1圆锥曲线中的定值问题
圆锥曲线【定点定值】12 大题型(原卷版)
圆锥曲线中的定点、定值问题1、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下:(1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数.(3)定值----化简得到的函数解析式,消去变量得到定值.2、求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关;(2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值.常用消参方法:①等式带用消参:找到两个参数之间的等式关系(,)0F k m =,用一个参数表示另外一个参数()k f m =,即可带用其他式子,消去参数k .②分式相除消参:两个含参数的式子相除,消掉分子和分母所含参数,从而得到定值.③因式相减消参:两个含参数的因式相减,把两个因式所含参数消掉.④参数无关消参:当与参数相关的因式为0时,此时与参数的取值没什么关系,比如:2()0y kg x -+=,只要因式()0g x =,就和参数k 没什么关系了,或者说参数k 不起作用.3、求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.一般解题步骤:①斜截式设直线方程:y kx m =+,此时引入了两个参数,需要消掉一个.②找关系:找到k 和m 的关系:m =()f k ,等式带入消参,消掉m .③参数无关找定点:找到和k 没有关系的点.题型一:面积定值【典例1-1】如图所示,已知椭圆22:14x C y +=,A ,B 是四条直线2x =±,1y =±所围成的矩形的两个顶点.若M ,N 是椭圆C 上的两个动点,且直线OM ,ON 的斜率之积等于直线OA ,OB 的斜率之积,试探求OM N V 的面积是否为定值,并说明理由.【典例1-2】(2024·湖北荆州·三模)从抛物线28y x =上各点向x 轴作垂线段,垂线段中点的轨迹为Γ.(1)求Γ的轨迹方程;(2),,A B C 是Γ上的三点,过三点的三条切线分别两两交于点,,D E F ,①若//AC DF ,求BDBF的值;②证明:三角形ABC 与三角形DEF 的面积之比为定值.【变式1-1】已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1(1,0)F -、2(1,0)F ,M 在椭圆E 上,且12MF F △(1)求椭圆E 的方程;(2)直线:l y kx m =+与椭圆E 相交于P ,Q 两点,且22434k m +=,求证:OPQ △(O 为坐标原点)的面积为定值.【变式1-2】(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ^;(ii )记PMQ V ,HNQ V ,MNQ V 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.【变式1-3】(2024·广东广州·模拟预测)已知()1,0A -,()10B ,,平面上有动点P ,且直线AP 的斜率与直线BP 的斜率之积为1.(1)求动点P 的轨迹Ω的方程.(2)过点A 的直线与Ω交于点M (M 在第一象限),过点B 的直线与Ω交于点N (N 在第三象限),记直线AM ,BN 的斜率分别为1k ,2k ,且124k k =.试判断AMN V 与BMN V 的面积之比是否为定值,若为定值,请求出该定值;若不为定值,请说明理由.题型二:向量数量积定值【典例2-1】(2024·高三·江苏盐城·开学考试)已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ l ×+×uuu r uuu r uuu r uuu r为定值?若存在,求出l 的值;若不存在,说明理由.【典例2-2】(2024·上海闵行·二模)已知点12F F 、分别为椭圆22:12x y G +=的左、右焦点,直线:l y kx t =+与椭圆G 有且仅有一个公共点,直线12,F M l F N l ^^,垂足分别为点M N 、.(1)求证:2221t k =+;(2)求证:12F M F N ×uuuu r uuuu r为定值,并求出该定值;【变式2-1】(2024·陕西宝鸡·一模)椭圆()2222:10x y C a b a b +=>>经过点P æççè,且两焦点与短轴的两个端点的连线构成一个正方形.(1)求椭圆C 的方程;(2)设5,04M æöç÷èø,过椭圆C 的右焦点F 作直线l 交C 于A 、B 两点,试问:MA MB ×uuu r uuu r 是否为定值?若是,求出这个定值;若不是,请说明理由.【变式2-2】(2024·高三·河南南阳·期末)P 为平面直角坐标系内一点,过P 作x 轴的垂线,垂足为M ,交直线b y x a =-(0a b >>)于Q ,过P 作y 轴的垂线,垂足为N ,交直线by x a=-于R ,若△OMQ ,V ONR 的面积之和为2ab.(1)求点P 的轨迹C 的方程;(2)若2a =,1b =,()4,0A -,(),0G n ,过点G 的直线l 交C 于D ,E 两点,是否存在常数n ,对任意直线l ,使AD AE ×uuu r uuu r为定值?若存在,求出n 的值及该定值,若不存在,请说明理由.【变式2-3】(2024·高三·天津河北·期末)设椭圆2222:1(0)x y E a b a b +=>>的左右焦点分别为12,F F ,短轴的两个端点为,A B ,且四边形12F AF B 是边长为2的正方形.,C D 分别是椭圆的左右顶点,动点M 满足MD CD ^,连接CM ,交椭圆E 于点P .(1)求椭圆E 的方程;(2)求证:OM OP ×uuuu r uuu r为定值.【变式2-4】已知椭圆()2222:10x y C a b a b +=>>的左、右顶点分别为,A B ,右焦点为F ,且3AF =uuu r ,以F为圆心,OF 为半径的圆F 经过点B .(1)求C 的方程;(2)过点A 且斜率为()0k k ¹的直线l 交椭圆C 于P ,(ⅰ)设点P 在第一象限,且直线l 与y x =-交于HHAO Ð,求k 的值;(ⅱ)连接PF 交圆F 于点T ,射线AP 上存在一点Q ,且QT BT ×为定值,已知点Q 在定直线上,求Q 所在定直线方程.题型三:斜率和定值【典例3-1】已知椭圆()222:11x M y a a +=>与双曲线222:1y N x a-=的离心率的平方和为234.(1)求a 的值;(2)过点1,02Q æöç÷èø的直线l 与椭圆M 和双曲线N 分别交于点A ,B ,C ,D ,在x 轴上是否存在一点T ,直线TA ,TB ,TC ,TD 的斜率分别为TA k ,TB k ,TC k ,TD k ,使得1111TA TB TC TDk k k k +++为定值?若存在,请求出点T 的坐标;若不存在,请说明理由.【典例3-2】(2024·河南·二模)已知椭圆2222:1(0)x y C a b a b +=>>的焦距为2,两个焦点与短轴一个顶点构成等边三角形.(1)求椭圆C 的标准方程;(2)设()3,P t ,过点P 的两条直线1l 和2l 分别交椭圆C 于点,D E 和点,M N (1l 和2l .不重合),直线1l 和2l 的斜率分别为1k 和2k .若PM PN PD PE =,判断12k k +是否为定值,若是,求出该值;若否,说明理由.【变式3-1】椭圆C :22221x y a b +=(0a b >>)的左焦点为(),且椭圆C 经过点()0,1P ,直线21y kx k =+-(0k ¹)与C 交于A ,B 两点(异于点P ).(1)求椭圆C 的方程;(2)证明:直线PA 与直线PB 的斜率之和为定值,并求出这个定值.【变式3-2】(2024·宁夏银川·一模)已知1F ,2F 分别是椭圆()2222:10x yC a b a b+=>>的左、右焦点,左顶点为A ,则上顶点为1B ,且1AB 20y -+=.(1)求椭圆C 的标准方程;(2)若P 是直线3x =上一点,过点P 的两条不同直线分别交C 于点D ,E 和点M ,N ,且PD PMPN PE=,求证:直线DE 的斜率与直线MN 的斜率之和为定值.题型四:斜率积定值【典例4-1】(2024·高三·陕西·开学考试)已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为F ,左顶点为E ,虚轴的上端点为P ,且3PF =,PE =(1)求双曲线C 的标准方程;(2)设M N 、是双曲线C 上不同的两点,Q 是线段MN 的中点,O 是原点,直线MN OQ 、的斜率分别为12k k 、,证明:12k k ×为定值.【典例4-2】已知椭圆2222:1(0)x y E a b a b +=>>,过点,A ,B 分别是E 的左顶点和下顶点,F 是E右焦点,π3AFB Ð=.(1)求E 的方程;(2)过点F 的直线与椭圆E 交于点P ,Q ,直线AP ,AQ 分别与直线4x =交于不同的两点M ,N .设直线FM ,FN 的斜率分别为1k ,2k ,求证:12k k 为定值.【变式4-1】已知椭圆22122:1(0)22x y C a b a b +=>>左右焦点12,F F 分别为椭圆22222:1(0)x y C a b a b +=>>的左右顶点,过点1F 且斜率不为零的直线与椭圆1C 相交于,A B 两点,交椭圆2C 于点M ,且2ABF △与12BF F △的周长之差为4-(1)求椭圆1C 与椭圆2C 的方程;(2)若直线2MF 与椭圆1C 相交于,D E 两点,记直线1MF 的斜率为1k ,直线2MF 的斜率为2k ,求证:12k k 为定值.【变式4-2】(2024·湖南长沙·二模)如图,双曲线22122:1(0,0)x y C a b a b -=>>的左、右焦点1F ,2F 分别为双曲线22222:144x y C a b -=的左、右顶点,过点1F 的直线分别交双曲线1C 的左、右两支于,A B 两点,交双曲线2C 的右支于点M (与点2F 不重合),且12BF F △与2ABF △的周长之差为2.(1)求双曲线1C 的方程;(2)若直线2MF 交双曲线1C 的右支于,D E 两点.①记直线AB 的斜率为1k ,直线DE 的斜率为2k ,求12k k 的值;②试探究:DE AB -是否为定值?并说明理由.【变式4-3】已知双曲线C:x 2a 2―y 2b 2=1(a >0,b >0)过点((1)求双曲线C 的标准方程;(2)设过点()2,0P 且斜率不为0的直线l 与双曲线C 的左右两支交于A ,B 两点.问:在x 轴上是否存在定点Q ,使直线QA 的斜率1k 与QB 的斜率2k 的积为定值?若存在,求出该定点坐标;若不存在,请说明理由.题型五:斜率比定值【典例5-1】设抛物线2:2(0)C y px p =>的焦点为F ,点(),0M p ,过点F 且斜率存在的直线交C 于不同的,A B 两点,当直线AM 垂直于x 轴时,3AF =.(1)求C 的方程;(2)设直线,AM BM 与C 的另一个交点分别为,D E ,设直线,AB DE 的斜率分别为12,k k ,证明:(ⅰ)12k k 为定值;(ⅱ)直线DE 恒过定点.【典例5-2】如图所示,已知点()1,0K ,F 是椭圆22195x y+=的左焦点,过F 的直线与椭圆交于,A B 两点,直线,AK BK 分别与椭圆交于,P Q 两点.(1)证明:直线PQ 过定点.(2)证明:直线PQ 和直线AB的斜率之比为定值.【变式5-1】(2024·重庆·模拟预测)如图,DM x ^轴,垂足为D ,点P 在线段DM 上,且||1||2DP DM =.(1)点M 在圆224x y +=上运动时,求点P 的轨迹方程;(2)记(1)中所求点P 的轨迹为,(0,1)A G ,过点10,2æöç÷èø作一条直线与G 相交于,B C 两点,与直线2y =交于点Q .记,,AB AC AQ 的斜率分别为123,,k k k ,证明:123k k k +是定值.【变式5-2】(2024·云南·二模)已知椭圆EO ,焦点在x 轴上,右焦点为F ,A 、B 分别是E 的上、下顶点.E 的短半轴长是圆O 的半径,点M 是圆O 上的动点,且点M 不在y 轴上,延长BM 与E 交于点,N AM AN ×uuuu r uuu r的取值范围为(0,4).(1)求椭圆E 、圆O 的方程;(2)当直线BM 经过点F 时,求AFN V 的面积;(3)记直线AM 、AN 的斜率分别为12k k 、,证明:21k k 为定值.【变式5-3】(2024·河南·三模)已知点())A B ,,动点V 满足直线VA 与直线VB 的斜率之积为13,动点V 的轨迹为曲线C .(1)求曲线C 的方程:(2)直线PQ 与曲线C 交于,P Q 两点,且BP BQ BM PQ ^^,交PQ 于点M ,求定点N 的坐标,使MN 为定值;(3)过(2)中的点N 作直线交曲线C 于,G H 两点,且两点均在y 轴的右侧,直线,AG BH 的斜率分别为12,k k ,求12k k 的值.题型六:斜率差定值【典例6-1】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()()122,0,2,0F F -,D 为椭圆C 的右顶点,且124DF DF ×=uuu u r uuuu r.(1)求椭圆C 的方程;(2)设()4,2M -,过点()4,0Q -的直线与椭圆C 交于A ,B 两点(A 点在B 点左侧),直线AM 与直线2x =-交于点N ,设直线NA ,NB 的斜率分别为1k ,2k ,求证:21k k -为定值.【典例6-2】已知双曲线2222;1(0,0)x y C a b a b -=>>经过点æççè,右焦点为(),0F c ,且222,,c a b 成等差数列.(1)求C 的方程;(2)过F 的直线与C 的右支交于,P Q 两点(P 在Q 的上方),PQ 的中点为,M M 在直线:2l x =上的射影为,N O 为坐标原点,设POQ △的面积为S ,直线,PN QN 的斜率分别为12,k k ,试问12k k S-是否为定值,如果是,求出该定值,如果不是,说明理由.【变式6-1】已知椭圆()2222:10x y M a b a b+=>>的离心率为12,A ,B ,C 分别为椭圆的左顶点,上顶点和右顶点,1F 为左焦点,且1ABF V P 是椭圆M 上不与顶点重合的动点,直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点N .(1)求椭圆M 的标准方程;(2)求证:2QN QC k k -为定值,并求出此定值(其中QN k 、QC k 分别为直线QN 和直线QC 的斜率).【变式6-2】(2024·高三·上海闵行·期中)已知双曲线C :()222210,0x y a b a b-=>>,点()3,1-在双曲线C 上.过C 的左焦点F 作直线l 交C 的左支于A 、B 两点.(1)求双曲线C 的方程;(2)若()2,0M -,试问:是否存在直线l ,使得点M 在以AB 为直径的圆上?请说明理由.(3)点()4,2P -,直线AP 交直线2x =-于点Q .设直线QA 、QB 的斜率分别1k 、2k ,求证:12k k -为定值.题型七:线段定值【典例7-1】(2024·高三·山西·期末)已知椭圆E :()2221024x y b b +=<<.(1)若椭圆E 22y x =-与椭圆E 交于M ,N 两点,求证:OM ON ^;(2)P 为直线l :4x =上的一个动点,A ,B 为椭圆E 的左、右顶点,PA ,PB 分别与椭圆E 交于C ,D 两点,证明CA PD PC BD××为定值,并求出此定值.【典例7-2】如图,已知圆22:210T x y ++-=,圆心是点T ,点G 是圆T 上的动点,点H 的坐标为),线段CH 的垂直平分线交线段TC 于点R ,记动点R 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点H 作一条直线与曲线E 相交于A ,B 两点,与y 轴相交于点C ,若CA AH l =uuu r uuur ,CB BH m =uuur uuur ,试探究l m +是否为定值?若是,求出该定值;若不是,请说明理由;(3)过点()2,1M 作两条直线MP ,MQ ,分别交曲线E 于P ,Q 两点,使得1MP MQ k k ×=.且MD PQ ^,点D 为垂足,证明:存在定点F ,使得DF 为定值.【变式7-1】已知点N 在曲线22:11612x y C +=上,O 为坐标原点,若点M 满足2ON OM =uuu r uuuu r ,记动点M 的轨迹为G .(1)求G 的方程;(2)设,C D 是上G 的两个动点,且以CD 为直径的圆经过点O ,证明:2211OCOD+为定值.【变式7-2】(2024·湖北·模拟预测)平面直角坐标系xOy 中,动点(,)P x y 满足=,点P 的轨迹为C ,过点(2,0)F 作直线l ,与轨迹C 相交于A ,B 两点.(1)求轨迹C 的方程;(2)求OAB △面积的取值范围;(3)若直线l 与直线1x =交于点M ,过点M 作y 轴的垂线,垂足为N ,直线NA ,NB 分别与x 轴交于点S ,T ,证明:||||SF FT 为定值.【变式7-3】(2024·浙江宁波·模拟预测)已知12(2,0),(2,0),(1,0),(1,0)A B F F --,动点P 满足34PA PB k k ×=-,动点P 的轨迹为曲线1,PF t 交t 于另外一点2,Q PF 交t 于另外一点R .(1)求曲线t 的标准方程;(2)已知1212PF PF QF RF +是定值,求该定值;题型八:坐标定值【典例8-1】(2024·陕西安康·模拟预测)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,上顶点为A ,122AF AF AF -=uuur uuuu r uuuu r ,12AF F △(1)求C 的方程;(2)B 是C 上位于第一象限的一点,其横坐标为1,直线l 过点2F 且与C 交于M ,N 两点(均异于点B ),点P 在l 上,设直线BM ,BP ,BN 的斜率分别为1k ,2k ,3k ,若2312k k k -=,问点P 的横坐标是否为定值?若为定值,求出点P 的横坐标;若不为定值,请说明理由.【典例8-2】(2024·全国·模拟预测)一般地,抛物线的三条切线围成的三角形称为抛物线的切线三角形,对应的三个切点形成的三角形称为抛物线的切点三角形.如图,012P PP V ,ABC V 分别为抛物线y 2=2px(p >0)的切线三角形和切点三角形,F 为该抛物线的焦点.当直线AB 的斜率为1-时,AB 中点的纵坐标为2-.(1)求p .(2)若直线AC 过点F ,直线,AB BC 分别与该抛物线的准线交于点,D E ,记点,D E 的纵坐标分别为,D E y y ,证明:D E y y 为定值.(3)若,,A B C 均不与坐标原点重合,证明:012FA FB FC FP FP FP ××=××【变式8-1】(2024·四川凉山·三模)已知平面内动点P 与两定点()11,0A -,()21,0A 连线的斜率之积为3.(1)求动点P 的轨迹E 的方程:(2)过点()2,0的直线与轨迹E 交于A ,B 两点,点A ,B 均在y 轴右侧,且点A 在第一象限,直线2AA 与1BA 交于点M ,证明:点M 横坐标为定值.题型九:角度定值【典例9-1】抛物线C :()20x py p =>的焦点为()0,1F ,直线l 的倾斜角为a 且经过点F ,直线l 与抛物线C 交于两点A ,B .(1)若16AB =,求角a ;(2)分别过A ,B 作抛物线C 的切线1l ,2l ,记直线1l ,2l 的交点为E ,直线EF 的倾斜角为b .试探究a b -是否为定值,并说明理由.【典例9-2】(2024·高三·广东广州·期中)已知椭圆C :()222210+=>>x y a b a b的离心率为12,焦距为2.(1)求椭圆C 的方程;(2)若椭圆C 的左顶点为A ,过右焦点F 的直线l 与椭圆C 交于B ,D (异于点A )两点,直线AB ,AD 分别与直线4x =交于M ,N 两点,试问MFN Ð是否为定值?若是,求出该定值;若不是,请说明理由.【变式9-1】(2024·辽宁沈阳·模拟预测)在平面直角坐标系xOy 中,利用公式x ax byy cx dy¢=+ìí¢=+î①(其中a ,b ,c ,d 为常数),将点(,)P x y 变换为点(),P x y ¢¢¢的坐标,我们称该变换为线性变换,也称①为坐标变换公式,该变换公式①可由a ,b ,c ,d 组成的正方形数表a b c d æöç÷èø唯一确定,我们将a b c d æöç÷èø称为二阶矩阵,矩阵通常用大写英文字母A ,B ,…表示.(1)如图,在平面直角坐标系xOy 中,将点(,)P x y 绕原点O 按逆时针旋转a 角得到点(),P x y ¢¢¢(到原点距离不变),求坐标变换公式及对应的二阶矩阵A ;(2)在平面直角坐标系xOy 中,求双曲线1xy =绕原点O 按逆时针旋转π4(到原点距离不变)得到的双曲线方程C ;(3)已知由(2)得到的双曲线C ,上顶点为D ,直线l 与双曲线C 的两支分别交于A ,B 两点(B 在第一象限),与x 轴交于点T ö÷÷ø.设直线DA ,DB 的倾斜角分别为a ,b ,求证:a b +为定值.【变式9-2】已知椭圆()2222:10x y C a b a b +=>>上的点到它的两个焦点的距离之和为4,以椭圆C 的短轴为直径的圆O 经过这两个焦点,点A ,B 分别是椭圆C 的左、右顶点.(1)求圆O 和椭圆C 的方程;(2)已知P ,Q 分别是椭圆C 和圆O 上的动点(P ,Q 位于y 轴两侧),且直线PQ 与x 轴平行,直线AP ,BP 分别与y 轴交于点M ,N .求证:MQN Ð为定值.题型十:直线过定点【典例10-1】(2024·陕西·模拟预测)已知动圆M 经过定点1(F ,且与圆222:(16F x y +=内切.(1)求动圆圆心M 的轨迹C 的方程;(2)设轨迹C 与x 轴从左到右的交点为点A ,B ,点P 为轨迹C 上异于A ,B 的动点,设直线PB 交直线4x =于点T ,连接AT 交轨迹C 于点Q ;直线AP ,AQ 的斜率分别为AP k ,AQ k .(i )求证:AP AQ k k ×为定值;(ii )设直线:PQ x ty n =+,证明:直线PQ 过定点.【典例10-2】(2024·广西·模拟预测)已知圆E 恒过定点()1,0,且与直线=1x -相切,记圆心E 的轨迹为G ,直线11:10l x m y --=与G 相交于A ,B 两点,直线22:10l x m y --=与G 相交于C ,D 两点,且121m m =-,M ,N 分别为弦,AB CD 的中点,其中A ,C 均在第一象限,直线AC 与直线BD 的交点为G .(1)求圆心E 的轨迹G 的方程;(2)直线MN 是否恒过定点?若是,求出定点坐标?若不是,请说明理由.【变式10-1】(2024·江西·二模)已知()12,0F -,()22,0F ,M 是圆O :221x y +=上任意一点,1F 关于点M 的对称点为N ,线段1F N 的垂直平分线与直线2F N 相交于点T ,记点T 的轨迹为曲线C .(1)求曲线C 的方程;(2)设(),0E t (0t >)为曲线C 上一点,不与x 轴垂直的直线l 与曲线C 交于G ,H 两点(异于E 点).若直线GE ,HE 的斜率之积为2,求证:直线l 过定点.【变式10-2】在平面直角坐标系xoy 中,已知椭圆C :()222210x y a b a b +=>>,F 是椭圆的右焦点且椭圆C与圆M :()22616x y -+=外切,又与圆N :(223x y +-=外切.(1)求椭圆C 的方程.(2)已知A ,B 是椭圆C 上关于原点对称的两点,A 在x 轴的上方,连接AF ,BF 并分别延长交椭圆C 于D ,E 两点,证明:直线DE 过定点.题型十一:动点在定直线上【典例11-1】已知椭圆()2222:10x y C a b a b +=>>,A ,B 分别为C 的上、下顶点,O 为坐标原点,直线4y kx =+与C 交于不同的两点M ,N .(1)设点P 为线段MN 的中点,证明:直线OP 与直线MN 的斜率之积为定值;(2)若AB 4=,证明:直线BM 与直线AN 的交点G 在定直线上.【典例11-2】已知椭圆2222:1(0)x y C a b a b+=>>经过点31,2H æö-ç÷èø,离心率12e =.(1)求椭圆C 的标准方程;(2)设过点()4,3P 且倾斜角为135o 的直线l 与x 轴,y 轴分别交于点,M N ,点R 为椭圆C 上任意一点,求RMN V 面积的最小值.(3)如图,过点()4,3P 作两条直线,AB CD 分别与椭圆C 相交于点,,,A B C D ,设直线AD 和BC 相交于点Q .证明点Q 在定直线上.【变式11-1】已知A ,B 分别是双曲线2222:1(0,0)x y C a b a b -=>>的左、右顶点,P 是C 上异于A ,B 的一点,直线PA ,PB 的斜率分别为12,k k ,且12||4k k AB ==.(1)求双曲线C 的方程;(2)已知过点(4,0)的直线:4l x my =+,交C 的左,右两支于D ,E 两点(异于A ,B ).(i )求m 的取值范围;(ii )设直线AD 与直线BE 交于点Q ,求证:点Q 在定直线上.【变式11-2】已知椭圆G :()222210+=>>x y a b a b 的右焦点为F ,过点F 作x 轴的垂线交椭圆G 于点3(1,)2P .过点P 作椭圆G 的切线,交x 轴于点Q .(1)求点Q 的坐标;(2)过点Q 的直线(非x 轴)交椭圆G 于A 、B 两点,过点A 作x 轴的垂线与直线BP 交于点D ,求证:线段AD 的中点在定直线上.【变式11-3】(2024·河北·三模)已知椭圆C 的中心在原点O 、对称轴为坐标轴,A æççè、12B ö÷÷ø是椭圆上两点.(1)求椭圆C 的标准方程;(2)椭圆C 的左、右顶点分别为1A 和2A ,M ,N 为椭圆上异于1A 、2A 的两点,直线MN 不过原点且不与坐标轴垂直.点M 关于原点的对称点为S ,若直线1A S 与直线2A N 相交于点T .(i )设直线1MA 的斜率为1k ,直线2MA 的斜率为2k ,求12k k -的最小值;(ii )证明:直线OT 与直线MN 的交点在定直线上.题型十二:圆过定点【典例12-1】已知椭圆2222:1(0)x y C a b a b +=>>A 、B 分点是椭圆C 的左、右顶点,P 是椭圆C 上不同于A 、B 的一点,ABP V 面积的最大值是2.(1)求椭圆C 的标准方程;(2)记直线AP 、BP 的斜率分别为1k 、2k ,且直线AP 、BP 与直线6x =分别交于D 、E 两点.①求D 、E 的纵坐标之积;②试判断以DE 为直径的圆是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.【典例12-2】(2024·西藏拉萨·二模)已知抛物线2:2(0)C x py p =>上的两点,A B 的横坐标分别为4,8,AB -=.(1)求抛物线C 的方程;(2)若过点()0,8Q 的直线l 与抛物线C 交于点,M N ,问:以MN 为直径的圆是否过定点?若过定点,求出这个定点;若不过定点,请说明理由.【变式12-1】已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,离心率为12,点P 是椭圆上异于顶点的任意一点,过点P 作椭圆的切线l ,交y 轴于点A ,直线l ¢过点P 且垂直于l ,交y 轴于点B .(1)求椭圆的方程;(2)试判断以AB 为直径的圆能否过定点?若能,求出定点坐标;若不能,请说明理由.【变式12-2】(2024·山东泰安·模拟预测)已知抛物线2:2(0)E x py p =>,焦点为F ,点(2,1)C 在E 上,直线1l ∶1y kx =+(0)k ¹与E 相交于,A B 两点,过,A B 分别向E 的准线l 作垂线,垂足分别为11,A B .