网架结构分类及特点
网架结构
(7)、单向折线形网架
单向折线形网架是将正放四角锥网架取消纵向的 上、下弦杆,保留周边一圈纵向上弦杆而组成的网 架,适用于周边支承。
(9).棋盘形四角锥网架
棋盘形四角锥网架是由于其形状与国际象 棋的棋盘相似而得名。在正放四角锥基础 上,除周边四角锥不变外,中间四角锥间格抽 空,下弦杆呈正交斜放,上弦杆呈正交正放, 下弦杆与边界呈45度夹角,上弦杆与边界垂 直(或平行)。也可理解为将斜放四角锥网 架绕垂直轴转动45度而成。这种网架也具 有上弦短下弦长的优点,且节点上汇交杆件 少,屋面板规格单一,适用于周边支承.
(13).蜂窝型网架
蜂窝形三角锥网架是倒置三角锥按一定规律排 列组成,上弦网格为三角形和六边形,下弦网格 为六边形。这种网架的上弦杆较短,下弦较长, 受力合理。每个节点均只汇交6根杆件,节点构 造统一,用钢量省。蜂窝形三角锥网架从本身来 讲是几何可变的,它需借助于支座水平约束来保 证其几何不变,在施工安装时应引起注意。分析 表明,这种网架的下弦杆和腹杆内力以及支座的 竖向反力均可由静力平衡条件求得,根据支座水 平约束情况决定上弦杆的内力。这种网架适用 于周边支承的中小跨度屋盖。
(10).星型四角锥网架
星形四角锥网架是由两个倒置的三角形小 衍架相互交叉而成。两个小绗架的底边构 成网架上弦,上弦正交斜放,各单元顶点相连 即为下弦,下弦正交正放,在两个小绗架交汇 处设有竖杆,斜腹杆与上弦杆在同一平面内。
这种网架也具有上弦短下弦长特点,杆件受 力合理。当网架高度等于上弦杆长度时,上 弦杆与竖杆等长,斜腹杆与下弦杆等长。这 种网架适用于周边支承的情况。
《网架结构设计》课件
实验验证
对网架结构进行模型试验 或实际工程试验,验证设 计的可行性和安全性。
网架结构的形式选择
平板网架
由多个平板通过节点连接而成, 适用于大跨度、大空间的屋盖结
构。
曲面网架
通过节点连接形成曲面形状,适 用于具有曲线形状的屋盖结构。
立体网架
由多个平面网架组合而成,形成 三维空间结构,适用于高层或大
跨度建筑。
船舶工程
在船舶工程中,网架结构可应用 于船体内部支撑和甲板铺面。
核电站
在核电站中,网架结构可应用于 安全壳和相关辅助设施的结构支
撑。
网架结构的发展趋势与展望
智能化设计
01
随着计算机技术的发展,网架结构的优化设计 、稳定性分析等将更加智能化。
绿色环保
03
未来网架结构设计将更加注重绿色环保,采用 可再生材料和节能技术,降低能耗和碳排放。
整体稳定性
评估网架结构在外部荷载作用下的整体稳定性,防止结构发 生失稳。
局部稳定性
分析网架杆件在压力或弯曲作用下的稳定性,防止杆件屈曲 或失稳。
网架结构的优化设计
结构形式优化
根据工程需求和条件,选 择合适的网架结构形式, 如三角形、四边形、六面 体等。
尺寸优化
根据网架的内力分析和稳 定性要求,对网架杆件截 面尺寸进行优化,降低用 钢量。
新材料的应用
02
新型材料的不断涌现,如碳纤维、玻璃纤维等 ,将为网架结构的设计和应用提供更多可能性
。
定制化设计
04
随着个性化需求的增加,网架结构的定制化设 计将更加普遍,以满足不同领域和特定需求的
结构设计要求。
THANKS
施工精度控制
在施工过程中,对网架结构的拼装、 吊装等环节进行精度控制,确保安装 误差在允许范围内。
网架结构课件ppt
防腐防锈
对网架结构进行防腐防锈处理,延长结构使 用寿命。
维护保养记录
建立维护保养记录制度,对每次检查、维修 和保养情况进行记录,以便于管理。
安全注意事项
高空作业安全
吊装作业安全
