超导材料未来应用的前景
超导材料的发展前景

超导材料的发展前景
超导材料是一种在极低温下能够表现出无电阻和完全磁化的特性的物质。
自从
超导现象被首次发现以来,人们一直对超导材料的开发和应用进行了深入的研究。
随着科学技术的不断进步,超导材料在各个领域展现出了广阔的应用前景和市场潜力。
首先,超导材料在能源领域具有重要的应用前景。
传统的电力输送系统存在着
能量损耗大、输电效率低等问题,而超导材料具有无电阻特性,可以大大提高电力输送的效率,减少能源浪费。
因此,将超导材料应用于电力输送系统,有望解决能源资源的浪费和环境污染等问题,推动能源领域的可持续发展。
其次,超导材料在医疗领域也有着广阔的应用前景。
超导磁体可以产生极强的
磁场,用于核磁共振成像等医疗诊断技术,可以提高医学影像的清晰度和准确性,帮助医生更准确地诊断病情。
此外,超导材料还可以应用于医疗器械的制造,如超导电子加速器等,为医疗保健领域带来更多创新和发展机会。
此外,超导材料在交通运输、通信、飞行航天等领域的应用也在不断拓展。
例如,超导磁悬浮技术可以实现高速列车的悬浮运行,大幅提高交通运输效率;超导器件可以用于通信领域,提高数据传输速度和稳定性;超导材料在飞行航天领域可以应用于磁悬浮轨道、电动助推等方面,提升飞行器的性能和效率。
综上所述,超导材料具有广泛的应用前景,将在能源、医疗、交通运输、通信、航天等多个领域发挥重要作用。
随着科学技术的不断进步和超导材料研究的深入,相信超导材料将会为人类社会带来更多的创新和进步,为我们的生活和工作带来更多便利和可能性。
超导体的应用和发展前景

超导体的应用和发展前景超导体是一种电阻为零的材料,在低温下可实现严格的能量守恒。
这种材料几乎没有能量损失,因此具有很高的能效性能,应用十分广泛。
超导体在医学、交通、通信、国防等领域的应用越来越受到关注,其发展前景不可估量。
一、医学方面的应用超导体在医学上的应用主要分为两大类:医学成像和治疗。
医学成像主要是超导磁共振成像,也就是MRI技术。
它采用大型超导磁体产生极强的磁场,利用人体内不同类型组织对磁场的反应差异产生不同的信号。
这种成像技术不伤害人体,不需要外科手术,安全而且准确。
此外,超导体还能用于医疗器械的制造。
例如,超导磁悬浮离心机是一种新型的核磁共振技术,在医疗诊断中有着很大的应用潜力。
这种技术可以对某些组织或器官进行非侵入式诊断,特别适用于关节、脑部、心脏等疾病的诊断和治疗。
二、交通和运输超导体在交通和运输中的应用已经受到了广泛的关注。
超导体磁悬浮列车是超导体交通的代表。
磁悬浮列车利用高速旋转的超导体制造的磁场与轨道上的永久磁铁相互作用,产生电磁悬浮力。
超导体磁悬浮列车体积小、速度快、噪声小,且对环境污染少,是未来城市交通发展的重要选择。
三、通信和计算机超导体在通信和计算机领域的应用主要是制造高速数字到模拟转换器和某些高级计算机及通信设备。
超导体的电流密度高、电感小,速度快,因此在高速计算机和通信设备中得到广泛应用。
超导体的应用还有潜力应用于天线、中继器和光电组件等领域。
四、国防超导体在国防领域的应用主要包括制造超导磁体、目标捕获系统、高温超导导航仪、高速电磁炮等。
超导材料制作的高能量密度、重量轻、体积小的磁体,是制造高功率微波设备的必备材料。
未来,随着科技的不断进步,超导体的应用也将越来越广泛。
超导体的研究和应用将为国家的现代化建设和社会的进步发展提供强大的支持和助力。
高温超导材料应用与发展前景

高温超导材料应用与发展前景高温超导材料是一类具有独特电性能的材料,其在极低温度下可以表现出零电阻和完全抗磁性的特点。
这种材料的发现引起了科学界的广泛关注并被认为具有重大的应用潜力。
本文将探讨高温超导材料的应用及其发展前景。