(1)设1111,,FA B FAA FBB V V V 的面积分别为123,,S S S ,求证:21234S S S =×;(2)若直线AC ,BC 分别与l 相交于,M N ,试证明以MN 为直径的圆过定点P ,并求出点P 的坐标.1.(2024·全国·模拟预测)已知复平面上的点Z 对应的复数z 满足2297z z --=,设点Z 的运动轨迹为W .点O 对应的数是0.(1)证明W 是一个双曲线并求其离心率e ;(2)设W 的右焦点为1F ,其长半轴长为L ,点Z 到直线Lx e=的距离为d (点Z 在W 的右支上),证明:1ZF ed =;(3)设W 的两条渐近线分别为12l l ,,过Z 分别作12l l ,的平行线34l l ,分别交21l l ,于点P Q ,,则平行四边形OPZQ 的面积是否是定值?若是,求该定值;若不是,说明理由.2.(2024·湖南常德·三模)已知O 为坐标原点,椭圆C :2221(1)x y a a +=>的上、下顶点为A 、B ,椭圆上的点P 位于第二象限,直线PA 、PB 、PO 的斜率分别为123,,k k k ,且312114k k k =-+.(1)求椭圆C 的标准方程;(2)过原点O 分别作直线PA 、PB 的平行线与椭圆相交,得到四个交点,将这四个交点依次连接构成一个四边形,则此四边形的面积是否为定值?若为定值,请求出该定值;否则,请求出其取值范围.3.已知一张纸上画有半径为4的圆E ,在圆E 内有一个定点F ,且EF =,折叠纸片,使圆上某一点F ¢刚好与F 点重合,这样的每一种折法,都留下一条直线折痕,当F ¢取遍圆上所有点时,所有折痕与EF ¢的交点形成的曲线为C .(1)若曲线C 的焦点在x 轴上,求其标准方程;(2)在(1)的条件下,是否存在圆心在原点的圆,使得该圆的任意一条切线与曲线C 恒有两个交点,A B ,且OA OB ^,(O 为坐标原点),若存在,求出该圆的方程;若不存在,说明理由;(3)在(1)的条件下,P 是曲线C 上异于上顶点1A 、下顶点2A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T ,证明:线段OT 的长为定值,并求出定值.4.(2024·全国·模拟预测)已知椭圆()2222:10x y C a b a b +=>>,短轴长为1F ,2F ,P 是椭圆C 上的一个动点,12PFF V 面积的最大值为2.(1)求椭圆C 的方程;(2)求12PF PF ×uuu r uuu u r的取值范围;(3)过椭圆的左顶点A 作直线l x ^轴,M 为直线l 上的动点,B 为椭圆右顶点,直线BM 交椭圆C 于点Q .试判断数量积AQ OM ×uuu v uuuu v ,OQ OM ×uuu v uuuu v是否为定值,如果为定值,求出定值;如果不是定值,说明理由.5.(2024·重庆沙坪坝·模拟预测)如图, 在平面直角坐标系xOy 中,双曲线()222210,0y x a b a b -=>>的上下焦点分别为()10,F c ,()20,F c -. 已知点(e 和(都在双曲线上, 其中e 为双曲线的离心率.(1)求双曲线的方程;(2)设,A B 是双曲线上位于y 轴右方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i) 若122AF BF -=,求直线1AF 的斜率;(ii) 求证:12PF PF +是定值.6.已知椭圆22142x y +=,设动点P 满足OP OM ON =+uuu r uuuu r uuu r ,其中M ,N 是椭圆上的点,直线OM 与ON 的斜率之积为12-.问:是否存在两个点1F ,2F ,使得21PF PF +为定值?若存在,求1F ,2F 的坐标;若不存在,请说明理由.7.(2024·黑龙江齐齐哈尔·三模)已知双曲线2222:1(0,0)x y C a b a b -=>>的实轴长为2,设F 为C 的右焦点,T 为C 的左顶点,过F 的直线交C 于A ,B 两点,当直线AB 斜率不存在时,TAB △的面积为9.(1)求C 的方程;(2)当直线AB 斜率存在且不为0时,连接TA ,TB 分别交直线12x =于P ,Q 两点,设M 为线段PQ 的中点,记直线AB ,FM 的斜率分别为12,k k ,证明:12k k 为定值.8.(2024·辽宁葫芦岛·一模)已知抛物线2:2(0)C y px p =>的焦点为F ,(,2)M m 是抛物线C 上一点,且||2MF =.(1)求抛物线C 的方程.(2)若()()004,0P y y >是抛物线C 上一点,过点(1,4)Q -的直线与拋物线C 交于,A B 两点(均与点P 不重合),设直线,PA PB 的斜率分别为12,k k ,试问12k k 是否为定值?若是,求出该定值;若不是,请说明理由.9.(2024·河南新乡·三模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别是12,A A ,椭圆C 的焦距是2,P (异于12,A A )是椭圆C 上的动点,直线1A P 与2A P 的斜率之积为34-.(1)求椭圆C 的标准方程;(2)12,F F 分别是椭圆C 的左、右焦点,Q 是12PFF V 内切圆的圆心,试问平面上是否存在定点,M N ,使得QM QN +为定值?若存在,求出该定值;若不存在,请说明理由.10.(2024·江苏盐城·一模)已知抛物线O :2x y =,圆C :()2221x y +-=,O 为坐标原点.(1)若直线l :()0y kx m k =+¹分别与抛物线O 相交于点A ,B (A 在B 的左侧)、与圆C 相交于点S ,T (S 在T 的左侧),且OAT !与OBS V 的面积相等,求出m 的取值范围;(2)已知1A ,2A ,3A 是抛物线O 上的三个点,且任意两点连线斜率都存在.其中12A A ,13A A 均与圆C 相切,请判断此时圆心C 到直线23A A 的距离是否为定值,如果是定值,请求出定值;若不是定值,请说明理由.11.设椭圆()2222:10x y C a b a b +=>>,1F ,2F 分别是C 的左、右焦点,C 上的点到1F 的最小距离为1,P是C 上一点,且12PFF V 的周长为6.(1)求C 的方程;(2)过点2F 且斜率为k 的直线l 与C 交于M ,N 两点,过原点且与l 平行的直线与C 交于A ,B 两点,求证:2ABMN为定值.12.(2024·内蒙古赤峰·三模)已知点P 为圆()22:24C x y -+=上任意一点,()2,0A -,线段PA 的垂直平分线交直线PC 于点M ,设点M 的轨迹为曲线H .(1)求曲线H 的方程;(2)若过点M 的直线l 与曲线H 的两条渐近线交于S ,T 两点,且M 为线段ST 的中点.(i )证明:直线l 与曲线H 有且仅有一个交点;(ii ) 求证:OS OT ×是定值.13.(2024·湖北·模拟预测)已知F 为抛物线G :()20y mx m =>的焦点,A ,B ,C 是G 上三个不同的点,直线AB ,BC ,AC 分别与x 轴交于F ,D ,E ,其中AB 的最小值为4.(1)求G 的标准方程;(2)ABC V 的重心G 位于x 轴上,且D ,G ,E 的横坐标分别为d ,g ,e ,32g d e --是否为定值?若是,请求出该定值;若不是,请说明理由.14.(2024·湖南岳阳·三模)已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=;(2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹G 交于不同于F 的三点C 、D 、G ,求证:CDG V 的重心的横坐标为定值.。
圆锥曲线中的定值问题-(解析版)
专题3 圆锥曲线中的定值问题在解析几何中,有些几何量,如斜率、距离、面积、比值、角度等基本量与参变量无关,这类问题统称为定值问题.对学生逻辑思维能力计算能力等要求很高,这些问题重点考查学生方程思想、函数思想、转化与化归思想的应用.探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关; ② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.解答的关键是认真审题,理清问题与题设的关系,建立合理的方程或函数,利用等量关系统一变量,最后消元得出定值。
题型1、与面积有关的定值问题 经典例题:1.(2021·四川成都市·高三三模(理))已知椭圆()2222:10x y C a b a b+=>>的长轴长为,其离心率与双曲线221x y -=的离心率互为倒数.(1)求椭圆C 的方程;(2)将椭圆C 上每一点的横坐标扩大为原来倍,纵坐标不变,得到曲线1C ,若直线:l y kx t =+与曲线1C 交于P 、Q 两个不同的点,O 为坐标原点,M 是曲线1C 上的一点,且四边形OPMQ 是平行四边形,求四边形OPMQ 的面积.【答案】(1)2212x y +=;(2 【分析】(1)根据已知条件求出a 、b 、c 的值,由此可得出椭圆C 的方程;(2)求出曲线1C 的方程,设()11,P x y 、()22,Q x y 、()00,M x y ,将直线l 的方程与曲线1C 的方程联立,列出韦达定理,求出点M 的坐标,代入曲线1C 的方程,可得出22414t k =+,求得PQ 以及点O 到直线PQ 的距离,利用三角形的面积公式可求得结果.【详解】(1)由已知,2a =,所以a =221x y -=,可知,椭圆C 的离心率为c a =即a =,故1c =,进而1b ==,所以椭圆C 的方程为2212x y +=;(2)将椭圆C倍,纵坐标不变,得到曲线1C 的方程为2214x y +=,设()11,P x y 、()22,Q x y 、()00,M x y ,由()2222214844044y kx tk x ktx t x y =+⎧⇒+++-=⎨+=⎩, 由韦达定理可得122814kt x x k -+=+,21224414t x x k-=+, 且()()()2228414440∆=-+->kt kt,即2214<+t k ,由四边形OPMQ 是平行四边形,所以OM OP OQ =+, 则0122814kt x x x k -=+=+,()0121222214t y y y k x x t k =+=++=+, 因为点M 在椭圆上,所以222282141414-⎛⎫⎪+⎛⎫⎝⎭+= ⎪+⎝⎭kt t k k ,整理可得22414t k =+, 所以21222441114-==-+t x x k t , 则PQ ===,O 到直线l 的距离d =OPMQ 的面积为PQ d ⋅=.【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.(2021·安徽高三其他模拟(理))已知椭圆()2222:10x y C a b a b +=>>过点P ⎛ ⎝⎭. (1)求椭圆C 的标准方程;(2)设点A 、B 分别是椭圆C 的左顶点和上顶点,M 、N 为椭圆C 上异于A 、B 的两点,满足//AM BN ,求证:OMN 面积为定值.【答案】(1)2214x y +=;(2)证明见解析.【分析】(1)根据已知条件可得出关于a 、b 、c 的方程组,结合这三个量的值,由此可得出椭圆C 的标准方程;(2)设直线AM 的方程为()2y k x =+,设直线BN 的方程为1y kx =+,将这两条直线分别与椭圆C 的方程联立,求出点M 、N 的坐标,求出OM 以及点N 到直线OM 的距离,利用三角形的面积公式可求得结果.【详解】(1)由已知条件可得2222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪⎪=+⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,即椭圆C 的标准方程为2214x y +=; (2)设()11,M x y 、()22,N x y ,由题意直线AM 、BN 的斜率存在,设直线AM 的方程为()2y k x =+①,设直线BN 的方程为1y kx =+②,由(1)椭圆22:14x C y +=③,联立①③得()222241161640k x k x k +++-=,解得2122841k x k -=+,即222284,4141k k M k k ⎛⎫- ⎪++⎝⎭, 联立②③,得()224180k x kx ++=,所以,22841kx k =-+,即222148,4141k k N k k ⎛⎫- ⎪++⎝⎭-,易知OM =直线OM 的方程为110y x x y -=,点N 到直线OM的距离为d =所以211222222211841222414121411844OMNx y x y k k S OM d k k k k k k --=⋅==⋅-⋅=++++--△, 故OMN 面积为定值1.【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.3.(2021年北京高考模拟)已知椭圆C :22221(0)x y a b a b +=>>,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:四边形ABNM 的面积为定值.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab ac 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .因为AN ⊥BM ,所以12ABNM S AN BM =⋅⋅ 1°当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M.直线PB 的方程为1100+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以0000211212212ABNM x y S AN BM y x =⋅⋅=⋅+⋅+-- 2200000000000000000044484448811222222x y x y x y x y x y x y x y x y x y ++--+--+==--+--+2=. 2°当00=x 时,10-=y ,,2,2==AN BM 所以四边形ABNM 的面积为定值。
圆锥曲线中的定点定值问题的四种模型
圆锥曲线中的定点定值问题的四种模型Last revision on 21 December 2020圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线如何转化题目条件圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7km k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。
圆锥曲线中定值问题
圆锥曲线中定值问题在圆锥曲线中,有一类曲线系方程,对其参数取不同值时,曲线本身的性质不变;或形态发生某些变化,但其某些固有的共同性质始终保持着,这就是我们所指的定值问题.圆锥曲线中的几何量,有些与参数无关,这就构成了定值问题.它涵盖两类问题,一是动曲线经过定点问题;二是动曲线的某些几何量的斜率、长度、角度、距离、面积等为常数问题. 在几何问题中,有些几何量与参变数无关,即定值问题,这类问题求解策略是通过应用赋值法找到定值,然后将问题转化为代数式的推导、论证定值符合一般情形.1.若探究直线或曲线过定点,则直线或曲线的表示一定含有参变数,即直线系或曲线系,可将其方程变式为0f x y g x y λλ+=(,)(,)(其中为参变数),0.0f x y g x y =⎧⎨=⎩(,)由确定定点坐标(,)例1.(2012湖南理21)在直角坐标系xOy 中,曲线1C 上的点均在圆2C :22(5)9x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(1)求曲线1C 的方程;(2)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值. 1.(1)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为`220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离, 因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线, 故其方程为220y x =.(2)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+即040kx y y k -++=.于是3.=整理得2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y yk k +=-=- ② 由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点,,,A B C D 的纵坐标分别为1234,,,y y y y ,则12,y y 是方程③的两个实根,所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=2201212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值6400.【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到,,,A B C D 四点纵坐标之积为定值,体现“设而不求”思想.【变式训练1】(2012辽宁理20)如图,椭圆0C :22221(0x y a b a b +=>>,a ,b 为常数),动圆22211:C x y t +=,1b t a <<.点12,A A 分别为0C 的左,右顶点,1C 与0C 相交于A ,B ,C ,D 四点.(Ⅰ)求直线1AA 与直线2A B 交点M 的轨迹方程;(Ⅱ)设动圆22222:C x y t +=与0C 相交于,,,A B C D ''''四点,其中2b t a <<, 12t t ≠.若矩形ABCD 与矩形,,,A B C D ''''的面积相等,证明:2212t t +为定值.【点评】本题主要考查圆的性质、椭圆的定义、标准方程及其几何性质、直线方程求解、直线与椭圆的关系和交轨法在求解轨迹方程组的运用。
圆锥曲线中的定值问题(解析版)
圆锥曲线中的定值问题一、考情分析求定值是圆锥曲线中颇有难度的一类问题,也是备受高考关注的一类问题,由于它在解题之前不知道定值的结果,因而更增添了题目的神秘色彩.解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索.二、解题秘籍(一)定值问题解题思路与策略1.定值问题肯定含有参数, 若要证明一个式子是定值, 则意味着参数是不影响结果的, 也就是说参数在解式子的过程中都可以消掉, 因此解决定值问题的关键是设参数:(1)在解析几何中参数可能是点(注意如果设点是两个参数时, 注意横坐标要满足圆锥曲线方程)(2)可能是角(这里的角常常是将圆锥曲线上的点设为三角函数角的形式),(3)也可能是斜率(这个是最常用的, 但是既然设斜率了, 就要考虑斜率是否存在的情况)常用的参数就是以上三种, 但是注意我们设参数时要遵循一个原则:参数越少越好.因此定值问题的解题思路是:(1)设参数;(2)用参数来表示要求定值的式子;(3)消参数.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【例1】(2023届湖湘名校教育联合体高三上学期9月大联考)已知椭圆C:x22+y2=1,F1为右焦点,直线l:y=t(x-1)与椭圆C相交于A,B两点,取A点关于x轴的对称点S,设线段AS与线段BS的中垂线交于点Q.(1)当t=2时,求QF1;(2)当t≠0时,求QF1|AB|是否为定值?若为定值,则求出定值;若不为定值,则说明理由.【解析】(1)设A x1,y1,B x2,y2,线段AB的中点M坐标为x M,y M,联立得x2+2y2-2=0,y=2(x-1),消去y可得:9x2-16x+6=0,所以x1+x2=169, x1x2=69,所以x M=89,代入直线AB方程,求得y M=-29,因为Q为△ABS三条中垂线的交点,所以MQ⊥AB,有k MQ k AB=-1,直线MQ方程为y+29=-12×x-89.令y=0,x Q=49,所以Q49,0.由椭圆C :x 22+y 2=1可得右焦点F 11,0 ,故QF 1 =59.(2)设A x 1,y 1 ,B x 2,y 2 ,中点M 坐标为x M ,y M .x 212+y 21=1,x 222+y 22=1, 相减得y 2-y 1x 2-x 1=-12×x 1+x 2y 1+y 2=-x M 2y M ,k AB k OM =-12.又Q 为△ABS 的外心,故MQ ⊥AB ,k MQ k AB =-1,所以k MQ =2k OM =2y M x M ,直线MQ 方程为y -y M =2y Mx Mx -x M ,令y =0,x Q =x M 2=x 1+x 24,所以Q x 1+x 24,0 而F 11,0 ,所以QF 1 =1-14x 1+x 2 ,AF 1 =x 1-1 2+y 21=x 1-1 2+1-x 212=x 212-2x 1+2=2-12x 1,同理BF 1 =2-12x 2,|AB |=AF 1 +BF 1 =22-12x 1+x 2 ,QF 1 |AB |=1-14x 1+x 2 22-12x 1+x 2 =24,所以当t 变化时,QF 1 |AB |为定值24.【例2】(2023届河南省濮阳市高三上学期测试)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,圆O :x 2+y 2=a 2,过F 且垂直于x 轴的直线被椭圆C 和圆O 所截得的弦长分别为433和2 2.(1)求C 的方程;(2)过圆O 上一点P (不在坐标轴上)作C 的两条切线l 1,l 2,记l 1,l 2的斜率分别为k 1,k 2,直线OP 的斜率为k 3,证明:k 1+k 2 k 3为定值.【解析】(1)设椭圆C 的半焦距为c c >0 ,过F 且垂直于x 轴的直线被椭圆C 所截得的弦长分别为433,则2b 2a =433;过F 且垂直于x 轴的直线被圆O 所截得的弦长分别为22,则2a 2-c 2=22,又a 2-b 2=c 2,解得a =3b =2 ,所以C 的方程为x 23+y 22=1.(2)设P x 0,y 0 x 0y 0≠0 ,则x 20+y 20=3.①设过点P 与椭圆C 相切的直线方程为y -y 0=k x -x 0 ,联立2x 2+3y 2=6y -y 0=k x -x 0 得3k 2+2 x 2+6k y 0-kx 0 x +3y 0-kx 0 2-2 =0,则Δ=6k y 0-kx 0 2-4×3k 2+2 ×3y 0-kx 0 2-2 =0,整理得x 20-3 k 2-2x 0y 0k +y 20-2=0.②由题意知k 1,k 2为方程②的两根,由根与系数的关系及①可得k 1+k 2=2x 0y 0x 20-3=2x 0y 0-y 20=-2x 0y 0.又因为k 3=k OP =y 0x 0,所以k 1+k 2 k 3=-2x 0y 0⋅y 0x 0=-2,所以k 1+k 2 k 3为定值-2.(二)与线段长度有关的定值问题与线段长度有关的定值问题通常是先引入参数,利用距离公式或弦长公式得到长度解析式,再对解析式化简,得出结果为定值【例3】(2023届辽宁省朝阳市高三上学期9月月考)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,点P 3,-1 在双曲线C 上.(1)求双曲线C 的方程;(2)点A ,B 在双曲线C 上,直线PA ,PB 与y 轴分别相交于M ,N 两点,点Q 在直线AB 上,若坐标原点O 为线段MN 的中点,PQ ⊥AB ,证明:存在定点R ,使得QR 为定值.【解析】(1)由题意,双曲线C :x 2a 2-y 2b2=1的离心率为2,且P 3,-1 在双曲线C 上,可得9a 2-1b 2=1e =c a =2c 2=a 2+b 2,解得a 2=8,b 2=8,所以双曲线的方程为x 28-y 28=1.(2)由题意知,直线的AB 的斜率存在,设直线AB 的方程为y =kx +m ,联立方程组y =kx +mx 2-y 2=8,整理得(1-k 2)x 2-2km x -m 2-8=0,则Δ=(-2km )2-4(1-k 2)(-m 2-8)=4(m 2-8k 2+8)>0且1-k 2≠0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2km 1-k 2,x 1x 2=-m 2-81-k 2,直线PA 的方程为y +1=y 1+1x 1-3(x -3),令x =0,可得y =-1-3y 1+3x 1-3,即M 0,-1-3y 1+3x 1-3 ,同理可得N 0,-1-3y 2+3x 2-3,因为O 为MN 的中点,所以-1-3y 1+3x 1-3 +-1-3y 2+3x 2-3=0,即-1-3(kx 1+m )+3x 1-3-1+3(kx 2+m )+3x 2-3)=0,可得(6k +2)x 1x 2-(3+9k -3m )(x 1+x 2)-18m =0,即(m +8)(m +3k +1)=0,所以m =-8或m +3k +1=0,若m +3k +1=0,则直线方程为y =kx -3k -1,即y +1=k (x -3),此时直线AB 过点P 3,-1 ,不合题意;若m =-8时,则直线方程为y =kx -8,恒过定点D (0,-8),所以PD =32+(-1-8)2=58为定值,又由△PQD 为直角三角形,且PD 为斜边,所以当R 为PD 的中点32,-92时,RQ =PD =582.(三)与面积有关的定值问题与面积有关的定值问题通常是利用面积公式把面积表示成某些变量的表达式,再利用题中条件化简.【例4】(2023届河南省部分学校高三上学期9月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F 1-1,0 ,上、下顶点分别为A ,B ,∠AF 1B =90°.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM =OP +OQ ,证明:四边形OPMQ 的面积为定值.【解析】(1)依题意c =1,又∠AF 1B =90°,所以b =c =1,所以a =b 2+c 2=2,所以椭圆方程为x 22+y 2=1.(2)证明:设M x ,y ,P x 1,y 1 ,Q x 2,y 2 ,因为OM =OP +OQ,所以四边形OPMQ 为平行四边形,且x =x 1+x 2y =y 1+y 2 ,所以x 1+x 2 22+y 1+y 2 2=1,即x 122+y 12+x 222+y 22+x 1x 2+2y 1y 2=1,又x 122+y 12=1,x 222+y 22=1,所以x 1x 2+2y 1y 2=-1,若直线PQ 的斜率不存在,M 与左顶点或右顶点重合,则x P =x Q =22,所以y P =y Q =32,所以S OPMQ =12×2x P ×2y P =62,若直线PQ 的斜率存在,设直线PQ 的方程为y =kx +t ,代入椭圆方程整理得1+2k 2 x 2+4ktx +2t 2-2=0,所以Δ=82k 2+1-t 2 >0,x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2,所以y 1y 2=kx 1+t kx 2+t =k 2x 1x 2+kt x 1+x 2 +t 2=k 2⋅2t 2-21+2k 2+kt ⋅-4kt 1+2k2 +t 2所以2k 2+1 ⋅2t 2-21+2k 2+2kt ⋅-4kt 1+2k2 +2t 2=-1,整理得4t 2=1+2k 2,又PQ =k 2+1x 1-x 2 =k 2+1⋅81+2k 2-t 21+2k 2,又原点O 到PQ 的距离d =tk 2+1,所以S △POQ =12PQ d =2⋅1+2k 2-t 2⋅t 1+2k 2,将4t 2=1+2k 2代入得S △POQ =2⋅3t 2⋅t 4t2=64,所以S OPMQ =2S △POQ =62,综上可得,四边形OPMQ 的面积为定值62.