初中数学专题;折叠问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题八折叠问题

学习要点与方法点拨:

出题位置:选择、填空压轴题或压轴题倒数第二题

折叠问题中,常出现的知识时轴对称。折叠对象有三角形、矩形、正方形、梯形等;

考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;轴对称性质-----折线,是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。

压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠的选择题填空题,很有必要。

基本图形:

在矩形ABCD中,将△ABF沿BE折叠至△FBE,可得何结论?

(1)基本图形练习:

如图,将三角形纸片ABC沿过点A的直线折叠,使得AC落在AB上,折痕为AD,展开纸片;再次折叠,使得A 和D点重合,折痕为EF,展开纸片后得到△AEF,则△AEF是等腰三角形,对吗?

(2)折叠中角的考法与做法:

将矩形纸片ABCD沿过点B的直线折叠,使得A落在BC边上的点F处,折痕为BE(图1);再沿过点E的直线折叠,使点D落在BE边上的点D’,折痕为EG(图2),再展开纸片,求图(3)中角a的大小。

(3)折叠中边的考法与做法:

如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边中点E 处, 折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,则△EBG 的周长是多少?

模块精讲

例1.(2014•扬州)已知矩形ABCD 的一条边AD=8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.

(1)如图1,已知折痕与边BC 交于点O ,连结AP 、OP 、OA .

①求证:△OCP∽△PDA;

②若△OCP 与△PDA 的面积比为1:4,求边AB 的长;

(2)若图1中的点P 恰好是CD 边的中点,求∠OAB 的度数; (3)如图2,

,擦去折痕AO 、线段OP ,连结BP .动点M 在线段AP 上(点M 与点P 、A 不重合),

动点N 在线段AB 的延长线上,且BN=PM ,连结MN 交PB 于点F ,作ME⊥BP 于点E .试问当点M 、N 在移动过程中,线段EF 的长度是否发生变化?若变化,说明理由;若不变,求出线段EF 的长度.

例2.(2013•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则= 用含k的代数式表示).

例3、(2013•苏州)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).

(1)当t= s时,四边形EBFB′为正方形;

(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;

(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.

例4、如图,已知矩形纸片ABCD ,AD=2,AB=4.将纸片折叠,使顶点A 与边CD 上的点E 重合,折痕FG 分别与AB ,CD 交于点G ,F ,AE 与FG 交于点O .

(1)如图1,求证:A ,G ,E ,F 四点围成的四边形是菱形;

(2)如图2,当△AED 的外接圆与BC 相切于点N 时,求证:点N 是线段BC 的中点; (3)如图2,在(2)的条件下,求折痕FG 的长.

例5、已知AD ∥BC ,AB ⊥AD ,点E ,点F 分别在射线AD ,射线BC 上.若点E 与点B 关于AC 对称,点E 与点F 关于BD 对称,AC 与BD 相交于点G ,则( )

A .1+tan ∠

ADB= B .2BC=5CF C .∠

AEB+22°=∠DEF D .4cos ∠AGB=

26

课堂练习

1、

2、(2014连云港)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE=_________ .

图3 图4

3、(2014•徐州)如图3,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=_________ °.

4、(2014•扬州)如图4,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为_________ cm2.

5、(2013•扬州)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和

B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.

(1)求y与x的函数关系式;

(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;

(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.

课后巩固习题

1、(2014•淮安)如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.

2、(2013•宿迁)如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.点E从点B出发沿BC方向运动,过点E作EF∥AD交边AB于点F.将△BEF沿EF所在的直线折叠得到△GEF,直线FG、EG分别交AD于点M、N,当EG过点D时,点E即停止运动.设BE=x,△GEF与梯形ABCD的重叠部分的面积为y.

(1)证明△AMF是等腰三角形;

(2)当EG过点D时(如图(3)),求x的值;

(3)将y表示成x的函数,并求y的最大值.

相关文档
最新文档