一、高温超导材料的应用领域1. 能源传输与储存高温超导材料可以用于电能传输和储存中,其零电阻的特性可以有效减少能量损耗和线路的电阻。
利用高温超导材料可以建立超导电缆和输电线路,提高电力传输效率,减少能源损耗。
此外,高温超导材料还可以应用于超导储能技术,将电能存储在超导器件中,随时供应给需要的地方,增加电力系统的稳定性和灵活性。
2. 磁共振成像高温超导材料可以应用于磁共振成像领域,用于医学诊断和科学研究。
磁共振成像是一种无创、无辐射的成像技术,对于身体内部的组织结构和功能状态都能提供详细的信息。
使用高温超导材料制备的磁共振成像仪器可以提高成像分辨率和信噪比,为医生提供更准确的诊断结果,并加快病人的检查速度。
3. 电子器件高温超导材料可以应用于电子器件领域,如超导电子器件和超导逻辑器件。
超导电子器件可以实现更高的工作频率和更低的功耗,提高电子器件的性能。
超导逻辑器件则可以用于超高速计算和数据处理,有望在未来的量子计算机中发挥重要作用。
二、高温超导材料的发展前景1. 材料性能的提升目前已经发现的高温超导材料在液氮温度下才能实现超导态,难以广泛应用于实际生产和生活中。
然而,科学家们正致力于寻找更高温超导材料,并希望能在室温下实现超导。
如果能找到室温超导材料,将会突破目前超导技术的使用限制,推动超导技术在各个领域的广泛应用。
2. 制备工艺的改进高温超导材料的制备工艺和成本仍然是制约其应用的主要障碍之一。
目前的制备工艺复杂,成本高昂,无法满足大规模制造的需求。
科学家们正在努力改进制备工艺,寻找更加简单、高效的方法,以降低制造成本,使高温超导材料的应用更为普及。
3. 合作与交流的加强高温超导材料的研发和应用是一个多领域、跨学科的工作,需要各个领域的科学家和工程师的合作与交流。
超导技术在未来能源中的应用前景

超导技术在未来能源中的应用前景超导技术是近年来备受瞩目的科技领域,其在电力、磁共振成像、量子计算等领域都拥有广泛的应用。
尤其是在未来的能源领域,超导技术将有着巨大的应用前景。
本文将从超导技术的原理、应用现状以及未来应用前景三个方面来探讨超导技术在未来能源中的应用前景。
一、超导技术的原理超导技术的核心原理是超导现象。
当材料被冷却至一定温度以下时,材料的电阻会降至零,形成超导现象。
超导电性的发现可追溯到1911年,随后的数十年里,科学家们对超导现象进行了深入的研究。
1957年,美国物理学家J. Bardeen、L. Cooper和J. Schrieffer在研究超导现象时提出了BCS理论解释超导现象,并因此获得了1972年诺贝尔物理学奖。
二、超导技术在能源领域中的应用现状超导技术在能源领域中应用最广泛的是超导电缆。
传统的电缆会出现电能损耗,而超导电缆可以实现输电无电能损耗,因此被称为“零电阻电缆”。
目前,超导电缆主要用于高温超导材料制成的直流输电装置,适用于长距离传输电能,可以有效减少电能损耗,提高能源利用率。
此外,超导技术还应用于磁能储存。
当使超导体置于强磁场中时,超导体能够稳定地存储磁能,实现无损储能。
这种技术可以用于储能系统,比如风力和太阳能等再生能源不稳定的情况下,储存余电以备不时之需。
三、超导技术在未来能源中的应用前景未来能源的发展趋势是清洁能源、高效能源、智能能源。
超导技术作为一种高效、低损耗的能源输送方式,可以推动未来能源向更加清洁的方向发展。
此外,超导技术在储能方面的应用也可以解决再生能源储存困难的问题,满足未来能源的智能化要求。
值得一提的是,中国在超导技术领域的研究与应用也呈现出强劲的发展势头。
2017年,中国科学院物理研究所和华能集团联合研制的6万千瓦超导直流变电站在宁夏成功建成,这是全球首个商业运营的超导直流输电设施。
此外,中国的超导机车、超导太赫兹成像、超导储能等研究也有较大进展,在未来能源升级换代中将有着巨大的潜力。
超导材料及其应用的发展前景