(四)与斜率有关的定值问题与斜率有关的定值问题常见类型是斜率之积商或斜率之和差为定值,求解时一般先利用斜率公式写出表达式,再利用题中条件或韦达定理化简.【例5】(2023届江苏省南通市高三上学期第一次质量监测)已知A,A 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点,B ,F 分别是C 的上顶点和左焦点.点P 在C 上,满足PF ⊥A A ,AB ∥OP ,FA =2- 2.(1)求C 的方程;(2)过点F 作直线l (与x 轴不重合)交C 于M ,N 两点,设直线AM ,AN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)因为PF ⊥A A ,故可设P -c ,y 0 ,因为AB ∥OP ,故k AB ∥k OP ,即-b a =-y 0c ,解得y 0=bca.又P -c ,bc a 在椭圆C 上,故c 2a 2+b 2c 2a 2b2=1,解得a 2=2c 2=2a 2-2b 2,故a =2b =2c .又FA =2-2,故FA =a -c =2-1 c =2-2,故c =2,a =2,b =2.故C 的方程为x 24+y 22=1.(2)因为椭圆方程为x 24+y 22=1,故F -2,0 ,A 2,0 ,当l 斜率为0时A ,M 或A ,N 重合,不满足题意,故可设l :x =ty -2.联立x 24+y 22=1x =ty -2可得t 2+2 y 2-22ty -2=0,设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=22t t 2+2,y 1y 2=-2t 2+2.故k 1k 2=y 1x 1-2⋅y 2x 2-2=y 1y 2ty 1-2-2 ty 2-2-2=y 1y 2t 2y 1y 2-2+2 t y 1+y 2 +2+2 2=1t 2-2+2 t y 1+y 2y 1y 2 +2+2 2y 1y 2=1t 2+22+2 t 2-2+2 2×t 2+2 2=1-23+22 =2-32故定值为2-32(五)与向量有关的定值问题与向量有关的定值问题常见类型一是求数量积有关的定值问题,二是根据向量共线,写出向量系数的表达式,再通过计算得出与向量系数有关的定值结论.【例6】(2023届湖南省部分校高三上学期9月月考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为62,点A 6,4 在C 上.(1)求双曲线C 的方程.(2)设过点B 1,0 的直线l 与双曲线C 交于D ,E 两点,问在x 轴上是否存在定点P ,使得PD ⋅PE为常数?若存在,求出点P 的坐标以及该常数的值;若不存在,请说明理由.【解析】(1)因为双曲线C 的离心率为62,所以62 2=1+b 2a2,化简得a 2=2b 2.将点A 6,4 的坐标代入x 22b 2-y 2b 2=1,可得18b 2-16b2=1,解得b 2=2,所以C 的方程为x 24-y 22=1.(2)设D x 1,y 1 ,E x 2,y 2 ,直线l 的方程为y =k (x -1),联立方程组y =k x -1 ,x 24-y 22=1,消去y 得(1-2k 2)x 2+4k 2x -2k 2-4=0,由题可知1-2k 2≠0且Δ>0,即k 2<23且k 2≠12,所以x 1+x 2=-4k 21-2k 2,x 1x 2=-2k 2+41-2k 2.设存在符合条件的定点P t ,0 ,则PD =x 1-t ,y 1 ,PE=x 2-t ,y 2 ,所以PD ⋅PE=x 2-t x 1-t +y 1y 2=k 2+1 x 1x 2-t +k 2 x 1+x 2 +t 2+k 2.所以PD ⋅PE =k 2+1 -2k 2-4 +4k 2t +k 2 +t 2+k 2 1-2k 2 1-2k 2,化简得PD ⋅PE =k 2-2t 2+4t -5 +t 2-4-2k 2+1.因为PD ⋅PE 为常数,所以-2t 2+4t -5-2=t 2-41,解得t =134.此时该常数的值为t 2-4=10516,所以,在x 轴上存在点P 134,0 ,使得PD ⋅PE 为常数,该常数为10516.【例7】(2022届上海市金山区高三上学期一模)已知P 0,1 为椭圆C :x 24+y 23=1内一定点,Q 为直线l :y =3上一动点,直线PQ 与椭圆C 交于A 、B 两点(点B 位于P 、Q 两点之间),O 为坐标原点.(1)当直线PQ 的倾斜角为π4时,求直线OQ 的斜率;(2)当△AOB 的面积为32时,求点Q 的横坐标;(3)设AP =λPB ,AB=μBQ ,试问λ-μ是否为定值?若是,请求出该定值;若不是,请说明理由.【解析】(1)因为直线PQ 的倾斜角为π4,且P 0,1 ,所以直线PQ 的方程为:y =x +1,由y =x +1y =3,得Q 2,3 ,所以直线OQ 的斜率是k OQ =32;(2)易知直线PQ 的斜率存在,设直线PQ 的方程为y =kx +1,由x 24+y 23=1y =kx +1,得3+4k 2 x 2+8kx -8=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-8k 3+4k 2,x 1⋅x 2=-83+4k 2,所以x1-x 2 =x 1+x 2 2-4x 1⋅x 2=96+192k 23+4k 2,所以S △AOB =12OP ⋅x 1-x 2 =26+12k 23+4k 2=32,解得k 2=14,即k =±12,所以直线PQ 的方程为y =12x +1或y =-12x +1,由y =12x +1y =3,得Q 4,3 ;由y =-12x +1y =3,得Q -4,3 ;(3)易知直线PQ 的斜率存在,设直线PQ 的方程为x =m y -1 ,由x 24+y 23=1x =m y -1,得4+3m 2 y -1 2+8y -1 -8=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1-1+y 2-1=-84+3m 2,y 1-1 ⋅y 2-1 =-84+3m 2,所以y 1-1+y 2-1=y 1-1 ⋅y 2-1 ,因为AP =λPB ,AB=μBQ ,所以λ=1-y 1y 2-1,μ=y 2-y 13-y 2=y 2-3+3-y 13-y 2=-1+3-y 13-y 2,所以λ-μ=1-y 1y 2-1+y 1-33-y 2+1,=21-y 1 +1-y 1 +21-y 1 1-y 1 y 2-1 3-y 2 +1=1.(六)与代数式有关的定值问题与代数式有关的定值问题.一般是依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值【例8】在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b2=1(a >b >0)的右准线为直线l ,动直线y =kx +m (k <0,m >0)交椭圆于A ,B 两点,线段AB 的中点为M ,射线OM 分别交椭圆及直线l 于点P 、Q ,如图,当A 、B 两点分别是椭圆E 的右顶点及上顶点时,点Q 的纵坐标为1e(其中e 为椭圆的离心率),且OQ =5OM .(1)求椭圆E 的标准方程;(2)如果OP 是OM 、OQ 的等比中项,那么mk是否为常数?若是,求出该常数;若不是,请说明理由.【解析】(1)椭圆E :x 2a 2+y 2b2=1的右准线为直线l ,动直线y =kx +m 交椭圆于A ,B 两点,当A ,B 零点分别是椭圆E 的有顶点和上顶点时,则A (a ,0),B (0,,b ),M a 2,b2,因为线段AB 的中点为M ,射线OM 分别角椭圆及直线l 与P ,Q 两点,所以Q a 2c ,1e,由O ,M ,Q 三点共线,可得b a =1ea2c,解得b =1,因为OQ =5OM ,所以a 2c a 2=5,可得2a =5c ,又由a 2=b 2+c 2b =12a =5c,解得a 2=5,c 2=4,所以椭圆E 的标准方程为x 25+y 2=1.(2)解:把y =kx +m 代入椭圆E :x 25+y 2=1,可得(5k 2+1)x 2+10mkx +5m 2-5=0,可得x 1+x 2=10km 5k 2+1,x 1x 2=5m 2-55k 2+1,则y 1+y =k (x 1+x 1)+2m =2m 5k 2+1,所以x M =5km 5k 2+1,y M =m5k 2+1,即M 5km 5k 2+1,m 5k 2+1 ,所以直线OM 的方程为y =-15k x ,由y =-15k x x 25+y 2=1,可得x 2P =25k 25k 2+1,因为OP 是OM ,OQ 的等比中项,所以OP 2=OM ⋅OQ ,可得x 2P =x M ⋅x Q =25mk 2(5k 2+1),又由25k 25k 2+1=25mk 2(5k 2+1),解得m =-2k ,所以m k =-2,此时满足Δ>0,所以mk为常数-2.(六)与定值有关的结论1.若点A ,B 是椭圆C :x 2a 2+y 2b2=1a >b >0 上关于原点对称的两点,点P 是椭圆C 上与A ,B 不重合的点,则k PA ⋅k PB =-b 2a2;2.若点A ,B 是双曲线C :x 2a 2-y 2b 2=1a >0,b >0 上关于原点对称的两点,点P 是双曲线C 上与A ,B 不重合的点,则k PA ⋅k PB =b2a 2.3.设点P m ,n 是椭圆C :x 2a 2+y 2b2=1a >b >0 上一定点,点A ,B 是椭圆C 上不同于P 的两点,若k PA +k PB =0,则直线AB 斜率为定值bm 2an 2n ≠0 ;4.设点P m ,n 是双曲线C :x 2a 2-y 2b2=1a >0,b >0 一定点,点A ,B 是双曲线C 上不同于P 的两点,若k PA +k PB =0,直线AB 斜率为定值-bm 2an 2n ≠0 ;5.设点P m ,n 是抛物线C :y 2=2px p >0 一定点,点A ,B 是抛物线C 上不同于P 的两点,若k PA +k PB=0,直线AB 斜率为定值-pn n ≠0 .6.设A ,B ,C 是椭圆x 2a 2+y 2b2=1a >b >0 上不同3点,B ,C 关于x 轴对称,直线AC ,BC 与x 轴分别交于点M ,N ,则OM ON =a 2.7.点A ,B 是椭圆C :x 2a 2+y 2b 2=1a >b >0 上动点,O 为坐标原点,若OA ⊥OB ,则1OA 2+1OB2=1a 2+1b 2(即点O 到直线AB 为定值)8.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|PA 1|⋅|PA 2|=b 2.9.过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 作直线交该椭圆右支于M ,N 两点,弦MN 的垂直平分线交x轴于P ,则|PF ||MN |=e2.10.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-bax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.【例9】(2022届上海市黄浦区高三一模)设常数m >0且m ≠1,椭圆Γ:x 2m2+y 2=1,点P 是Γ上的动点.(1)若点P 的坐标为2,0 ,求Γ的焦点坐标;(2)设m =3,若定点A 的坐标为2,0 ,求PA 的最大值与最小值;(3)设m =12,若Γ上的另一动点Q 满足OP ⊥OQ (O 为坐标原点),求证:O 到直线PQ 的距离是定值.【解析】(1)∵椭圆Γ:x 2m2+y 2=1,点P 的坐标为2,0 ,∴m =2,c =3,∴Γ的焦点坐标为-3,0 ,3,0 ;(2)设P x ,y ,又A 2,0 ,由题知x 29+y 2=1,即y 2=1-x 29,∴PA 2=x -2 2+y 2=x -2 2+1-x 29=8x 29-4x +5=89x -94 2+12,又-3≤x ≤3,∴当x =-3时,PA 2取得最大值为25;当x =94时,PA 2取得最小值为12;∴PA 的最大值为5,最小值为22.(3)当m =12时,椭圆Γ:4x 2+y 2=1,设P x 1,y 1 ,Q x 2,y 2 ,当直线PQ 斜率存在时设其方程为y =kx +t ,则由y =kx +t 4x 2+y 2=1,得4+k 2 x 2+2ktx +t 2-1=0,∴x 1+x 2=-2kt 4+k 2,x 1x 2=t 2-14+k2,Δ=2kt 2-44+k 2 t 2-1 >0,由OP ⊥OQ 可知OP ⋅OQ=0,即x 1x 2+y 1y 2=0,∴x 1x 2+kx 1+t kx 2+t =0,即1+k 2 x 1x 2+kt x 1+x 2 +t 2=0,∴1+k 2 ⋅t 2-14+k 2+kt ⋅-2kt 4+k2+t 2=0,可得1+k 2=5t 2,满足Δ>0,∴O 到直线PQ 的距离为d =t 1+k2=55为定值;当直线PQ 斜率不存在时,OP ⊥OQ ,可得直线方程为x =±55,O 到直线PQ 的距离为55.综上,O 到直线PQ 的距离是定值.三、跟踪检测1.(2023届江苏省南通市海安市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率为32,短轴长为2.(1)求E 的方程;(2)过点M -4,0 且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段BC 上,且MBMC=NBNC,P 为线段BC 的中点,记直线OP ,ON 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)由椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率为32,短轴长为2,可知c a =32,2b =2 ,则1-b 2a2=34,∴a 2=4 ,故E 的方程为x 24+y 2=1;(2)证明:由题意可知直线l 的斜率一定存在,故设直线l 的方程为y =k (x +4),设B (x 1,y 1),C (x 2,y 2),N (x 3,y 3),P (x 0,y 0),联立x 24+y 2=1y =k (x +4),可得(4k 2+1)x 2+32k 2x +64k 2-4=0,Δ=16(1-12k 2)>0,∴0<k 2<112,则x 1+x 2=-32k 24k 2+1,x 1x 2=64k 2-44k 2+1,所以x 0=-16k 24k 2+1,y 0=k (x 0+4)=4k 4k 2+1,∴P -16k 24k 2+1,4k4k 2+1 ,又MB MC =NB NC,所以x 1+4x 2+4=x 3-x 1x 2-x 3,解得x 3=2x 1x 2+4(x 1+x 2)x 1+x 2+8=2×64k 2-44k 2+1+4×-3k 24k 2+1-32k 24k 2+1+8=-1,y 3=3k ,从而N (-1,3k ) ,故k 1⋅k 2=y 0x 0⋅y 3x 3=-14k×(-3k )=34,即k 1k 2为定值.2.(2023届湖北省“宜荆荆恩”高三上学期考试)已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ⋅DF=0,DG ⊥EF 于G ,证明:存在定点H ,使|GH |为定值.【解析】(1)因为双曲线C 与已知双曲线有相同的渐近线,设双曲线C 的标准方程为x 2-4y 2=λ代入点A 坐标,解得λ=4所以双曲线C 的标准方程为x 24-y 2=1(2)(i )当直线EF 斜率存在时,设EF :y =kx +m ,设E x 1,y 1 F x 2,y 2 ,联立y =kx +m 与双曲线x 24-y 2=1,化简得4k 2-1 x 2+8km x +4m 2+1 =0,Δ=(8km )2-44m 2+4 4k 2-1 >0,即4k 2-m 2-1<0,则有x 1+x 2=-8km4k 2-1x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,因为DE ⋅DF=x 1-2 x 2-2 +y 1y 2=0,所以k 2+1 ⋅x 1x 2+km -2 ⋅x 1+x 2 +m 2+4=0,所以k 2+1 ⋅4m 2+44k 2-1+km -2 ⋅-8km 4k 2-1+m 2+4=0,化简,得3m 2+16km +20k 2=0,即3m +10k m +2k =0,所以m 1=-2k ,m 2=-103k ,且均满足4k 2-m 2-1<0,当m 1=-2k 时,直线l 的方程为y =k x -2 ,直线过定点2,0 ,与已知矛盾,当m 2=-103k 时,直线l 的方程为y =k x -103 ,过定点103,0 (ii )当直线EF 斜率不存在时,由对称性不妨设直线DE :y =x -2,与双曲线C 方程联立解得x E =x F =103,此时EF 也过点M 103,0 ,综上,直线EF 过定点M 103,0.由于DG ⊥EF ,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0 ,使GH 为定值23.3.(2023届江苏省南京市高三上学期9月学情调研)已知抛物线C :y 2=2px p >0 的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点.(1)求p 的值;(2)是否存在定点T ,使得TA ⋅TB为常数?若存在,求出点T 的坐标及该常数;若不存在,说明理由.【解析】(1)因为F p 2,0 ,P 0,2 ,且点A 恰好为线段PF 中点,所以A p4,1 ,又因为A 在抛物线上,所以12=2p ⋅p4,即p 2=2,解得P =2(2)设T m ,n ,可知直线l 斜率存在;设l :y =kx +2,A x 1,y 1 ,B x 2,y 2 联立方程得:y 2=22xy =kx +2 ,所以k 2y 2-22y +42=0,所以y 1+y 2=22k ,y 1y 2=42k,又:TA ⋅TB =x 1-m x 2-m )+(y 1-n y 2-n=24y 21-m 24y 22-m +y 1-n y 2-n=18y 21y 22-24m y 21+y 22 +m 2-n y 1+y 2 +n 2=4k 2-24m 8k2-82k +m 2+42k -22n k +n 2=4-22m k2+4m +42-22n k +m 2+n 2,令4m +42-22n =04-22m =0,解之得:m =2n =4 ,即T 2,4 ,此时TA ⋅TB =m 2+n 2=184.(2023届重庆市2023届高三上学期质量检测)已知抛物线C :x 2=2py p >0 的焦点为F ,斜率不为0的直线l 与抛物线C 相切,切点为A ,当l 的斜率为2时,AF =10.(1)求p 的值;(2)平行于l 的直线交抛物线C 于B ,D 两点,且∠BAD =90°,点F 到直线BD 与到直线l 的距离之比是否为定值?若是,求出此定值;否则,请说明理由.【解析】(1)由x 2=2py ,得y =x 22p,则y =xp ,令xp=2,则x =2p ,即点A 的横坐标为2p ,所以其纵坐标也为2p ,故AF =2p +p2=10,所以p =4;(2)由(1)得x 2=8y ,设直线BD 的方程为y =kx +m k ≠0 ,B x 1,x 218 ,D x 2,x 228 ,A x 0,x 208,由∠BAD =90°得x 218-x 208x 1-x 0·x 228-x 208x 2-x 0=-1,即x 1+x 0 x 2+x 0 =-64,即x 1x 2+x 0x 1+x 2 +x 20=-64,由(1)知y =k =x04,x 0=4k ,联立y =kx +m x 2=8y,消y 得x 2-8kx -8m =0,则x 1+x 2=8k ,x 1x 2=-8m ,所以-8m +32k 2+16k 2=-64,所以m =6k 2+8,l :y =x 04x -x 0 +x 28=kx -2k 2,设F 到直线l 和直线BD 的距离分别为d 1,d 2,则由l ∥BD 得,d 1d 2=m -2 2+2k 2=6k 2+62k 2+2=3,所以点F 到直线BD 与到直线l 的距离之比是定值,为定值3.5.(2023届江苏省百校联考高三上学期考试)设F 为椭圆C :x 22+y 2=1的右焦点,过点F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点.(1)当BF=2FA 时,求FA ;(2)在x 轴上是否存在异于F 的定点Q ,使k QAk QB为定值(其中k QA ,k QB 分别为直线QA ,QB 的斜率)?若存在,求出Q 的坐标;若不存在,请说明理由.【解析】(1)设直线l 的方程为x =my +1,A x 1,y 1 ,B x 2,y 2 ,联立x =my +1x 2+2y 2=2,得m 2+2 y 2+2my -1=0,又因为BF=2FA ,所以y 1+y 2=-2m m 2+2y 1y 2=-1m 2+2y 2=-2y 1,解得m 2=27,y 1 =2m m 2+2=148,所以FA =1+m 2y 1 =328,即FA =328.(2)假设在x 轴上存在异于点F 的定点Q t ,0 t ≠1 ,使得k QAk QB为定值.设直线AB 的方程为x =my +1,联立x 22+y 2=1x =my +1,得m 2+2 y 2+2my -1=0,则y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,所以y 1+y 2=2my 1y 2.所以k QA k QB =y 1x 1-t y 2x 2-t=y 1⋅x 2-t y 2⋅x 1-t =y 1my 2+1-t y 2my 1+1-t =my 1y 2+(1-t )y 1my 1y 2+(1-t )y 2=2my 1y 2+2(1-t )y 12my 1y 2+2(1-t )y 2=(3-2t )y 1+y 2y 1+(3-2t )y 2.要使k QA k QB为定值,则3-2t 1=13-2t ,解得t =2或t =1(舍去),此时k QAk QB=-1.故在x 轴上存在异于F 的定点Q 2,0 ,使得k QAk QB为定值.6.(2022届湖南省长沙市宁乡市高三下学期5月模拟)已知抛物线G :y 2=4x 的焦点与椭圆E :x 2a 2+y 2b2=1a >b >0 的右焦点F 重合,椭圆E 的长轴长为4.(1)求椭圆E 的方程;(2)过点F 且斜率为k 的直线l 交椭圆E 于A ,B 两点,交抛物线G 于M ,N 两点,请问是否存在实常数t ,使2AB +tMN 为定值?若存在,求出t 的值;若不存在,说明理由.【解析】(1)因为抛物线G :y 2=4x 的焦点为(1,0),所以c =1,又a =2,则b 2=a 2-c 2=3,故椭圆E 的方程为:x 24+y 23=1;(2)设A x 1,y 1 、B x 2,y 2 、M x 3,y 3 、N x 4,y 4 ,设直线l 的方程为y =k x -1 ,与椭圆E 的方程联立x 24+y 23=1y =k x -1,得3+4k 2 x 2-8k 2x +4k 2-12=0,∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,∴AB =1+k 2⋅x 1+x 2 2-4x 1x 2=12(k 2+1)3+4k 2,设直线l 的方程y =k x -1 ,与抛物线G 的方程联立y 2=4xy =k x -1 ,得k 2x 2-2k 2+4 x +k 2=0,∴x 3+x 4=2k 2+4k 2,x 3x 4=1,∴MN =x 3+x 4+2=4k 2+1k 2,∴2AB +t MN=3+4k 26k 2+1 +tk 24k 2+1 =8+3t k 2+612k 2+1 ,要使2AB +1MN为常数,则8+3t =6,解得t =-23,故存在t =-23,使得2AB +1MN为定值12.7.(2023届江苏省南京市高三上学期数学大练)已知点B 是圆C :x -1 2+y 2=16上的任意一点,点F (-1,0),线段BF 的垂直平分线交BC 于点P .(1)求动点Р的轨迹E 的方程;(2)设曲线E 与x 轴的两个交点分别为A 1,A 2,Q 为直线x =4上的动点,且Q 不在x 轴上,QA 1与E 的另一个交点为M ,QA 2与E 的另一个交点为N ,证明:△FMN 的周长为定值.【解析】(1)因为点P 在BF 垂直平分线上,所以有PF =PB ,所以:PF +PC =PB +PC =BC =r =4,即PF +PC 为定值4>2,所以轨迹E 为椭圆,且a =2,c =1,所以b 2=3,所以轨迹E 的方程为:x 24+y 23=1.(2)由题知:A 1-2,0 ,A 22,0 ,设Q 4,t ,M x 1,y 1 ,N x 2,y 2则k QA 1=t 6,k QA 2=t2,所以QA 1方程为:y =t 6x +2 ,QA 2方程为:y =t2x -2 ,联立方程:y =t 6x +2x 24+y 23=1,可以得出M :54-2t 227+t 2,18t27+t 2 同理可以计算出点N 坐标:2t 2-63+t 2,-6t3+t 2 ,当k MN 存在,即t 2≠9,即t ≠±3时,k MN =-6t(t 2-9)所以直线MN 的方程为:y +6t 3+t 2=-6t t 2-9x -2t 2-63+t 2即:y =-6t t 2-9x +6t t 2-9=-6tt 2-9x -1 ,所以直线过定点1,0 ,即过椭圆的右焦点F 2,所以△FMN 的周长为4a =8.当k MN 不存在,即t 2=9,即t =±3时,可以计算出x 1=x 2=1,周长也等于8.所以△FMN 的周长为定值8.8.(2023届安徽省皖南八校高三上学期考试)已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,且左焦点坐标为-2,0 ,P 为椭圆上的一个动点,∠F 1PF 2的最大值为π2.(1)求椭圆M 的标准方程;(2)若过点-2,-4 的直线l 与椭圆M 交于A ,B 两点,点N 2,0 ,记直线NA 的斜率为k 1,直线NB 的斜率为k 2,证明:1k 1+1k 2=1.【解析】(1)因为左焦点坐标为-2,0 ,所以c =2,当点P 在上、下顶点时,∠F 1PF 2最大,又∠F 1PF 2的最大值为π2.所以b =c =2,由a 2=b 2+c 2得a 2=4,所以椭圆M 的标准方程为x 24+y 22=1;(2)当直线l 的斜率为0时,直线l 的方程为y =-4,直线y =-4与椭圆x 24+y 22=1没有交点,与条件矛盾,故可设直线l 的方程为x =my +t ,联立直线l 的方程与椭圆方程可得,x =my +tx 24+y 22=1,化简可得my +t 2+2y 2=4,所以m 2+2 y 2+2mtx +t 2-4=0,由已知方程m 2+2 y 2+2mtx +t 2-4=0的判别式Δ=4m 2t 2-4m 2+2 t 2-4 =16m 2-8t 2+32>0,又直线x =my +t 过点-2,-4 ,所以-2=-4m +t ,所以7m 2-8m <0,所以0<m <87,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,因为N 2,0所以1k 1+1k 2=x 1-2y 1+x 2-2y 2=my 1+t -2y 1+my 2+t -2y 2=2m +t -2 y 1+y 2y 1y 2,所以1k 1+1k 2=2m +t -2 -2mt t 2-4=2m -2mt t +2=2m -2mt 4m =2m -t 2=1方法二:设直线l 的方程为m x -2 +ny =1,A x 1,y 1 ,B x 2,y 2 ,由椭圆M 的方程x 2+2y 2=4,得(x -2)2+2y 2=-4x -2 .