在网架结构施工过程中,涉及到高空作业 的情况较多,应采取必要的安全措施,如 系安全带、搭设安全网等。
在进行整体吊装时,应确保吊装设备和索 具的安全可靠,遵守操作规程,确保作业 人员和设备安全。
在施工过程中,对网架结构的各项参 数进行监测,发现问题及时进行调整 ,确保施工精度和质量。
05
04
整体吊装
将拼装好的网架整体吊装到预定位置 ,并进行固定。
维护保养
定期检查
定期对网架结构进行检查,包括杆件、节点 、焊缝等部位,确保结构安全。
损坏修复
发现网架结构有损坏或异常情况时,及时进 行修复或更换。
网架结构的应用场景
网架结构广泛应用于 工业厂房、仓库、展 览馆、体育场馆等建 筑领域。
此外,网架结构还可 用于大型设备支撑、 舞台搭建、临时设施 等领域。
网架结构也可用于桥 梁、高速公路、地铁 等交通设施的建设。
2023
PART 02
网架结构的特性
REPORTING
受力特性
受力性能优异
网架结构能够将荷载均匀分散到 各个杆件上,从而减小单个杆件 承受的荷载,提高整体结构的承 载能力。
防火安全
安全用电
在网架结构施工现场,应设置消防设施, 并保持完好有效。同时,应加强火源管理 ,严禁吸烟等行为。
在施工过程中,应遵守安全用电规定,严 禁乱拉乱接电线,确保用电安全。
2023
REPORTINGLeabharlann THANKS感谢观看
建筑结构选型------- 网架结构
平板网架的结构体系及其形式
• 三角锥网架 刚度特点及应用: 刚度较差,适用于屋
2.抽空三角锥网架
盖荷载较轻、跨度较 小的情况。
3.蜂窝形三角锥网架
组成特点: 上弦杆仍呈正三角形, 下弦杆则随抽锥方式 的不同而呈三角形、六边形等多种图案。 经济效果: 因杆件数与节点 数都比三角锥网架少,所以 用钢量也较少。
A.刚度好,内力均匀 B.杆件短,钢材强度得到充分发挥 C.杆件细,球铰小,节约钢材
3. 多层(弦杆)网架缺点
A.杆件和节点数量增多,增加了安装工作量 B.交汇杆件增多,球铰变大,杆件交角变小
4. 克服多层(弦杆)网架缺点的办法
局部单元抽空,加大中间弦杆间距
5. 多层(弦杆)网架工程实例
见右图 我国首都机场波音747机库
三角锥单元体
组成特点: A.由倒置的三角锥排列而成,其上下 弦杆 形成的网格图案均为正三角形; B.如果网架的高度h=s· SQRT(2/3)(s为弦杆 长度),则 网架的全部杆件均等长; C.锥体间为角-角相连。 受力及刚度特点: 三角锥网架受力比较均匀,整体刚度也较 好。 应用: 一般适用于大中跨度及重屋盖的建筑物。
• 周边支承网架
2.结构选型
C.结构选型
三向网架
圆形或多边形的周边支 承网架,当荷载和跨度 较大时,应选用刚度较 好的右图两种方案
三角锥网架
网架结构的受力特点及其选型
• 四点及多点支承网架
1.受力特点
正交正放方 案因传力路 径较短而受 力更佳
2.结构选型
点支承宜选 用正交正放 方案
正交斜放
正交正放
2.影响因素
主要为跨度,还有荷载大小、节点 形式、平面形状、支承条件、起拱 因素、建筑功能与造型等
网架、网壳结构
网壳结构的分类
• 按材料
– 木网壳、钢筋混凝土网壳、钢网壳、铝合金网壳、塑 料网壳、玻璃钢网壳等。
• 木网壳结构
– 仅在早期的少数建筑中采用,近年来,在一些木材丰 富的国家也有采用胶合木建造网壳的,有的跨度已超 过100m。但总的来说,木结构网壳用得并不多。
10.2 网架选型
根据建筑平面形状和跨度大小,支承方式、荷载 大小、屋面构造和材料、制作安装方法等因素。 《网架结构设计与施工规程》JGJ 7-91 ➢ 大跨度为60m以上 ➢ 中跨度为30~60m ➢ 小跨度为30m以下
