 是平行四边形(理由见解析)【分析】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及平行四边形的判定有关知识.(1)利用矩形性质和折叠的性质可推出BE=DE,设BE=x,则DE=x,AE=8-x,利用勾股定理建立方程求解即可得出答案;(2)设DE=m,则AE=m+8,设BE交CD于G,可证得△AEB∽△CBG,得出CGAB =BCAE,即CG4=8m+8,求得CG=32m+8,分两种情况:当PC=13CD=43时,当PC=23CD=83时,分别添加辅助线构造相似三角形,利用相似三角形性质建立方程求解即可得出答案;(3)由中点定义可得AF=BF,过点C 作C M∥AD交AB于点M,过点F作FN⊥BC 于点N,由矩形性质和翻折的性质可得∠C BP=∠CBP=12∠C BC,可证得△FC M∽△FDA,得出FMAF=C MAD,再证得△BFN∽△BC M,进而推出FM=FN,利用角平分线的判定定理可得∠BC F=∠MC F=12∠BC M推出∠BC F=∠C BP,再由平行线的判定定理可得DF∥BP,运用平行四边形的判定定理即可证得四边形BFDP是平行四边形.【点睛】点睛片段【详解】(1)解:∵AD=2AB=8,∴AB=4,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ADB=∠DBC,由折叠得:∠DBC=∠DBC ,∴∠ADB=∠DBC ,即∠EDB=∠EBD,∴BE=DE,设BE=x,则DE=x,AE=8-x,在Rt△ABE中,AE2+AB2=BE2,∴(8-x)2+42=x2,解得:x=5,∴BE的长度为5;(2)设DE=m,则AE=m+8,设BE交CD于G,∵四边形ABCD是矩形,∴BC=AD=8,CD=AB=4,AD∥BC,∠A=∠BCG=90°,∴∠AEB=∠CBG,∴△AEB∽△CBG,∴CG AB =BCAE,即CG4=8m+8,∴CG=32m+8,当PC=13CD=43时,BP=BC2+PC2=82+432=4373,连接CC ,过点C 作C H⊥CD于点H,如图,∵将△BPC沿直线BP折叠得到△BPC ,∴CC ⊥BP,△BPC ≌△BPC,∴S四边形BCPC =2S△BPC,∴1BP⋅CC =2×1BC⋅PC,即12×4373CC =2×12×8×43,∴CC =163737,∵∠C CH +∠BPC =90°,∠PBC +∠BPC =90°,∴∠C CH =∠PBC ,∵∠CHC =∠BCP =90°,∴△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 43=CH 8=1637374373,∴C H =1637,CH =9637,∵∠C HG =∠EDG =90°,∴C H ∥AE ,∴∠GC ′H =∠AEB ,∴△C GH ∽△EBA ,∴GH AB =C H AE ,即GH 4=1637m +8,∴GH =6437(m +8),∵CH +GH =CG ,∴9637+6437(m +8)=32m +8,解得:m =113,经检验,m =113是该方程的解,∴DE =113;当PC =23CD =83时,BP =BC 2+PC 2=82+83 2=8103,连接CC ,过点C 作C H ⊥CD 交CD 的延长线于点H ,作C G ⊥AD 于点G ,如图,同理可得:CC =8105,同理△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 83=CH 8=81058103,∴C H =85,CH =245,∴DH =CH -CD =245-4=45,∵∠HDG =∠H =∠C GD =90°,∴四边形DGC H 是矩形,∴C G =DH =45,DG =C H =85,∵∠C GE =∠A =90°,∠C EG =∠BEA ,∴△C EG ∽△BEA ,∴EG AE =C G AB =454=15,∴AE =5EG ,∵AE +EG =AG =AD -DG =8-85=325,∴5EG +EG =325,∴EG =1615,∴DE =DG +EG =85+1615=83,综上所述,DE 的长度为113或83;(3)四边形BFDP 是平行四边形,理由如下:∵点F 是AB 的中点,∴AF =BF ,过点C 作C M ∥AD 交AB 于点M ,过点F 作FN ⊥BC 于点N ,如图,则∠FC M =∠ADF ,∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∴C M ∥BC ,∴∠BC M =∠C BC ,由翻折得:∠C BP =∠CBP =12∠C BC ,BC =BC =8,∵C M ∥AD ,∴△FC M ∽△FDA ,∴FM AF =C M AD ,∴FM BF =C MBC ,∵∠BNF =∠BMC =90°,∠FBN =∠C BM ,∴△BFN ∼△BC M∴FN BF =C MBC ,∴FM BF =FN BF ,∴FM =FN ,又∵FM ⊥C M ,FN ⊥C B ,∴∠BC F =∠MC F =12∠BC M ,∴∠BC F =∠C BP ,∴DF ∥BP ,∴四边形BFDP 是平行四边形.17矩形ABCD 中,AB =6,AD =8,点E 为对角线AC 上一点,过点E 作EF ⊥AD 于点F ,EG ⊥AC 交边BC 于点G ,将△AEF 沿AC 折叠得△AEH ,连接HG .(1)如图1,若点H 落在边BC 上,求证:AH =CH ;(2)如图2,若A ,H ,G 三点在同一条直线上,求HG 的长;(3)若△EHG 是以EG 为腰的等腰三角形,求EF 的长.【答案】(1)见解析(2)HG =94(3)EF =103或4【分析】(1)根据矩形的性质和翻折的性质证明∠ACH =∠HAC ,即可解决问题;(2)结合(1)的方法AG =CG ,解Rt △AEG ,Rt △HEG 分别求得EG ,HG ;(3)当△EHG 是以EG 为腰的等腰三角形时,分两种情况:①当EG =EH ,②当EG =HG ,结合(2)的方法,利用全等三角形的判定与性质和相似三角形的判定与性质即可解决问题.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE =∠ACH .∵△AHE 由△AFE 折叠得到,∴∠HAC =∠DAE ,∴∠HAC =∠ACH ,∴AH =CH ;(2)∵矩形ABCD 中,AB =6,AD =8.∴AC =10.当A ,H ,G 三点在同一条直线上时,∠EHG =90°.同(1)可得AG =CG .又∵EG ⊥AC ,∴AE =12AC =5.∵∠AEH +∠HEG =90°,∠AEH +∠HAE =90°,∴∠HEG =∠HAC =∠CAD .∵在Rt △AEG 中,tan ∠EAG =EG AE =34,∴EG =34AE =154.∵在Rt △HEG 中,sin ∠HEG =HG EG =35,∴HG =35EG =94.(3)①若EH =EG ,如图3①设EF =EH =EG =x ,∵EF ⊥AD ,∴EF ∥CD ,∴△AEF ∽△ACD ,∴AE AC =AF AD =EF CD ∴AE 10=AF 8=x 6∴AE =53x ,AF =43x ,∴AH =AF =43x ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,EH =EH ,∴△AHE ≌△CGE AAS ,∴AH =CE ,∴43x =10-53x ,∴x =103∴EF =103.②若HG =GE ,如图3②.(图3②)过点G 作GM ⊥HE ,设EF =a ,∵EC =10-53a ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,∴△AHE ∽△CGE ,∴EG =34EC =3410-53a =152-54a ,∵∠GME =∠EHA ,∠MGE =90°-∠MEG =∠HAE ,∴△MGE ∽△HEA ,∴ME AH =EG AE ,∵AH AE =AD AC =45,∴AH =45AE ,∴ME =45EG =45152-54a =6-a ,∴HE =2ME =12-2a =EF ,∴12-2a =a ,∴a =4,∴EF =4,综上,EF =103或4.【点睛】本题考查了矩形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的性质,翻折的性质,解决本题的关键是综合运用以上知识.18综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF,然后展开,沿过点A与点E所在的直线折叠,点B落在点B 处,连接 B C,如图1,请直接写出∠AEB 与∠ECB 的数量关系.【能力提升】把正方形对折,折痕为EF,然后展开,沿过点A与BE上的点G所在的直线折叠,使点B落在EF上的点P处,连接PD,如图2,猜想∠APD的度数,并说明理由.【拓展延伸】在图2的条件下,作点A关于直线CP的对称点A ,连接PA ,BA ,AC,如图3,求∠PA B的度数.【答案】初步尝试:∠AEB =∠ECB ;能力提升:猜想:∠APD=60°,理由见解析;拓展延伸:∠PA B=15°【分析】初步尝试:连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,根据等边对等角的性质和三角形内角和定理,得出∠BB C=90°,推出AE∥CB ,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证△AFP≌△DFP SAS,从而证明△APD是等边三角形,即可得到答案;拓展延伸:连接A C、AA ,由(2)得△APD是等边三角形,进而得出∠PDC=30°,再结合等边对等角的性质和三角形内角和定理,求得∠PAC=15°,∠ACP=30°,由对称性质得:AC=A C,∠ACP=∠A CP=30°,证明△AA B≌△CA B SSS,得到∠CA B=30°,再由∠CA P=∠CAP=15°,即可求出∠PA B的度数.【详解】解:初步尝试:∠AEB =∠ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,∴BE=CE=BE ,∴∠EBB =∠EB B,∠ECB =∠EB C,∵∠EBB +∠EB B+∠EB C+∠ECB =2∠EB B+∠EB C=180°,∴∠BB C=90°,即BB ⊥CB ,∴AE∥CB ,∴∠AEB=∠ECB ,∴∠AEB =∠ECB ;解:能力提升:猜想:∠APD=60°,理由如下:理由:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,由折叠性质可得:AF =DF ,EF ⊥AD ,AB =AP ,在△AFP 和△DFP 中,AF =DF∠AFP =∠DFP =90°FP =FP,∴△AFP ≌△DFP SAS ,∴AP =PD ,∴AP =AD =PD ,∴△APD 是等边三角形,∴∠APD =60°;解:拓展延伸:如图,连接A C 、AA ,由(2)得△APD 是等边三角形,∴∠PAD =∠PDA =∠APD =60°,AP =DP =AD ,∵∠ADC =90°,∴∠PDC =30°,又∵PD =AD =DC ,∴∠DPC =∠DCP =12×180°-30° =75°,∠DAC =∠DCA =45°,∴∠PAC =∠PAD -∠DAC =60°-45°=15°,∠ACP =∠DCP -∠DCA =75°-45°=30°,由对称性质得:AC =A C ,∠ACP =∠A CP =30°,∴∠ACA =60°,∴△ACA 是等边三角形,在△AA B 与△CA B 中,A A =A CA B =A B AB =BC,∴△AA B ≌△CA B SSS ,∴∠AA B =∠CA B =12∠AA C =30°,又∵∠CA P =∠CAP =15°,∴∠PA B =∠CA B -∠CA P =15°.【点睛】本题考查了折叠的性质,等腰三角形的判定和性质,三角形内角和定理,正方形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,作辅助线构造全等三角形是解题关键.19综合与实践数学活动课上,数学老师以“矩形纸片的折叠”为课题开展数学活动:将矩形纸片ABCD 对折,使得点A ,D 重合,点B ,C 重合,折痕为EF ,展开后沿过点B 的直线再次折叠纸片,点A 的对应点为点N ,折痕为BM . (1)如图(1)若AB =BC ,则当点N 落在EF 上时,BF 和BN 的数量关系是,∠NBF 的度数为.思考探究:(2)在AB=BC的条件下进一步进行探究,将△BMN沿BN所在的直线折叠,点M的对应点为点M .当点M 落在CD上时,如图(2),设BN,BM 分别交EF于点J,K.若DM =4,请求出三角形BJK的面积.开放拓展:(3)如图(3),在矩形纸片ABCD中,AB=2,AD=4,将纸片沿过点B的直线折叠,折痕为BM,点A的对应点为点N,展开后再将四边形ABNM沿BN所在的直线折叠,点A的对应点为点P,点M的对应点为点M ,连接CP,DP,若PC=PD,请直接写出AM的长.(温馨提示:12+3=2-3,12+1=2-1)【答案】(1)BF=12BN,60°(2)2+2(3)4-23【分析】(1)根据折叠的性质得:AB=BN,BF=CF=12BC,根据直角三角形的性质可得∠BNF=30°,由直角三角形的两锐角互余可得结论;(2)由折叠得:BM=BM ,证明Rt△ABM≌Rt△CBM (HL),可知AM=CM ,∠ABM=∠CBM ,得△BFJ是等腰直角三角形,再证明四边形ABCD是正方形,分别计算BF=FJ=12BC=2+2,JK=2,由三角形面积公式可得结论;(3)如图(3),过点P作PG⊥BC于G,PH⊥CD于H,根据等腰三角形的三线合一可得DH=CH=12CD=12AB=1,由折叠的性质和矩形的性质可得PG=CH=1,BN=BP=AB=2,∠NBP=∠ABN,设PL=x,则M L=2x,M P=3x,根据NL=233=NM +M L,列方程可解答.【详解】(1)解:由折叠得:AB=BN,BF=CF,∠BFN=90°,∵AB=BC,∴BF=12BN,∴∠BNF=30°,∴∠NBF=90°-30°=60°,故答案为:BF=12BN,60°;(2)由折叠得:BM=BM ,∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AB=BC,∴Rt△ABM≌Rt△CBM (HL),∴AM=CM ,∠ABM=∠CBM ,∴∠ABM=∠MBN=∠NBM =∠CBM ,∴∠FBJ=45°,∴△BFJ是等腰直角三角形,∵四边形ABCD是矩形,AB=BC,∴矩形ABCD是正方形,∴AD=CD,∠D=90°,∴DM=DM =4,∴MM =42,∵AM=MN=M N=CM ,∴CM =22,∴BC =CD =4+22,∴BF =FC =2+2,∵FK ∥CM ,∴BK =KM ,∴FK =12CM =2,∵△BFJ 是等腰直角三角形,∴BF =FJ =12BC =2+2,∴JK =2+2-2=2,∴S △BJK =12⋅JK ⋅BF =12×2×(2+2)=2+2;(3)如图,过点P 作PG ⊥BC 于G ,PH ⊥CD 于H ,∵PC =PD ,∴DH =CH =12CD =12AB =1,∵∠PGC =∠PHC =∠BCH =90°,∵四边形PGCH 是矩形,∴PG =CH =1,由折叠得:BN =BP =AB =2,∠NBP =∠ABN ,Rt △BPG 中,∠PBG =30°,∴∠ABN =∠NBP =90°-30°2=30°,延长NM ,BP 交于L ,Rt △BNL 中,BN =2,∠NBL =30°,∴NL =2×33=233,Rt △M PL 中,∠M LP =90°-30°=60°,∴∠PM L =30°,设PL =x ,则M L =2x ,M P =3x ,∵NL =233=NM +M L ,∴3x +2x =233,∴x =433-2,∴AM =3x =3×433-2 =4-23.【点睛】本题是四边形的综合题,考查了折叠的性质,含30°角的直角三角形的性质,矩形的性质和判定,正方形的判定和性质,三角函数等知识,掌握折叠的性质和正确作辅助线是解题的关键,题目具有一定的综合性,比较新颖.20综合与实践综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断如图1,先用对折的方式确定矩形ABCD 的边AB 的中点E ,再沿DE 折叠,点A 落在点F 处,把纸片展平,延长DF ,与BC 交点为G .。