联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4x -2 m x -2 +ny ,即1+4m (x -2)2+4n x -2 y +2y 2=0,1+4m x -2y 2+4n x -2y +2=0,所以1k 1+1k 2=x 1-2y 1+x 2-2y 2=-4n1+4m .因为直线l 过定点-2,-4 ,所以m +n =-14,代入1k 1+1k 2,得1k 1+1k 2=x 1-2y 1+x 2-2y 2=-4n 1+4m =1+4m1+4m =1.9.(2023届北京市房山区高三上学期考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴的两个端点分别为A -2,0 ,B 2,0 离心率为32.(1)求椭圆C 的标准方程;(2)M 为椭圆C 上除A ,B 外任意一点,直线AM 交直线x =4于点N ,点O 为坐标原点,过点O 且与直线BN 垂直的直线记为l ,直线BM 交y 轴于点P ,交直线l 于点Q ,求证:|BP ||PQ |为定值.【解析】(1)由已知a =2,又e =c a =c 2=32,c =3,所以b =a 2-c 2=1,椭圆标准方程为x 24+y 2=1;(2)设M (x 1,y 1),y 1≠0,则x 214+y 21=1,x 21+4y 21=4,直线AM 的方程为y =y 1x 1+2(x +2),令x =4得y =6y 1x 1+2,即N 4,6y 1x 1+2,k BN =6y 1x 1+24-2=3y 1x 1+2,l⊥BN,k l=-x1+23y1,直线l的方程是y=-x1+23y1x,直线BM的方程为y=y1x1-2(x-2),令x=0得y=-2y1x1-2,即P0,-2y1x1-2,由y=-x1+23y1xy=y1x1-2(x-2),因为x21+4y21=4,故解得x=-6y=2(x1+2)y1,即Q-6,2x1+2y1,所以BPPQ=x P-x Bx Q-x P=0-2-6-0=1310.(2023届湖南师范大学附属中学高三上学期月考)已知A(-22,0),B(22,0),直线PA,PB的斜率之积为-34,记动点P的轨迹为曲线C.(1)求C的方程;(2)直线l与曲线C交于M,N两点,O为坐标原点,若直线OM,ON的斜率之积为-34,证明:△MON的面积为定值.【解析】(1)设P(x,y),则直线PA的斜率k PA=yx+22(x≠-22),直线PB的斜率 k PB=yx-22(x≠22),由题意k PA⋅k PB=yx+22⋅yx-22=y2x2-8=-34,化简得 x28+y26=1(x≠±22);(2)直线l的斜率存在时,可设其方程为y=kx+m,联立y=kx+m,x28+y26=1,化简得3+4k2x2+8km x+4m2-24=0,设M x1,y1,N x2,y2,则Δ=(8km)2-43+4k24m2-24=488k2+6-m2>0,x1+x2=-8km3+4k2,x1x2=4m2-243+4k2,所以 k OM⋅k ON=y1y2x1x2=kx1+mkx2+mx1x2=k2x1x2+km x1+x2+m2x1x2=4m2k2-24k2-8k2m2+3m2+4k2m23+4k24m2-243+4k2=-24k2+3m24m2-24=-34化简得m2=4k2+3则|MN|=1+k2x1-x2=1+k2488k2+6-m23+4k2==431+k24k2+34k2+3=431+k23+4k2,又O到MN的距离d=|m|1+k2=4k2+31+k2,所以S△OMN=12|MN|⋅d=12⋅431+k23+4k2⋅3+4k21+k2=23,为定值.当直线l的斜率不存在时,可设 M x0,y0,N x0,-y0,则k CM⋅k ON=-y20x20=-34,且x208+y206=1,解得x20=4,y20=3,此时S△OMN=2×12×x0y0=23,综上,△OMN 的面积为定值23.11.(2023届贵州省遵义市新高考协作体高三上学期质量监测)已知点F 1是椭圆C :x 24+y 23=1的左焦点,Q是椭圆C 上的任意一点,A 12,1 .(1)求QF 1 +QA 的最大值;(2)过点F 1的直线l 与椭圆C 相交于两点M ,N ,与y 轴相交于点P .若PM =λMF 1 ,PN =μNF 1,试问λ+μ是否为定值?若是,求出该定值;若不是,请说明理由.【解析】(1)由椭圆方程知:a =2,b =3,∴c =a 2-b 2=1,则F 1-1,0 ,F 21,0 ,由椭圆定义知:QF 1 =2a -QF 2 =4-QF 2 ,∴QF 1 +QA =QA -QF 2 +4,∵QA -QF 2 ≤F 2A (当且仅当A ,F 2,Q 三点共线,即与图中T 点重合时取等号),又F 2A =12-1 2+1-0 2=52,∴QF 1 +QA 的最大值为4+52=8+52.(2)由题意知:直线l 斜率存在,设l :y =k x +1 ,M x 1,y 1 ,N x 2,y 2 ,则P 0,k ,由y =k x +1x 24+y 23=1得:3+4k 2 x 2+8k 2x +4k 2-12=0,∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2;∵PM =λMF 1 ,即x 1,y 1-k =λ-1-x 1,-y 1 ,则λ=-x 11+x1;同理可得:μ=-x 21+x 2,∴λ+μ=-x 11+x 1-x 21+x 2=-x 11+x 2 +x 21+x 1 1+x 1 1+x 2=-2x 1x 2+x 1+x 2 x 1x 2+x 1+x 2 +1=-8k 2-243+4k 2-8k 23+4k 24k 2-123+4k 2-8k 23+4k2+1=-8k 2-24-8k 24k 2-12-8k 2+3+4k2=-83,∴λ+μ是定值-83.12.(2023届江苏省盐城市响水中学高三上学期测试)已知椭圆C :x 24+y 22=1,A 0,1 ,过点A 的动直线l与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得λAP ⋅AQ +OP ⋅OQ为定值?若存在,求出λ的值;若不存在,说明理由.【解析】(1)①当直线l 存在斜率时,设P x 1,y 1 、Q x 2,y 2 、M x 0,y 0 ,x 0≠0,则应用点差法:x 214+y 212=1x 224+y 222=1,两式联立作差得:(x 1-x 2)(x 1+x 2)4+(y 1-y 2)(y 1+y 2)2=0,∴y 1-y 2 y 1+y 2 x 1-x 2 x 1+x 2=y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=k PQ ⋅2y 02x 0=k PQ ⋅y 0x 0=k PQ ⋅k OM =-12,又∵k PQ =k MA =y 0-1x 0,∴y 0-1x 0⋅y 0x 0=-12,化简得x 20+2y 20-2y 0=0(x 0≠0),②当直线l 不存在斜率时,M 0,0 ,综上,无论直线是否有斜率,M 的轨迹方程为x 2+2y -12 2=12;(2)①当直线l 存在斜率时,设直线l 的方程为:y =kx +1,联立y =kx +1x 24+y 22=1并化简得:(2k 2+1)x 2+4kx -2=0,∴Δ>0恒成立,∴x 1+x 2=-4k 2k 2+1,x 1⋅x 2=-22k 2+1,又AP =x 1,k ⋅x 1 ,AQ =x 2,k ⋅x 2 ,OP =x 1,k ⋅x 1+1 ,OQ =x 2,k ⋅x 2+1 ,∴λAP ⋅AQ +OP ⋅OQ=λ1+k 2 ⋅x 1⋅x 2+1+k 2 ⋅x 1⋅x 2+k x 1+x 2 +1,=-2λ+1 1+k 2 2k 2+1-4k 22k 2+1+1=-2λ+2 k 2+2λ+12k 2+1,若使λAP ⋅AQ +OP ⋅OQ为定值,只需2λ+2 2=2λ+11,即λ=1,其定值为-3,②当直线l 不存在斜率时,直线l 的方程为:x =0,则有P 0,2 、Q 0,-2 ,又AP =0,2-1 ,AQ =0,-2-1 ,OP =0,2 ,OQ =0,-2 ,∴λAP ⋅AQ +OP ⋅OQ =-λ-2,当λ=1时,λAP ⋅AQ +OP ⋅OQ 也为定值-3,综上,无论直线是否有斜率,一定存在一个常数λ=1,使λAP ⋅AQ +OP ⋅OQ为定值-3.13.(2023届云南省下关第一中学高三上学期考试)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)过点(0,3),离心率为22,直线y =kx (k ≠0)与椭圆E 交于A ,B 两点,过点B 作BC ⊥x ,垂足为C 点,直线AC 与椭圆E的另一个交点为D .(1)求椭圆E 的方程;(2)试问∠ABD 是否为定值?若为定值,求出定值;若不为定值,说明理由.【解析】(1)由已知得b =3c a =22,解得a =6b =3c =3,所以E :x 26+y 23=1.(2)由已知,不妨设B x 0,y 0 ,则A -x 0,-y 0 ,C x 0,0 ,所以k =y 0x 0,k AC =y 02x 0=k 2,所以l AD :y =k2x -x 0 ,代入椭圆E :x 26+y 23=1的方程得:2+k 2 x 2-2x 0k 2x +k 2x 20-12=0,设D x D ,y D ,则-x 0+x D =2x 0k 22+k 2,即x D =2x 0k 22+k 2+x 0,所以y D =k 22x 0k22+k 2+x 0-x 0 =x 0k 32+k 2,即D 2x 0k 22+k 2+x 0,x 0k 32+k 2,所以k BD =x 0k 32+k 2-kx 02x 0k 22+k 2+x 0-x 0=-1k ,即k BD k =-1,即BD ⊥AB ,也即∠ABD 为定值π2.14.如图,点M 是圆A :x 2+(y +1)2=16上任意点,点B (0,1),线段MB 的垂直平分线交半径AM 于点P ,当点M 在圆A 上运动时,(1)求点P 的轨迹E 的方程;(2)BQ ⎳x 轴,交轨迹E 于Q 点(Q 点在y 轴的右侧),直线l :x =my +n 与E 交于C ,D (l 不过Q 点)两点,且直线CQ 与直线DQ 关于直线BQ 对称,则直线l 具备以下哪个性质?证明你的结论?①直线l 恒过定点;②m 为定值;③n 为定值.【解析】(1)如图,由⊙A 方程,得A (0,-1),半径r =4,∵P 在BM 的垂直平分线上,∴PM =PB ,所以|PA |+|PB |=|PA |+|PM |=|AM |=4>|AB |=2,∴P 的轨迹E 是以A ,B 为焦点,长轴长为4的椭圆,由2a =4,则a =2,c =1,b 2=3,∴点P 的轨迹E 的方程为y 24+x 23=1.(2)解:∵直线l 与轨迹E 交于C ,D 两点,设C (x 1,y 1),D (x 2,y 2),如图x =my +n ,y 24+x 23=1消x ,得y 24+(my +n )23=1,整理,得(3+4m 2)y 2+8mny +4n 2-12=0,y 1+y 2=-8mn 3+4m 2,y 1y 2=4n 2-123+4m 2,因为CQ 与DQ 关于BQ 对称,BQ ⎳x 轴,所以k CQ +k DQ =0,Q 32,1 ,x 1≠32,x 2≠32,y 1-1x1-32+y 2-1x 2-32=0,即(y 1-1)x 2-32 +(y 2-1)x 1-32 =0,∵x 1=my 1+n ,x 2=my 2+n ,∴整理:2my 1y 2+n -m -32(y 1+y 2)-2n +3=0,2m 4n 2-123+4m 2+n -m -32 -8mn 3+4m 2 -2n +3=0,即4m 2+(4n -8)m -2n +3=0,即(2m -1)(2m +2n -3)=0,若2m +2n -3=0,点Q 32,1满足l :x =my +n ,即C ,D ,Q 三点共线,不合题意,∴2m -1=0,即m =12,∴直线l 中m 为定值12.15.(2022届云南省红河州高三检测)在平面直角坐标系Oxy 中,点M 是以原点O 为圆心,半径为a 的圆上的一个动点.以原点O 为圆心,半径为b a >b >0 的圆与线段OM 交于点N ,作MD ⊥x 轴于点D ,作NQ ⊥MD 于点Q .(1)令∠MOD =α,若a =4,b =1,α=π3,求点Q 的坐标;(2)若点Q 的轨迹为曲线C ,求曲线C 的方程;(3)设(2)中的曲线C 与x 轴的正半轴交于点A ,与y 轴的正负半轴分别交于点B 1,B 2,若点E 、F 分别满足AE =-3OE ,4AF =3OB 2 ,设直线B 1E 和B 2F 的交点为K ,设直线l :x =a 2c 及点H c ,0 ,(其中c =a 2-b 2),证明:点K 到点H 的距离与点K 到直线l 的距离之比为定值ca.【解析】(1)设Q x ,y ,则由题知x =4cos π3=2y =sin π3=32,因此Q 2,32 (2)(2)设∠MOD =α及Q x ,y ,则由题知x=acos αy =b sin α ,则点Q 的轨迹C 为椭圆,方程为:x 2a 2+y 2b 2=1a >b >0 .(3)设K x ,y ,由题知,B 10,b ,E a 4,0 ,B 20,-b ,F a ,-34b ,l B 1E :xa 4+y b =1,即4bx +ay =ab ,l B 2F :y +b -34b +b=xa ,即bx -4ay =4ab ,联列上述直线方程,解得x =817ay =-1517b.KH =817a -c 2+-1517b 2=817a -c 2+-1517 2a 2-c 2=a 2+817c 2-2×817ac =a -817c令点K 到直线l 的距离为PM ,则c a ⋅PM =c a ⋅a 2c -817a =a -817c .因此有KH PM=ca .。
圆锥曲线中的定点定值问题
圆锥曲线中的定点定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、(07山东)已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。
圆锥曲线的定点、定值问题(解析版)
2020上学期期末复习专题1 圆锥曲线的定点、定值问题(教师版)一.知识梳理1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元方程.例:由⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则: Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时, 若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.弦长公式设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |= 1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2或|AB |=1+1k2·|y 1-y 2|= 1+1k2·(y 1+y 2)2-4y 1y 2. 3.定点问题(1)参数法:参数法解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中的核心变量(此处设为k );②利用条件找到k 与过定点的曲线F (x ,y )=0之间的关系,得到关于k 与x ,y 的等式,再研究变化量与参数何时没有关系,找到定点.(2)由特殊到一般法:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.4.定值问题(1)直接消参求定值:常见定值问题的处理方法:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.(2)从特殊到一般求定值:常用处理技巧:①在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;②巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.二.题型归纳题型1 “设参→用参→消参”三步解决圆锥曲线中的定点问题【例1-1】已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.[解] (1)因为抛物线2y =2px (p >0)的焦点坐标为F (1,0),所以p2=1,所以p =2.所以抛物线C 的方程为2y =4x .(2)证明:①当直线AB 的斜率不存在时,设A ⎪⎪⎭⎫ ⎝⎛t t ,42,B ⎪⎪⎭⎫⎝⎛-t t ,42. 因为直线OA ,OB 的斜率之积为-12,所以214422-=-⋅t t t t ,化简得2t =32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A ()A A ,y x ,B ()B B ,y x ,联立⎩⎨⎧+==bkx y x y 42,消去x ,化简得ky 2-4y +4b =0.所以B A y y =4bk ,因为直线OA ,OB 的斜率之积为-12,所以21-=⋅B B A A x y x y ,整理得B A x x +2B A y y =0.即024422=+⋅B A B A y y yy ,解得B A y y =0(舍去)或B A y y =-32.所以B A y y =4bk=-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综上所述,直线AB 过定点(8,0).【跟踪训练1-1】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的标准方程;(2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明:直线l 过定点,并求出该定点的坐标.【解】(1)由题意得,c =3,a b=2,a 2=b 2+c 2,∴a =2,b =1, ∴椭圆C 的标准方程为x 24+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2). 联立⎩⎨⎧y =kx +m ,x 2+4y 2=4,消去y ,可得(4k 2+1)x 2+8kmx +4m 2-4=0.∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.∵点B 在以线段MN 为直径的圆上,∴BM ―→·BN ―→=0. ∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1) =(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2=0,∴(k 2+1)4m 2-44k 2+1+k (m -1)-8km4k 2+1+(m -1)2=0,整理,得5m 2-2m -3=0,解得m =-35或m =1(舍去).∴直线l 的方程为y =kx -35.易知当直线l 的斜率不存在时,不符合题意.故直线l 过定点,且该定点的坐标为⎪⎭⎫ ⎝⎛-530,.【总结归纳】定点问题实质及求解步骤解析几何中的定点问题实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动.这类问题的求解一般可分为以下三步:题型2 “设参→用参→消参”三步解决圆锥曲线中的定值问题【例2-1】设O 为坐标原点,动点M 在椭圆x 29+y 24=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NM 2=(1)求点P 的轨迹E 的方程;(2)过F (1,0)的直线l 1与点P 的轨迹交于A ,B 两点,过F (1,0)作与l 1垂直的直线l 2与 点P 的轨迹交于C ,D 两点,求证:1|AB |+1|CD |为定值.[解] (1)设P(x ,y),M(x 0,y 0),则N(x 0,0).∵NP ―→= 2 NM ―→,∴(x -x 0,y)=2(0,y 0),∴x 0=x ,y 0=y 2.又点M 在椭圆上,∴142922=⎪⎭⎫ ⎝⎛+y x ,即x 29+y 28=1.∴点P 的轨迹E 的方程为x 29+y 28=1.(2)证明:由(1)知F 为椭圆x 29+y 28=1的右焦点,当直线l 1与x 轴重合时,|AB|=6,|CD|=2b 2a =163,∴1|AB|+1|CD|=1748.当直线l 1与x 轴垂直时,|AB|=163,|CD|=6,∴1|AB|+1|CD|=1748. 当直线l 1与x 轴不垂直也不重合时,可设直线l 1的方程为y =k(x -1)(k ≠0), 则直线l 2的方程为y =-1k(x -1),设A(x 1,y 1),B(x 2,y 2),联立⎩⎨⎧y =k x -1,x 29+y28=1消去y ,得(8+9k 2)x 2-18k 2x +9k 2-72=0,则Δ=(-18k 2)2-4(8+9k 2)(9k 2-72)=2 304(k 2+1)>0, x 1+x 2=18k 28+9k 2,x 1x 2=9k 2-728+9k 2,∴|AB|= 1+k 2·x 1+x 22-4x 1x 2=481+k 28+9k 2.同理可得|CD|=481+k 29+8k 2.∴1|AB|+1|CD|=8+9k 248k 2+1+9+8k 248k 2+1=1748.综上可得1|AB|+1|CD|为定值. 【跟踪训练2-1】已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)如图所示,点D 为x 轴上一点,过点D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过点D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为定值,并求出该定值.【解】(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,b 2+c 2=a 2,解得⎩⎨⎧b =1,c =3,所以椭圆C 的方程为x 24+y 2=1.(2)法一:设D (x 0,0),M (x 0,y 0),N (x 0,-y 0),-2<x 0<2,所以k AM =y 0x 0+2,因为AM ⊥DE ,所以k DE =-2+x 0y 0,所以直线DE 的方程为y =-2+x 0y 0(x -x 0). 因为k BN =-y 0x 0-2,所以直线BN 的方程为y =-y 0x 0-2(x -2).由⎩⎨⎧y =-2+x0y(x -x 0),y =-y0x 0-2(x -2),解得E ⎝⎛⎭⎫45x 0+25,-45y 0, 所以S △BDE S △BDN =12|BD |·|y E |12|BD |·|y N |=⎪⎪⎪⎪-45y 0|-y 0|=45.故△BDE 与△BDN 的面积之比为定值45.法二:设M (2cos θ,sin θ)(θ≠k π,k ∈Z ),则D (2cos θ,0),N (2cos θ,-sin θ), 设BE ―→=λBN ―→,则DE ―→=DB ―→+BE ―→=DB ―→+λBN ―→=(2-2cos θ,0)+λ(2cos θ-2,-sin θ) =(2-2cos θ+2λcos θ-2λ,-λsin θ).又AM ―→=(2cos θ+2,sin θ),由AM ―→⊥DE ―→,得AM ―→·DE ―→=0,从而[(2-2cos θ)+λ(2cos θ-2)](2cos θ+2)-λsin 2θ=0,整理得4sin 2θ-4λsin 2θ-λsin 2θ=0, 即5λsin 2θ=4sin 2θ.,所以λ=45,所以S △BDE S △BDN =|BE ||BN |=45.故△BDE 与△BDN 的面积之比为定值45.【总结归纳】定值问题实质及求解步骤定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题.其求解步骤一般为:题型三 探索性问题例3.已知圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1). (1) 求圆M 的方程;(2) 设P 为圆M 上任一点,过点P 向圆O :x 2+y 2=1引切线,切点为Q .试探究:平面内是否存在一定点R ,使得PQPR 为定值.若存在,求出点R 的坐标;若不存在,请说明理由. 解析:(1) 因为圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1), 所以设圆心坐标为(m,2m -6),半径为r , 则圆的标准方程为(x -m )2+(y -2m +6)2=r 2.则(1-m )2+(2-2m +6)2=r 2且(4-m )2+(-1-2m +6)2=r 2, 即(m -1)2+(8-2m )2=r 2且(m -4)2+(5-2m )2=r 2, 解得m =4,r =3.所以圆M :(x -4)2+(y -2)2=9.(2) 设P (x ,y ),R (a ,b ),则(x -4)2+(y -2)2=9,即x 2+y 2=8x +4y -11. 又PQ 2=x 2+y 2-1,PR 2=(x -a )2+(y -b )2=x 2+y 2-2ax -2by +a 2+b 2, 故PQ 2=8x +4y -12,PR 2=(8-2a )x +(4-2b )y +a 2+b 2-11.又设PQPR =t 为定值,故8x +4y -12=t 2[(8-2a )x +(4-2b )y +a 2+b 2-11]. 因为上式对圆M 上任意点P (x ,y )都成立,可得⎩⎪⎨⎪⎧8=(8-2a )t 2,4=(4-2b )t 2,-12=(a 2+b 2-11)t 2,解得⎩⎪⎨⎪⎧a 1=2,b 1=1,t 1=2或⎩⎪⎪⎪⎨⎪⎪⎪⎧a 2=25,b 2=15,t 2=103.综上,存在点R (2,1)或R ⎝ ⎛⎭⎪⎫25,15满足题意.跟踪训练3:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点⎝⎛⎭⎫1,32,离心率为32. (1) 求椭圆C 的方程;(2) 直线y =k (x -1)(k ≠0)与椭圆C 交于A ,B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点P ,Q ,试问:以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,请说明理由.解析:(1) 由题意得⎩⎪⎨⎪⎧ca =32,1a 2+34b 2=1,解得a =2,b =1.所以椭圆C 的方程是x 24+y 2=1.(2) 以线段PQ 为直径的圆过x 轴上的定点. 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 2=1得(1+4k 2)x 2-8k 2x +4k 2-4=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.又因为点M 是椭圆C 的右顶点,所以点M (2,0).由题意可知直线AM 的方程为y =y 1x 1-2(x -2),故点P ⎝ ⎛⎭⎪⎪⎫0,-2y 1x 1-2. 直线BM 的方程为y =y 2x 2-2(x -2),故点Q ⎝ ⎛⎭⎪⎪⎫0,-2y 2x 2-2. 若以线段PQ 为直径的圆过x 轴上的定点N (x 0,0),则等价于PN →·QN →=0恒成立.