超导材料及其应用的发展前景超导材料是指在超过它们的超导临界温度下表现出零电阻和磁通量排斥效应的材料。
自从1950年代发现铜氧化物高温超导材料以来,超导材料的研究一直在不断发展。
随着科学技术的发展,越来越多的超导材料被发现出来,同时它们的应用也越来越广泛。
在未来的发展中,超导材料将会在磁共振成像、能源传输、储存和转换、电力设备、计算机等领域的应用中发挥重要作用。
一、超导材料的分类超导材料通常按照转变温度的高低、材料的组成结构、材料的形态等方面进行分类。
其中最常用的分类方法是按照转变温度的高低来分类,即低温超导材料和高温超导材料。
1、低温超导材料低温超导材料的转变温度一般都在20K以下,其中最具代表性的是铜钛氧化物(YBa2Cu3O7-x)。
低温超导材料常用于精密测量和超导磁体等领域。
2、高温超导材料高温超导材料的转变温度可以达到室温以下,其中最常用的是铁基超导体,比如LaFeAsO1-xFx。
高温超导材料由于其转变温度较高,应用范围更为广泛,如便携式磁共振成像设备、高速列车、飞行器等。
二、超导材料的应用1、磁共振成像技术磁共振成像(MRI)技术是利用磁共振效应来观测人体和动植物体内部的结构和功能。
磁共振成像技术常用的超导材料主要是铜氧化物高温超导体,它具有良好的超导性能和磁性。
使用超导磁体可产生高强度的磁场,提高磁场的质量和均匀性,从而提高MIR成像的分辨率和灵敏度。
2、能源传输、储存和转换由于超导材料的零电阻和超导电磁特性,它们可以用于传输电能和储存电能。
超导材料可以用来制造高速、高效率、低损耗的电缆,可降低余热损失并加速传输速度。
此外,超导能量储存和转换技术是利用超导材料制造超导磁体、超导电感器和超导电池等,使能量的转换和储存过程更加高效和可靠。
3、电力设备超导材料的应用在电力设备上有很多,如超导电缆、超导电阻、超导变压器等。
其中最常用的是超导电缆。
与普通铜缆相比,超导电缆能够提高电线的电流承载能力,同时减少电能输送过程中的电流损耗。
超导材料的发展及应用前景

超导材料的发展及应用前景随着科技的不断进步和发展,超导材料逐渐引起了人们的重视和关注。
超导材料是指某些材料在低温条件下能够完全消除电阻,具有良好的导电性能和磁性能。
目前,超导材料的开发和应用已经深入到了各个领域,比如磁悬浮、能源传输、生物医学、量子计算等。
一、超导材料的基本概念超导材料起源于1911年荷兰物理学家海克·昂内斯·卡梅林格在研究物质的加热性质时意外发现的珍珠母蝴蝶的超导现象。
超导现象是指在一定的温度下某些材料的电阻率变为零,进而表现为完全导电的现象。
超导材料可分为一种和二种两种。
一种超导材料的转变温度较低,必须使温度降到零以下;而二种超导材料的转变温度较高,能够在液氮的温度下实现超导。
二、超导材料的发展历程1、Meissner效应的发现在1933年,德国的物理学家费迪南德.米斯纳发现了一种蕴含着超导物理本质的现象,即“Meissner效应”。
他发现在超导体受到磁场的作用下,磁场将被完全排斥,从而在超导体的内部产生一种磁场,即“Meissner效应”。
2、高温超导材料的发现1986年,在美国IBM公司的发明家库珀和穆勒各自发现了一种新型超导材料,称其为高温超导材料。
这种高温超导材料的转变温度已经可以达到液氮的温度,从而极大地推动了超导技术的发展。
三、超导材料的应用前景1、磁悬浮技术磁悬浮技术是指将磁体和轨道相互作用的原理,实现列车在轨道上的悬浮,从而减小了摩擦阻力和空气阻力,提高了列车的运行效率。
超导材料在磁悬浮技术上有着广泛的应用前景。
2、能源传输目前,国内外的电力输送都采用的是传统的铜铝导线,而超导材料因其能够达到较高的导电性能,因此可以将超导线作为高压输电线路,省去了铜铝线路长距离输电过程中的电力损耗,可以大大提高电力输送的效率。