数学折叠问题初一

数学折叠问题初一

数学折叠问题初一数学折叠问题是一种典型的几何问题,它涉及到图形在空间中的变换和计算。

在初中阶段,数学折叠问题不仅能帮助学生巩固几何知识,还能提高他们的空间想象力和逻辑思维能力。

本文将从数学折叠问题的概念、应用场景、解决方法以及在初中的教学意义等方面进行详细阐述。

一、数学折叠问题的概念与基本原理数学折叠问题是指在平面或空间几何中,通过对一个图形进行折叠,使其变为另一个图形的问题。

在这个过程中,图形的形状、大小和位置可能会发生变化。

解决数学折叠问题需要掌握图形的折叠原理,了解图形的各个部分之间的关系。

二、数学折叠问题的应用场景数学折叠问题在日常生活和学术研究中具有广泛的应用。

例如,在建筑、设计和制造领域,数学折叠问题可以帮助我们更好地理解和分析空间结构;在数学和物理研究中,数学折叠问题有助于探究图形的变换和性质。

三、解决数学折叠问题的方法与技巧解决数学折叠问题有以下几种方法:1.观察法:通过观察图形的特征,找到图形之间的联系和规律。

2.折叠法:将图形按照折叠线进行折叠,分析折叠前后的图形关系。

3.方程法:建立数学模型,利用方程求解图形折叠问题。

4.几何变换法:利用平移、旋转等几何变换,将问题转化为已知图形的性质。

四、数学折叠问题在初中的教学意义数学折叠问题在初中阶段的教学具有重要意义。

通过解决数学折叠问题,学生可以:1.加深对几何图形的理解和掌握;2.提高空间想象力和逻辑思维能力;3.培养观察、分析和解决问题的能力;4.巩固和拓展数学知识,为高中阶段的学习打下基础。

五、提高初中生数学折叠问题能力的建议1.多做练习:通过大量练习,熟练掌握数学折叠问题的解题技巧;2.培养空间想象力:通过观察和折叠实物,提高空间想象力;3.学会分类和归纳:将数学折叠问题进行分类,总结规律;4.及时请教老师:在遇到难题时,及时向老师请教,确保掌握数学折叠问题的解题方法。

初中几何折叠问题的三种解法

初中几何折叠问题的三种解法

初中几何折叠问题的三种解法初中几何折叠问题的三种解法初中几何是数学中的一个重要分支,而折叠问题则是初中几何中常见的一种问题。

在这里,我们将介绍三种不同的方法来解决初中几何折叠问题。

方法一:手工模拟法手工模拟法是一种简单直观的方法。

它通过将纸张折叠成所需形状来解决问题。

步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。

2. 将纸张按照比例剪成相应大小。

3. 按照题目要求,将纸张进行折叠,直到得到所需形状。

4. 计算所需参数并得出答案。

优点:手工模拟法操作简单易懂,适合初学者使用。

同时也能够帮助学生更好地理解折叠问题的本质。

缺点:手工模拟法需要较长时间完成,并且需要精确测量和折叠。

同时也容易出现误差和偏差。

方法二:平面几何法平面几何法是一种基于平面几何知识来解决问题的方法。

它通过利用图形相似性和对称性来计算所需参数。

步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。

2. 根据平面几何知识,计算所需参数,如角度、长度等。

3. 得出答案。

优点:平面几何法具有计算速度快、精度高等特点。

同时也能够帮助学生更好地理解平面几何知识的应用。

缺点:平面几何法需要学生具备一定的数学基础,并且需要对图形相似性和对称性有深入理解。

同时也容易出现计算错误和漏算情况。

方法三:三维几何法三维几何法是一种基于立体几何知识来解决问题的方法。

它通过利用立体图形的投影和相似性来计算所需参数。

步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。

2. 利用三维几何知识,将立体图形投影到二维平面上,并计算所需参数,如角度、长度等。

3. 得出答案。

优点:三维几何法具有计算速度快、精度高等特点。

同时也能够帮助学生更好地理解立体几何知识的应用。

缺点:三维几何法需要学生具备一定的数学基础,并且需要对立体图形的投影和相似性有深入理解。

同时也容易出现计算错误和漏算情况。

结论:初中几何折叠问题可以通过多种方法来解决,其中手工模拟法、平面几何法和三维几何法是常见的三种方法。

人教版初中数学讲义八年级下册第07讲 专题2 平行四边形(特殊的平行四边形)中的折叠问题(解析版)

人教版初中数学讲义八年级下册第07讲 专题2  平行四边形(特殊的平行四边形)中的折叠问题(解析版)