1 网架结构的支承及其选型
支承方式:
➢周边支承 ➢点支承 ➢周边支承与点支承相结合 ➢两边和三边支承等。
3 网架的挠度要求及屋面排水坡度
➢ 容许挠度:用作屋盖—L2/250,用作楼盖—L2/300 ➢ 排水坡度:3%~5% ➢ 起拱要求:L2/300
找坡立柱
(a)用小立柱 网架屋面找坡
(b)起拱
10.3 网壳结构
• 网壳,即为网状壳体,是格构化的壳体,或者说是曲 面状的网架结构。
• 20世纪50~60年代,钢筋混凝土壳体得到了较大的发 展;但钢筋混凝土壳体结构很大一部分材料是用来承 受自重的,只有较少部分的材料用来承担外荷载,并 且施工很费事。
周边支承
l/3 l l/3
l/4 l
l
l/3
l
l
l/4
l/3
点支承 图 3—18 点支承
➢ 点支承网架受力与钢筋混凝土无梁楼盖相似。 ➢ 为减小跨中正弯矩及挠度,设计时应尽量带有悬挑,
多点支承网架的悬挑长度可取跨度的1/4~1/3 。
周边支承与点支承结合
网架的分类及节点组成分析
网架的分类及节点组成分析网架的概念网架和网壳总称为空间网格结构。
这种空间网格结构是由多根杆件按照某种有规律的几何图形通过节点连接起来的空间结构,它可以充分发挥三维空间的优越性,传力路径更见简捷特别适用于大跨度建筑。
由双层或多层平板形网格组成的结构称为网架结构(简称网架),由单层或双层曲面形网格结构称为网壳。
一、网架结构的组成1)第一类是由平面桁架系组成的网架结构两向正交正放网架:这是由两组平面桁架系组成的网架,桁架系在平面上的投影轴线互成90°交角,且与边界平行或垂直,所形成网格可以是矩形的,也可以是正方形的。
两向正交斜放网架:它可由梁向正交正放网架在水平面上旋转45°而得,其交角也是90°,但每片桁架不与建筑物轴线平行,而是成45°的交角,故成为两向正交斜放网架。
三向网架:比两向网架的刚度大,适合在大跨度结构中采用,其平面适用于三角形,梯形及正六边形,在圆形平面中也可采用。
2)第二类是由四角锥体组成的网架由四根上弦组成正方形锥底,锥顶位于正方形的形心下方,由正方形四角节点向锥顶连接四根腹杆即形成一个四角锥体,将各个四角锥体按一定规律连接起来,便成为四角锥体网架。
正放四角锥网架:四角锥底边分别与建筑物的轴线相平行,各个四角锥体的底边相互连接形成网架的上弦杆,连接各个四角锥体的锥顶形成下弦杆并与建筑物的轴线平行。
这种网架的上下弦杆长度相等,并相互错开半个节间。
斜放四角锥网架:这种网架是将各四角锥体的锥底角与角相连,上弦(即锥底边)与建筑物轴线成45°交角,连接锥顶而形成的下弦仍与建筑物轴线平行。
这种网架受压的上弦杆长度小于受拉的下弦杆,因而受力比较合理,每个节点交汇的杆件数量少,因此用钢量较少。
缺点:是屋面板种类较多,屋面排水坡的形成比较困难。
棋盘四角锥网架:将整个斜放四角锥网架水平转动45°角,使网架上弦与建筑物轴线平行,下弦与建筑物轴线成45°交角,即得棋盘四角锥网架。
网架结构的种类及其性能特点
网架结构已成为现代世界应用较普遍的新型结构之一。
我国从20世纪60年代开始研究和采用,近年来,由于电子计算技术的迅速发展,解决了网架结构高次超静定结构的计算问题,促使网架结构无论在型式方面以及实际工程应用方面,发展都很快。
网架在需要大跨度、大空间的体育场馆、会展中心、文化设施、交通枢纽乃至工业厂房,无不见到空间结构的踪影。
网架结构的优点是用钢量小、整体性好、制作安装快捷,可用于复杂的平面形式。
适用于各种跨度的结构,尤其适用于复杂平面形状。
这些空间交汇的杆件又互为支撑,将受力杆件与支撑系统有机结合起来,因而用料经济。