3、生物医学超导材料在医学领域中的应用也逐渐出现,比如:MRI等医疗成像技术,都是超导材料在这个领域所发挥的作用。
通过这种技术,可以对人体进行准确的诊断,避免了传统医疗设备对人体辐射的危害,同时还能够准确的定位病变和异常病灶。
超导材料的应用前景与挑战

超导材料的应用前景与挑战在现代科技的快速发展进程中,超导材料犹如一颗璀璨的新星,正逐渐展现出其令人瞩目的应用前景。
然而,如同任何新兴技术一样,超导材料在其发展道路上也面临着诸多挑战。
超导材料,简单来说,就是在特定条件下电阻几乎为零的材料。
这一特性使得电流能够在其中无损耗地流动,从而带来了一系列令人兴奋的应用可能性。
在能源领域,超导材料有望彻底改变电力的传输和存储方式。
传统的电力传输过程中,由于电阻的存在,会有大量的能量以热能的形式散失。
而使用超导材料制作的电缆,可以实现高效、远距离的电力输送,大大减少能量损耗。
想象一下,未来的城市电网不再有庞大的变压器和繁琐的输电线路,取而代之的是小巧高效的超导电缆,为我们的生活提供源源不断的清洁电能。
同时,超导材料在储能方面也具有巨大潜力。
超级电容器和超导磁储能系统,能够快速充放电并且储存大量的能量。
这对于解决可再生能源的间歇性问题,如风能和太阳能的不稳定供应,具有重要意义。
当阳光充足或风力强劲时,多余的电能可以被储存起来,在需要的时候释放,确保电力供应的稳定性和可靠性。
交通领域同样能因超导材料而发生重大变革。
超导磁悬浮列车就是一个典型的例子。
利用超导材料产生的强大磁场,列车可以悬浮在空中,消除了与轨道的摩擦力,从而实现高速、低能耗的运行。
这种列车不仅速度快,而且运行平稳、安静,将极大地缩短城市之间的旅行时间,改变人们的出行方式。
在医疗领域,超导材料也发挥着重要作用。
磁共振成像(MRI)设备中使用的超导磁体,能够提供更强、更均匀的磁场,从而获得更清晰、更准确的人体内部图像,有助于医生进行疾病的诊断和治疗。
此外,超导量子干涉器件(SQUID)在检测微弱的生物磁场方面具有极高的灵敏度,为脑科学和心脏疾病的研究提供了有力的工具。
然而,尽管超导材料的应用前景如此广阔,但我们不能忽视其面临的挑战。
首先,超导材料的工作条件往往十分苛刻。
大多数超导材料需要在极低的温度下才能展现出超导特性,这就需要昂贵的冷却设备和大量的能源来维持低温环境。
超导材料在能源保存和传输中的应用前景

超导材料在能源保存和传输中的应用前景超导材料是具有零电阻和完全排斥磁场的特殊材料,在能源保存和传输方面具有巨大的潜力。
随着科学技术的不断发展,人们对超导材料的研究逐渐深入,并开始在能源保存和传输领域应用这些材料。
本文将探讨超导材料在能源保存和传输中的应用前景。
首先,超导材料在能源保存中的应用展现出巨大的优势。
能源保存是当今社会面临的一大挑战,如何高效地保存与储存能源成为了关键问题。
超导材料的零电阻特性意味着当电流通过其中时,没有能量损耗,这为能源保存提供了一种理想的解决方案。
例如,将超导材料用于电力系统中的输电线路,能够极大地减少能量损失,提高能源利用效率。
此外,超导磁体也可以用于储能系统中,将多余电能转化为磁能,然后在需要时再将其转化为电能。
这种能源保存方式能够高效地解决能源供需不平衡等问题,为能源系统的可持续发展提供了一种可靠的解决方案。
其次,超导材料在能源传输方面也有广阔的应用前景。
能源传输是现代社会不可或缺的一环,通过高效地传输能源可以满足人们日益增长的能源需求。
超导材料的完全排斥磁场特性使其成为一种理想的能源传输介质。
利用超导材料制造的导线可以实现低电阻的能源传输,这意味着在长距离传输能源时几乎不会有能量损失,能够更有效地满足能源传输的需求。
此外,超导材料还可以用于制造超导磁体,通过超导磁体产生的强磁场,可以实现超高速传输,用于磁悬浮列车、磁飞轮等高速交通工具。