第07讲专题1平行(特殊)四边形中的折叠问题类型一:平行四边形中的折叠问题类型二:矩形中的折叠问题类型三:菱形中的折叠问题类型四:正方形中的折叠问题类型一:平行四边形中的折叠问题1.如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线折叠得到△AB′C,B′C交AD于点E,连接B′D,若∠B=60°,∠ACB=45°,AC=,则B′D的长是()A.1B.C.D.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∠ADC=60°,∴∠CAE=∠ACB=45°,∵将△ABC沿AC翻折至△AB′C,∴∠ACB′=∠ACB=45°,∠AB′C=∠B=60°,∴∠AEC=180°﹣∠CAE﹣∠ACB′=90°,∴AE=CE=AC=,∵∠AEC=90°,∠AB′C=60°,∠ADC=60°,∴∠B′AD=30°,∠DCE=30°,∴B′E=DE=1,∴B′D==.故选:B.2.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A=65°.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,∴AB∥CD∥MN,∴∠DMN=∠FMN=∠A,∵∠AMF=50°,∴∠DMF=180°﹣∠AMF=130°,∴∠FMN=∠DMN=∠A=65°,故答案为:65.3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.4.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为36°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.5.如图,P是平行四边形纸片ABCD的BC边上一点,以过点P的直线为折痕折叠纸片,使点C,D落在纸片所在平面上C′,D′处,折痕与AD边交于点M;再以过点P的直线为折痕折叠纸片,使点B恰好落在C′P边上B′处,折痕与AB边交于点N.若∠MPC=74°,则∠NPB′=16°.【解答】解:∵点C,D落在纸片所在平面上C′,D′处,折痕与AD边交于点M,∴∠MPC′=∠MPC=74°,∴∠BPB′=180°﹣∠CPC′=180°﹣2∠PMC=180°﹣148°=32°,∵∠BPN=∠B′PN,∴∠NPB′=∠BPB′=16°,故答案为:16.类型二:矩形中的折叠问题6.如图,矩形ABCD沿对角线BD折叠,已知长BC=8cm,宽AB=6cm,那么折叠后重合部分的面积是()A.48cm2B.24cm2C.18.75cm2D.18cm2【解答】解:∵四边形ABCD是矩形,∴AD∥CB,∴∠ADB=∠DBC,∵∠C′BD=∠DBC∴∠ADB=∠EBD,∴DE=BE,∴C′E=8﹣DE,∵C′D=AB=6,∴62+(8﹣DE)2=DE2,∴DE=,=DE×CD÷2=18.75cm2.∴S△BDE故选:C.7.如图,长方形纸片ABCD,E为CD边上一点,将纸片沿BE折叠,点C落在点C'处,将纸片沿AE折叠,点D落在点D'处,且D'恰好在线段BE上.若∠AEC'=α,则∠CEB=()A.B.C.D.【解答】解:由折叠的性质得:∠AED=∠AED',∠CEB=∠C'EB,∵∠AED'=180°﹣∠CEB﹣∠AED,∠AED'=∠AEC'+∠C'EB=α+∠C'EB,∴∠AED'=180°﹣∠CEB﹣∠AED',∴2∠AED'=180°﹣∠CEB,∴2(α+∠CEB)=180°﹣∠CEB,∴3∠CEB=180°﹣2α,∴∠CEB=60°﹣α,故选:A.8.数学老师要求学生用一张长方形的纸片ABCD折出一个45°的角,甲、乙两人的折法如下,下列说法正确的是()甲:如图1,将纸片沿折痕AE折叠,使点B落在AD上的点B'处,∠EAD即为所求,乙:如图2,将纸片沿折痕AE,AF折叠,使B,D两点分别落在点B',D'处,AB'与AD'在同一直线上,∠EAF即为所求,A.只有甲的折法正确B.甲和乙的折法都正确C.只有乙的折法正确D.甲和乙的折法都不正确【解答】解:甲:将纸片沿折痕AE折叠,使B点落在AD上的B'点,得到∠EAB=∠EAD=45°;乙:将纸片沿折痕AE,AF折叠,使B,D两点落在AC上的点B',D',得到∠EAF=∠EAB'+∠FAB'=(∠DAC+∠BAC)=×90°=45°;故选:B.9.如图,在矩形ABCD中,M是BC上一点,将△ABM沿AM折叠,使点B落在B'处,若∠AMB=α,则∠B'AD等于()A.α﹣90°B.α﹣45°C.90°﹣2αD.90°﹣α【解答】解:∵四边形ABCD为矩形,∴∠ABC=90°,AD∥BC,∴∠DAM=∠AMB=α,∠BAM=90°﹣α,根据折叠可知,∠B'AM=∠BAM=90°﹣α,∴∠B'AD=∠B'AM﹣∠DAM=90°﹣α﹣α=90°﹣2α,故C正确.故选:C.10.如图,已知长方形纸片ABCD,点E和点F分别在边AD和BC上,且∠EFG=37°点H和点G分别是边AD和BC上的动点,现将纸片两端分别沿EF,GH折叠至如图所示的位置,若EF∥GH,则∠KHD 的度数为()A.37°B.74°C.96°D.106°【解答】解:∵EF∥GH,∴∠HGC=∠EFG=37°,∵四边形ABCD是长方形,∴AD∥BC,∴∠GHD+∠HGC=180°,∴∠GHD=143°,根据折叠的性质可得:∠KHG=∠DHG=143°,∴∠KHD=360°﹣∠KHG﹣∠DHG=360°﹣143°﹣143°=74°.故选:B.11.如图,将长方形纸片ABCD沿EF折叠后,点A,D分别落在A1,D1的位置,再将△A1EG沿着AB对折,将△GD1N沿着GN对折,使得D1落在直线GH上,则下列说法正确的是()①GN⊥DC;②GH⊥GD1;③当MN∥EF时,∠AEF=120°.A.①②B.①③C.②③D.①②③【解答】解:由折叠可知:∠A1GE=∠EGH,∠D1GN=∠MGN,∠GMN=∠D1=90°,∠A1=∠EHG=90°,∠AEF=∠A1EF,∴EH∥MN,∵∠A1GE+∠EGH+∠D1GN+∠MGN=180°,∴∠EGN=90°,∴GN⊥DC;故①正确;∵∠D1GN=∠MGN不一定为45°,∴GH不一定垂直GD1,故②错误;∵MN∥EF,EH∥MN,∴EH与EF共线,∴∠AEF=∠A1EF=2∠GEF,∵∠AEF+∠GEF=180°,∴∠AEF=120°,故③正确;故选:B.类型三:菱形中的折叠问题10.如图,在菱形纸片ABCD中,∠A=60°,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C′,且DC′是AB的垂直平分线,则∠DEC的大小为()A.30°B.45°C.60°D.75°【解答】解:连接BD,如图所示:∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵DC′是AB的垂直平分线,∴P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:D.11.如图,菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A恰好落在BD上的点F,那么∠BFC的度数是75°.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∠A+∠ABC=180°,BD平分∠ABC,∵∠A=120°,∴∠ABC=60°,∴∠FBC=30°,根据折叠可得AB=BF,∴FB=BC,∴∠BFC=∠BCF=(180°﹣30°)÷2=75°,故答案为:75°.12.如图,菱形ABCD中,∠D=120°,点E在边CD上,将菱形沿直线AE翻折,使点D恰好落在对角线AC上,连接BD′,则∠AD′B=75°.【解答】解:∵四边形ABCD是菱形,∴AD=DC=BC=AB,CD∥AB,∴∠DAC=∠DCA,∵∠D=120°,∴∠DAC=∠DCA=(180°﹣∠D)=30°.∵CD∥AB,∴∠BAD′=∠DCA=30°.∵将菱形沿直线AE翻折,使点D恰好落在对角线AC上,∴AD=AD′,∴AB=AD′,∴∠AD′B=∠ABD′=(180°﹣∠BAD′)=75°.故答案为75.13.如图,在菱形ABCD中,∠A=120°,AB=2,点E是边AB上一点,以DE为对称轴将△DAE折叠得到△DGE,再折叠BE使BE落在直线EG上,点B的对应点为点H,折痕为EF且交BC于点F.(1)∠DEF=90°;(2)若点E是AB的中点,则DF的长为.【解答】解:(1)由翻折可得∠AED=∠DEG,∠BEF=∠HEF,∴∠DEG+∠HEF=∠AED+∠BEF,∵∠DEG+∠HEF+∠AED+∠BEF=180°,∴∠DEG+∠HEF=90°,即∠DEF=90°.故答案为:90°.(2)∵四边形ABCD为菱形,∴AD∥BC,∴∠A+∠B=180°,由翻折可得AE=EG,BE=EH,∠A=∠EGD,∠B=∠EHF,∵点E是AB的中点,∴AE=BE,∴EG=EH,即点G与点H重合.∵∠EGD+∠EHF=∠A+∠B=180°,∴点D,G,F三点在同一条直线上.过点D作DM⊥BC,交BC的延长线于点M.∵∠A=120°,AB=2,∴∠DCM=60°,CD=2,∴CM=CD=1,DM=CD=,由翻折可得BF=FG,AD=DG=2,设BF=x,则MF=2﹣x+1=3﹣x,DF=2+x,由勾股定理可得,解得x=,∴DF=.故答案为:.类型四:正方形中的折叠问题14.如图,在正方形ABCD中,点E,F分别在边AB,CD上,∠EFC=120°,若将四边形EBCF沿EF 折叠,点B恰好落在AD边上,则∠AEB′为()A.70°B.65°C.30°D.60°【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∴∠BEF+∠EFC=180°,∵∠EFC=120°,∴∠BEF=180°﹣∠EFC=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,故选:D.15.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若FN=3,则正方形纸片的边长为2.【解答】解:设正方形纸片的边长为x,则BF=AB=x,BN=BC=x,∴Rt△BFN中,NF==x=3,∴x=2,故答案为:2.16.如图,在正方形ABCD中,E为边BC上一点,将△ABE沿AE折叠至△AB'E处,BE与AC交于点F,若∠EFC=69°,则∠CAE的大小为()A.10°B.12°C.14°D.15°【解答】解:∵∠EFC=69°,∠ACE=45°,∴∠BEF=69+45=114°,由折叠的性质可知:∠BEA=∠BEF=57°,∴∠BAE=90﹣57=33°,∴∠EAC=45﹣33=12°.故选:B.17.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,折痕BF与AE交于点H,点F在AD上,若DE=5,则AH的长为.【解答】解:∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90°,由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF===13,=AB•AF=BF•AH,∵S△ABF∴12×5=13AH,∴AH=,故答案为:.18.如图,将正方形纸片ABCD折叠,使点D落在边AB上的D'处,点C落在C'处,若∠AD'M=50°,则∠MNC'的度数为()A.100°B.110°C.120°D.130°【解答】解:四边形CDMN与四边形C′D′MN关于MN对称,则∠DMN=∠D′MN,且∠AMD′=90°﹣∠AD'M=40°,∴∠DMN=∠D′MN=(180°﹣40°)÷2=70°由于∠MD′C′=∠NC′D′=90°,∴∠MNC'=360°﹣90°﹣90°﹣70°=110°故选:B.。

初中数学专题:折叠问题

初中数学专题:折叠问题

For personal use only in study and research; not for commercial use专题八折叠问题学习要点与方法点拨:出题位置:选择、填空压轴题或压轴题倒数第二题折叠问题中,常出现的知识时轴对称。

折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;轴对称性质-----折线,是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。

压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠的选择题填空题,很有必要。

基本图形:在矩形ABCD中,将△ABF沿BE折叠至△FBE,可得何结论?(1)基本图形练习:如图,将三角形纸片ABC沿过点A的直线折叠,使得AC落在AB上,折痕为AD,展开纸片;再次折叠,使得A 和D点重合,折痕为EF,展开纸片后得到△AEF,则△AEF是等腰三角形,对吗?(2)折叠中角的考法与做法:将矩形纸片ABCD沿过点B的直线折叠,使得A落在BC边上的点F处,折痕为BE(图1);再沿过点E的直线折叠,使点D落在BE边上的点D’,折痕为EG(图2),再展开纸片,求图(3)中角a的大小。