又因为PN →=⎝⎛⎭⎪⎪⎫x 0,2y 1x 1-2,QN →=⎝⎛⎭⎪⎪⎫x 0,2y 2x 2-2,所以PN →·QN →=x 20+2y 1x 1-2·2y 2x 2-2=x 20+4y 1y 2(x 1-2)(x 2-2)=0恒成立. 又因为(x 1-2)(x 2-2)=x 1x 2-2(x 1+x 2)+4=4k 2-41+4k 2-28k 21+4k 2+4=4k 21+4k 2,y 1y 2=k (x 1-1)k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=k 2⎝ ⎛⎭⎪⎪⎫4k2-41+4k 2-8k 21+4k 2+1=-3k 21+4k2,所以x 20+4y 1y 2(x 1-2)(x 2-2)=x 20+-12k 21+4k 24k 21+4k 2=x 20-3=0,解得x 0=±3. 故以线段PQ 为直径的圆过x 轴上的定点(±3,0).圆锥曲线定点定值问题作业1. 如图,平行四边形AMBN 的周长为8,点M ,N 的坐标分别为(-3,0),(3,0). (1) 求点A ,B 所在的曲线L 的方程;(2) 过L 上点C (-2,0)的直线l 与L 交于另一点D ,与y 轴交于点E ,且l ∥OA .求证:CD ·CEOA 2为定值.解析:(1) 因为四边形AMBN 是平行四边形,周长为8,所以A ,B 两点到M ,N 的距离之和均为4>23,可知所求曲线为椭圆. 由椭圆定义可知,a =2,c =3,b =1.曲线L 的方程为x24+y 2=1(y ≠0).(2) 由已知可知直线l 的斜率存在.因为直线l 过点C (-2,0),设直线l 的方程为y =k (x +2),代入曲线方程x 24+y 2=1(y ≠0),并整理得(1+4k 2)x 2+16k 2x +16k 2-4=0. 因为点C (-2,0)在曲线L 上,则D ⎝ ⎛⎭⎪⎪⎫-8k 2+21+4k2,4k 1+4k 2,E (0,2k ), 所以CD =41+k 21+4k2,CE =21+k 2. 因为OA ∥l ,所以设OA 的方程为y =kx ,代入曲线L 的方程,并整理得(1+4k 2)x 2=4. 所以x 2A =41+4k 2,y 2A =4k 21+4k 2,所以OA 2=4+4k 21+4k2,化简得CD ·CE OA 2=2,所以CD ·CE OA 2为定值.说明:本题考查用定义法求椭圆方程知识及直线与椭圆相交的有关线段的计算与证明.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴是短轴的两倍,点A ⎝ ⎛⎭⎪⎫3,12在椭圆C 上.不过原点的直线l 与椭圆C 相交于A ,B 两点,设直线OA ,l ,OB 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2恰好构成等比数列. (1) 求椭圆C 的方程;(2) 试判断OA 2+OB 2是否为定值.若是,求出这个值;若不是,请说明理由.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1. (2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4, 整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1.(2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.此时Δ=16(2-m 2)>0,即m ∈(-2,2),所以⎩⎪⎨⎪⎧x 1+x 2=±2m ,x 1x 2=2m 2-2.又OA 2+OB 2=x 21+y 21+x 22+y 22=34(x 21+x 22)+2=34[(x 1+x 2)2-2x 1x 2]+2=5, 所以OA 2+OB 2是定值,且为5.3.过椭圆x 2a 2+y 2b 2=1的右焦点F 作斜率k =-1的直线交椭圆于A ,B 两点,且OA →+OB →与a =⎝ ⎛⎭⎪⎫1,13共线.(1)求椭圆的离心率;(2)设P 为椭圆上任意一点,且OP →=mOA →+nOB →(m ,n ∈R ),证明:m 2+n 2为定值. 解 (1)设AB :y =-x +c ,直线AB 交椭圆于两点,A (x 1,y 1),B (x 2,y 2)⎩⎪⎨⎪⎧b 2x 2+a 2y 2=a 2b2y =-x +c⇒b 2x 2+a 2(-x +c )2=a 2b 2,(b 2+a 2)x 2-2a 2cx +a 2c 2-a 2b 2=0x 1+x 2=2a 2c a 2+b 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2, OA →+OB →=(x 1+x 2,y 1+y 2)与a =⎝ ⎛⎭⎪⎫1,13共线,3(y 1+y 2)-(x 1+x 2)=0,3(-x 1+c -x 2+c )-(x 1+x 2)=0,即 x 1+x 2=3c 2,a 2=3b 2,c =a 2-b 2=6a 3,e =c a =63.(2)证明:a 2=3b 2,椭圆方程为x 2+3y 2=3b 2,设M (x ,y )为椭圆上任意一点,OM →=(x ,y ),OM →=mOA →+nOB →,(x ,y )=(mx 1+nx 2,my 1+ny 2),点M (x ,y )在椭圆上,(mx 1+nx 2)2+3(my 1+ny 2)2=3b 2,即m 2(x 21+3y 21)+n 2(x 22+3y 22)+2mn (x 1x 2+3y 1y 2)=3b 2. ∴x 1+x 2=3c 2,a 2=32c 2,b 2=12c 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2=38c 2,∴x 1x 2+3y 1y 2=x 1x 2+3(-x 1+c )(-x 2+c )=4x 1x 2-3c (x 1+x 2)+3c 2=32c 2-92c 2+3c 2=0,将x 21+3y 21=3b 2,x 22+3y 22=3b 2代入得 3b 2m 2+3b 2n 2=3b 2,即m 2+n 2=1.3.在直角坐标系xOy 中,已知椭圆E 的中心在原点,长轴长为8,椭圆在x 轴上的两个焦点与短轴的一个顶点构成等边三角形. (1)求椭圆的标准方程;(2)过椭圆内一点M (1,3)的直线与椭圆E 交于不同的A ,B 两点,交直线y =-14x 于点N ,若NA →=mAM →,NB →=nBM →,求证:m +n 为定值,并求出此定值. 解 (1)因为长轴长为8,所以2a =8,a =4, 又因为两个焦点与短轴的一个顶点构成等边三角形, 所以b =32a =23,由于椭圆焦点在x 轴上, 所以椭圆的标准方程为x 216+y 212=1. (2)设A (x 1,y 1),B (x 2,y 2),N ⎝⎛⎭⎫x 0,-14x 0, 由NA →=mAM →,得⎝⎛⎭⎫x 1-x 0,y 1+14x 0=m (1-x 1,3-y 1),所以x 1=m +x 0m +1,y 1=3m -14x 0m +1,所以A ⎝ ⎛⎭⎪⎪⎫m +x 0m +1,3m -14x 0m +1, 因为点A 在椭圆x 216+y 212=1上,所以得到⎝ ⎛⎭⎪⎫m +x 0m +1216+⎝ ⎛⎭⎪⎪⎫3m -14x 0m +1212=1,得到9m 2+96m +48-134x 20=0;同理,由NB →=nBM →,可得9n 2+96n +48-134x 20=0, 所以m ,n 可看作是关于x 的方程9x 2+96x +48-134x 20=0的两个根, 所以m +n =-969=-323,为定值.4. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(0,-3),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1) 求椭圆C 的标准方程;(2) 若直线l 上存在点P 满足PM ·PN =PF 2,且点P 在椭圆外,证明:点P 在定直线上.解析:(1) 设椭圆的焦距为2c .由椭圆经过点(0,-3)得b = 3. ①由点F 到左顶点的距离和到右准线的距离相等,得a +c =a 2c -c . ② 又a 2=b 2+c 2, ③由①②③可得a =2,c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2) 法一:当直线l 的斜率为0时,则M (2,0),N (-2,0),设P (x 0,y 0),则PM ·PN =|(x 0-2)(x 0+2)|.因为点P 在椭圆外,所以x 0-2,x 0+2同号,又PF 2=(x 0-1)2,所以|(x 0-2)(x 0+2)|=(x 0-1)2,解得x 0=52. 当直线l 的斜率不为0时,因为y 1+y 2=-6m3m 2+4,y 1y 2=-93m 2+4,PM =1+m 2|y 1-y 0|,PN =1+m 2|y 2-y 0|,PF =1+m 2|y 0|.因为点P 在椭圆外,所以y 1-y 0,y 2-y 0同号,所以PM ·PN =(1+m 2)(y 1-y 0)(y 2-y 0)=(1+m 2)[y 1y 2-y 0(y 1+y 2)+y 20]=(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4, 代入PM ·PN =PF 2得(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4=(1+m 2)y 20,整理得y 0=32m ,代入直线方程得x 0=52.所以点P 在定直线x =52上.法二:当直线l ⊥x 轴,则M ⎝ ⎛⎭⎪⎫1,32,N ⎝ ⎛⎭⎪⎫1,-32,则PM ·PN =⎪⎪⎪⎪⎪⎪y 0-32⎪⎪⎪⎪⎪⎪y 0+32.又PF 2=y 20,所以PM ·PN =PF 2不成立,不合题意. 当直线l 与x 轴不垂直时,设P (x 0,y 0),M (x 1,y 1),N (x 2,y 2).设直线l 的方程为y =k (x -1),与椭圆x 24+y 23=1联立并消去y 得 (3+4k 2)x 2-8k 2x +4k 2-12=0.因为Δ=64k 4-4(3+4k 2)(4k 2-12)=16k 4+108k 2+108>0, 所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,所以PM =1+k 2|x 1-x 0|,PN =1+k 2|x 2-x 0|,PF =1+k 2|x 0-1|. 因为点P 在椭圆外,所以x 1-x 0,x 2-x 0同号,所以PM ·PN =(1+k 2)(x 1-x 0)(x 2-x 0)=(1+k 2)[x 1x 2-x 0(x 1+x 2)+x 20] =(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2.代入PM ·PN =PF 2得(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2=(1+k 2)(x 20)(x 20-2x 0+1), 整理得x 0=52,所以点P 在定直线x =52上.。
高考数学一轮复习考点知识专题讲解67---圆锥曲线中定点与定值问题
高考数学一轮复习考点知识专题讲解圆锥曲线中定点与定值问题题型一 定点问题例1已知定圆A :(x +3)2+y 2=16,动圆M 过点B (3,0),且和圆A 相切. (1)求动圆圆心M 的轨迹E 的方程;(2)设不垂直于x 轴的直线l 与轨迹E 交于不同的两点P ,Q ,点N (4,0).若P ,Q ,N 三点不共线,且∠ONP =∠ONQ .证明:动直线PQ 经过定点. (1)解圆A 的圆心为A (-3,0),半径r 1=4. 设动圆M 的半径为r 2, 依题意有r 2=|MB |.由|AB |=23,可知点B 在圆A 内,从而圆M 内切于圆A , 故|MA |=r 1-r 2,即|MA |+|MB |=4>2 3.所以动点M 的轨迹E 是以A ,B 为焦点,长轴长为4的椭圆, 其方程为x 24+y 2=1.(2)证明设直线l 的方程为y =kx +b (k ≠0), 联立⎩⎨⎧y =kx +b ,x 2+4y 2=4,消去y 得,(1+4k 2)x 2+8kbx +4b 2-4=0,Δ=16(4k 2-b 2+1)>0,设P (x 1,kx 1+b ),Q (x 2,kx 2+b ),则x1+x2=-8kb1+4k2,x1x2=4b2-41+4k2,于是k PN+k QN=kx1+bx1-4+kx2+bx2-4=2kx1x2-(4k-b)(x1+x2)-8b(x1-4)(x2-4),由∠ONP=∠ONQ知k PN+k QN=0.即2kx1x2-(4k-b)(x1+x2)-8b=2k·4b2-41+4k2-(4k-b)-8kb1+4k2-8b=8kb2-8k1+4k2+32k2b-8kb21+4k2-8b=0,得b=-k,Δ=16(3k2+1)>0.故动直线l的方程为y=kx-k,过定点(1,0).教师备选在平面直角坐标系中,已知动点M(x,y)(y≥0)到定点F(0,1)的距离比到x轴的距离大1.(1)求动点M的轨迹C的方程;(2)过点N(4,4)作斜率为k1,k2的直线分别交曲线C于不同于N的A,B两点,且1k1+1k2=1.证明:直线AB恒过定点.(1)解由题意可知x2+(y-1)2=y+1,化简可得曲线C:x2=4y.(2)证明由题意可知,N(4,4)是曲线C:x2=4y上的点,设A(x1,y1),B(x2,y2),则l NA:y=k1(x-4)+4,l NB:y=k2(x-4)+4,联立直线NA 的方程与抛物线C 的方程, ⎩⎨⎧y =k 1(x -4)+4,x 2=4y⇒x 2-4k 1x +16(k 1-1)=0, 解得x 1=4(k 1-1),① 同理可得x 2=4(k 2-1),② 而l AB :y -x 214=x 1+x 24(x -x 1),③又1k 1+1k 2=1,④由①②③④整理可得l AB :y =(k 1+k 2-2)x -4, 故直线AB 恒过定点(0,-4).思维升华 求解直线或曲线过定点问题的基本思路(1)把直线或曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点. (2)由直线方程确定其过定点时,若得到了直线方程的点斜式y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式y =kx +m ,则直线必过定点(0,m ).跟踪训练1(2022·邯郸质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,且过点⎝⎛⎭⎪⎫3,12.(1)求椭圆方程;(2)设直线l :y =kx +m (k ≠0)交椭圆C 于A ,B 两点,且线段AB 的中点M 在直线x =12上,求证:线段AB 的中垂线恒过定点N . (1)解椭圆过点⎝ ⎛⎭⎪⎫3,12,即3a 2+14b 2=1,又2c =23,得a 2=b 2+3,所以a 2=4,b 2=1,即椭圆方程为x 24+y 2=1.(2)证明由⎩⎨⎧x 24+y 2=1,y =kx +m ,得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8km1+4k 2, 设AB 的中点M 为(x 0,y 0), 得x 0=-4km 1+4k 2=12,即1+4k 2=-8km ,所以y 0=kx 0+m =12k -1+4k 28k =-18k .所以AB 的中垂线方程为y +18k =-1k ⎝ ⎛⎭⎪⎫x -12,即y =-1k ⎝ ⎛⎭⎪⎫x -38,故AB 的中垂线恒过点N ⎝ ⎛⎭⎪⎫38,0.题型二 定值问题例2(2022·江西赣抚吉名校联考)已知抛物线E :y 2=2px (p >0)上的动点M 到直线x =-1的距离比到抛物线E 的焦点F 的距离大12.(1)求抛物线E 的标准方程;(2)设点Q 是直线x =-1(y ≠0)上的任意一点,过点P (1,0)的直线l 与抛物线E 交于A ,B 两点,记直线AQ ,BQ ,PQ 的斜率分别为k AQ ,k BQ ,k PQ ,证明:k AQ +k BQk PQ为定值. (1)解由题意可知抛物线E 的准线方程为x =-12,所以-p 2=-12,即p =1,故抛物线E 的标准方程为y 2=2x .(2)证明设Q (-1,y 0),A (x 1,y 1),B (x 2,y 2),因为直线l 的斜率显然不为0,故可设直线l 的方程为x =ty +1. 联立⎩⎨⎧x =ty +1,y 2=2x ,消去x ,得y 2-2ty -2=0.Δ=4t 2+8>0,所以y 1+y 2=2t ,y 1y 2=-2,k PQ =-y 02.又k AQ +k BQ =y 1-y 0x 1+1+y 2-y 0x 2+1=(y 1-y 0)(x 2+1)+(y 2-y 0)(x 1+1)(x 1+1)(x 2+1)=(y 1-y 0)(ty 2+2)+(y 2-y 0)(ty 1+2)(ty 1+2)(ty 2+2)=2ty 1y 2+(2-ty 0)(y 1+y 2)-4y 0t 2y 1y 2+2t (y 1+y 2)+4=2t ·(-2)+(2-ty 0)·2t -4y 0t 2·(-2)+2t ·2t +4=-y 0(t 2+2)t 2+2=-y 0.所以k AQ +k BQ k PQ =-y 0-y 02=2(定值).教师备选(2022·邯郸模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线l 交椭圆于A ,B 两点,交y 轴于点M ,若|F 1F 2|=2,△ABF 2的周长为8. (1)求椭圆C 的标准方程;(2)MA →=λF 1A —→,MB →=μF 1B —→,试分析λ+μ是否为定值,若是,求出这个定值,否则,说明理由.解(1)因为△ABF 2的周长为8, 所以4a =8,解得a =2,由|F 1F 2|=2,得2a 2-b 2=24-b 2=2, 所以b 2=3,因此椭圆C 的标准方程为x 24+y 23=1.(2)由题意可得直线l 的斜率存在, 设直线l 的方程为y =k (x +1),由⎩⎨⎧y =k (x +1),x 24+y23=1,整理得(3+4k 2)x 2+8k 2x +4k 2-12=0, 显然Δ>0,设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.设M (0,k ),又F 1(-1,0),所以MA →=(x 1,y 1-k ),F 1A —→=(x 1+1,y 1), 则λ=x 1x 1+1.同理可得MB →=(x 2,y 2-k ), F 1B —→=(x 2+1,y 2),则μ=x 2x 2+1.所以λ+μ=x 1x 1+1+x 2x 2+1=x 1(x 2+1)+x 2(x 1+1)(x 1+1)(x 2+1)=2x 1x 2+x 1+x 2x 1x 2+x 1+x 2+1=2×4k 2-123+4k 2-8k 23+4k 24k 2-123+4k 2-8k 23+4k 2+1 =8k 2-24-8k 24k 2-12-8k 2+3+4k 2 =-24-9=83, 所以λ+μ为定值83.思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.跟踪训练2在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,AB为椭圆的一条弦,直线y =kx (k >0)经过弦AB 的中点M ,与椭圆C 交于P ,Q 两点,设直线AB 的斜率为k 1,点P 的坐标为⎝ ⎛⎭⎪⎫1,32.(1)求椭圆C 的方程; (2)求证:k 1k 为定值.(1)解由题意知⎩⎪⎨⎪⎧1a2+94b 2=1,c a =12,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =3,c =1,故椭圆C 的方程为x 24+y 23=1.(2)证明设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2), 由于A ,B 为椭圆C 上的点, 所以x 214+y 213=1,x 224+y 223=1,两式相减得(x 1+x 2)(x 1-x 2)4=-(y 1+y 2)(y 1-y 2)3,所以k 1=y 1-y 2x 1-x 2=-3(x 1+x 2)4(y 1+y 2)=-3x 04y 0. 又k =y 0x 0,故k 1k =-34,为定值.课时精练1.(2022·运城模拟)已知P (1,2)在抛物线C :y 2=2px 上.(1)求抛物线C 的方程;(2)A ,B 是抛物线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.(1)解将P 点坐标代入抛物线方程y 2=2px ,得4=2p ,即p =2, 所以抛物线C 的方程为y 2=4x .(2)证明设AB :x =my +t ,将AB 的方程与y 2=4x 联立得y 2-4my -4t =0,Δ>0⇒16m 2+16t >0⇒m 2+t >0, 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4t ,k PA =y 1-2x 1-1=y 1-2y 214-1=4y 1+2, 同理k PB =4y 2+2, 由题意知4y 1+2+4y 2+2=2, 即4(y 1+y 2+4)=2(y 1y 2+2y 1+2y 2+4), 解得y 1y 2=4,故-4t =4,即t =-1, 故直线AB :x =my -1恒过定点(-1,0).2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为23,且其左顶点到右焦点的距离为5.(1)求椭圆的方程;(2)设点M ,N 在椭圆上,以线段MN 为直径的圆过原点O ,试问是否存在定点P ,使得P 到直线MN 的距离为定值?若存在,求出点P 的坐标;若不存在,请说明理由.解(1)由题设可知⎩⎨⎧ c a =23,a +c =5,解得a =3,c =2,b 2=a 2-c 2=5,所以椭圆的方程为x 29+y 25=1. (2)设M (x 1,y 1),N (x 2,y 2),①若直线MN 与x 轴垂直,由对称性可知|x 1|=|y 1|,将点M (x 1,y 1)代入椭圆方程,解得|x 1|=37014, 原点到该直线的距离d =37014; ②若直线MN 不与x 轴垂直,设直线MN 的方程为y =kx +m ,由⎩⎨⎧ y =kx +m ,x 29+y 25=1,消去y 得(9k 2+5)x 2+18kmx +9m 2-45=0,由根与系数的关系得⎩⎪⎨⎪⎧ x 1x 2=9m 2-459k 2+5,x 1+x 2=-18km 9k 2+5,由题意知,OM →·ON →=0,即x 1x 2+(kx 1+m )(kx 2+m )=0,得(k2+1)9m2-459k2+5+km⎝⎛⎭⎪⎫-18km9k2+5+m2=0,整理得45k2+45=14m2,则原点到该直线的距离d=|m|k2+1=4514=37014,故存在定点P(0,0),使得P到直线MN的距离为定值.3.已知双曲线C的渐近线方程为y=±3x,右焦点F(c,0)到渐近线的距离为 3.(1)求双曲线C的方程;(2)过F作斜率为k的直线l交双曲线于A,B两点,线段AB的中垂线交x轴于D,求证:|AB||FD|为定值.(1)解设双曲线方程为3x2-y2=λ(λ>0),由题意知c=2,所以λ3+λ=4⇒λ=3,所以双曲线C的方程为x2-y23=1.(2)证明设直线l的方程为y=k(x-2)(k≠0)代入x2-y23=1,整理得(3-k2)x2+4k2x-4k2-3=0,Δ=36(k2+1)>0,设A(x1,y1),B(x2,y2),所以x 1+x 2=-4k 23-k 2,x 1x 2=-4k 2-33-k 2, 由弦长公式得 |AB |=1+k 2·(x 1+x 2)2-4x 1x 2=6(k 2+1)|3-k 2|, 设AB 的中点P (x 0,y 0),则x 0=x 1+x 22=-2k 23-k 2, 代入l 得y 0=-6k 3-k 2, AB 的垂直平分线方程为y =-1k ⎝ ⎛⎭⎪⎫x +2k 23-k 2-6k 3-k 2, 令y =0得x D =-8k 23-k 2, 即|FD |=⎪⎪⎪⎪⎪⎪-8k 23-k 2-2=6(1+k 2)|3-k 2|, 所以|AB ||FD |=1为定值. 当k =0时,|AB |=2,|FD |=2,|AB ||FD |=1, 综上所述,|AB ||FD |为定值.4.(2022·河南九师联盟模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,长轴长为4.(1)求椭圆C 的方程;(2)设过点F 1不与x 轴重合的直线l 与椭圆C 相交于E ,D 两点,试问在x 轴上是否存在一个点M ,使得直线ME ,MD 的斜率之积恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.解(1)因为焦距为2,长轴长为4,即2c =2,2a =4,解得c =1,a =2,所以b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),设点E (x 1,y 1),D (x 2,y 2),M (m ,0),因为直线l 不与x 轴重合,所以设直线l 的方程为x =ny -1,联立⎩⎨⎧ x =ny -1,x 24+y23=1,得(3n 2+4)y 2-6ny -9=0,所以Δ=(-6n )2+36(3n 2+4)>0,所以y 1+y 2=6n 3n 2+4,y 1y 2=-93n 2+4,又x 1x 2=(ny 1-1)(ny 2-1)=n 2y 1y 2-n (y 1+y 2)+1=-9n23n2+4-6n23n2+4+1=-12n2-4 3n2+4,x 1+x2=n(y1+y2)-2=6n23n2+4-2=-83n2+4.直线ME,MD的斜率分别为k ME=y1x1-m,k MD =y2x2-m,所以k ME·k MD=y1x1-m·y2x2-m=y1y2(x1-m)(x2-m)=y1y2x1x2-m(x1+x2)+m2=-93n2+4-12n2-43n2+4-m⎝⎛⎭⎪⎫-83n2+4+m2=-9-12n2+4+8m+3m2n2+4m2=-9(3m2-12)n2+4(m+1)2,要使直线ME,MD的斜率之积恒为定值,3m2-12=0,解得m=±2,当m=2时,存在点M(2,0),使得k ME ·k MD=-9(3m2-12)n2+4(m+1)2=-936=-14,当m=-2时,存在点M(-2,0),使得k ME ·k MD=-9(3m2-12)n2+4(m+1)2=-94,综上,在x轴上存在点M,使得ME,MD的斜率之积恒为定值,当点M的坐标为(2,0)时,直线ME,MD的斜率之积为定值-1 4,当点M的坐标为(-2,0)时,直线ME,MD的斜率之积为定值-9 4 .。
圆锥曲线之定值定点问题 经典例题+题型归纳+解析
又
y1
−
y2
=
k(x1
+
x2
−
4)
=−
8k 1 + 4k2
,
所以直线
PQ
பைடு நூலகம்的斜率
kPQ
=
y1−y2 x1 − x2
=
1 2
,所以直线
PQ
的斜率为定值
,该值为
21 .
方法二 设直线 PQ 的方程为 y = kx + b,
点
P(x1,y1),Q(x2,y2)
则
y1
=
kx1
+
b,y2
=
kx2
+
b,所以
kPA
二、例题精讲
题型一: 斜率为定值
例1.
已知椭圆
C
: xa22
+
y2 b2
=
1(a
>
b
>
0)
的离心率为
3 2
,且过点
A(2,1).若
P
,Q
是椭圆
C
上的两个动
点,且使 ∠PAQ 的角平分线总垂直于 x 轴,试判断直线 PQ 的斜率是否为定值?若是,求出该值;若
不是,请说明理由.