这些应用不仅可以大大提高能源传输的效率,还能够改变人们对于能源传输的认知,并推动能源传输技术的进一步发展。
然而,尽管超导材料在能源保存和传输中有很大的应用潜力,但目前还存在一些挑战和限制。
首先,超导材料需要在极低的温度下才能展现出其超导性能,这对材料的制备和维护都提出了很高的要求。
目前的超导材料多数需要在接近绝对零度的低温下才能实现超导状态,这导致了其应用的限制。
其次,超导材料的制备成本较高,尚未达到大规模商业化应用的程度。
虽然已经有一些超导材料可以在相对较高温度下实现超导状态,但其制备成本仍然较高,因此在大规模应用方面仍面临一定的挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超导材料的未来应用前景
超导是超导电性的简称。
是一种材料,如某种金属、合金或化合物在温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。
超导体的另外一个特征是:当电阻消失时,磁感应线将不能通过超导体,这种现象称为抗磁性。
超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。
大电流应用即超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。
超导体的巨大前景
●超导材料不可思议
那么,为什么世界各国对“超导”技术的研究与开发如此重视呢?这主要是因为超导材料具有极其优越的物理特性:一是零电阻效应,二是约瑟夫逊效应,三是迈斯纳效应。
超导体这些突出特性的重大意义,不亚于半导体的发现。
甚至有专家预言,超导体的应用将导致一场新技术革命,特别是在军事领域的应用,将引起一系列巨大变革。
●军事应用前景广阔
超导体在军事领域的应用将十分广泛。
采用超导体材料,可使许多重要的军用装备,如C4I系统、聚能武器、舰艇、飞机、坦克、装甲车辆、导弹等武器的性能得到大幅度的改善。
超导飞机设计制造大功率、小体积的发动机,对提高飞机的作战性能至关重要。
目前,飞机所采用的均是磁流体发电,但利用普通磁体,很难使磁场强度高于15高斯,而如果利用超导磁体就能产生数万至几十万高斯的磁场,从而大大提高磁体发电的输出功率。
所以,超导技术的突破,为大容量、小型化磁流体发电机的研制成功提供了条件,这种超导发电机正在加速走向实用化。
目前,有些国家已在研制几百至一千兆瓦的体积小、重量轻的超导发电机,预计机载大功率超导发电机将成为超导技术在军事上率先得到应用的重点项目。
超导舰船20世纪70年代以来,美、苏、英、日等国积极开展超导技术在海军舰船方面应用的研究,并不断取得成效。
美国试制了7500马力的超导驱动系统;英国研制了650马力的超导电磁力推进装置;日本制成了世界上第一艘超导船。
超导舰船由于取消了传统的螺旋桨推动部件,因而具有结构简单、维修方便、推力大、航速高、无震动、无噪声、无污染、造价低等诸多优点。
潜艇应用超导推进系统后,能有效地消除噪音、降低红外辐射,从而不易被敌方发现,大大提高了舰船的快速机动能力和突防能力。
超导聚能武器聚能武器是把能量汇聚成极细的能束,沿着精确的方向,以接近或等于光速的速度发射出去,对目标进行杀伤。
但目前在研制这些武器上几乎都遇到了能源问题。
即如何在瞬间向聚能武器提供大量的能源,如激光武器,特别是大功率的战略激光武器耗能巨大,它要求在瞬间提供数十亿至数百亿焦耳的能量,而目前的储能装置储存的能量却非常有限,且体大笨重。
而超导技术的发展,
则为解决聚能武器能源问题提供了可能。
用超导材料制成的闭合线圈是一种理想的储能装置。
因为只要线圈保持超导状态,它所储存的电磁能就会毫无损耗地长期保存下去,并可随时把强大的能量提供给聚能武器。
超导储能装置使聚能武器如虎添翼,它有如给聚能武器提供了一个机动灵活、容量无比的弹药库。