(3)折叠中边的考法与做法:如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是多少?模块精讲例1.(2014•扬州)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.例2.(2013•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=用含k的代数式表示).例3、(2013•苏州)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.例4、如图,已知矩形纸片ABCD ,AD=2,AB=4.将纸片折叠,使顶点A 与边CD 上的点E 重合,折痕FG 分别与AB ,CD 交于点G ,F ,AE 与FG 交于点O .(1)如图1,求证:A ,G ,E ,F 四点围成的四边形是菱形;(2)如图2,当△AED 的外接圆与BC 相切于点N 时,求证:点N 是线段BC 的中点; (3)如图2,在(2)的条件下,求折痕FG 的长.例5、已知AD ∥BC ,AB ⊥AD ,点E ,点F 分别在射线AD ,射线BC 上.若点E 与点B 关于AC 对称,点E 与点F 关于BD 对称,AC 与BD 相交于点G ,则( )A .1+tan ∠ADB=B .2BC=5CFC .∠AEB+22°=∠DEFD .4cos ∠AGB=26课堂练习1、2、(2014连云港)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE=_________.图3 图43、(2014•徐州)如图3,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=_________°.4、(2014•扬州)如图4,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为_________cm2.5、(2013•扬州)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.课后巩固习题1、(2014•淮安)如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.2、(2013•宿迁)如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.点E从点B出发沿BC 方向运动,过点E作EF∥AD交边AB于点F.将△BEF沿EF所在的直线折叠得到△GEF,直线FG、EG分别交AD 于点M、N,当EG过点D时,点E即停止运动.设BE=x,△GEF与梯形ABCD的重叠部分的面积为y.(1)证明△AMF是等腰三角形;(2)当EG过点D时(如图(3)),求x的值;(3)将y表示成x的函数,并求y的最大值.3、如图,在矩形ABCD中,AB=6,BC=8,把△BCD沿着对角线BD折叠,使点C落在C'处,BC交AD于点G,E,F,分别是C'D 和BD上的点,线段EF交AD于点H,把△FDE沿着EF折叠,使点D落在D'处,点D'恰好与点A重合.(1)求证:三角形ABG≌△C'DG(2)求tan∠ABG的值;(3)求EF的长。

完整版初中数学专题折叠问题

完整版初中数学专题折叠问题

专题八折叠问题学习要点与方法点拨:出题位置:选择、填空压轴题或压轴题倒数第二题折叠问题中,常出现的知识时轴对称。

折叠对象有三角形、矩形、正方形、梯形等;-----判断线段之间关系等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、轴对称性质折线,是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。

压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠的选择题填空题,很有必要。

基本图形:中,将△ABF沿FBE,可得何结论?BE折叠至△在矩形ABCD2)垂直。

结论:(1)全等;()基本图形练习:(1A上,折痕为AD,展开纸片;再次折叠,使得沿过点如图,将三角形纸片ABCA的直线折叠,使得AC落在AB 是等腰三角形,对吗?则△和D点重合,折痕为EF,展开纸片后得到△AEF,AEF)折叠中角的考法与做法:(2的直线);再沿过点E1FAABCD 将矩形纸片沿过点B的直线折叠,使得落在BC边上的点处,折痕为BE(图的大小。

再展开纸片,求图(,3)中角a)(图',折痕为边上的点落在折叠,使点DBEDEG21专题精讲〗讲8第〖九年级.)折叠中边的考法与做法:(3D落在AB边中点E处,如图,将边长为 6cm的正方形ABCD折叠,使点 EBG的周长是多少?交于点G,则△落在折痕为FH,点CQ处,EQ与BC★解题步骤:第一步:将已知条件标在图上第二步:设未知数,将未知数标在图上;第三步:列方程,多数情况可通过勾股定理解决。

模块精讲1.例点处.落在的一条边AD=8,将矩形ABCD折叠,使得顶点BCD边上的P 扬州)已知矩形(2014?ABCDO,连结.、OAAP、OP1()如图1,已知折痕与边BC交于点PDA;△①求证:OCP∽△的长;:4,求边ABOCP②若△与△PDA的面积比为1 边的中点,求∠OAB的度数;中的点(2)若图1P恰好是CD不重P、AMMOP,(3)如图2,擦去折痕AO、线段,连结BP.动点在线段AP上(点与点在移动MN交PBM、N.试问当点⊥,作于点FMEBP于点E,连结的延长线上,且在线段合),动点NABBN=PM EF过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段的长度.2专题精讲〗讲8第〖九年级.2.例在矩F沿AE折叠后得到△AFE,且点2013?(苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADEk的代数式表示)..若=,则=用含于点形ABCD内部.将AF延长交边BCG三CA、B、BC=12cm,点E、F、G分别从,(例3、2013?苏州)如图,点O为矩形ABCD的对称中心,AB=10cm的运动G的运动速度为3cm/s,点E点同时出发,沿矩形的边按逆时针方向匀速运动,点的运动速度为1cm/s,点F关于直线重合)时,三个点随之停止运动.在运动过程中,△EBF(即点F到达点CF与点C速度为1.5cm/s,当点s).、FG运动的时间为t(单位:EF的对称图形是△EB′F.设点E、为正方形;s时,四边形EBFB′(1)当t=为顶点的三角形相似,求t的值;FF为顶点的三角形与以点,C,GB2()若以点E、、的值;若不存在,请说明理由.OB′与点重合?若存在,求出tt(3)是否存在实数,使得点3专题精讲〗讲8第〖九年级.CD分别与AB,上的点如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CDE 重合,折痕FG例4、 O.交于点交于点G,F,AE与FG F四点围成的四边形是菱形;(1)如图1,求证:A,G,E,的中点;,当△AED的外接圆与BC相切于点N时,求证:点N是线段BC(2)如图2 (3)如图2,在(2)的条件下,求折痕FG的长.F对称,点E与点EE⊥AD,点,点F分别在射线AD,射线BC上.若点与点B关于ACABAD 例5、已知∥BC,G关于BD对称,AC与BD相交于点,则()22BC=5CF . B .A1+tan∠ADB=6 AGB= D.4cos∠∠.∠CAEB+22°=DEF4专题精讲〗讲8第〖九年级.课堂练习、1,展开后再折叠一次,2CD重合,折痕为EF.如图对折,使2、(2014连云港)如图1,将正方形纸片ABCDAB与.ANE=_________EM交AB于N,则tan∠B使点C 与点E重合,折痕为GH,点的对应点为点M,4 图图3处,折痕B,折叠该纸片,使点A落在点,∠3、(2014?徐州)如图3,在等腰三角形纸片ABC 中,AB=ACA=50°._________°为DE,则∠CBE=、处,若A沿△ABCDE折叠,使点A落在边BC上的点F,4、(2014?扬州)如图4△ABC的中位线DE=5cm,把2 ABC,则△的面积为_________cm.F两点间的距离是8cm上的一动点,,BC=m,P为线段BC,,在梯形5、(2013?扬州)如图1ABCD中,AB∥CD,∠B=90°AB=2,CD=1 ,CE=y.CD,过P作PE⊥PA交所在直线于E.设BP=xPAB且和、C不重合,连接x的函数关系式;(1)求y与EBC上运动时,点总在线段CD上,求m的取值范围;P(2)若点在线段长.BPPEG沿m=4)如图2,若,将△PECPE翻折至△位置,∠BAG=90°,求3(5专题精讲〗讲8第〖九年级.课后巩固习题重合,展开后折痕D△ABC折叠,使点A与点平分∠1、(2014?淮安)如图,在三角形纸片ABC 中,ADBAC,将是菱形.、DF.求证:四边形AEDF、分别交AB、AC于点EF,连接DEBC出发沿从点B,且AB=10,BC=6,CD=2.点E中,2、(2013?宿迁)如图,在梯形ABCDAB ∥DC,∠B=90°AD分别交△GEF,直线FG、EGEF交边方向运动,过点E作EF∥ADAB于点F.将△BEF沿所在的直线折叠得到ABCD的重叠部分的面积为y.GEF过点,当EGD时,点E即停止运动.设BE=x,△与梯形、于点MN 是等腰三角形;△AMF1()证明x的值;)当2EG过点D时(如图(3)),求(的函数,并求y表示成xy的最大值.)将(36专题精讲〗讲8第〖九年级.C'DG,E,F,分别是落在C'处,BC交AD于点C,AB=6,BC=8,3、如图,在矩形ABCD中把△BCD沿着对角线BD折叠,使点. 重合,点D'恰好与点AD'于点H,把△FDE沿着EF折叠,使点D落在处EFBD和上的点,线段交ADC'DG ≌△)求证:三角形ABG(1 ∠ABG的值;(2)求tan )求EF的长。

初中数学由折叠问题引出的思考课件

初中数学由折叠问题引出的思考课件
动手试一试
将一张长为70cm的长方形纸片ABCD沿对称轴EF折 叠成如图所示的形状,若折叠后AB与CD间的距离为 60cm,则原纸片的宽AB是_____cm.
A
E
D
B
F
C
CD
E GF
60c
m
G
BA
由折叠问题引 发的思考
动手试一试
将一张长方形纸片翻折,则重叠部分的图形形状是什 么?
我们研究的问题——重叠部分的图 形为三角形.
参考网站:
作业布置
2 方法
折叠问题 转化
等腰三角形 直角三角形
作业布置
1.如图1,把长方形纸片ABCD沿EF折叠,使点 B落在边AD上的点B′处,点A落在点A′处 (1)求证:B′E=BF; (2)设AE=a,AB=b,BF=c,试猜想a,b ,c之间的一种关系,并给予证明.
图1
作业布置
变式:在长方形ABCD中,AB=6,BC=8.
(1)将长方形纸片ABCD沿BD折叠,使点A落在点 E处(如图2-①),设DE与BC相交于点F,则BF的
长是______.
(2)将长方形纸片按如图2—②折叠,使点B与点D 重合,折痕为GH,求GH的长.
图2
上网查阅
1. 你能借助于长 方形纸片,折 出30o,60o 及正三角形吗?
2. 如何用正方形 纸片折出正多 边形.
AE
D
B
C
动笔做一做 如图,将长方形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点 P处,已知∠MPN=90°,PM=3,PN=4. (1)求HG、BC的长; (2)求长方形ABCD的面积.
反思小结
通过本节课的学习,谈谈你的收获……
1 知识

七年级折叠问题知识点梳理

七年级折叠问题知识点梳理

七年级折叠问题知识点梳理折叠问题是数学中的一种经典问题,也是考察对数学知识的理解和实际应用能力的重要领域。

在初中数学中,折叠问题也是一个重要的知识点,需要深入理解和掌握。

本文将对七年级折叠问题知识点进行梳理和整理,以帮助同学们更好地掌握这一知识点,从而在考试中取得更好的成绩。

一、基本概念折叠问题是指在平面图形上切割一条或数条线,然后将剩余部分按照指定的顺序进行折叠,并寻求可能出现的图形形态。

常出现的几何图形包括三角形、正方形、长方形等。

二、折叠的基本操作1. 折叠轴:指在平面图形上折叠的参考线,通常为直线。

2. 对称轴:指原图形和折叠后图形的对称轴,它们的交点处是折叠轴。

3. 折线:指从折叠轴起到图形边缘的折叠线段。

4. 折叠方向:指折叠时图形所向的方向,可以是向上、向下、向左或向右。

5. 折痕:指在图形上产生的折叠痕迹。

三、折叠问题的解题方法在解决折叠问题时,首先要对给定图形和折叠过程进行分析,然后选择合适的方法进行求解,一般有以下几种方法:1. 利用对称性:可以利用图形对称性进行折叠,其中对称轴可以作为折叠轴,而对称轴两侧的部分可以通过折叠得到图形的其他部分。