网架主要用于大、中跨度的公共建筑中,例如体育馆、飞机库、俱乐部、展览馆和候车大厅等,中小型工业厂房也开始推广应用。
跨度越大,采用此种结构的优越性和经济效果也就越显著。
网架结构板型网架结构按组成形式主要分三类:第一类是由平面桁架系组成,有两向正交正放网架、两向正交斜放网架、两向斜交斜放网架及三向网架四种形式;第二类由四角锥体单元组成,有正放四角锥网架、正放抽空四角锥网架、斜放四角锥网架、棋盘形四角锥网架及星形四角锥网架五种形式;第三类由三角锥体单元组成,有三角锥网架、抽空三角锥网架及蜂窝形三角锥网架三种形式。
壳型网架结构按壳面形式分主要有柱面壳型网架、球面壳型网架及双曲抛物面壳型网架。
网架结构按所用材料分有钢网架、钢筋混凝土网架以及钢与钢筋混凝土组成的组合网架,其中以钢网架用得较多。
网架结构可分为双层的板型网架结构、单层和双层的壳型网架结构。
板型网架和双层壳型网架的杆件分为上弦杆、下弦杆和腹杆,主要承受拉力和压力。
单层壳型网架的节点一般假定为刚接,应按刚接杆系有限元法进行计算;双层壳型网架可按铰接杆系有限元法进行计算。
单层和双层壳型网架也都可采用拟壳法简化计算。
单层壳型网架的杆件,除承受拉力和压力外,还承受弯矩及切力。
目前中国的网架结构绝大部分采用板型网架结构。
网架结构是空间网格结构的一种。
06平板网架结构
空间网格结构
空间网格结构之分类
双层(多层)平板网格结构
网架结构或网架
单层和双层的曲面网格结构
网壳
总称网格结构。
6 平板网架结构
6.1 6.2 6.3 6.4 6.5 6.6 概述 平板网架的结构体系及形式 网架结构的支承方式 网架结构的受力特点及其选型 网架结构主要几何尺寸的确定 网架结构的构造
三角锥网架
定义
三角锥网架上下弦平面均为三角形网格,下弦三 角形网格的顶点对着 上弦三角形网格的形心。
三角锥网架
特点
受力均匀,整体抗扭、抗弯刚度好; 节点构造复杂,上下弦节点交汇杆件数均为9根。 适用于建筑平面为三角形、六边形和圆形的情况。
抽空三角锥网架
定义
在三角锥网架的基础上,抽去部分三角锥单元的腹 杆和下 弦而形成。 下弦由三角形和六边形网格组成时,称为抽空三角 锥网架 Ⅰ型; 下弦全为六边形网格时,为抽空三角锥网架Ⅱ型。
(2) 三角锥体系
定义
网架的基本单元是一倒置的三角锥体。
组成
锥底的正三角形的三边为 网架的上弦杆, 其棱为网架的腹杆。
特点
网架受力均匀,刚度较好, 大跨度建筑中广泛采用的一种型式。 适用于矩形、三角形、梯形、六边形和圆形等建筑平面。
分类
随着三角锥单元体布置的不同,上下 弦网格可为正三角形 或六边形,从而构成不同的三角锥网架
1 概述
2平板网架的分类
按结构组成
双层网架
上下两层弦杆,是最常用的网架结构形式。
三层网架
上中下三层弦杆,强度和刚度都比双层网架提高很大。 跨度l>50m,酌情考虑;当跨度l>80m时,应优先考虑。
组合网架
《建筑钢结构设计》5-2 网架结构
2.2.2 温度作用
温度作用是指由于温度变化,使网架杆件产生附加温度应力, 必须在计算和构造措施中加以考虑。网架结构是超静定结构, 在均匀温度场变化下,由于杆件不能自由热胀冷缩,杆件会产 生应力,这种应力成为网架的温度应力。温度场变化范围是指 施工安装完毕(网架支座与下部结构连接固定牢固)时的气温与当 地常年最高或最低气温之差。另外工厂车间生产过程中引起温 度场变化,这可由工艺提出。 目前温度应力的计算方法有:采用空间杆系有限元法的精确计 算方法和把网架简化为平板或夹层板构造的近似分析法。
2.1.3 网架结构的形式与分类