超导C4I系统就目前来看,C4I系统的心脏———电子计算机,要想继续提高系统的性能和运算速度,功耗是一个实际的限制。
为此,国外已积极开展超导计算机的应用研究,并已经研制出约瑟夫逊超导元件,利用这一元件可将电路速度提高一个数量级,功耗比同等功能的集成硅电路低三个数量级。
超导计算机的突出特点是,可在元器件不发热、无电阻的情况下高效率地运行,C4I系统一旦应用了超导技术,其性能将获得空前的提高。
超导太空发射器1990年,日本研制出了一种新型的常温超导材料,它所具有的磁悬浮力相当于当时超导材料的300倍,它不仅可以用来制造高速磁悬浮列车,还可以用来发射航天飞机。
如今,世界一些发达国家采用这种超导材料,已经研制出一种可以用来发射航天飞机的超导磁悬浮发射装置,它主要由一条3500米长的水平超导导轨和一条2000米高的垂直超导导轨相连接,形成一个近90度的陡坡。
发射时,庞大的航天飞机在磁悬浮力的作用下,沿着水平方向前进并逐渐被加速,当到达终端的弧形轨道后,便随弧形轨道改变方向,并以每小时500—600千米的速度沿垂直导轨向上飞行,在距地面1500米左右时飞离发射装置,与此同时,航天飞机的发动机开始工作,靠自身的动力直刺苍穹。
采用超导磁悬浮发射装置取代火箭发射航天飞机,可以减轻航天飞机的重量,增加有效载荷,并且推力大、耗能少、起飞速度大、安全可靠、可多次重复使用,从而节省了大量经费。
●超导攻关激战犹酣
随着超导技术的进一步发展,超导常温材料研制成功,超导装甲车辆、超导坦克、超导导弹等形形色色的超导武器也将纷纷亮相。
事实上,早在1987年,美国就将超导技术的发展及实用化列入了国防部计划、SDI计划和“常规防御计划”(CDI)。
美国前总统里根一份“发展超导技术的11点计划”,其中明确规定要从 1988年开始的几年计划中,拨专款1.5亿美元,以保证超导计划能尽快应用在各种军事系统中,并说在实用化方面美国必须走在日本的前头。
而日本则不甘落后,在预测1994—2005年技术发展趋势时明确指出,在拟完成的三项重点技术计划中,首项便是液氮温区以上的超导材料实用化。
不难预测,21世纪的战场,将有越来越多的超导武器频频出现,而它们的应用必将引起未来作战理论、作战样式和战略战术等方面的一系列变革。
畅谈超导体的未来
众所周知,中国为了修建三峡工程可谓是不惜血本啊!为什么要耗费如此巨大来建造三峡?中国原本是利用火力发电的,现在改用水力发电(还是有好多地方的电是靠火力的)。
火力发电的能量来源绝大部分是煤炭,自然就要耗费大量的煤炭,这是显而易见的。
而煤炭又是不可再生资源。
然而,世界范围内都面临着资源危机,显然身为不可再生资源的煤炭在其中扮演着一个十分重要的角色。
利用水力发电也就解决大大了这个问题,这就是为什么即使牺牲再大也要建
造三峡水电站的根本原因。
但是单单靠一个三峡水力发电显然是不够用的,特别是在这样一个什么都要用电的现代化社会之中。
煤炭在发电这方面的使用依然是十分巨大的。
即使加上风力发电等其它能量来源,依然还是不能满足现代社会对电力的需求。
那么要怎样做?
千家万户分住各地,我们不可能把他们集中在一个地方居住,所以L无法改变,这也是不争的事实,同时因为考虑到热胀冷缩的物理现象,我们的两根电杆间的输电线还必须长于他们的实际长度,这使得L的值相对而言就更加大了。
而S做得太大也不切合实际。
显然R是很大,自然损耗功也是很大的。
但是大家不要忘了超导体,如果使用超导体作为我们的输电线的材料,我们将永永远远告别输电线上带来的损耗。
输电线上得损耗的杜绝将让我们可以很自信的向宇宙宣布我们地球上将不用再以牺牲煤炭为代价来换取电能了,因为利用其它方式发电将完完全全能够满足我们的所需。
下面我来粗劣计算下输电线上电能的损耗,以此来证明当用超导体作为输电线时将带来的巨大利益。