2. 利用折线的特性:根据折线的特性可以确定图形的边长和角度,从而得到图形的面积和形状。

3. 综合使用多种方法:在解决较为复杂的折叠问题时,可以综合使用多种方法,包括对称性、折线特性、面积等多个方面,灵活应用不同的方法。

四、折叠问题的实际应用折叠问题在实际生活中也有广泛的应用,例如在制作纸质建筑模型时,需要根据图纸进行折叠,从而得到复杂的建筑结构;在设计3D打印模型时,需要将平面图形折叠成三维立体模型,从而进行后续加工等。

总之,折叠问题是数学中非常重要的一个知识点,需要同学们用心理解和掌握,善于运用不同的方法解决问题,在实际应用中也能够得心应手。

希望本文对七年级学生们的学习有所帮助,祝愿大家在数学学习中取得更好的成绩。

初中数学---折叠问题集锦

初中数学---折叠问题集锦

初中数学--折叠问题专题集锦【母题】(2012达州中考题)将矩形纸片ABCD,按如图所示的方式折叠,点A、点C恰好落在对角线BD上.得到菱形BEDF.若BC=6,则AB的长为_____.【变式】将矩形纸片ABCD,按如图所示的方式折叠,点B、点D恰好落在对角线AC上.若AD=3,则菱形AECF的面积为_____.【变式】如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后.点B恰好与点O重合,若BC =3.则折痕CE的长为_____.【变式】如图,在矩形ABCD中,AB=5,BC=12,将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.求EF的长.【变式】如图,将矩形纸片ABCD折叠,使边AB、CD均落在对角线BD上,得折痕BE、BF,则∠EBF=_____.【母题】如图所示,把一张矩形纸片ABCD沿对角线BD折叠,若AB=6、BC=8,求BF=_____,求△BFD的面积=____;若∠ABF=40°,则∠ADB=_____.4,将矩形纸片沿对角线AC 【变式】(2009•丰台区一模)如图1,矩形纸片ABCD中,AB=4,BC=3向下翻折,点D落在点D′处,连接B D′,如图2,求线段BD′的长【母题】如图,把矩形ABCD纸片折叠,使点B落在点D处,点C落在C′处,折痕EF与BD交于点O,已知AB=16,AD=12,求折痕EF的长.【变式】(1)如图,把一矩形ABCD的纸片,沿EF折叠后,点D、C分别落在D′、C′的位置上,ED′与BC的交点为G,若∠EFG=55°,求∠1、∠2的度数.(2)如图,把一矩形纸片ABCD,沿EF折叠后,点D和点B重合,点C落在C′位置,若AB=4cm,AD =12cm,求BE的长度.【变式】(2011•莱芜)已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等给出证明,如果不全等请说明理由;(2)如图2,若点B与CD的中点重合,求△FCB1和△B1DG的周长之比.【母题】如图,梯形纸片ABCD中,AD∥BC,CD⊥BC,将其沿对角线BD折叠,点A恰好落在DC上,记为点A′,若AD=7,AB=13,则S梯形ABCD=()【变式】如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在边DC中点E 处,若BC=2,则线段AB的长为()【练习】如图,在矩形纸片ABCD中,AB=3,BC=5,点E、F分别在线段AB、BC上,将△BEF沿EF折叠,点B落在B′处.如图,当B′在AD上时,B′在AD上可移动的最大距离为_____;如图,当B′在矩形ABCD内部时,AB′的最小值为_____.【练习】如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平,再一次折叠纸片,使A 点落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到了线段BN ,过N 作NH ⊥BC 于Q ,则∠NBC 的度数是_____.【练习】(2012•宽城区一模)如图,正方形纸片ABCD ,对角线AC 、BD 交于点O ,折叠纸片,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开纸片后,折痕DE 分别交AB 、AC 于点E 、G ,则∠AGD 的度数为_____.【练习】(2005•淮安)已知:平行四边形ABCD 的对角线交点为O ,点E 、F 分别在边AB 、CD 上,分别沿DE 、BF 折叠四边形ABCD ,A 、C 两点恰好都落在O 点处,且四边形DEBF 为菱形(如图).(1)求证:四边形ABCD 是矩形;(2)在四边形ABCD 中,求BCAB 的值.【练习】(2013•成都一模)如图,在矩形纸片ABCD 中,AB =3,BC =4,把△BCD 沿对角线BD 折叠,使点C 落在C ′处,BC ′交AD 于点G ;E 、F 分别是C ′D 和BD 上的点,线段EF 交AD 于点H ,把△FDE 沿EF 折叠,使点D 落在D ′处,点D ′恰好与点A 重合,则EF =_____.【练习】(2012•东莞)如图,在矩形纸片ABCD 中,AB =6,BC =8.把△BCD 沿对角线BD 折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF 折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.【练习】如图①,矩形纸片ABCD的边长分别为a、b(a<b),点M、N分别为边AD、BC上两点(点A、C除外),连接MN.(1)如图②,分别沿ME、NF将MN两侧纸片折叠,使点A、C分别落在MN上的A′、C′处,直接写出ME与FN的位置关系;(2)如图③,当MN⊥BC时,仍按(1)中的方式折叠,请求出四边形A′EBN与四边形C′FDM的周长(用含a的代数式表示),并判断四边形A′EBN与四边形C′FDM周长之间的数量关系;(3)如图④,若对角线BD与MN交于点O,分别沿BM、DN将MN两侧纸片折叠,折叠后,点A、C恰好都落在点O处,并且得到的四边形BNDM是菱形,请你探索a、b之间的数量关系;(4)在(3)情况下,当a=3时,求菱形BNDM的面积.【练习】(2011•宁夏)在等腰△ABC中,AB=AC=5,BC=6.动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.(1)当MN为何值时,点P恰好落在BC上?(2)当MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式.当x为何值时,y的值最大,最大值是多少?【练习】(2011•海淀区一模)如图1,已知等边△ABC的边长为1,D、E、F分别是AB、BC、AC边上的点(均不与点A、B、C重合),记△DEF的周长为p.(1)若D、E、F分别是AB、BC、AC边上的中点,则p=_____;(2)若D、E、F分别是AB、BC、AC边上任意点,则p的取值范围是_____.小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将△ABC以AC边为轴翻折一次得△AB1C,再将△AB1C以B1C为轴翻折一次得△A1B1C,如图2所示.则由轴对称的性质可知,DF+FE1+E1D2=p,根据两点之间线段最短,可得p≥DD2.老师听了后说:“你的想法很好,但DD2的长度会因点D的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了”.请参考他们的想法,写出你的答案.。

自学初中数学资料 折叠问题 图形的翻折、轴对称(资料附答案)

自学初中数学资料 折叠问题 图形的翻折、轴对称(资料附答案)