主要有15种网架,根据其组成可划分为四大类。 1、由平面桁架系组成的网架结构,它是由平面桁架发展和演变 过来的。由于平面桁架系的数量和设置方位不同。这类网架又 可分成四种: (1)两向正交正放网架;(2)两向正交斜放网架; (3)两向斜交斜放网架;(4)三向网架。
2、由四角锥体组成的网架结构,它的基本单元是由4根 弦杆、4根斜杆构成的正四角锥体。由这些四角锥体排 列组成网架时,还要用上弦杆或下弦杆把相邻的锥顶连 接起来。根据锥体的组合方式和连接锥顶弦杆的方向不 同,这类四角锥体组成的网架又可分为六种: (1)正放四角锥网架;(2)正放抽空四角锥网架; (3)斜放四角锥网架;(4)棋盘形四角锥网架; (5)星形四角锥网架; (6)单向折线形网架,又称折板型网架。
H c tL /L (/E m A 2 /K e )
2.2.3 地震作用
网架由地震引起的振动称为网架的地震反应,它包括内力、变形 和位移。网架的地震反应大小不仅与外来干扰作用(地震波)的大 小及其随时间的变化规律有关,还取决于网架本身的动力特性, 即网架的自振周期和阻尼。由于地震的地面运动为一种随机过程, 运动极不规则,网架又是空间结构,动力特性十分复杂,要正确 分析网架的动力反应比较困难,常作以下简化假定: (1)结构可离散为多个集中质量的弹性体系; (2) 结构振动属于微幅振动,即结构的振动变形很小,仍属于小 变形范畴。线性叠加原理可以适用; (3) 振动时结构的地基各部分作同一运动,即不考虑地面运动 的 相位差的影响;
10、网架结构
浙大、同济、建研院、海军局等。
二、荷载和特殊作用
①自重估算:30~60kg/m2, ②温度应力:高次超静定,空间桁架位 秱法; ③竖向地震作用:简化计算,振型分解, 时程分析; ④安装荷载:验算内力、挠度和动力效 应; ⑤支座沉降和位秱。
以简单的双向正交桁架体系为例来说明网架的受力特点:
从图中我们可以看出, 这种计算方法的基本 概念是把空间的网架 简化为相应交叉梁系, 然后迚行挠度、弯矩 和剪力的计算,从而 求出行架各个杆件的 内力。基本假定为: (1)网架中双向交 叉的桁架分别用刚度 相当的梁来代替。桁 架的上、下弦共同承 担弯矩,腹杆承担剪 力。(2)两个方向 的桁架在交点处位移 应相等(即没有相对 位移),而且仅考虑 竖向位移。
• 二、网架周边支承亍 圈梁,圈梁支承亍若 干边柱(或砖墙)
这种支承方式,柱子数 量较少而且柱距布置灵活, 建筑平面处理可以丌受网架 的网格分割所限制,从而设 计灵活,网架受力均匀。 • 这种支承方式对于地震 区需要设置圈梁抗震时最合 适。它一般适用于中小跨度 的网架。 • 这种支承方式的网架周 边也可以丌需设置边桁架。 •
采用这种网架时需要注意一个问题,就是需要对付网架四角的锚拉。 因为短桁架对长桁架所起的支承作用,使长桁架在角部产生负弯矩,角部负 弯矩的存在对四角支座产生较大的拉力,使四角有可能翘起。因此,为对付 四角的锚拉,就要设计特殊的拉力支座。
三、三向交叉网架
这种网架是由三个方向的 桁架互相交叉夹角60度而成的, 上下弦网格均为三角形。 这种网架的空间刚度比两 向网架为好,而丏杆件内力比 较均匀。但节点汇交的杆件较 多,节点构造比较复杂。 这种网架适用亍大跨度建 筑,特别是当建筑平面为三角 形、六边形和圆形时最为合适。
空间网架结构
空间网架结构1、网架的特点和形式网架结构一般是以大致相同的格子或尺寸较小的单元(重复)组成的。
常应用在屋盖结构。
通常将平板型的空间网格结构称为网架,将曲面型的空间网格结构简称为网壳。
网架一般是双层的(以保证必要的刚度),在某些情况下也可做成三层,而网壳有单层和双层两种。