【解析】方法一 :因为椭圆
由
y = kx +
x2 8
+
y2 2
b =
1
得(1
+
4k2)x2
+
8kbx
+
4b2
−
8
=
0
②则
x1
+
x2
=−
8kb 1 + 4k2
2023年高考备考圆锥曲线中的定值定点问题(含答案)
高考材料高考材料专题14 圆锥曲线中的定值定点问题1.〔2023·全国·高考试题〔文〕〕已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过两点.()30,2,,12A B ⎛--⎫⎪⎝⎭(1)求E 的方程;(2)设过点的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足.证()1,2P -MT TH =明:直线HN 过定点.(答案)(1)22143y x +=(2) (0,2)-(解析) (分析)〔1〕将给定点代入设出的方程求解即可;〔2〕设出直线方程,与椭圆C 的方程联立,分情况商量斜率是否存在,即可得解.(1)解:设椭圆E 的方程为,过,221mx ny +=()30,2,,12A B ⎛--⎫⎪⎝⎭则,解得,,41914n m n =⎧⎪⎨+=⎪⎩13m =14n =所以椭圆E 的方程为:.22143y x +=(2),所以,3(0,2),(,1)2A B --2:23+=AB y x ①假设过点的直线斜率不存在,直线.代入, (1,2)P -1x =22134x y +=可得,,代入AB 方程,可得(1,MN223y x =-,由得到.求得HN 方程:(3,T MT TH =(5,H -+,过点. (22y x =-(0,2)-②假设过点的直线斜率存在,设. (1,2)P -1122(2)0,(,),(,)kx y k M x y N x y --+=联立得, 22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩22(34)6(2)3(4)0k x k k x k k +-+++=可得,, 1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩且1221224(*)34kx y x y k -+=+联立可得 1,223y y y x =⎧⎪⎨=-⎪⎩111113(3,),(36,).2y T y H y x y ++-可求得此时,1222112:()36y y HN y y x x y x x --=-+--将,代入整理得, (0,2)-12121221122()6()3120x x y y x y x y y y +-+++--=将代入,得 (*)222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-2.〔2023·全国·高考试题〕已知椭圆C 的方程为,右焦点为.22221(0)x y a b a b +=>>F 〔1〕求椭圆C 的方程;〔2〕设M ,N 是椭圆C 上的两点,直线与曲线相切.证明:M ,N ,F 三点共线的充要条件是MN 222(0)x y b x +=>||MN =(答案)〔1〕;〔2〕证明见解析.2213xy +=(解析) (分析)〔1〕由离心率公式可得,即可得解;a =2b 〔2充分性:设直线,由直线与圆相切得,联立直线与椭圆方程结合弦长公式可得():,0MN y kx b kb =+<221b k =+,即可得解.=1k =±(详解)〔1〕由题意,椭圆半焦距 c =c e a ==a =又,所以椭圆方程为;2221b a c =-=2213x y +=〔2〕由〔1〕得,曲线为,221(0)x y x +=>当直线的斜率不存在时,直线,不合题意; MN :1MN x =当直线的斜率存在时,设,MN ()()1122,,,M xy N x y 必要性:假设M ,N ,F 三点共线,可设直线即,(:MN y k x =0kxy -=由直线与曲线,解得,MN 221(0)x y x +=>11k =±联立可得,所以,(2213y x x y ⎧=±⎪⎨⎪+=⎩2430x -+=121234x x x x +=⋅=,高考材料高考材料所以必要性成立;充分性:设直线即, ():,0MN y kx b kb =+<0kx y b -+=由直线与曲线,所以,MN 221(0)x y x +=>1=221b k =+联立可得, 2213y kx b x y =+⎧⎪⎨+=⎪⎩()222136330k x kbx b +++-=所以, 2121222633,1313kb bx x x x k k-+=-⋅=++===化简得,所以,()22310k -=1k =±所以,所以直线或,1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =y x =-所以直线过点,M ,N ,F 三点共线,充分性成立; MN F 所以M ,N ,F 三点共线的充要条件是||MN =3.〔2023·青海·海东市第—中学模拟预测〔理〕〕已知椭圆M :〔a >b >0,AB 为过椭圆右22221x y a b +=焦点的一条弦,且AB 长度的最小值为2. (1)求椭圆M 的方程;(2)假设直线l 与椭圆M 交于C ,D 两点,点,记直线PC 的斜率为,直线PD 的斜率为,当()2,0P 1k 2k 12111k k +=时,是否存在直线l 恒过肯定点?假设存在,请求出这个定点;假设不存在,请说明理由.(答案)(1)22142x y +=(2)存在, ()2,4--(解析) (分析)〔1〕由题意求出,即可求出椭圆M 的方程.,,a b c 〔2〕设直线l 的方程为m (x -2)+ny =1,,,联立直线l 的方程与椭圆方程()11,C x y ()22,D x y ,得,则,化简得,即可求()()222242x y x -+=--()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭12114114n k k m +=-=+14m n +=-出直线l 恒过的定点. (1)因为〔a >b >0,过椭圆右焦点的弦长的最小值为,22221x y a b +=222b a=所以a =2,,所以椭圆M 的方程为.c b =22142x y +=(2)设直线l 的方程为m (x -2)+ny =1,,, ()11,C x y ()22,D x y 由椭圆的方程,得.2224x y +=()()222242x y x -+=--联立直线l 的方程与椭圆方程,得,()()()2222422x y x m x ny ⎡⎤⎣⎦-+=---+即,, ()()()221424220m x n x y y +-+-+=()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭所以, 12121222114114x x nk k y y m--+=+=-=+化简得,代入直线l 的方程得,14m n +=-()1214m x m y ⎛⎫-+--= ⎪⎝⎭即,解得x =-2,y =-4,即直线l 恒过定点. ()1214m x y y ---=()2,4--4.〔2023·上海松江·二模〕已知椭圆的右顶点坐标为,左、右焦点分别为、,且2222:1(0)x y a b a bΓ+=>>(2,0)A 1F 2F ,直线交椭圆于不同的两点和.122F F =l ΓM N (1)求椭圆的方程;Γ(2)假设直线的斜率为,且以为直径的圆经过点,求直线的方程; l 1MN A l (3)假设直线与椭圆相切,求证:点、到直线的距离之积为定值.l Γ1F 2F l (答案)(1);22143x y +=(2)或; 2y x =-27y x =-(3)证明见解析. (解析) (分析)〔1〕依据焦距及椭圆的顶点求出即可得出;,a b 〔2〕设直线的方程为 ,联立方程,由根与系数的关系及求解即可;l y x b =+0AM AN ⋅=〔3〕分直线斜率存在与不存在商量,当斜率不存在时直接计算可得,当斜率存在时,设直线的方程为 ,l y kx b =+依据相切求出关系,再由点到直线的距离直接计算即可得解. ,b k (1)∵ ∴,1222F F c ==1c =∵,由 得,∴2a =222a b c =+241=+b 22=34=b a ,高考材料高考材料所以椭圆的方程:;Γ22143x y +=(2)∵直线的斜率为,故可设直线的方程为 , l 1l y x b =+设,,,1(M x 1)y 2(N x 2)y 由 可得, 22143y x b x y =+⎧⎪⎨+=⎪⎩22784120x bx b ++-=则,,1287b x x +=-2124127b x x -=∵以为直径的圆过右顶点,∴,∴MN A 0AM AN ⋅=1212(2)(2)0x x y y --+=∴21212122211))2()4((2(2)()4b b x x x x x x x x b x x b -+++=+-+++++,整理可得,2241282(2)4077b b b b -=⋅--⋅++=271640b b ++=∴或,2b =-27b =-∵, 2226447(412)16(213)b b b ∆=-⋅⋅-=⋅-当或时,均有2b =-27b =-0∆>所以直线的方程为或. l 2y x =-27y x =-(3)椭圆左、右焦点分别为、Γ1(1,0)F -2(1,0)F ①当直线平行于轴时,∵直线与椭圆相切,∴直线的方程为, l y l Γl 2x =±此时点、到直线的到距离分别为,∴. 1F 2F l 121,3d d ==123d d ⋅=②直线不平行于轴时,设直线的方程为 ,l y l y kx b =+联立,整理得, 2234120y kx b x y =+⎧⎨+-=⎩222(34)84120k x kbx b +++-=,222222644(34)(412)16(9123)k b k b k b ∆=-+-=⋅+-∵直线与椭圆相切,∴,∴ l Γ0∆=2234b k =+∵到直线的距离为到直线的距离为,1(1,0)F -l 1=d 2(1,0)F -l 2=d ∴,123d d ⋅=∴点、到直线的距离之积为定值由.1F 2F l 35.〔2023·上海浦东新·二模〕已知分别为椭圆:的左、右焦点, 过的直线交椭圆于两12F F 、E 22143x y+=1F l E ,A B 点.(1)当直线垂直于轴时,求弦长;l x AB(2)当时,求直线的方程;2OA OB ⋅=-l (3)记椭圆的右顶点为T ,直线AT 、BT 分别交直线于C 、D 两点,求证:以CD 为直径的圆恒过定点,并求出定6x =点坐标. (答案)(1)3 (2))1y x =+(3)证明见解析;定点 ()()4080,,,(解析) (分析)〔1〕将代入椭圆方程求解即可;1x =-〔2〕由〔1〕知当直线的斜率存在,设直线的方程为:,联立直线与椭圆的方程,得出l l ()1y k x =+,设可得韦达定理,代入计算可得斜率;()22223484120k xk x k +++-=()()1122A x y B x y ,,,2OA OB ⋅=-〔3〕分析当直线的斜率不存在时,由椭圆的对称性知假设以CD 为直径的圆恒过定点则定点在轴上,再以CD 为l x 直径的圆的方程,令,代入韦达定理化简可得定点 0y =(1)由题知,将代入椭圆方程得 ()110F -,1x =-332y AB =±∴=,(2)由〔1〕知当直线的斜率不存在时,此时,不符合题意,舍去l 331122A B ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,OA ·OB =14直线的斜率存在,设直线的方程为:,∴l l ()1y k x =+联立得,设,则, ()221431x y y k x ⎧+=⎪⎨⎪=+⎩()22223484120k x k x k +++-=()()1122A x y B x y ,,,2122212283441234k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩由OA ·OB =x 1x 2+y 1y 2=x 1x 2+k (x 1+1)k (x 2+1)=(1+k 2)x 1x 2+k 2(x 1+x 2)+k 2=(1+k 2)4k2‒123+4k 2+k2‒8k 23+4k 2,解得+k 2=‒5k 2‒123+4k 2=‒222k k ==,直线的方程为..∴l )1y x =+(3)①当直线的斜率不存在时, l ()33112022A B T ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,,,直线AT 的方程为,C 点坐标为, 112y x =-+()62-,直线BT 的方程为,D 点坐标为,以CD 为直径的圆方程为,由椭圆的对称性知假设以112y x =-()62,()2264x y -+=CD 为直径的圆恒过定点则定点在轴上,令,得即圆过点. x 0y =48x x ==,.()()4080,,,高考材料高考材料②当直线的斜率存在时,同〔2〕联立,直线AT 的方程为, l ()1122y y x x =--C 点坐标为,同理D 点坐标为,以CD 为直径的圆的方程为11462y x ⎛⎫ ⎪-⎝⎭,22462y x ⎛⎫ ⎪-⎝⎭,,()()12124466022y y x x y y x x ⎛⎫⎛⎫--+--= ⎪⎪--⎝⎭⎝⎭令,得,0y =()2121212161236024y y x x x x x x -++=-++由, ()()()()22222121222121212122241281611611343416441282424243434k k k k x k x k k y y k k x x x x x x x x k k ⎛⎫--++ ⎪++++⎝⎭===----++-++-+++得,解得,即圆过点. 212320x x -+=48x x ==,()()4080,,,综上可得,以CD 为直径的圆恒过定点. ()()4080,,,6.〔2023·上海长宁·二模〕已知分别为椭圆的上、下顶点,是椭圆的右焦点,是椭圆,A B 222Γ:1(1)xy a a+=>F ΓM上异于的点.Γ,A B(1)假设,求椭圆的标准方程 π3AFB ∠=Γ(2)设直线与轴交于点,与直线交于点,与直线交于点,求证:的值仅与有关 :2l y =y P MA Q MB R PQ PR ⋅a (3)如图,在四边形中,,,假设四边形面积S 的最大值为,求的值.MADB MA AD ⊥MB BD ⊥MADB 52a (答案)(1)2214x y +=(2)证明见解析 (3) 2a =(解析) (分析)〔1〕依据已知推断形状,然后可得;AFB △〔2〕设,表示出直线、的方程,然后求Q 、R 的坐标,直接表示出所求可证; ()11,M x y AM BM 〔3〕设,,依据已知列方程求解可得之间关系,表示出面积,结合已知可得. ()11,M x y ()44,D x y 14,x x (1)因为,,所以是等边三角形, AF BF =π3AFB ∠=AFB △因为,,所以,2AB =AF a =2a =得椭圆的标准方程为.2214x y +=(2)设,,, ()11,M x y ()2,2R x ()3,2Q x 因为,()0,1A()0,1B -所以直线、的方程分别为AM BM , 111:1AM y l y x x -=+, 111:1BM y l y x x +=-所以,, 12131x x y =+1311x x y =-又221121x y a-=所以, 2211221331x PQ PR x x a y ⋅===-所以的值仅与有关. PQ PR ⋅a (3)设,, ()11,M x y ()44,D x y 因为,,MA DA ⊥MB DB ⊥所以,()()1414110x x y y +--=()()1414110x x y y +++=高考材料高考材料两式相减得,41y y =-带回原式得,214110x x y +-=因为,所以, 221121x y a+=142x x a =-1412111MAB DAB S S S x x x a a a ⎛⎫=+=+=+≤+ ⎪⎝⎭A A 因为的最大值为 ,所以 ,得.S 52152a a +=2a =7.〔2023·福建省福州格致中学模拟预测〕圆:与轴的两个交点分别为,,点为圆O 224x y +=x ()12,0A -()22,0A M 上一动点,过作轴的垂线,垂足为,点满足O M x N R 12NR NM =(1)求点的轨迹方程;R (2)设点的轨迹为曲线,直线交于,两点,直线与交于点,试问:是否存在一个定点R C 1x my =+C P Q 1A P 2A Q S T ,当变化时,为等腰三角形m 2A TS (答案)(1)2214x y +=(2)存在,证明见解析 (解析) (分析)〔1〕设点在圆上,故有,设,依据题意得,,再代入圆()00,M x y 224x y +=22004x y +=(),R x y 0x x =012y y =即可求解;〔2〕先推断斜率不存在的情况;再在斜率存在时,设直线的方程为,与椭圆联立224x y +=l 1x my =+得:,,,再依据题意求解推断即可. ()224230m y my ++-=12224m y y m -+=+12234y y m -=+(1)设点在圆上, ()00,M x y 224x y +=故有,设,又,可得,, 2204x y +=(),R x y 12NR NM =0x x =012y y =即,0x x =02y y =代入可得,22004x y +=()2224x y +=化简得:,故点的轨迹方程为:.2214x y +=R 2214x y +=(2)依据题意,可设直线的方程为,l 1x my =+取,可得,, 0m=P ⎛ ⎝1,Q ⎛ ⎝可得直线的方程为的方程为1APy x =+2AQ y x =-联立方程组,可得交点为;(14,S 假设,,由对称性可知交点,1,P ⎛ ⎝Q ⎛ ⎝(24,S 假设点在同一直线上,则直线只能为:上,S l 4x =以下证明:对任意的,直线与直线的交点均在直线:上. m 1A P 2A Q S l 4x =由,整理得 22114x my x y =+⎧⎪⎨+=⎪⎩()224230m y my ++-=设,,则, ()11,P x y ()22,Q x y 12224m y y m -+=+12234y y m -=+设与交于点,由,可得 1A P l ()004,S y 011422y y x =++10162y y x =+设与交于点,由,可得, 2A Q l ()004,S y '022422y y x '=--20222y y x '=-因为 ()()()()122112102126123622222y my y my y y y y x x x x --+'-=-=+-+-, ()()()()()22121211121212464402222m mmy y y y m m x x x x ----+++===+-+-因为,即与重合, 00y y '=0S 0S '所以当变化时,点均在直线:上,m S l 4x =因为,,所以要使恒为等腰三角形,只需要为线段的垂直平分线即可,依据对称性()22,0A ()4,S y 2A TS 4x =2A T 知,点.()6,0T 故存在定点满足条件.()6,0T 8.〔2023·全国·模拟预测〕已知椭圆的离心率为,椭圆C 的左、右顶点分别为A ,B ,上顶点()2222:10x y C a b a b+=>>12为D ,.1AD BD ⋅=-(1)求椭圆C 的方程;(2)斜率为的动直线l 与椭圆C 相交于M ,N 两点,是否存在定点P 〔直线l 不经过点P 〕,使得直线PM 与直线PN 12的倾斜角互补,假设存在这样的点P ,请求出点P 的坐标;假设不存在,请说明理由.(答案)(1)22143x y +=(2)存在,点P 的坐标为或31,2⎛⎫ ⎪⎝⎭31,2⎛⎫-- ⎪⎝⎭(解析) (分析)高考材料高考材料〔1〕利用数量积公式及离心率可得a ,b ,c 从而得到椭圆方程; 〔2〕设直线l 的方程为,与椭圆方程联立,写出韦达定理,由题意可得直线PM 与直线PN 的斜率之和为12y x m =+零,利用韦达定理化简可得结果. (1)设椭圆C 的焦距为2c ,由题意知,,,(),0A a -(),0B a ()0,D b 所以,,所以,解得. (),AD a b = (),BD a b =- 2221AD BD a b c ⋅=-+=-=- 1c =又椭圆C 的离心率为,所以,1222a c ==b ==故椭圆C 的方程为.22143x y +=(2)假设存在这样的点P ,设点P 的坐标为,点M ,N 的坐标分别为,,设直线l 的方程为()00,x y ()11,x y ()22,x y . 12y x m =+联立方程消去y 后整理得.221,4312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩2230x mx m ++-=,得,()222431230m m m ∆=--=->22m -<<有 12212,3.x x m x x m +=-⎧⎨=-⎩假设直线PM 与直线PN 的倾斜角互补,则直线PM 与直线PN 的斜率之和为零,所以 01020102010201021122y x m y x m y y y y x x x x x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪--⎝⎭⎝⎭+=+----()()()()()()()()()()010*********0102010222222222222y m x x x y m x x x y m x y m x x x x x x x x x ---+---⎡⎤⎡⎤----⎣⎦⎣⎦=+=----()()()()()()()()()()20000012121200102010222223222222y m x m m mx y m x x x x x x x x x x x x x x x x -++-+--++-+⎡⎤⎣⎦==----.()()()()()()()()0000000001020102462322323022x y y x m x y y x mx x x x x x x x -+--+-===----所以解得或0000230,230,x y y x -=⎧⎨-=⎩001,32x y =⎧⎪⎨=⎪⎩001,3.2x y =-⎧⎪⎨=-⎪⎩故存在点P 符合条件,点P 的坐标为或.31,2⎛⎫ ⎪⎝⎭31,2⎛⎫-- ⎪⎝⎭9.〔2023·内蒙古·海拉尔第二中学模拟预测〔文〕〕已知椭圆的两个焦点分别为和,椭圆()2222:10x y C a b a b +=>>1F 2F 上一点到和的距离之和为,且椭圆C 1F 2F 4C (1)求椭圆的方程;C (2)过左焦点的直线交椭圆于、两点,线段的中垂线交轴于点〔不与重合〕,是否存在实数,使1F l A B AB x D 1F λ恒成立?假设存在,求出的值;假设不存在,请说出理由.1AB DF λ=λ(答案)(1)2214x y +=(2)存在,λ=(解析) (分析)〔1〕由椭圆的定义可求得的值,依据椭圆的离心率求得的值,再求出的值,即可得出椭圆的方程; a c b C 〔2〕分析可知,直线不与轴垂直,分两种情况商量,一是直线与轴重合,二是直线的斜率存在且不为零,设l x l x l 出直线的方程,与椭圆方程联立,求出、,即可求得的值. l AB 1DF λ(1)解:由椭圆的定义可得,则,因为,则, 24a =2a=ce a ==c ∴=1b ==因此,椭圆的方程为.C 2214x y +=(2)解:假设直线与轴垂直,此时,线段的垂直平分线为轴,不符合题意; l x AB x 假设直线与轴重合,此时,线段的垂直平分线为轴,则点与坐标原点重合,lx AB y D 此时,1AB DF λ===假设直线的斜率存在且不为零时,设直线的方程为,设点、,l l )0x my m =≠()11,Ax y ()22,B x y 联立可得, 2244xmy x y ⎧=⎪⎨+=⎪⎩()22410m y +--=,()()22212441610m m m ∆=++=+>由韦达定理可得, 12y y +=12214yy m =-+则()121222my y x x ++==所以,线段的中点为, AB M ⎛ ⎝高考材料高考材料所以,线段的垂直平分线所在直线的方程为,AB y m x ⎛=- ⎝在直线方程中,令可得y m x ⎛=-+ ⎝0y=x =故点,D ⎛⎫ ⎪ ⎪⎝⎭,()22414m m +=+因此,. ()221414m AB DF m λ+===+综上所述,存在,使得恒成立.λ=1AB DF λ=10.〔2023·河南安阳·模拟预测〔文〕〕已知椭圆上一个动点N 到椭圆焦点的距离的最2222:1(0)C bb x a a y +>>=(0,)Fc 小值是,且长轴的两个端点与短轴的一个端点B 构成的的面积为2.212,A A 12A A B △(1)求椭圆C 的标准方程;(2)如图,过点且斜率为k 的直线l 与椭圆C 交于P ,Q 两点.证明:直线与直线的交点T 在定直线4(0,)M -1A P 2A Q 上.(答案)(1)2214y x +=(2)证明见解析 (解析) (分析)〔1〕依据题意得到,再解方程组即可.22221222a c ab a b c ⎧-=⎪⎪⨯=⎨⎪=+⎪⎩〔2〕首先设直线,,,与椭圆联立,利用韦达定理得到,.:4l y kx =-()11,P x y ()22,Q x y 12284k x x k +=+122124x x k =+,,依据,即可得到,从而得到直线与直线的交点1112:2PA y l y x x ++=2222:2QA y l y x x --=2123y y +=--1y =-1A P 2A Q T 在定直线上. 1y =-(1)由题知:,解得,即:椭圆22221222a c ab a b c⎧-=⎪⎪⨯=⎨⎪=+⎪⎩21a b c ⎧=⎪=⎨⎪=⎩22:14+=y C x (2)设直线,,,,, :4l y kx =-()11,P x y ()22,Q x y ()10,2A -()20,2A . ()222214812044y x k x kx y kx ⎧+=⎪⇒+-+=⎨⎪=-⎩,. 12284k x x k +=+122124x x k =+则,, 1112:2PA y l y x x ++=2222:2QA y l y x x --=则, ()()()()1212122212112122222266y x kx x kx x x y y y x kx x kx x x +--+===----因为, ()1212212342k kx x x x k ==++所以,解得. ()()12212121213232123293362x x x x x y y x x x x x +--+===---++-1y =-所以直线与直线的交点在定直线上.1A P 2A Q T 1y =-11.〔2023·安徽省舒城中学三模〔理〕〕已知椭圆,过原点的直线交该椭圆于,两点〔点在22:184x y Γ+=O ΓA B A x轴上方〕,点,直线与椭圆的另一交点为,直线与椭圆的另一交点为.()4,0E AE C BE D高考材料高考材料(1)假设是短轴,求点C 坐标;AB Γ(2)是否存在定点,使得直线恒过点?假设存在,求出的坐标;假设不存在,请说明理由.T CD T T (答案)(1);82(,)33(2)存在,.8(,0)3T (解析) (分析)〔1〕两点式写出直线,联立椭圆方程并结合韦达定理求出C 坐标; AE 〔2〕设有,联立椭圆求C 坐标,同理求坐标,商量、,推断直线恒过00(,)A x y 00:(4)4=--y AE y x x D 00x ≠00x =CD 定点即可. (1)由题设,,而,故直线为,(0,2)A ()4,0E AE 240x y +-=联立并整理得:,故,而,22:184x y Γ+=23840y y -+=83A C y y +=2A y =所以,代入直线可得,故C 坐标为.23C y =AE 284233C x =-⨯=82(,)33(2)设,则, 00(,)A x y 00:(4)4=--y AE y x x 由,故, ()00224428y y x x x y ⎧=-⎪-⎨⎪+=⎩2220202(4)8(4)+-=-y x x x 由韦达定理有, 20222222000000002220000020328(4)328(4)16(8)8(4)64242(4)22482481(4)C y x y x x x x x x x y x y x x x --------====-+--+-所以,故,同理得:,,00833C x x x -=-003C y y x =-00833D x x x +=+03D y y x -=+当时,取,则,同理, 00x ≠8(,0)3T 0000003383833TCy x yk x x x -==----003TD y k x =-故共线,此时过定点.,,T C D CD 8(,0)3T 当时,,此时过定点.00x =83C D x x ==CD 8(,0)3T 综上,过定点.CD 8(,0)3T 12.〔2023·广东茂名·二模〕已知圆O :x 2+y 2=4与x 轴交于点,过圆上一动点M 作x 轴的垂线,垂足为H ,(2,0)A -N 是MH 的中点,记N 的轨迹为曲线C . (1)求曲线C 的方程;(2)过作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.6(,0)5-(答案)(1);2212x y +=(2)证明见解析. (解析) (分析)〔1〕运用相关点法即可求曲线C 的方程;( 2)首先对直线的斜率是否存在进行商量,再依据几何关系分别求出P 、Q 、S 三点的坐标,进而表示出直线AP , AS l 的斜率,再依据斜率的表达式进行化简运算,得出结论. 12,k k (1)设N 〔x 0,y 0〕,则H 〔x 0,0〕, ∵N 是MH 的中点,∴M 〔x 0,2y 0〕,又∵M 在圆O 上,,2200(2)4y x +=∴即; 220014x y +=∴曲线C 的方程为:;2214x y +=(2)①当直线l 的斜率不存在时,直线l 的方程为:,65x =-假设点P 在轴上方,则点Q 在x 轴下方,则,6464(,),(,5555P Q ---直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称, ∴,64(,55S1244001551,,6642255APAS k k k k --======-++;124k k ∴=假设点P 在x 轴下方,则点Q 在x 轴上方,高考材料高考材料同理得:,646464(,(,(,555555P Q S ----,1244001551,6642255APAS k k k k ----===-∴===--++∴k 1=4k 2;②当直线l 的斜率存在时,设直线l 的方程为:,6,5x my =-由与联立可得, 6,5x my =-2214x y +=221264(4)0525m m y y +--=其中,22144644(4)02525m m ∆=+⨯+⨯>设,则,则,1122(,),(,)P x y Q x y 22(,)S x y --1212221264525,44m y y y y m m -+==++∴ 112212112200,,2222AP AS k y y y y k k k x x x x ---======++-+-则121122121216()2542()5y my k y x k x y my y --=⋅=++,∴k 1=4k 2. 121112212121112226464161616252554545444641216()4445525525454545my y y y y m m my y y y y m m y y m m m -----++====++---+⋅--+++13.〔2023·安徽·合肥市第八中学模拟预测〔文〕〕生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在y 轴上,中心在坐标原点,从下焦点射出的光线1F 经过椭圆镜面反射到上焦点,这束光线的总长度为42F 离心率e <(1)求椭圆C 的标准方程;(2)假设从椭圆C 中心O 出发的两束光线OM 、ON ,分别穿过椭圆上的A 、B 点后射到直线上的M 、N 两点,假4y =设AB 连线过椭圆的上焦点,试问,直线BM 与直线AN 能交于肯定点吗?假设能,求出此定点:假设不能,请说2F 明理由.(答案)(1)22143y x +=(2)能,定点为〔0,〕85(解析) (分析)〔1〕由条件列方程求可得椭圆方程;,,a b c〔2〕联立方程组,利用设而不求法结论完成证明. (1)由已知可设椭圆方程为,22221(0)y x a b a b+=>>则,24a =122c b ⨯⨯=222ab c =+又e <所以,21a b c ===,故椭圆C 的标准方程为22143y x +=(2)设AB 方程为,由,得, 1y kx =+221431y x y kx ⎧+=⎪⎨⎪=+⎩22(34)690k x kx ++-=222(6)36(34)1441440k k k ∆=++=+>设,则.. ()()1122A x y B x y ,,,121222693434k x x x x k k --+==++由对称性知,假设定点存在,则直线BM 与直线AN 交于y 轴上的定点,由得,则直线BM 方程为, 114y y xx y ⎧=⎪⎨⎪=⎩1144x M y ⎛⎫ ⎪⎝⎭,211121444()4y xy x x y x y --=--令,则0x =122114(4)44x y y x y x -=+-()()112211414114x x kx x kx x ⎡⎤-+=+⎢⎥+-⎢⎥⎣⎦112211234(1)4x kx x x x kx x -=+-+2121124()4x x x x kx x -=-+又, 12123()2x x kx x +=则,21212112214()4()83554()()22x x x x y x x x x x x --===-++-所以,直线BM 过定点〔0,〕,同理直线AN 也过定点.858(0,5则点〔0,〕即为所求点.8514.〔2023·全国·模拟预测〕设椭圆的右焦点为F ,左顶点为A .M 是C 上异于A 的动点,过()222:10416x y C b b+=<<F 且与直线AM 平行的直线与C 交于P ,Q 两点〔Q 在x 轴下方〕,且当M 为椭圆的下顶点时,.2AM FQ =高考材料高考材料(1)求椭圆C 的标准方程;(2)设点S ,T 满足,,证明:平面上存在两个定点,使得T 到这两定点距离之和为定值. PS SQ = FS ST =(答案)(1)2116x =(2)证明见解析 (解析) (分析)〔1〕由向量的坐标运算用表示出点坐标,代入椭圆方程求得参数,得椭圆方程; ,b c Q b 〔2〕设,直线PQ 的斜率不为0,设其方程为,设.(), 0F c x m y c =+1122(,),(,)P x y Q x y 直线方程代入椭圆方程应用韦达定理得,利用向量相等的坐标表示求得点坐标,得出点坐标满足一个椭圆12y y +T T 方程,然后再由椭圆定义得两定点坐标. (1)当M 为椭圆的下顶点时,,则.(4,)AM b =- 12,22b FQ AM ⎛⎫==- ⎪⎝⎭ 设C 的焦距为2c ,则,即.2,2b Q c ⎛⎫+- ⎪⎝⎭2,2b Q ⎫-⎪⎭因为Q 在C,解得.114=()22162b =-=则椭圆C 的标准方程为. 2116x =(2)设,直线PQ 的斜率不为0,设其方程为,设.(), 0F c x m y c =+1122(,),(,)P x y Q x y 联立直线PQ 和C 的方程,消x 得.()22220y ++-=,12y y +=1212()2x x m y y c +=++=由得S 为弦PQ 的中点,故. PS SQ = S由得S是线段FT 的中点,故.FS ST =T设T 的坐标为,则,,故(), xy x c =y c=,即,2211x y c c ⎛⎫⎫== ⎪⎪⎝⎭⎭221x c +=这说明T 在中心为原点,为长轴端点,为短轴端点的椭圆上运动,故T 到两焦点的(,0)c ±0,⎛⎫ ⎪ ⎪⎝⎭,0⎛⎫ ⎪ ⎪⎝⎭距离之和为定值.