自学资料一、图形的翻折、轴对称【知识探索】1.如果把一个图形沿某一条直线翻折,能与另一个图形重合,那么叫做这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做关于这条直线的对称点.【说明】(1)两个图形关于一条直线成轴对称,这两个图形对应线段的长度和对应角的大小相等,它们的形状相同,大小不变;(2)在成轴对称的两个图形中,分别联结两对对应点,取中点,联结两个中点所得的直线就是对称轴.2.把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线就是它的对称轴.【错题精练】第1页共26页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训第2页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训例1.如图,在△ABC 中,∠ACB=90°,AB=5,BC=3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B′CP ,连接B′A ,则下列判断:①当AP=BP 时,AB′∥CP ;②当AP=BP 时,∠B′PC=2∠B′AC③当CP ⊥AB 时,AP=175;④B′A 长度的最小值是1.其中正确的判断是______ (填入正确结论的序号)【解答】解:①∵在△ABC 中,∠ACB=90°,AP=BP ,∴AP=BP=CP ,∠BPC=12(180°-∠APB′),由折叠的性质可得:CP=B′P ,∠CPB′=∠BPC=12(180°-∠APB′),∴AP=B′P ,∴∠AB′P=∠B′AP=12(180°-∠APB′),∴∠AB′P=∠CPB′,∴AB′∥CP ;故①正确;②∵AP=BP ,∴PA=PB′=PC=PB ,∴点A ,B′,C ,B 在以P 为圆心,PA 长为半径的圆上,∵由折叠的性质可得:BC=B′C , ∴BC ̂=B′C ̂,∴∠B′PC=2∠B′AC ;故②正确;③当CP ⊥AB 时,∠APC=∠ACB ,∵∠PAC=∠CAB ,∴△ACP ∽△ABC ,∴APAC =ACAB ,∵在Rt △ABC 中,由勾股定理可知:AC=√AB 2−BC 2=√52−32=4,∴AP=AC 2AB =165;故③错误;④由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∵AB'≥AC-CB'∴AB′的长度有最小值.AB′有最小值=AC-B′C=4-3=1.故④正确.故答案为:①②④.【答案】①②④例2.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.现给出以下四个命题(1)∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长不发生变化;(3)∠PBH=45°;(4)BP=BH.其中正确的命题是______.【解答】(1)证明:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.故(1)正确;(2))△PHD的周长不变为定值8.第3页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第4页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训证明:如图2,过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,在△ABP 和△QBP 中,{∠APB =∠BPH∠A =∠BQP BP =BP∴△ABP ≌△QBP (AAS ).∴AP=QP ,AB=BQ .又∵AB=BC ,∴BC=BQ .又∵∠C=∠BQH=90°,BH=BH ,∴△BCH ≌△BQH .∴CH=QH .∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.故(2)正确;(3)解:∵△ABP ≌△QBP (AAS )、△BCH ≌△BQH .∴∠QBH=∠HBC ,∠ABP=∠PBQ ,∴∠PBH=∠PBQ+∠QBH=12∠ABC=45°.故(3)正确;(4)解:∵∠PBH=45°固定不变,∴当点P 在AD 上移动时,∠BPH 的度数不断发生变化,∴∠BPH 的度数与∠BHP 不一定相等,故BP 与BH 不一定相等.故答案为:(1)(2)(3).【答案】(1)(2)(3)例3.如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A′点,D 点的对称点为D′点,若∠FPG =90°,△A′EP 的面积为4,△D′PH 的面积为1,则矩形ABCD 的面积等于【答案】例4.如图,在菱形紙片ABCD中,AB=2.将纸片折叠,使点B落在AD边上的点B′处(不与A,D重合),点C落在C′处,线段B′C′与直线CD交于点G,折痕为EF,则下列说法①若∠A=90,B′为AD中点时,AE=34②若∠A=60°,B′为AD中点时,点E恰好是AB的中点③若∠A=60°,C′F⊥CD时,CFFD =√3−12其中正确的是()第5页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第6页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训A. ①②B. ①③C. ②③D. ①②③【解答】解:①∵∠A=90°,四边形ABCD 是菱形,∴四边形ABCD 是正方形,∴AB=AD ,∵B′为AD 中点时,∴AB'=1,设AE=x ,则B'E=BE=2-x ,在Rt △AB'E 中,由勾股定理得:12+x 2=(2-x )2,解得:x=34,①正确; ②连接BD 、BE',如图:∵∠A=60°,AB=AD ,∴△ABD 是等边三角形,∴∠ABD=60°,∵B′为AD 中点,∴∠AB'B=90°,∠ABB'=30°∵BE=B'E ,∴∠BB'E=∠ABB'=30°,∴∠AB'E=60°,∴△AB'E 是等边三角形,∴AE=B'E=BE ,∴点E 是AB 的中点,②正确;③设CF=x ,由折叠的性质得:C'F=CF=x ,∠C'=∠C=∠A=60°,∵C′F ⊥CD ,∴∠C'GF=30°,∴C'G=2C'F=2x ,GF=√3C'F=√3x ,∴DG=CD-GF-CF=2-√3x-x ,∵∠D=180°-∠A=120°,∠DGB'=∠C'GF=30°,∴∠DB'G=30°,∴DB'=DG ,设BD 交B'C'于H ,则B'H=GH=12B'G=12(2-2x )=1-x ,∴DG=2(1−x )√3,∴2(1−x )√3=2-√3x-x , 解得:x=4-2√3,∴CF=4-2√3,FD=2-(4-2√3)=2√3-2,∴CF FD =√3−12,③正确; 故选:D .【答案】D例5.如图,以半圆的一条弦BC为对称轴将弧BC折叠后与直径AB交于点D,若AD=4,BD=8,则CB的长为__________【解答】第7页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】例6.如图,矩形ABCD中,BC=3,且BC>AB,E为AB边上任意一点(不与A,B重合),设BE=t,将△BCE沿CE对折,得到△FCE,延长EF交CD的延长线于点G,则tan∠CGE= (用含t的代数式表示).【解答】解:如图连接BF交EC于O,作EM⊥CD于M,∵∠EMC=∠EBC=∠BCM=90°,∴四边形EBCM是矩形,∴CM=EB=t,EM=BC=3,在RT△EBC中,∵EB=t,BC=3,∴EC=√t2+32=√t2+9,∵EB=EF,CB=CF,∴EC垂直平分BF,∵12•EC•BO=12•EB•BC,∴BO=3t√t2+9,BF=2BO=6t√t2+9∵∠AEF+∠BEF=180°,∠BEF+∠BCF=180°,∴∠AEF=∠BCF,∵AB∥CD,∴∠BEC=∠ECG=∠CEF,∠AEF=∠G=∠BCF ∴GE=GC,∴∠GCE=∠GEC=∠CFB=∠CBF,∴△CBF∽△GCE,∴GCBC =ECBF,第8页共26页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴GC=t 2+92t,GM=GC-CM=9−t22t,∴tan∠CGE=EMGM =6t9−t2.故答案为6t9−t2.【答案】6t9−t2例7.阅读下面材料:在学习小组活动中,小明探究了下面问题:菱形纸片ABCD的边长为2,折叠菱形纸片,将B、D两点重合在对角线BD上的同一点处,折痕分别为EF、GH.当重合点在对角线BD上移动时,六边形AEFCHG的周长的变化情况是怎样的?小明发现:若∠ABC=60°,①如图1,当重合点在菱形的对称中心O处时,六边形AEFCHG的周长为______;②如图2,当重合点在对角线BD上移动时,六边形AEFCHG的周长______(填“改变”或“不变”).请帮助小明解决下面问题:如果菱形纸片ABCD边长仍为2,改变∠ABC的大小,折痕EF的长为m.(1)如图3,若∠ABC=120°,则六边形AEFCHG的周长为______;(2)如图4,若∠ABC的大小为2α,则六边形AEFCHG的周长可表示为______.【解答】解:①如图1,当重合点在菱形的对称中心O处时,由题意可知△BEF和△DGH是等边三角形,∴EF+AE+AG+GH+CH+CF=BE+AE+AG+GD+DH+CH=2+2+2=6.∴六边形AEFCHG的周长为6;②如图2,当重合点在对角线BD上移动时,由题意可知△BEF和△DGH是等边三角形,∴EF+AE+AG+GH+CH+CF=BE+AE+AG+GD+DH+CH=2+2+2=6.∴六边形AEFCHG的周长为6.故六边形AEFCHG的周长不变.(1)如图3,若∠ABC=120°,由题意可知EF+GH=AC,则六边形AEFCHG的周长为2×2+2×sin60°×2=4+2√3;(2)如图4,若∠ABC的大小为2α,由题意可知EF+GH=AC,则六边形AEFCHG的周长可表示为2×2+2×sinα×2=4+4sinα.故答案为:①6;②不变.(1)4+2√3;(2)4+4sinα.第9页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】6不变4+2√34+4sinα例8.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值;(3)如果题设中“BE=2CE”改为“BECE=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).【解答】(1)解:∵AB∥DF,∴ABCF =BECE,∵BE=2CE,AB=3,∴3CF =2CECE,∴CF=32;(2)解:①若点E在线段BC上,如图1,设直线AB1与DC相交于点M.由题意翻折得:∠1=∠2.∵AB∥DF,∴∠1=∠F,∴∠2=∠F,∴AM=MF.设DM=x,则CM=3−x.又∵CF=1.5,∴AM=MF=92−x,在Rt△ADM中,AD2+DM2=AM2,∴32+x2=(92−x)2,∴x=54,∴DM=54,AM=134,第10页共26页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴sin∠DAB1=DMAM =513;②若点E在边BC的延长线上,如图2,设直线AB1与CD延长线相交于点N.同理可得:AN=NF.∵BE=2CE,∴BC=CE=AD.∵AD∥BE,∴ADCE =DFFC,∴DF=FC=32,设DN=x,则AN=NF=x+32.在Rt△ADN中,AD2+DN2=AN2,∴32+x2=(x+32)2,∴x=94.∴DN=94,AN=154sin∠DAB1=DNAN=35;(3)解:若点E在线段BC上,y=9x2x+2,定义域为x>0;若点E在边BC的延长线上,y=9x−92x,定义域为x>1.【答案】(1)32;(2)①513,②35;(3)略.【举一反三】1.如图,已知△ABC中,AB=8,BC=7,AC=6,E是AB的中点,F是AC边上一个,综上所述,EF的长为72或143.72或1432.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD边的中点E处,折痕为FG,点F、G分别在边AB、AD上,则GE=______,EF=______.【解答】解:如图过点E作EH⊥AD于H,EN⊥AB于N,过点A作AM⊥CD于M∵ABCD是菱形,∴AB∥CD,AD=AB=CD=AB=4∴∠ADM=∠BAD=∠HDE=60°∵E是CD中点∴DE=2在Rt△DHE,中,DE=2,HE⊥DH,∠HDE=60°∴DH=1,HE=√3∵折叠∴AG=GE,AF=EF在Rt△HGE中,GE2=GH2+HE 2∴GE2=(4-GE+1)2+3∴GE=2.8在Rt△AMD中,AD=4,AM⊥DM,∠ADM=60°∴MD=2,AM=2√3∵AB∥CD,AM∥EN∴AMEN是平行四边形且AM⊥CD∴AMEN是矩形∴AN=ME=2+2=4,(即N与B重合)AM=EN=2√3在Rt△FBE中,EF2=EN2+FB 2EF2=(4-EF)2+12EF=3.5【答案】2.83.53.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=______.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE-HE=x-1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x-1)2=(x+2)2,整理得x2-6x-3=0,解得x1=3+2√3,x2=3-2√3(舍去),即AD的长为3+2√3.故答案为3+2√3.【答案】3+2√34.小明尝试着将矩形纸片 ABCD (如图①, AD>CD )沿过 A 点的直线折叠,使得 B 点落在 AD 边上的点 F 处,折痕为 AE (如图②);再沿过 D 点的直线折叠,使得 C 点落在 DA 边上的点 N 处, E 点落在 AE 边上的点 M 处,折痕为 DG (如图③).如果第二次折叠后, M 点正好在 ∠ NDG 的平分线上,那么矩形 ABCD 长与宽的比值为.【答案】√2:1 .5.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连接OG,DG,若OG⊥DG,且⊙O 的半径长为1,则下列结论不成立的是()A. CG=1B. 矩形ABCD的面积为6+4√3C. ∠ACB=30°D. AF=2√3【解答】解:如图,设⊙O 与BC 的切点为M ,连接MO 并延长MO 交AD 于点N ,∵将矩形ABCD 按如图所示的方式折叠,使点D 与点O 重合,折痕为FG ,∴OG=DG ,∵OG ⊥DG ,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC ,在△OMG 和△GCD 中,{∠OMG =∠DCG =90°∠MOG =∠DGC OG =DG,∴△OMG ≌△GCD ,∴OM=GC=1,CD=GM=BC-BM-GC=BC-2.故A 正确,∵AB=CD ,∴BC-AB=2.设AB=a ,BC=b ,AC=c ,⊙O 的半径为r ,⊙O 是Rt △ABC 的内切圆可得r=12(a+b-c ),∴c=a+b-2.在Rt △ABC 中,由勾股定理可得a 2+b 2=(a+b-2)2,整理得2ab-4a-4b+4=0,又∵BC-AB=2即b=2+a ,代入可得2a (2+a )-4a-4(2+a )+4=0,解得a 1=1+√3,a 2=1-√3(舍去),∴a=1+√3,b=3+√3,∴S 矩形ABCD =AB•BC=6+4√3,故B 正确,∴tan ∠ACB=AB BC =√33,∴∠ACB=30°,故C 正确,再设DF=x ,在Rt △ONF 中,FN=3+√3-1-x ,OF=x ,ON=1+√3-1=√3,由勾股定理可得(2+√3-x )2+(√3)2=x 2,解得x=4-√3,∴AF=AD-DF=2√3-1,故D 错误,故选:D .【答案】D6.如图,在⊙O 中,将AB̂沿弦AB 翻折交半径AO 的延长线于点D ,延长BD 交⊙O 于点C ,AC 切ADB ̂所在的圆于点A ,则tan ∠C 的值是( )A. √3B. 43C. 2+√3D. 1+√2【解答】解:作点D关于AB的对称点H,连接AH,BH,CH.根据对称性可知,ADB̂所在圆的圆心在直线AH上,∵AC切ADB̂所在的圆于点A,∴AC⊥AH,∴∠CAH=90°,∴CH是⊙O的直径,∴∠CBH=90°,∴∠ABD=∠ABH=45°,∴∠AHC=∠ABC=45°,∴∠ACH=∠AHC=45°,∴AC=AH,∵OC=OH,∴AD垂直平分线段CH,∴DC=DH,∴∠DCH=∠DHC,∵BD=BH,∴∠BDH=∠BHD=45°,∵∠BDH=∠DCH+∠DHC,∴∠DCH=22.5°,∴∠ACD=∠CHB=67.5°,设BD=BH=a,则CD=DH=√2a,∴tan∠ACB=tan∠CHB=BCBH =a+√2aa=1+√2,故选:D.【答案】D7.半径为2的圆弧形纸片按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是______.【解答】解:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=1,在Rt△AOC中,∵OA=2,OC=1,∴cos∠AOC=OCOA =12,AC=√OA2−OC2=√3∴∠AOC=60°,AB=2AC=2√3,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB-S△AOB=120π×22360-12×2√3×1=4π3-√3,S阴影=S半圆-2S弓形ABM=1 2π×22-2(4π3-√3)=2√3−23π.故答案为:2√3−23π.【答案】2√3−23π8.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的C1处,点D落在点D1处,C1D1交线段AE于点G.(1)求证:△BC1F∽△AGC1;(2)若C1是AB的中点,AB=6,BC=9,求AG的长.1.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则BC= .【解答】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x×x=2,解得:x=1(负数舍去),故BC=2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故BC=1,综上所述:BC=2或1.故答案为:2或1.【答案】2或1̂沿BD翻折,点C的对称点C′恰好落在AB 2.如图,已知半圆的内接四边形ABCD,AB是直径,DCB上.若AC′=4,C′B=5,则BD的长是()A. 4√3B. 3√7C. 7D. 8【解答】解:作DE⊥AB于E,连接DC′,由折叠的性质可知,CD=C′D,∠CBD=∠C′BD,∴DA=DC,∴AD=C′D,又DE⊥AB,∴AE=EC′=2,∴EB=7,由射影定理得,DE2=AE•EB=14,在Rt△DEB中,BD2=DE2+BE2=63,∴BD=3√7,故选:B.【答案】B3.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC中点;②FG=FC;③与∠AGB相等的角有5个;④S△FGC=910.其中正确的是()A. ①③B. ②③C. ①④D. ②④【解答】解:∵正方形ABCD中,AB=3,CD=3DE,∴DE=13×3=1,CE=3-1=2,∵△ADE沿AE对折至△AFE,∴AD=AF,EF=DE=1,∠AFE=∠D=90°,∴AB=AF=AD,在Rt△ABG和Rt△AFG中,{AG=AGAB=AF,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设BG=FG=x,则EG=EF+FG=1+x,CG=3-x,在Rt△CEG中,EG2=CG2+CE2,即(1+x)2=(3-x)2+22,解得,x=32,∴CG=3-32=3 2,∴BG=CG=32,即点G是BC中点,故①正确;∵tan∠AGB=ABBG =332=2,∴∠AGB≠60°,∴∠CGF≠180°-60°×2≠60°,又∵BG=CG=FG,∴△CGF不是等边三角形,∴FG≠FC,故②错误;由(1)知Rt △ABG ≌Rt △AFG ,∴∠AGB=∠AGF=12∠BGF ,根据三角形的外角性质,∠GCF+∠GFC=∠AGB+∠AGF ,∴∠GCF=∠GFC=∠AGB ,∵AD ∥BC ,∴∠AGB=∠GAD ,∴与∠AGB 相等的角有4个,故③错误;△CGE 的面积=12CG•CE=12×32×2=32, ∵EF :FG=1:32=2:3,∴S △FGC =32+3×32=910,故④正确; 综上所述,正确的结论有①④.故选:C .【答案】C4.如图,在矩形ABCD 中,AB=2,AD=5,点P 在线段BC 上运动,现将纸片折叠,使点A 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),设BP=x ,当点E 落在线段AB 上,点F 落在线段AD 上时,x 的取值范围是______.【解答】解:如图;①当F 、D 重合时,BP 的值最小;根据折叠的性质知:AF=PF=5;在Rt △PFC 中,PF=5,FC=2,则PC=√21;∴BP 的最小值为5-√21;②当E 、B 重合时,BP 的值最大;由折叠的性质可得AB=BP=2,即BP的最大值为2.所以x的取值范围是5-√21≤x≤2.故答案为:5-√21≤x≤2.【答案】5-√21≤x≤25.如图,现有边长为5的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在点P处,点C落在点G处,PG交DC于点H,折痕为EF连结BP,BH.当AP=2时,PH=______.【解答】解:设AE=x,则BE=5-x.由翻折的性质可知:BE=PE=x,∠APG=∠ABC=90°.∴∠APE+∠DPH=90°.∵∠AEP+∠APE=90°,∴∠AEP=∠DPH.又∵∠A=∠D=90°,∴△APE∽△DHP.在Rt△APE中,PE2=AE2+AP2,即(5-x)2=x2+22,解得x=2.1.则PE=5-2.1=2.9.∵△APE∽△DHP,∴EPPH =AEPD,即2.9PH=2.13,解得:PH=297.故答案为:297.【答案】2976.如图,矩形纸片ABCD中,AD=15cm,AB=10cm,点P、Q分别为AB、CD的中点,E、G分别为BC、PQ上的点,将这张纸片沿AE折叠,使点B与点G重合,则△AGE的外接圆的面积为______.【解答】解:由翻折的性质得,AG=AB,∠GAE=∠BAE,∵点P、Q分别为AB、CD的中点,∴AP=12AB,∴AP=12AG,∴∠AGP=30°,∴∠PAG=90°-∠AGP=90°-30°=60°,∴∠BAE=12∠PAG=12×60°=30°,在Rt△ABE中,AE=AB÷cos30°=10÷√32=20√33cm,∴△AGE的外接圆的面积=π(AE2)2=π(12×20√33)2=1003πcm2.故答案为:1003πcm2.【答案】1003πcm27.如图,矩形ABCD中,AD=10,AB=8,点E为边DC上一动点,连接AE,把△ADE沿AE折叠,使点D落在点D′处,当△DD′C是直角三角形时,DE的长为______.【解答】解:∵△ADE沿AE折叠,使点D落在点D′处,∴DE=D′E,AD=AD′=10,当∠DD′C=90°时,如图1,∵DE=D′E,∴∠1=∠2,∵∠1+∠4=90°,∠2+∠3=90°,∴∠3=∠4,∴ED′=EC,CD=4;∴DE=EC=12当∠DCD′=90°时,则点D′落在BC上,如图2,设DE=x,则ED′=x,CE=8-x,∵AD′=AD=10,∴在Rt△ABD′中,BD′=√102−82=6,∴CD′=4,在Rt△CED′中,(8-x)2+42=x2,解得x=5,即DE的长为5,综上所述,当△DD′C是直角三角形时,DE的长为4或5.故答案为4或5.【答案】4或5。