平板网架无论在设计、计算、构造还是施工制作等方面均较简便,因此是近乎“全能”的适用大、中、小跨度屋盖体系的一种良好的形式.(1)网架特点①网架结构是高次超静定空间结构。
空间刚度大、整体性好、抗震能力强,而且能够承受由于地基不均匀沉降带来的不利影响。
②网架结构的自重轻,用钢量省;③既适用于中小跨度,也适用于大跨度的房屋;④同时也适用于各种平面形式的建筑,如:矩形、圆形、扇形及多边形。
⑤网架结构取材方便,一般采用Q235钢或Q345钢,杆件截面形式有钢管和角钢两类,以钢管采用较多,并可用小规格的杆件截面建造大跨度的建筑(因为网架结构能充分发挥材料的强度,节省钢材)。
⑥网架结构其杆件规格统一,适宜工厂化生产,为提高工程进度提供了有利的条件和保证。
由多根杆件按照一定的网格形式通过节点连结而成的平板空间结构.具有空间受力、重量轻、刚度大、抗震性能好等优点;网架结构广泛用作体育馆、展览馆、俱乐部、影剧院、食堂、会议室、候车厅、飞机库、车间等的屋盖结构。
具有工业化程度高、自重轻、稳定性好、外形美观的特点。
缺点是汇交于节点上的杆件数量较多,制作安装较平面结构复杂。
(2)网架的形式①网架按弦杆层的形式:按弦杆层数不同可分为双层网架和三层网架。
(a) (b)图3—1 双层及三层网架②双层网架的形式a.平面桁架系网架:包括两向正交正放网架、两向正交斜放、斜交斜放网架和三向网架。
特点:由平面桁架相互交叉所组成,其上、下弦杆长度相等,杆件类型少,且上、下弦杆和腹杆在同一平面内。
一般应使斜腹杆受拉,竖杆受压。
斜腹杆与弦杆间的夹角宜在40°~60°之间。
网架结构可以分为哪几种及性能特点
网架结构可以分为哪几种及性能特点网架结构可分为双层的板型网架结构、单层和双层的壳型网架结构。
板型网架和双层壳型网架的杆件分为上弦杆、下弦杆和腹杆,主要承受拉力和压力。
单层壳型网架的节点一般假定为刚接,应按刚接杆系有限元法进行计算;双层壳型网架可按铰接杆系有限元法进行计算。
单层和双层壳型网架也都可采用拟壳法简化计算。
单层壳型网架的杆件,除承受拉力和压力外,还承受弯矩及切力。
目前中国的网架结构绝大部分采用板型网架结构。
网架结构是空间网格结构的一种。
所谓“空间结构”是相对“平面结构”而言,它具有三维作用的特性。
空间结构问世以来,以其高效的受力性能、新颖美观的形式和快速方便的施工受到人们的欢迎。
空间结构也可以看作平面结构的扩展和深化。
网架结构是空间杆系结构,杆件主要承受轴力作用,截面尺寸相对较小。
网架结构已成为现代世界应用较普遍的新型结构之一。
我国从20世纪60年代开始研究和采用,近年来,由于电子计算技术的迅速发展,解决了网架结构高次超静定结构的计算问题,促使网架结构无论在型式方面以及实际工程应用方面,发展都很快。
网架在需要大跨度、大空间的体育场馆、会展中心、文化设施、交通枢纽乃至工业厂房,无不见到空间结构的踪影。
网架结构的优点是用钢量小、整体性好、制作安装快捷,可用于复杂的平面形式。
适用于各种跨度的结构,尤其适用于复杂平面形状。
这些空间交汇的杆件又互为支撑,将受力杆件与支撑系统有机结合起来,因而用料经济。
网架主要用于大、中跨度的公共建筑中,例如体育馆、飞机库、俱乐部、展览馆和候车大厅等,中小型工业厂房也开始推广应用。
跨度越大,采用此种结构的优越性和经济效果也就越显著。
网架结构板型网架结构按组成形式主要分三类:第一类是由平面桁架系组成,有两向正交正放网架、两向正交斜放网架、两向斜交斜放网架及三向网架四种形式;第二类由四角锥体单元组成,有正放四角锥网架、正放抽空四角锥网架、斜放四角锥网架、棋盘形四角锥网架及星形四角锥网架五种形式;第三类由三角锥体单元组成,有三角锥网架、抽空三角锥网架及蜂窝形三角锥网架三种形式。