代入得两焦点坐标为.(()4,0±-综上所述,平面上存在两定点,,使得T 到这两定点距离之和为定值.()4-()4-+15.〔2023·上海交大附中模拟预测〕已知椭圆是左、右焦点.设是直线上的一221214x y F F Γ+=:,,M ()2l x t t =>:个动点,连结,交椭圆于.直线与轴的交点为,且不与重合.1MF Γ()0N N y ≥l x P M P(1)假设的坐标为,求四边形的面积; M 58⎫⎪⎪⎭,2PMNF (2)假设与椭圆相切于且,求的值;PN ΓN 1214NF NF ⋅= 2tan PNF ∠(3)作关于原点的对称点,是否存在直线,使得上的任一点到N N '2F N 1F N '2F N 的方程和的坐标,假设不存在,请说明理由.2F N N(答案)(3)存在;; y x =126N ⎫⎪⎪⎭(解析) (分析)〔1〕依据点斜式方程可得,再联立椭圆方程得到,再依据求解1:MF l y x =12N ⎫⎪⎭2112PMNF PF M NF F S S S =-△△即可;〔2〕设,依据相切可知,直线与椭圆方程联立后判别式为0,得到,再依据,:()PN l y k x t =-2214k t =-1214NF NF ⋅=化简可得,再依据直角三角形中的关系求解的值即可;t =12N ⎫⎪⎭2tan PNF ∠〔3〕设,表达出,再依据列式化简可得,结合()00,N x y 2NF l 22O NF d -=2148k =k =和直线的方程N 2F N高考材料高考材料(1)由题意,,故()1F1MF k ==1:MF l y x =与椭圆方程联立 ,可得:,即,又由题意,故2214x y y x⎧+=⎪⎪⎨⎪=⎪⎩213450x+-=(130xx +=N x >解得,故且x =12N ⎫⎪⎭121122NF F S =⋅=△11528PF M S ==△则 2112PMNF PF M NF F S S S =-△△(2)由于直线PN 的斜率必存在,则设:()PN l y k x t =-与椭圆方程联立,可得:2214()x y y k x t ⎧+=⎪⎨⎪=-⎩()22222148440k x k tx k t +-+-=由相切,,则 ()22216140k k t ∆=+-=2214k t =-同时有韦达定理,代入有,化简得,故 21228214N k t x x x k +==+2214k t =-2244414N t t x t -=+-4N x t =2222414N N x t y t -=-=而,解得 222122122134N N t NF NF x y t -⋅=+-==2t =>则,所以轴,故在直角三角形中,12N ⎫⎪⎭2NF x ⊥2PNF A 222tan PF PNF NF ∠===(3)由于N 与,与是两组关于原点的对称点,由对称性知N '1F 2F 四边形是平行四边形,则与是平行的,12F NF N '2NF 1N F '故上的任一点到的距离均为两条平行线间的距离d .1F N '2F N 设,其中,易验证,当时,与之间的距离为()00,N xy 0(x ∈0=x 2NF 1N F 'k =则,即,2(:NF y l k x =0kx y -=发觉当时,,整理得 0≠x 22O NF d d -===221914k k =+2148k =代入,代入整理得,即由k =(220048y x =220014x y =-20013450x --=(00130x x -=于,所以,故0(x ∈0x=126N ⎫⎪⎪⎭k ==则的直线方程为 2F Nly x =16.〔2023·全国·模拟预测〔理〕〕已知椭圆:的右顶点为A ,上顶点为,直线的斜率为C ()222210x y a b a b+=>>B AB ,原点到直线O AB (1)求的方程;C (2)直线交于,两点,,证明:恒过定点.l C M N 90MBN ∠=︒l (答案)(1)22143x y +=(2)证明见解析 (解析) (分析)〔1〕题意得,依据AB 斜率,可得AB 的方程,依据点到直线距离公式,可求得a (,0),(0,)A a B b b a =值,进而可得b 值,即可得答案.〔2〕分析得直线l 的斜率存在,设,与椭圆联立,可得关于x 的一元二次方程,依据韦1122,(,),(,)y kx m M x y N x y =+达定理,可得表达式,进而可得、的表达式,依据,可得,依据数量1212,x x x x +12y y 12y y +90MBN ∠=︒0MB NB⋅=积公式,化简计算,可得m 值,分析即可得证 (1)由题意得,(,0),(0,)A aB b 所以直线AB 的斜率为b a =-b a =又直线AB的方程为, )y x a =-20y +=所以原点到直线的距离, O AB d 2a =所以.b =22143x y +=(2)由椭圆的对称性可得,直线l 的斜率肯定存在,设直线l 的方程为, 1122,(,),(,)y kx m M x y N x y =+联立方程,消去y 可得, 22143x y y kx m ⎧+=⎪⎨⎪=+⎩222(34)84120k x kmx m +++-=所以, 21212228412,3434km m x x x x k k --+==++所以,, 22221212122312()34m k y y k x x km x x m k-=+++=+121226()234m y y k x x m k +=++=+高考材料高考材料因为,所以,90MBN ∠=︒MB BN ⊥因为,所以,B 1122(),()MB x y NB x y =-=--所以,22212121222241263123)30343434m m m k MB NB x x y y y y k k k --⋅=+++=++=+++ 整理得,解得或,2730m --=m=m =因为,所以B m 所以直线l 的方程为,得证y kx =0,⎛ ⎝17.〔2023·全国·模拟预测〔理〕〕已知椭圆的左、右焦点分别为,,,分别为左、2222:1(0)x y C a b a b+=>>1F 2F 1A 2A 右顶点,,分别为上、下顶点.假设四边形,且,,成等差数列. 1B 2B 1122B F B F 212F F 212B B 212A A (1)求椭圆的标准方程;C (2)过椭圆外一点(不在坐标轴上)连接,,分别与椭圆交于,两点,直线交轴于点.试P P 1PA 2PA C M N MN x Q 问:,两点横坐标之积是否为定值?假设为定值,求出定值;假设不是,说明理由. P Q (答案)(1);22132x y +=(2)为定值,理由见解析. 32P Q x x =(解析) (分析)〔1〕应用菱形面积公式、等差中项的性质及椭圆参数关系求椭圆参数,写出椭圆标准方程.〔2〕由题意分析知,所在直线斜率均存在且不为0、斜率和差均不为0,设直线,联立椭圆求,1PA 2PA 1PA 2PA M 的坐标及点横坐标,应用点斜式写出直线,令求横坐标,即可得结论.N P MN 0y =Q (1)由题设知:,可得, 2222222844bc b a c a b c ⎧=⎪⎪=+⎨⎪=+⎪⎩22321a b ⎧=⎪⎨⎪=⎩所以椭圆标准方程为.22132x y +=(2)由题意,,所在直线斜率均存在且不为0、斜率和差均不为0,1PA 2PA 设为,联立椭圆方程整理得:, 1PA (y k x =22229(23)302k k x x +++-=所以1M A x x +=1A x =M x ==设为,联立椭圆方程整理得:,2PA (y m x =22229(23)302m m x x+-+-=所以, 2N A x x +=2Ax=N x =所以M y k=⋅=N y m =⋅=联立直线、可得:,1PA 2PA P x=直线为,令,则 MN2()[23m k y x km +=⋅-0y =Q x =所以为定值.32P Q x x ==18.〔2023·山西·太原五中二模〔文〕〕已知椭圆,过原点的两条直线和分别与椭圆交于和,2221x y +=1l 2l A B △C D △记得到的平行四边形的面积为.ACBD S (1)设,用的坐标表示点到直线的距离,并证明; ()()1122,,,A x y C x y A C △C 1l 12212S x y x y =-(2)请从①②两个问题中任选一个作答 ①设与的斜率之积,求面积的值.1l 2l 12-S ②设与的斜率之积为.求的值,使得无论与如何变动,面积保持不变.1l 2l m m 1l 2l S (答案)(1)(2)见解析 (解析) (分析)〔1〕商量和,分别写出直线的方程,由距离公式即可求得点到直线的距离,由面积公式即可证明10x ≠10x =1l C 1l ;12212S x y x y =-〔2〕假设选①,设出直线和的方程,联立椭圆求出的坐标,结合〔1〕中面积公式求解即可;假设选②,设1l 2l A C △出直线和的方程,联立椭圆求出的坐标,结合〔1〕中面积公式得到的表达式,平方整理,由含的项1l 2l A C △S 42,k k 系数为0即可求解. (1)高考材料高考材料当时,直线的方程为:,则点到直线的距离为10x ≠1l 11y y x x =C 1l d当时,直线的方程为:,则点到直线的距离为,也满足10x =1l 0x =C 1l 2d x =d 则点到直线;因为C 1l2AB AO ==则;21211222S AB d x x x y y y =⋅=--=(2)假设选①,设,设,直线与椭圆联立可得1122121:,:,2l y k x l y k x k k ===-()()1122,,,A x y C x y 1l 12221y k x x y =⎧⎨+=⎩,()221121k x+=同理直线与椭圆联立可得,不妨令,则2l ()222121k x +=120,0x x >>11x y =,22x y====则122S x y x =-假设选②,设,设,直线与椭圆联立可得,则12:,:m l y kx l y x k ==()()1122,,,A x y C x y 1l 2221y kx x y =⎧⎨+=⎩()22121k x +=,212112x k =+同理可得,则2222221212k x k m m k ==+⎛⎫+ ⎪⎝⎭1221121221222m m x x x kx k x k S y x x k x y =-=-=-⋅⋅⋅,两边平方整理得1222m m k x x k k ==-⋅,()24222222224(48)240Sk S S m m k m S m -++++-=由面积与无关,可得,解得,故时,无论与如何变动,面积保持不S k 2222240480S S S m m ⎧-=⎨++=⎩12S m ⎧=⎪⎨=-⎪⎩12m =-1l 2l S 变.19.〔2023·福建·厦门一中模拟预测〕已知,分别是椭圆的右顶点和上顶点,,A B 2222:1(0)x y C a b a b+=>>||AB =直线的斜率为.AB 12-(1)求椭圆的方程;(2)直线,与,轴分别交于点,,与椭圆相交于点,.证明: //l AB x y M N C D 〔i 〕的面积等于的面积;OCM A ODN △〔ii 〕为定值.22||||CM MD +(答案)(1)2214x y +=(2)〔i 〕证明见解析;〔ii 〕证明见解析 (解析) (分析)〔1〕依据,,由,直线的斜率为求解;(,0)A a (0,)B b ||AB =AB 12-〔2〕设直线的方程为,得到,,与椭圆方程联立,依据,l 12y x m =-+(2,0)M m (0,)N m 11|2|||2=A OCM S m y ,利用韦达定理求解. 21||||2=A ODN S m x 2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+(1)解:、是椭圆的两个顶点,A B 22221(0)x y a b a b+=>>且,直线的斜率为,||AB =AB 12-由,,得 (,0)A a (0,)B b ||AB ==又,解得,, 0102b b k a a -==-=--2a =1b =椭圆的方程为; ∴2214x y +=(2)设直线的方程为,则,,l 12y x m =-+(2,0)M m (0,)N m 联立方程消去,整理得.221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩y 222220x mx m -+-=, 得22248(4)3240m m m ∆=--=->28m <设,,,.1(C x 1)y 2(D x 2)y高考材料高考材料,.122x x m ∴+=21222x x m =-所以, 11|2|||2=A OCM S m y 21||||2=A ODN S m x 则有 112222|2||2|||1||||||-====A A OCMODNS y m x x Sx x x 的面积等于的面积;OCM ∴A ODN A ,,2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+2222221112221144()44()22x mx m x m x mx m x m =-++-++-++-+, ()()221212125551042x x x x m x x m =+--++ . ()2222552210102m m m m =---+5=20.〔2023·北京市第十二中学三模〕已知椭圆过点2222:1(0)x y M a b a b +=>>(2,0)A (1)求椭圆M 的方程;(2)已知直线在x 轴上方交椭圆M 于B ,C 〔异于点A 〕两个不同的点,直线AB ,AC 分别与y 轴交于点P 、(3)y k x =+Q ,O 为坐标原点,求的值.()k OP OQ +(答案)(1)22142x y +=(2) 45(解析) (分析)〔1〕直接由点坐标及离心率求得椭圆方程即可;A 〔2〕联立直线与椭圆求得,再表示出直线AB ,AC 的方程,求得P 、Q 坐标,再计算2212122212184,2121k k x x x x k k --+==++即可.()k OP OQ +(1)由题意知:,则椭圆M 的方程为;2,c a a ==c =2222b a c =-=22142x y +=(2)联立直线与椭圆,整理得,22(3)142y k x x y =+⎧⎪⎨+=⎪⎩()222221121840k x k x k +++-=,()()422214442118440160k k kk ∆=-+-=-+>即在x 轴上方交椭圆M 于B ,C〔异于点A 〕两点,则 k <<(3)y k x =+0k <<设,则,,, 1122(,),(,)B x y C x y 1222,22x x -<<-<<2212122212184,2121k k x x x x k k --+==++1122(3),(3)y k x y k x =+=+易得直线AB ,AC 斜率必定存在,则,令,得,则,同理可得11:(2)2y AB y x x =--0x =11202y y x =>-112(0,)2y P x -,且, 222(0,2y Q x -22202y x >-则()()()()()112121212223222222()(32)22k x x y y x x x k x k x OP x OQ k k -++⎛⎫+==⋅⎪⎝⎭+-+----. 222212122212122218412422442()242121184122()4242121k k k k k kx x k x x k k k k k k k x x x x k k ---⋅-⋅+--++++=⋅=⋅---++-⋅+++45=高考材料高考材料。
圆锥曲线中的定点定值问题的四种模型
圆锥曲线中的定点定值问题的四种模型圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340km +->212122284(3),3434mkm x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+Q以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BDk k ⋅=-, 1212122y y x x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++,整理得:2271640mmk k ++=,解得:1222,7k m k m=-=-,且满足22340k m +->当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((22222222ba b a y b a b a x +-+-。
圆锥曲线专题:定值问题的7种常见考法(解析版)
圆锥曲线专题:定值问题的7种常见考法一、定值问题处理方法1、解析几何中的定值问题是指某些几何量(线段长度,图形面积,角度,直线的斜率等)的大小或某些代数表达式的值和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的解题方法有两种:法一、先猜后证(特例法):从特殊入手,求出定值,再证明这个定值与变量无关;法二、引起变量法(直接法):直接推理、计算,并在计算推理过程中消去参数,从而得到定值。
2、直接法解题步骤第一步设变量:选择适当的量当变量,一般情况先设出直线的方程:b kx y +=或n my x +=、点的坐标;第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数。
二、常见定值问题的处理方法1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算。
三、常见条件转化1、对边平行:斜率相等,或向量平行;2、两边垂直:斜率乘积为-1,或向量数量积为0;3、两角相等:斜率成相反数或相等或利用角平分线性质;4、直角三角形中线性质:两点的距离公式5、点与圆的位置关系:(·1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数。
四、常用的弦长公式:(1)若直线AB 的方程设为b kx y +=,()11y x A ,,()22y x B ,,则()a k x x x x k x x k AB ∆⋅+=-+⋅+=-⋅+=22122122121411(2)若直线AB 的方程设为n my x +=,()11y x A ,,()22y x B ,,则()am y y y y m y y m AB ∆⋅+=-+⋅+=-⋅+=22122122121411【注】上式中a 代表的是将直线方程带入圆锥曲线方程后,化简得出的关于x 或y 的一元二次方程的二次项系数。
圆锥曲线中定点定值定直线问题(解析版)--2024高考数学常考题型精华版
圆锥曲线中定点定值定直线问题【考点分析】考点一:直线过定点问题①设直线为m kx y +=,根据题目给出的条件找出m 与k 之间的关系即可②求出两点的坐标(一般含参数),再求出直线的斜率,利用点斜式写出直线的方程,再化为()()n m x k f y +-=的形式,即可求出定点。
考点二:定值问题探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.③求斜率,面积等定值问题,把斜率之和,之积,面积化为坐标之间的关系,再用韦达定理带入化简一般即可得到定值考点三:定直线问题①一般设出点的坐标,写出两条直线的方程,两直线的交点及两个直线中的y x ,相同,然后再用韦达定理带入化简即可得y x ,的关系即为定直线【题型目录】题型一:直线圆过定点问题题型二:斜率面积等定值问题题型三:定直线问题【典型例题】题型一:直线过定点问题【例1】已知点()1,1P 在椭圆()2222:10x y C a b a b+=>>上,椭圆C 的左右焦点分别为1F ,2F ,12PF F △的面(1)求椭圆C 的方程;(2)设点A ,B 在椭圆C 上,直线PA ,PB 均与圆()222:01O x y r r +=<<相切,记直线PA ,PB 的斜率分别为1k ,2k .(i )证明:121k k =;(ii )证明:直线AB 过定点.,即可求椭圆若10m k +-=,则直线():111AB y kx k k x =+-=-+,此时AB 过点P ,舍去.若330m k ++=,则直线():3333AB ykx k k x =--=--,此时AB 恒过点()3,3-,所以直线AB 过定点()3,3-.【例2】已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.【例3】已知椭圆22:1(0)C a b a b+=>>的上顶点为P ,右顶点为Q ,其中POQ △的面积为1(O 为原点),椭圆C(1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且0PA PB ⋅=,求证:直线l 过定点.【例4】已知椭圆C :221(0)x y a b a b+=>>过点()2,0A -.右焦点为F ,纵坐标为2的点M 在C 上,且AF ⊥MF .(1)求C 的方程;(2)设过A 与x 轴垂直的直线为l ,纵坐标不为0的点P 为C 上一动点,过F 作直线PA 的垂线交l 于点Q ,证明:直线PQ 过定点.的坐标代入椭圆【点睛】求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.【例5】已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,其左、右焦点分别为1F ,2F ,T 为椭圆C 上任意一点,12TF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知()0,1A ,过点10,2⎛⎫⎪⎝⎭的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【题型专练】1.已知椭圆()2222:10x y C a b a b+=>>的短轴长为A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.2.已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且过点()3,1A .(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM AN ⊥.证明:直线MN 过定点,并求出该定点坐标.的方程3.已知椭圆22:1(0)x y E a b a b+=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的两个端点恰好为正方形的四个顶点,点2P ⎛ ⎝⎭在E 上.(1)求E 的方程;(2)过点2F 作互相垂直且与x 轴均不重合的两条直线分别交E 于点A ,B 和C ,D ,若M ,N 分别是弦AB ,CD 的中点,证明:直线MN 过定点.4.焦距为2c 的椭圆2222:1x y a bΓ+=(a >b >0),如果满足“2b =a +c ”,则称此椭圆为“等差椭圆”.(1)如果椭圆2222:1x y a b Γ+=(a >b >0)是“等差椭圆”,求b a的值;(2)对于焦距为12的“等差椭圆”,点A 为椭圆短轴的上顶点,P 为椭圆上异于A 点的任一点,Q 为P 关于原点O 的对称点(Q 也异于A ),直线AP 、AQ 分别与x 轴交于M 、N 两点,判断以线段MN 为直径的圆是否过定点?说明理由.题型二:斜率面积等定值问题【例1】动点M 与定点(1,0)A 的距离和M 到定直线4x =的距离之比是常数12.(1)求动点M 的轨迹G 的方程;(2)经过定点(2,1)M -的直线l 交曲线G 于A ,B 两点,设(2,0)P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +恒为定值.【例2】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点()0,1Q x 在椭圆上且位于第一象限,12QF F 121QFQF ⋅=-.(1)求椭圆C 的标准方程;(2)若M ,N 是椭圆C 上异于点Q 的两动点,记QM ,QN 的倾斜角分别为α,β,当αβπ+=时,试问直线MN 的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.【例3】已知点()2,1P -在椭圆2222:1(0)x yC a b a b +=>>上,C 的长轴长为2:l y kx m =+与C 交于,A B 两点,直线,PA PB 的斜率之积为14.(1)求证:k 为定值;(2)若直线l 与x 轴交于点Q ,求22||QA QB +的值.【例4】已知椭圆()22:10x y C a b a b+=>>的离心率23e =,且椭圆C 的右顶点与抛物线212y x =的焦点重合.(1)求椭圆C 的方程.(2)若椭圆C 的左、右顶点分别为12,A A ,直线():1l y k x =-与椭圆C 交于E ,D 两点,且点E 的纵坐标大于0,直线12,A E A D 与y 轴分别交于()()0,,0,P Q P y Q y 两点,问:P Qy y 的值是否为定值?若是,请求出该定值;若不是,请说明理由.【例5】已知椭圆()22:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.【例6】已知P 为圆22:4M x y +=上一动点,过点P 作x 轴的垂线段,PD D 为垂足,若点Q 满足DQ =.(1)求点Q 的轨迹方程;(2)设点Q 的轨迹为曲线C ,过点()1,0N -作曲线C 的两条互相垂直的弦,两条弦的中点分别为E F 、,过点N 作直线EF 的垂线,垂足为点H ,是否存在定点G ,使得GH 为定值?若存在,求出点G 的坐标;若不存在,请说明理由.-.【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.【例7】已知椭圆C :()222210x y a b a b+=>>的右焦点为,F P 在椭圆C 上,PF 的最大值与最小值分别是6和2.(1)求椭圆C 的标准方程.(2)若椭圆C 的左顶点为A ,过点F 的直线l 与椭圆C 交于,B D (异于点A )两点,直线,AB AD 分别与直线8x =交于,M N 两点,试问MFN ∠是否为定值?若是,求出该定值;若不是,请说明理由.【题型专练】1.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.【点睛】方法点睛:探究性问题求解的思路及策略:(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.2.已知椭圆C :()222210x y a b a b+=>>过点()2,1D ,且该椭圆长轴长是短轴长的二倍.(1)求椭圆C 的方程;(2)设点D 关于原点对称的点为A ,过点()4,0B -且斜率存在的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线4x =-于点P ,Q ,求证PBBQ为定值.3.如下图,过抛物线22(0)y px p =>上一定点000(,)(0)P x y y >,作两条直线分别交抛物线于11(,)A x y ,22(,)B x y .(1)求该抛物线上纵坐标为2p的点到其焦点F 的距离;(2)当PA 与PB 的斜率存在且倾斜角互补时,求12+y y y 的值,并证明直线AB 的斜率是非零常数.由抛物线定义可知抛物线上一点到焦点距离等于到准线距离,即可求出结果4.如图,椭圆214x y +=的左右焦点分别为1F ,2F ,点()00,P x y 是第一象限内椭圆上的一点,经过三点P ,1F ,2F 的圆与y 轴正半轴交于点()10,A y ,经过点(3,0)B 且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:011(2)试问:x轴上是否存在不同于点B的定点M,满足当直线MP,MQ的斜率存在时,两斜率之积为定值?若存在定点M,求出点M的坐标及该定值;若不存在,请说明理由.Q5.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.6.已知椭圆22Γ:1a b+=()0a b >>的左焦点为()1,0F -,左、右顶点及上顶点分别记为A 、B 、C ,且1CF CB ⋅= .(1)求椭圆Γ的方程;(2)设过F 的直线PQ 交椭圆Γ于P 、Q 两点,若直线PA 、QA 与直线l :40x +=分别交于M 、N 两点,l 与x 轴的交点为K ,则MK KN ⋅是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.7.已知平面上一动点P 到()2,0F 的距离与到直线6x =的距离之比为3.(1)求动点P 的轨迹方程C ;(2)曲线C 上的两点()11,A x y ,()22,B x y ,平面上点()2,0E -,连结PE ,PF 并延长,分别交曲线C 于点A ,B ,若1PE EA λ= ,2PF FB λ=,问,12λλ+是否为定值,若是,请求出该定值,若不是,请说明理由.8.已知椭圆2:14x C y +=,过点0,2M ⎛⎫- ⎪⎝⎭直线1l ,2l 的斜率为1k ,2k ,1l 与椭圆交于()11,A x y ,()22,B x y 两点,2l 与椭圆交于()33,C x y ,()44,D x y 两点,且A ,B ,C ,D 任意两点的连线都不与坐标轴平行,直线12y =-交直线AC ,BD 于P ,Q .(1)求证:1122341234k x x k x x x x x x =++;(2)PM QM的值是否是定值,若是,求出定值;若不是,请说明理由.【答案】(1)证明见解析k9.已知椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F 且离心率为12,椭圆C 的长轴长为4.(1)求椭圆C 的标准方程;(2)设,A B 分别为椭圆的左、右顶点,过点B 作x 轴的垂线1l ,D 为1l 上异于点B 的一点,以线段BD 为直径作圆E ,若过点2F 的直线2l (异于x 轴)与圆E 相切于点H ,且2l 与直线AD 相交于点,P 试判断1PF PH +是否为定值,并说明理由.))可知()()()222,0,2,0,1,0A B F F H -=,112212PF PH PF PF F H PF PF +=+-=+()()2,0,E m m ≠则()2,2,D m 圆E 的半径为则直线AD 直线方程为(2)2my x =+,的方程为1,x ty =+10.已知椭圆()22:10x y C a b a b+=>>的左顶点和上顶点分别为A 、B ,直线AB 与圆22:3O x y +=相切,切点为M ,且2AM MB =.(1)求椭圆C 的标准方程;(2)过圆O 上任意一点P 作圆O 的切线,交椭圆C 于E 、F 两点,试判断:PE PF ⋅是否为定值?若是,求出该值,并证明;若不是,请说明理由.11.已知椭圆22:1(0)x y C a b a b+=>>,左、右焦点分别为()11,0F -、()21,0F ,左、右顶点分别为,A B ,若T 为椭圆上一点,12FTF ∠的最大值为π3,点P 在直线4x =上,直线PA 与椭圆C 的另一个交点为M ,直线PB 与椭圆C 的另一个交点为N ,其中,M N 不与左右顶点重合.(1)求椭圆C 的标准方程;(2)从点A 向直线MN 作垂线,垂足为Q ,证明:存在点D ,使得DQ 为定值.题型三:定直线问题【例1】已知如图,长为宽为12的矩形ABCD,以为,A B焦点的椭圆2222:1x yMa b+=恰好过,C D两点,(1)求椭圆M的标准方程;(2)根据(1)所得椭圆M的标准方程,若AB是椭圆M的左右顶点,过点(1,0)的动直线l交椭圆M与CD两点,试探究直线AC与BD的交点是否在一定直线上,若在,请求出该直线方程,若不在,请说明理由.【例2】已知椭圆:C22221x ya b+=(0a b>>)的离心率为23,且⎭为C上一点.(1)求C的标准方程;(2)点A,B分别为C的左、右顶点,M,N为C上异于A,B的两点,直线MN不与坐标轴平行且不过坐标原点O,点M关于原点O的对称点为M',若直线AM'与直线BN相交于点P,直线OP与直线MN相交于点Q,证明:点Q位于定直线上.【例3】已知1F 为椭圆2222:1(0)x y C a b a b+=>>的左焦点,直线y =与C 交于A ,B 两点,且1ABF 的周长为4+ 2.(1)求C 的标准方程;(2)若(2,1)P 关于原点的对称点为Q ,不经过点P 且斜率为12的直线l 与C 交于点D ,E ,直线PD 与QE 交于点M ,证明:点M 在定直线上.【题型专练】1.已知椭圆C :()222210x y a b a b +=>>2H ⎛ ⎝⎭是C 上一点.(1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①1k k 为定值;②点M 在定直线上.C2.已知()()1,0,1,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为6.(1)求点P 的轨迹T 的方程.(2)已知点()()()3,0,2,0,2,0N E F --,直线PN 与曲线T 的另一个公共点为Q ,直线EP 与FQ 交于点M ,试问:当点P 变化时,点M 是否恒在一条定直线上?若是,请证明;若不是,请说明理由.3.已知椭圆C :()222210x y a b a b +=>>的离心率为2,左顶点为1A ,左焦点为1F ,上顶点为1B ,下顶点为2B ,M 为C 上一动点,11M AF △1.(1)求椭圆C 的方程;(2)过()0,2P 的直线l 交椭圆C 于D ,E 两点(异于点1B ,2B ),直线1B E ,2B D 相交于点Q ,证明:点Q 在一条平行于x 轴的直线上.。
圆锥曲线定点定值问题方法总结
圆锥曲线定点定值问题方法总结
圆锥曲线是一类受应力和形变作用的曲线,它的应用广泛,是研究几何图形的重要工具。
圆锥曲线的定点定值问题要求在任意给定的两个圆锥曲线上找到定点定值的解,而这样的解通常是难以求得的。
一般情况下,这类问题使用数学变换方法,如积分转换、限界积分转换、局部变换等。
首先,以积分变换为例,我们可以使用积分变换来求解圆锥曲线定点定值问题。
这种变换把原始曲线进行分段处理,求出每一段的积分,然后求出该曲线上特定坐标(X0,Y0)的积分。
这种方法的优点在于,可以使用常用的数学软件解决大多数圆锥曲线定点定值问题。
其次,我们也可以使用限界积分变换来解决圆锥曲线定点定值问题。
这种变换首先要将原始曲线进行分段处理,通过限界积分计算每一段的积分。
最后,用积分变换求出曲线上特定坐标(X0,Y0)的积分。
这种方法的优点在于,它可以有效节省计算时间,并且灵活性强,将积分计算公式转换成局部变量。
最后,我们还可以使用局部变换来解决圆锥曲线定点定值问题。
这种变换将原始曲线进行分段处理,将每一段的积分表示为一个局部变量函数,然后将局部变量函数进行积分,求出圆锥曲线上特定坐标(X0,Y0)的积分。
这种方法的优点在于,使用较少的计算量可以快速地求出该曲线上特定坐标(X0,Y0)的积分。
总之,我们可以使用积分变换、限界积分变换和局部变换等数学变换方法来求解圆锥曲线定点定值问题。
这几种方法各有优缺点,需
要结合实际情况来选择合适的解决方案。
圆锥曲线定点定值问题是解决几何图形相关问题的重要方法,也是构建几何图形的基础之一,研究者需要加强对其原理性质的理解,发掘更多的实用方法。
圆锥曲线中的定点、定值问题
圆锥曲线中的定点、定值问题
1、几个常见的定点模型
若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.