初中数学中的折叠问题

初中数学中的折叠问题

初中数学中的折叠问题一、矩形中的折叠折叠后BG 和BH 在再过点A ′折叠使边与对角线BD 重形中根据勾股定合,然后再沿着则∠DFB 等于的位置,已知重合部分是以折痕为底边的等腰三角形理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B落在边AD 的中点G 处,求四边形BCFE 的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等 10.如图,将一个边长为1的正方形纸片ABCD 折叠,使点B 落在边AD 上 不与A 、D 重合.MN 为折痕,折叠后B ’C ’与DN 交于P .(1)连接BB ’,那么BB ’与MN 的长度相等吗?为什么?(2)设BM =y ,AB ’=x ,求y 与x 的函数关系式;(3)猜想当B 点落在什么位置上时,折叠起来的梯形MNC ’B ’面积最小?并验证你的猜想. 二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )C题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm的长方形纸条成如图所示的形状,那么折痕PQ的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ 14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm的长方形纸片ABCD,沿对称轴EF折叠成如图的形状,若折叠后,AB与CD间的距离为60cm,则原纸片的宽AB是()16.一根30cm、宽3cm的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,求MA的长三、三角形中的折叠实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。

(完整版)初中数学中的折叠问题

(完整版)初中数学中的折叠问题

初中数学中的折叠问题一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC ,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD= 度.2.如图所示,一张矩形纸片沿BC 折叠,顶点A 落在点A ′处,再过点A ′折叠使折痕DE ∥BC ,若AB=4,AC=3,则△ADE 的面积是 .3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积.重合部分是以折痕为底边的等腰三角形321FEDCBAGA'C A B D6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD 按如下的顺序进行折叠:对折,展平,得折痕EF (如图①);延CG 折叠,使点B 落在EF 上的点B ′处,(如图②);展平,得折痕GC (如图③);沿GH 折叠,使点C 落在DH 上的点C ′处,(如图④);沿GC ′折叠(如图⑤);展平,得折痕GC ′,GH (如图 ⑥).(1)求图 ②中∠BCB ′的大小;(2)图⑥中的△GCC ′是正三角形吗?请说明理由.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,求四边形BCFE 的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等 10.如图,将一个边长为1的正方形纸片ABCD 折叠,使点B 落在边AD 上 不与A 、D 重合.MN 为折痕,折叠后B ’C ’与DN 交于P .(1)连接BB ’,那么BB ’与MN 的长度相等吗?为什么? (2)设BM =y ,AB ’=x ,求y 与x 的函数关系式; (3)猜想当B 点落在什么位置上时,折叠起来的梯形MNC ’B ’面积最小?并验证你的猜想.54132G D‘F C‘DB CA E二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB 是以折痕AB 为底的等腰三角形12.如图,将一宽为2cm 的纸条,沿BC ,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEAC GDFEAFDBCAEB Ba 2130°B EF AC D本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14.(1)当中线CD 等于a 时,重叠部分的面积等于 ;GEFD AEF DBC A B C 60cm(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”).注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;(3)将∠2看作180°-2∠CED ,∠1看作2∠CDE-180°,再根据三角形内角和定理来求.B'C DA B 231E B'CDB A 21图(1)C'ACBDE12C'ABCDE21GC'A BC DE由于等腰三角形是轴对称图形,所以在折叠三角形时常常会出现等腰三角形20.观察与发现:将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。