《网架结构设计》PPT课件 (2)
2.焊接空心球节点
(1)特点和适用范围
焊接空心球节点(Hollow spherical nodes)是目前在 国内得到广泛应用的一种节点形式,约占已建成网架 工程50%左右。这种节点是一种空心球体,它是将两块 圆钢板经热压或冷压(常用前者)成两个半球壳后再 对焊而成。空心球的钢材品种宜采用Q235钢和Q345 钢制作。
选杆
规格统一的问题
小跨度网架:2~3种
大中跨度网架: 6~7种,一般不超过8种。
3.杆件的计算长度和长细比限值
(1)网架杆件的计算长度l0
杆件
螺栓球
节点 焊接空心球
板节点
弦杆及支座
腹杆
l
0.9 l
l
腹杆
l
0.8 l
0.8 l
(2)网架杆件的长细比限值
1)受压杆件
180
2)受拉杆件
①一般杆件
400
角锥体系网架、四角锥体系网架和六角锥体系 网架。
3.2.2 .2 网架结构的形式 1.交叉桁架系网架
两向正交正放网架
两 向 正 交 斜 放 网 架
三 向 网 架
2.三角锥体系网架
架三 角 锥 网
蜂角 窝锥 形网 三架
锥抽 网
空架
三 角型
锥抽 网
空架
三 角型
Ⅱ Ⅰ
3.四角锥体系网架
网正
由于球体为各向同性,钢管杆件与空心球的配合不会产 生偏心,因此,焊接空心球节点适应性强,尤其对三向 网架、三角锥网架和六角锥网架更加适宜。
(2)焊接空心球的构造
焊接空心球按构造可分为两类:
不加肋空心球和加肋空心球。 当球直径≥300mm,且杆件内力较大需要提高空心球 承载能力要求时,可采用加肋空心球。加肋空心球的 承载力比不加肋空心球高约15%~30%。 加肋空心球的肋板厚度不应小于球壁厚度,通常可取 为与空心球壁厚相同。 肋板可用平台或凸台,采用凸台时,其高度不得大于 1mm,而且应使内力较大的杆件位于肋板平面内。
《网架结构设计》课件
总结词
适用场景
结构简单、受力明确、稳定性高、经济性好。
优势
适用于各种类型的建筑空间,如体育场馆、工业厂房 、高层建筑等。
四边形网架
总结词
详细描述
适用场景
优势
四边形网架是一种常见的网架 结构形式,具有较好的稳定性 和适应性。
四边形网架由多个四边形单元 组成,通过节点连接形成完整 的网架结构。它具有较好的稳 定性和适应性,能够适应不同 的建筑空间和跨度要求。
网架结构适用于各种工业厂房的建设,如机械制造、化工、电力等行业的厂房。
公共设施
网架结构还广泛应用于公共设施,如机场、火车站、汽车站等大型交通枢纽的屋 顶和站台雨棚。
感谢您的观看
THANKS
通过实验测试网架结构的性能,包括 静载实验、动载实验等。实验法可以 获得较为准确的数据,但成本较高。
网架结构优化设计
尺寸优化
通过调整网架杆件的截 面尺寸和节点形式,使 结构更加合理和经济。
形状优化
改变网架杆件的形状, 以改善结构的受力性能
和减小用钢量。
拓扑优化
在满足一定条件下,重 新排列或减少某些杆件 ,以达到更好的经济性
适用于各种类型的建筑空间, 如展览馆、会议中心、工业厂 房等。
结构简单、受力明确、稳定性 好、适应性强。
六面体网架
总结词
六面体网架是一种复杂的网架结构形式,具有较 高的承载能力和稳定性。
适用场景
适用于大跨度、大空间的建筑空间,如大型体育 场馆、会展中心等。
详细描述
六面体网架由多个六面体单元组成,通过节点连 接形成完整的网架结构。它具有较高的承载能力 和稳定性,适用于承受较大荷载和跨度的建筑空 间。
设备要求较低。
组合网架结构-03PPT
结构优化设计
01
02