(1)对于椭圆()上异于右顶点的两动点,,
以为直径的圆经过右顶点,则直线过定点.
同理,当以为直径的圆过左顶点时,直线过定点.
(2)对于双曲线上异于右顶点的两动点,,以为直径的圆经过右顶点,则直线过定点.同理,对于左顶点,则定点为.
(3)对于抛物线上异于顶点的两动点,,
若,则弦所在直线过点.
同理,抛物线上异于顶点的两动点,,若,则直线过定点.
2、几个常见的定值模型
在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点(非顶点)与曲线上的两动点,满足直线与的斜率互为相反数(倾斜角互补),则直线的斜率为定值.
(1)在椭圆中:已知椭圆,定点()在椭圆上,设,是椭圆上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(2)在双曲线:中,定点()在双曲线上,设,是双曲线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(3)在抛物线:,定点()在抛物线上,设,是抛物线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
3、解题导语
解决定点、定值问题的关键是检测数学运算的能力,所以只
要细致、耐心的计算就可以得到答案。
又因为此种问题找得分点比较容易,所以千万不要放弃。
2020届高考数学(理)解析几何高频考点11圆锥曲线定值问题(含解析)
11 圆锥曲线 定值问题
【考点讲解】
一、 具体目标:了解直线与圆锥曲线的位置关系,圆锥曲线的位置关系,理解与圆锥曲线与关和定值,定
点问题,能解决与圆锥曲线有关的定值、定点问题
.
二、知识概述: 1. 圆锥曲线中的定值问题的常见类型及解题策略 (1) 求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值; (2) 求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求 得; (3) 求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.
∴ x1+
x2=
3+8k42k2,
x1x2=
4k2- 12 3+ 4k2
,又由
→→ MA= λAF,
∴ (x1 ,y1+ k)=λ(1-
x1,-
y1),∴
λ=
1
x1 ,同理 - x1
μ= x2 , 1- x2
∴ λ+ μ= x1 + x2 = x1+ x2- 2x1x2 1- x1 1- x2 1-( x1+ x2)+ x1x2
=
3
+8k42k2-
2(
4k2-12) 3+ 4k2
1
-
3+8k42k2+
4k2- 3+ 4
12 k2
=-
8 3.
所以当直线
l 的倾斜角变化时,
λ+ μ的值为定值-
8 3.
( 2)与双曲线有关的定值问题:
已知点 F1 、 F2 为双曲线 C : x 2
y2 b2
1 (b
0) 的左、右焦点,过
F2 作垂直于 x 轴的直线,在 x 轴上方交
高考数学二级结论快速解题:专题16 圆锥曲线中的一类定值问题(解析版)
专题16圆锥曲线中的一类定值问题一、结论在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点P (非顶点)与曲线上的两动点A ,B 满足直线PA 与PB 的斜率互为相反数(倾斜角互补),则直线AB 的斜率为定值.1、在椭圆中:已知椭圆22221(0)x y a b a b,定点00(,)P x y (000x y )在椭圆上,设A ,B 是椭圆上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率2020ABb x k a y 2、在双曲线C :22221(0,0)x y a b a b 中,定点00(,)P x y (000x y )在双曲线上,设A ,B 是双曲线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率202ABb x k a y 3、在抛物线C :22(0)y px p ,定点00(,)P x y (000x y )在抛物线上,设A ,B 是抛物线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率0AB pk y.二、典型例题1.(2020·辽宁大连·二模(理))已知点P 在抛物线2:4C y x 上,过点P 作两条斜率互为相反数的直线交抛物线C 于A 、B 两点,若直线AB 的斜率为1 ,则点P 坐标为()A . 1,2B .1,2 C. 2,D. 2, 【答案】A 【详解】设点 00,P x y 、 11,A x y 、 22,B x y ,则直线AB 的斜率为12221212414AB y y k y y y y,可得124y y ,同理可得直线PA 的斜率为014PA k y y,直线PB 的斜率为024PB k y y ,PAPB k k ∵,所以, 01020y y y y ,则12022y y y ,20014y x,因此,点P 的坐标为 1,2.故选:A.另解:在抛物线C :22(0)y px p ,定点00(,)P x y (000x y )在抛物线上,设A ,B 是抛物线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率0AB p k y .利用此二级结论:2p ,00212AB k y y ,再回代入2:4C y x得到01x .【反思】特别提醒,本题抛物线方程巧合是二级结论中的x 型抛物线,若是y 型抛物线220x py p ,则结论0AB x k p.2.(2020·安徽·三模(理))设抛物线C : 220x py p 的焦点为F ,点 0,1M x 在C 上,且3MF ,若过C 上一个定点 ,0P m n m 引它的两条弦PS ,PT ,直线PS ,PT 的斜率存在且倾斜角互为补角,则直线ST 的斜率是()A .4mB .4nC .2m D .2n【答案】A 【详解】因为点 0,1M x 在C 上,且3MF ,所以132p,4p ,抛物线方程为28x y .设 11,S x y , 22,T x y ,则有28m n ,2118x y ,2228x y .于是1212PS PTy n y n k k x m x m 222212121211118888088x m x mx m x m x m x m,所以122x x m .因此直线ST 的斜率12121284y y x x mk x x .故选:A.另解:由题意知: 220x py p 定点00(,)P x y (000x y )在抛物线上,设A ,B 是抛物线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率AB x k p,代入答案选A.【反思】注意使用前先判断二级结论是否适用,先判定,后使用.3.(2022·广西玉林·高二期末(理))已知椭圆2222:1(0)x y C a b a b的左,右焦点为12,F F ,椭圆的离心率为12,点2在椭圆C 上.(1)求椭圆C 的方程;(2)点T 为椭圆C 上的点,若点T 在第一象限,且2TF 与x 轴垂直,过T 作两条斜率互为相反数的直线分别与椭圆C 交于点M ,N ,探究直线MN 的斜率是否为定值?若为定值,请求之;若不为定值,请说明理由.【答案】(1)22143x y ;(2)直线MN 的斜率为定值,且定值为12.(1)由题意,12c a 则2a c ,又 b ,所以椭圆C 的方程为2222143x y c c,代入有22331412 c c ,解得1c ,所以2b a ,故椭圆的标准方程为22143x y ;(2)由题设易知:31,2T,法一:设直线TM 为3(1)2y k x,由221433(1)2x y y k x ,消去y ,整理得 2223348412302k x k k x k k ,因为方程有一个根为1x ,所以M 的横坐标为22412334M k k x k ,纵坐标 223121291286M M k k y k x k,故M 为2222412312129,3486k k k k k k ,用k 代替k ,得N 为2222412312129,3486k k k k k k,所以12M N MN M N y y k x x,故直线MN 的斜率为定值12.法二:由已知直线MN 的斜率存在,可设直线MN 为y kx m , 1122,,,M x y N x y ,由22143x y y kx m,消去y ,整理得 2223484120k x kmx m ,所以21212228412,3434km m x x x x k k,而12123322011TM TN y y k k x x ,又1122,kx m y kx m y ,代入整理得 1212123322022kx x m x x k x x m,所以24832(21)0 k k m k ,即(21)(232)0 k k m ,若2320k m ,则直线MN 过点T ,不合题意,所以210k .即12k,故直线MN 的斜率为定值12.【反思】在本题第(2)问中,在椭圆中:已知椭圆22221(0)x y a b a b ,定点00(,)P x y (000x y )在椭圆上,设A ,B 是椭圆上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率2020ABb x k a y ,由于本题是解答题,故不可直接使用此二级结论,但可用该二级结论试探答案,再解答,如果本题是选择题,或者填空题,本题可直接使用此二级结论:20203113242ABb x k a y .4.(2021·全国·高二专题练习)已知双曲线22221(0,0)x y a b a b过点(3,2)A,且离心率e .(1)求该双曲线的标准方程;(2)如果B ,C 为双曲线上的动点,直线AB 与直线AC 的斜率互为相反数,证明直线BC 的斜率为定值,并求出该定值.【答案】(1)221832x y ;(2)证明见解析,6.【详解】(1)由题意,222229415a b a b a ,28a ,232b , 双曲线的方程为221832x y ;(2)设1(B x ,1)y ,2(C x ,2)y ,设AB 的方程为2(3)y k x ,代入双曲线方程,可得222(4)2(32)(32)320k x k k x k ,2126434k kx k,21234124k k x k ,21222484k k y k,223412(4k k B k ,222248)4k k k ,同理223412(4k k C k ,2222484k k k .4868BC kk k.故得证.【反思】在本题第(2)问中,在双曲线C :22221(0,0)x y a b a b中,定点00(,)P x y (000x y )在双曲线上,设A ,B 是双曲线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k .则直线AB 的斜率2020ABb x k a y ,由于本题是解答题,故不可直接使用此二级结论,但可用该二级结论试探答案,再解答,如果本题是选择题,或者填空题,本题可直接使用此二级结论:202032(3)682ABb x k a y .三、针对训练举一反三一、填空题1.(2020·广东云浮·高二期末)已知抛物线C :24y x ,点Q 在x 轴上,直线l :2240m x y m 与抛物线C 交于M ,N 两点,若直线QM 与直线QN 的斜率互为相反数,则点Q 的坐标是______.【答案】 2,0 【详解】考虑直线l : 2240m x y m ,即 2240m x x y ,所以直线恒过定点 2,0P ,设 22121212,,,,4,04,y y M y N y y y Q a,直线l : 2240m x y m 与抛物线C 交于M ,N 两点,即,,M N P 三点共线,//PM PN,2212122,,2,44y y PM y PN y,22122122044y y y y,2212212122044y y y y y y化简得: 1212204y y y y所以128y y ,直线QM 与直线QN 的斜率互为相反数,1222124,4MQ NQ y y k k y y a a即222112044y y y a y a恒成立22121212044y y y y ay ay 121204y y a y y,则1204y y a 所以1224y y a即点Q 的坐标是2,0 故答案为: 2,0 二、解答题2.(2022·山西晋中·高二期末)已知点 2,1P 是椭圆2222:1(0)x y C a b a b上的一点,且椭圆C的离心率e(1)求椭圆C 的标准方程;(2)两动点,A B 在椭圆C 上,总满足直线PA 与PB 的斜率互为相反数,求证:直线AB 的斜率为定值.【答案】(1)22182x y (2)证明见解析(1)由题可知22222411c a a b c a b,解得2282a b ,从而粚圆方程为22182x y .(2)证明设直线PA 的斜率为k ,则 :12PA y k x ,21y kx k ,联立直线与椭圆的方程,得221248y k x x y,整理得 2221416k x k28)161640k x k k ,从而2216164214A k k x k ,于是2288214A k k x k,由题意得直线PB 的斜率为k ,则 :12PB y k x ,21y kx k ,同理可求得2288214B k k x k,于是A B AB A B y y k x x2121A B A Bkx k kx k x x4A B A Bk x x kx x2221644114.16214k k k k k k即直线AB 的斜率为定值.3.(2022·全国·高三专题练习)已知椭圆2222:1(0)x y C a b a b过点31,2A ,且离心率e为12(1)求椭圆C 的方程;(2)E 、F 是椭圆上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.【答案】(1)22143x y ;(2)证明见解析,12.(1)根据题意,22222914112ab c e a a b c,解得2,1a b c ,椭圆C 的方程为:22143x y ;(2)证明:设直线AE 的方程为: 312y k x,由 22312143y k x x y ,得 2223442341230k x k k x k k ,显然1是该方程的根,因此有22224123412313434x x k k k k E E k k,2222412312129,34234k k k k E k k,由题可知直线AF 的方程为 312y k x ,同理可得2222412312129,34234k k k k F k k,222222221212912129234234121412341232423434EFk k k k k k k k k k k k k k k, 直线EF 的斜率为定值,且这个定值为12.4.(2020·浙江·高三专题练习)已知动点M 到直线20x 的距离比到点(1,0)F 的距离大1.(1)求动点M 所在的曲线C 的方程;(2)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率互为相反数,证明直线AB 的斜率为定值,并求出这个定值;【答案】(1)24y x ;(2)证明见解析,定值1 ;【详解】(1)已知动点M 到直线20x 的距离比到点(1,0)F 的距离大1,等价于动点M 到直线1x 的距离和到点(1,0)F 的距离相等,由抛物线的定义可得曲线C 的轨迹时以(1,0)F 为焦点,以直线1x 为准线的方程,且2p ,所以曲线C 的方程为24y x .(2)设直线PA 的斜率为k ,因为直线PA 的斜率与直线PB 的斜率互为相反数,所以直线PB 的斜率为k ,则:2(1)PA l y k x ,2(1)PB l y k x :联立方程组22(1)4y k x y x,整理得24480ky y k ,即 2420ky k y ,可得 22242,k k A k k联立方程组22(1)4y k x y x,整理得24480ky y k ,即 2+420ky k y ,可得 22242,k k B k k所以 22224242122ABk kk k k k k k k,即直线AB 的斜率为定值1 .5.(2019·浙江·高三阶段练习)如图,已知9,34M是抛物线 2:20C y px p 上一点,直线AM ,BM 的斜率互为相反数,与抛物线C 分别交于A ,B 两点,且均在M 点的下方.(1)证明:直线AB的斜率为定值;【答案】(1)证明见解析,【详解】(1)证明:因为9,34M 是抛物线 2:20C y px p 上一点,所以9924p ,得2p ,所以抛物线方程为24y x ,设直线MA 的方程为93()4y k x ,由293()44y k x y x,得241290y y k k ,所以43A y k,所以43A y k,因为直线AM ,BM 的斜率互为相反数,所以直线BM 的方程为93()4y k x ,同理可得43B y k,所以224424433344B A B A AB B A B A B A y y y y k y y x x y y k k,所以直线AB 的斜率为定值23,6.(2021·全国·高三专题练习)已知 1,2A 为抛物线22(0)y px p 上的一点,E ,F 为抛物线上异于点A 的两点,且直线AE 的斜率与直线AF 的斜率互为相反数.(1)求直线EF 的斜率;【答案】(1)1 ;(2)是定值,2【详解】(1)设 11,E x y , 22,F x y ,因为点 1,2A 为抛物线 220y px p 上的一点,所以42p ,解得2p ,所以24y x ,同时,有2114y x ,2224y x , 11111111112+22444=11+21+22AE y y y x k x x y x y y,同理,2222412AF y k x y,因为直线AE 的斜率与直线AF 的斜率互为相反数,所以124422y y ,即124y y ,故 2121212121212141EF y y y y y y k x x x x y y y y.7.(2019·云南保山·一模(理))已知点Q,点P 是圆C:22(x y 12 上的任意一点,线段PQ 的垂直平分线与直线CP 交于点M .1求点M 的轨迹方程;2过点A 作直线与点M 的轨迹交于点E ,过点B 0,1作直线与点M 的轨迹交于点F(E,F 不重合),且直线AE 和直线BF 的斜率互为相反数,直线EF 的斜率是否为定值,若为定值,求出直线EF 的斜率;若不是定值,请说明理由.【答案】(1)22x y 13 ;(2)定值33.【详解】(1)如下图所示,连接MQ,则MC MQ MC MP CP又CQ ,所以点M 的轨迹是以,C Q 为焦点的椭圆,因为22a c1a c b .故点M 的轨迹方程是2213x y ;(2)设直线AE的方程为 y k x ,则直线BF 的方程为1y kx ,由 2233y k x x y ,消去y 整理得222231930k x x k .设交点 11,E x y 、 22,F x y ,则21231x k,211122,13131x y k x k k .由22133y kx x y ,消去y 整理得 223160k x kx ,则222222613,11313k k x y kx k k .所以,1212EF y y k x x 故直线EF的斜率为定值,其斜率为8.(2019·四川泸州·二模(文))已知,椭圆C 过点35A ,22,两个焦点为 0,2, 0,2 ,,E F 是椭圆C 上的两个动点,直线AE 的斜率与AF 的斜率互为相反数. 1求椭圆C 的方程;2求证:直线EF 的斜率为定值.【答案】(1)22y x 1106;(2)见解析【详解】1由题意c 2 ,可设椭圆方程为2222y x 1a b ,22222591444a b a b ,解得2a 10 ,2b 6 , 椭圆的方程为22y x 1106. 2设 11E x ,y , 22F x ,y ,设直线AE 的方程为35y k x 22 ,代入22y x 1106得 222333k 5x 3k 53k x 3(k )30022 , 123k 3k 53x 3k 52 ,1135y kx k 22 ,又直线AE 的斜率与AF 的斜率互为相反数,再上式中以k 代k ,可得223k 3k 53x 3k 52,2235y kx k 22 , 直线EF 的斜率 2212212121223k 3k 53k 3k 5333k 3k 523k 52k x x 3k y y k 13k 3k 53k 3k 5x x x x 333k 523k 52k .9.(2019·黑龙江·哈尔滨三中高二期末(理))如图,抛物线关于x 轴对称,顶点在坐标原点,点 1,4P , 11,A x y , 22,B x y 均在抛物线上.(1)求抛物线的标准方程;(2)当直线PA 与PB 的斜率存在且互为相反数时,求12y y 的值及直线AB 的斜率.【答案】(1)216y x ;(2)128y y ,斜率是2【详解】(1)设出抛物线方程为22y px ,代入点P 的坐标,解得p=8,所以抛物线方程为216y x(2)设点A 坐标为211,16y y ,222,16y B y ,121616,4+4PA PB k k y y ,而0PA PB k k ,代入得到128y y ;212221121621616AB y y k y y y y .10.(2018·江苏镇江·高二期中)已知椭圆E :22221(0)x y a b a b的焦距为准线方程为A ,B 分别为椭圆的右顶点和上顶点,点P ,Q 在的椭圆上,且点P 在第一象限.(1)求椭圆E 的标准方程;(2)若点P ,Q 关于坐标原点对称,且PQ ⊥AB ,求四边形ABCD 的面积;(3)若AP ,BQ 的斜率互为相反数,求证:PQ斜率为定值.【答案】(1)2214x y (2)17(3)见证明【详解】(1)由题意可得:2c2c 222a b c ,解得:c ,2a ,1b .椭圆E 的标准方程为:2214x y .(2)12AB k ,∵点,P Q 关于坐标原点对称,且PQ AB ,2PQ k .可得直线PQ 的方程为:2y x .联立22244y x x y ,解得2417x ,2817y.PQ 四边形ABCD的面积11221717AB CD .(3)证明:设 11,P x y , 22,Q x y .设直线AP 的斜率为k ,(0)k y ,则直线方程为: 2y k x ,联立 22244y k x x y ,化为: 222214161640k x k x k ,212164214k x k ,解得2128214k x k ,12414k y k .,AP BQ ∵的斜率互为相反数, 直线BQ 的斜率为k ,直线方程为:1y kx .联立22144y kx x y ,化为:221480k x kx ,22814k x k ,2221414k y k .PQ 斜率2222221441141488221414k k k k k k k k 为定值.。
2021版新高考数学:圆锥曲线中的定点、定值问题含答案
第八节圆锥曲线中的定点、定值问题
[考点要求]会证明与曲线上动点有关的定值问题、会处理动曲线(含直线)过定点的问题.
(对应学生用书第164页)
考点1定点问题
直线过定点
在平面直角坐标系xOy 中、动点
E 到定点(1、0)的距离与它到直线x =-1的距离相等.
(1)求动点E 的轨迹C 的方程;
(2)设动直线l :y =kx +b 与曲线C 相切于点P 、与直线x =-1相交于点Q 、证明:以PQ 为直径的圆恒过x 轴上某定点.
[解] (1)设动点E 的坐标为(x 、y )、由抛物线的定义知、动点E 的轨迹是以(1、0)为焦点、x =-1为准线的抛物线、所以动点E 的轨迹C 的方程为y 2=4x .
(2)证明:易知k ≠0.由⎩⎨⎧y =kx +b y2=4x
、消去x 、得ky 2-4y +4b =0.因为直线l 与抛物线相切、所以Δ=16-16kb =0、即b =1k 、所以直线l 的方程为y =kx +1k 、令
x =-1、得y =-k +1k 、所以Q (-1、-k +1k ).设切点P (x 0、y 0)、则ky 20-4y 0+4k =
0、解得P (1k2、2k )、设M (m 、0)、则MQ →·MP →=(1k2-m )·(-1-m )+2k (-k +1k )=m 2
+m -2-m -1k2、所以当⎩⎨⎧m2+m -2=0,m -1=0,
即m =1时、MQ →·MP →=0、即MQ ⊥MP . 所以、以PQ 为直径的圆恒过x 轴上的定点M (1、0).
考点2 定值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 / 4
圆锥曲线中的定值问题
1.在圆锥曲线问题中,定值问题是常考题型,解题的一般步骤为:(1)设出直线的方程b kx y +=或t my x +=、点的坐标;(2)通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)表示成直线方程中引入的变量,转化成函数问题。
通过计算得出目标变量为定值或者最值。
2.解析几何大题计算过程中经常用到弦长公式,下面给出常用的计算弦长的公式:
(1)若直线AB 的方程设为(),,),,(,2211y x B y x A m kx y +=则 ()a
k x x x x k x x k AB ∆•+=-+•+=-•+=22122122121411 (2)若直线AB 的方程设为(),,),,(,2211y x B y x A t my x +=,则 ()a
m y y y y m y y m AB ∆•+=-+•+=-•+=22122122121411 注:其中a 指的是将直线的方程代入圆锥曲线方程后,化简得出的关于x 或y 的一元二 次方程的平方项系数,∆指的是该方程的判别式.通常用a
k AB ∆•+=21或 a
m AB ∆•+=21计算弦长较为简便 【例1.】设抛物线,:2x y C =直线l 经过点)
(0,2且与抛物线交于A 、B 两点,证明:•为定值。
4 / 4
【例 2.】已知椭圆)0(1:22
22>>=+b a b y a x C 的离心率为
AOB O b B a A ∆),0,0(),0),0,(2
3,(,的面积为1. (1)求椭圆C 的方程;
(2)设P 为C 上一点,直线PA 与y 轴交于点,M 直线PB 与x 轴交于点.N 求证:BM AN •为定值。
4 / 4
专题练习
1. 已知椭圆()0122
22
>>=+b a b y a x C :的离心率为22,且过点()
12,。
(1)求椭圆C 的方程;
(2)设P 是椭圆C 长轴上的动点,过P 作斜率为
22的直线l 交椭圆C 于B A ,两点,求证:22PB PA +为定值。
2. 已知点()01,F ,直线P x l ,:1-=为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且⋅=⋅。
(1)求动点P 的轨迹C 的方程;
(2)过点F 的直线交轨迹C 与B A ,两点,交l 于点M ,若21λλ==,,求21λλ+的值。
4 / 4
3.已知抛物线px y C 22=:经过点()21,P 过点()10,Q 的直线l 与抛物线C 有两个不同的交
点B A ,,且直线PA 交y 轴于M ,直线PB 交y 轴于N 。
(1)求直线l 的斜率的取值范围;
(2)设O 为原点,μλ==,,求证:μλ1
1
+为定值。
4.已知椭圆()0122
22
>>=+b a b y a x E :的两个焦点与短轴的一个端点是直角三角形的3个
顶点,直线3+-=x y l :与椭圆E 有且只有一个公共点T 。
(1)求椭圆E 的方程及点T 的坐标;
(2)设O 为坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点B A ,,且与直线l 交于点P ,证明:存在常数λ,使得PB PA PT
⋅=λ2,并求λ的值。