初中数学专题4:图形折叠问题

初中数学专题4:图形折叠问题

专题4:图形折叠问题班级:______姓名:_______学号:得分:_ ___一、选择题(每小题6分,共30分)1.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形(第1题) (第2题) (第3题) (第4题)2.如图,将宽为1cm的长方形纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为()A. cm2B. cm2C. cm2D. cm23. 有一张直角三角形纸片,两直角边长AC=6 cm,BC=8 cm,将△ABC折叠,使点B与点A 重合,折痕为DE(如图),则CD等于()A.254cm B.223cm C.74cm D.53cm4. 如图所示,在△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,如果∠A=26°,那么∠CDE度数为()A.71°B.64° C.80°D.45°5.取一张矩形的纸片进行折叠,具体操作过程如下:第一步:先把矩形ABCD对折,折痕为MN,如图(1);第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得Rt△AB′E,如图(2);第三步:沿EB′线折叠得折痕EF,如图(3).若AB= ,则EF 的值是()A. 1B. 2C. 3D. 4二、填空题(每小题6分,共30分)6.如图,将长方形纸片ABCD沿直线EN、EM进行折叠后(点E在AB边上),B′点刚好落在A′E 上,若折叠角∠AEN=30°15′,则另一个折叠角∠BEM=____________.7.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上的F处,若∠B=50°,则∠BDF=____________.8.如图,把一个长方形的纸片对折两次(折痕互相垂直),然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角的度数应为____________.(第6题) (第7题) (第8题) (第9题) (第10题)9.在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为____________.10.如图,直线y= x﹣4与x轴、y轴分别交于A、B两点,把△AOB以x轴为对称轴翻折得到△AOB′,再将△AOB′绕点A顺时针旋转90°,得到△AO′B″,则点B″的坐标是____________.三、解答题(共40分)11.如图,将长方形ABCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.12.长方形纸片OABC中,AB=10cm,BC=6cm,把这张长方形纸片OABC如图放置在平面直角坐标系中,在边OA上取一点E,将△ABE沿BE折叠,使点A恰好落在OC边上的点F处.(1)求点E、F的坐标;(2)在AB上找一点P,使PE+PF最小,求点P坐标;(3)在(2)的条件下,点Q(x,y)是直线PF上一个动点,设△OCQ的面积为S,求S与x 的函数关系式.13. 如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.。

数学初中折叠问题解题技巧

数学初中折叠问题解题技巧

数学初中折叠问题解题技巧
初中数学中的折叠问题是一种常见的几何问题,涉及到对图形的折叠、展开或转化等操作。

以下是一些常见的折叠问题解题技巧:
1. 观察特殊图形法:直接观察题目所给出的目标图形中的特殊面,或者特殊图形连接的位置,然后对比选项,与之不符的直接排除。

2. 相对面不相邻法:空间折叠类题目要结合排除法解题,最常用的排除技巧是相对面不相邻原则。

即一定要抓住某两个相邻面或对立面的图形特征,从而可以利用排除法选择正确答案,违背这些特征的,便是错误选项。

3. 初中数学坐标系里折叠的问题:对于在平面直角坐标系中的折叠问题,可以通过建立直角坐标系来解决。

一般来说,需要根据折叠前后的形状及坐标变化关系,画出折叠后的图形,然后根据题意找到对应的坐标值。

4. 长方形折叠问题:对于长方形的折叠问题,可以通过对折将长方形变成长方体,然后根据长方体的面积公式及长方形的面积公式来求解。

另外,也可以利用折叠的性质:折叠后的图形与图形全等,来解决问题。

总结起来,对于折叠问题的解题技巧,需要结合具体的题目来进行理解和应用。

同时,需要学生具备一定的空间想象能力和逻辑思维能力,才能更好地解决折叠问题。

初中数学折叠问题模型

初中数学折叠问题模型

初中数学折叠问题模型(实用版)目录1.初中数学折叠问题的概念和背景2.折叠问题的基本模型3.折叠问题的解题方法4.折叠问题在初中数学中的应用5.总结正文一、初中数学折叠问题的概念和背景初中数学折叠问题是指,将一个平面图形通过折叠,使得它与另一个平面图形重合,从而形成一个立体图形。

这种问题在初中数学中非常常见,它有助于培养学生的空间想象能力和逻辑思维能力。

二、折叠问题的基本模型折叠问题的基本模型包括以下几个方面:1.折叠线:折叠线是指将平面图形折叠成立体图形的那条线。

在折叠过程中,折叠线两侧的部分会互相重合。

2.折叠角:折叠角是指折叠线上的两个相邻角度,它们在折叠过程中会互相重合。

3.折叠距离:折叠距离是指折叠线上某个点到另一个点的距离。

在折叠过程中,折叠距离保持不变。

三、折叠问题的解题方法解决折叠问题,通常需要以下几个步骤:1.观察题目,理解题意,找到折叠线、折叠角和折叠距离。

2.根据题目要求,找到需要折叠的图形,并画出折叠线。

3.利用折叠线的性质,找到折叠线上的相应角度和距离。

4.利用数学知识,列方程求解,找到折叠线上的未知量。

5.将求得的未知量代入方程,求解得到最终答案。

四、折叠问题在初中数学中的应用折叠问题在初中数学中有广泛的应用,它可以帮助学生理解几何图形的性质,培养空间想象能力和逻辑思维能力。

同时,折叠问题还可以与其他数学知识点相结合,如与勾股定理、相似三角形等知识点相结合,提高学生的综合运用能力。

五、总结折叠问题是初中数学中的一个重要知识点,它有助于培养学生的空间想象能力和逻辑思维能力。

在解决折叠问题时,需要找到折叠线、折叠角和折叠距离,利用数学知识列方程求解。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学专题:折叠问题
专题八折叠问题
学习要点与方法点拨:出题位置:选择、填空压轴题或压轴题倒数第二题折叠问题中,常出现的知识时轴对称。

折叠对象有三角形、矩形、正方形、梯形等;-----求重叠面积、求角度、判断线段之间关系等;轴对称性质考查问题有求折点位置、求折线长、折纸边长周长、折线,是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。

压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠的选择题填空题,很有必要。

基本图形:折叠至△FBE,可得何结论?在矩形ABCD中,将△ABF沿BE
)垂直结论:)全等;(
1)基本图形练习:(
A,展开纸片;再次折叠,使得AC落在AB上,折痕为AD 如图,将三角形纸片ABC沿过点A的直线折叠,使得 AEF,则△AEF是等腰三角形,对吗?EF,和D点重合,折痕为展开纸片后得到△
2)折叠中角的考法与做法:(的直线(图1E);再沿过点处,折痕为落在沿过点将矩形纸片ABCDB的直线折叠,使得ABC边上的点FBE a)中角的大小。

3,2EGDBED折叠,使点落在边上的点',折痕为(图)再展开纸片,求图

7
/ 1
初中数学专题:折叠问题 3)折叠中边的考法与做法:

边中点E处,D6cm的正方形ABCD折叠,使点落在AB 如图,将边长为,则△EBG的周长是多少?处,EQ与BC交于点G折痕为FH,点C落在Q
★解题步骤:第一步:将已知条件标在图上;第二步:设未知数,将未知数标在图上;第三步:列方程,多数情况可通过勾股定理解决。

模块精讲1.例点处.落在CD边上的P2014?扬州)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B

.、OA,已知折痕与边BC交于点O,连结AP、OP(1)如图1 PDA;①求证:△OCP∽△的长;1PDA的面积比为:4,求边AB②若△OCP与△OABP恰好是CD边的中点,求∠的度数;2()若图1中的点
不重与点MP、A在线段,连结,擦去折痕3()如图2,AO、线段OPBP.动点MAP上(点在
移动F于点,作ME⊥、NMEBP于点.试问当点PBMNBN=PMABN合),动点在线段的延长线上,
且,连结交的长度是否发生变化?若变化,说明理由;若不变,求出线段过程中,线段EFEF 的长度.
7
/ 2
初中数学专题:折叠问题
2.例在矩AFE,且点FADE沿AE折叠后得到△的中点,将(2013?苏州)如图,在矩形ABCD 中,点E是边CD△
G.若=,则用含k=的代数式表示).BC形ABCD内部.将AF延长交边于点
例3、(2013?苏州)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G 分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).
(1)当t=s时,四边形EBFB′为正方形;
(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.
7
/ 3
初中数学专题:折叠问题CD,上的点E重合,折痕FG分别与AB、例4如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CD .AE与FG交于点O交于点G,F,,E,F四点围成的四边形是菱形;1()如图1,求证:A,G N是线段BC的中点;22)如图,当△AED的外接圆与BC相切于点N时,求证:点(的长.)的条件下,求折痕FG2(3)如图,在(2
FB关于AC对称,点E与点,射线⊥,ABAD,点E,点F分别在射线ADBC上.若点E与点∥例5、已知ADBC
)与关于BD对称,ACBD相交于点G,则(
21+tanA.∠B.ADB=2BC=5CF
6∠AGB= D.4cos =C.∠AEB+22°∠DEF
7
/ 4
初中数学专题:折叠问题
课堂练习、1,展开后再折叠一次,2EF.如图AB与CD重合,折痕为2、(2014连云港)如图1,将正方形纸片ABCD对折,使.∠ANE=_________于M,EM交ABN,则tan使点C与点E重合,折痕为GH,点B的对应点为点
4 图图3
处,折痕B,∠A=50°,折叠该纸片,使点A落在点3、(2014?徐州)如图3,在等腰三角形纸片ABC中,AB=AC _________°.为DE,则∠CBE=
、上的点AF处,若,把△ABC沿DE折叠,使点A落在边BC44、(2014?扬州)如图,△ABC 的中位线DE=5cm2 cm.8cm,则△ABC的面积为_________F两点间的距离是
上的一动点,BCCD=1,BC=m,P为线段B=90°1、(2013?扬州)如图,在梯形ABCD中,AB ∥CD,∠,AB=2,5 BP=x,CE=y.交,过P作PE⊥PACD所在直线于E.设不重合,连接且和B、CPA 的函数关系式;与x(1)求y 的取值范围;上运动时,点BCE总在线段CD上,求m)若点(2P在线段长.,求△PEC△沿PE翻折至PEG位置,∠BAG=90°BP,将,若)如图(32m=4
7
/ 5
初中数学专题:折叠问题
课后巩固习题
重合,展开后折痕DA与点BAC,将△ABC折叠,使点1、(2014?淮安)如图,在三角形纸片ABC中,AD平分∠AEDF.求证:四边形是菱形.,连接DE、DF分别交AB、AC于点E、F
BC出发沿E从点BAB=10B=90°,且,BC=6,CD=2.点ABCD2、(2013?宿迁)如图,在梯形中,AB∥DC,∠AD、EG分别交所在的直线折叠得到△GEF,直线FG沿AD方向运动,过点E作EF∥交边AB于点F.将△BEFEF .与梯形ABCD的重叠部分的面积为y△EG,当过点D时,点E即停止运动.设BE=x,GEFM于点、N 是等腰三角形;)证明△AMF(1 )),求x的值;)当EG过点D时(如图(32(的最大值.xy表示成的函数,并求y3()将
7
/ 6
初中数学专题:折叠问题C'D于点ADG,E,F,分别是C落在C'处,BC交使点中3、如图,在矩形ABCD,AB=6,BC=8,把△BCD沿着对角线BD折叠,. 重合恰好与点A处,点D'落在H,把△FDE沿着EF折叠,使点DD'于点线段和BD上的点,EF交ADC'DG ABG≌△1)求证:三角形(的值;tan∠ABG(2)求的长。

3)求EF

3、
7
/ 7。

相关文档
最新文档