03
04
尺寸优化
调整结构元件的尺寸以满足性 能要求。
形状优化
改变结构的形状以改善性能或 降低成本。
拓扑优化
确定最佳的材料分布和支撑结 构。
多目标优化
同时考虑多个性能指标,以找 到最佳的折衷方案。
04 组合网架结构的施工方法
CHAPTER
拼装施工法
总结词
高效、快速
VS
详细描述
拱型组合网架
总结词
拱型组合网架是一种具有拱形结构的空间结构,其特点是具有较好的承载能力和稳定性,适用于需要承受较大竖 向荷载和水平荷载的建筑结构。
详细描述
拱型组合网架由多个拱形单元组成,这些拱形单元通过节点连接在一起,形成一个连续的空间结构。由于其拱形 的特点,拱型组合网架能够承受较大的竖向荷载和水平荷载,同时具有较好的抗侧刚度和抗震性能。
组合网架结构-03
目录
CONTENTS
• 组合网架结构概述 • 组合网架结构的类型与特点 • 组合网架结构设计 • 组合网架结构的施工方法 • 组合网架结构的工程实例
01 组合网架结构概述
CHAPTER
定义与特点
定义
组合网架结构是一种新型的空间 结构形式,由多个杆件通过节点 连接而成,形成一个整体。
设计原则与流程
详细设计
进行细部设计、载荷分析和稳定性验证。
优化设计
根据分析结果,对结构进行优化以提高性能或降低成本。
结构分析方法
有限元分析
使用离散化的数值模型来模拟 结构的响应。
线性静力分析
用于确定结构在恒定载荷下的 响应。
动力分析
研究结构在动态载荷或振动情 况下的响应。
(七)网架结构13
注意小立柱自身的稳定性;
(b)对整个网架起拱(图b); (c)采用变高度网架,增大网架跨中高度,使上弦杆形成坡度,
下弦杆仍平行于地面,类似梯形桁架。
有起拱要求的网架(为消除网架在使用阶段的挠度),其拱度可
取不大于短向跨度的1/300。
(a)用小立柱 网架屋面找坡
(b)起拱
施工中的网架
蜂窝形三角锥网架本
身是几何可变的:借 助于支座水平约束来 保证其几何不变。
蜂窝三角锥网架
角锥体网架
网架结构的支承方式与节点
一、网架的支承方式: 周边支承 点支承 周边支承与点支承相结合 两边和三边支承
周边支承
周边支承是在网架四周全部或部分边界节点设
置支座(图a,b),支座可支承在柱顶或圈梁上, 网架受力类似于四边支承板,是常用的支承方 式。
芜湖体育中心屋盖
成都国际机场航站楼,为三角空间曲线行桁架
网架节点构造
(1)焊接空心球节点
上弦节点
下弦节点
焊接空心球节点
(2)螺栓球节点
螺栓球节点
(3)支座节点
平板压力支座
平板压力支座
平板压力支座
平板压力支座
(4)屋顶节点
(5)悬挂吊车节点
网架特点及适用范围
一、网架特点 1 网架结构是高次超静定空间结构。空间刚度大、整体性好、抗震能力强,而且能够 承受由于地基不均匀沉降带来的不利影响。 2网架结构的自重轻,用钢量省; 3应用范围广既适用于中小跨度,也适用于大跨度的房屋; 4同时也适用于各种平面形式的建筑,如:矩形、圆形、扇形及多边形。 5适用于大柱网的建筑,使结构具有足够大的使用空间,便于按照不同的功能要求分 配空间 6通风采光好,但是不适用对声音要求特别高的建筑 7上下弦之间由规律的杆件组成,在不增加层高的基础上,满足管道铺设要求。 8结构表现形式直接体现造型美的需求,更好体现理性设计的思想 9 网架结构取材方便,一般采用 Q235 钢或 Q345 钢,杆件截面形式有钢管和角钢两类, 以钢管采用较多,并可用小规格的杆件截面建造大跨度的建筑(因为网架结构能 充分发挥材料的强度,节省钢材)。 10另外,网架结构其杆件规格统一,适宜工厂化生产,为提高工程进度提供了有利的 条件和保证。