r语言上级实验一

合集下载

大数定律和中心极限定理的r语言实验报告

大数定律和中心极限定理的r语言实验报告

大数定律和中心极限定理是概率论中的两个重要概念。

大数定律描述了在独立重复试验中,当试验次数趋于无穷时,某一事件发生的频率趋于其概率。

中心极限定理则指出,无论试验中的个体之间的差异有多大,当试验次数足够多时,试验结果的平均值将接近正态分布。

以下是一个简单的R语言实验报告,用于演示大数定律和中心极限定理。

大数定律和中心极限定理的R语言实验
实验目的:通过模拟实验,观察大数定律和中心极限定理的现象。

实验原理:
1.大数定律:在大量独立重复试验中,某一事件的相对频率趋近于该事件的概率。

2.中心极限定理:无论个体之间的差异有多大,当试验次数足够多时,试验结果的平均值将接近正态分布。

实验步骤:
1.生成1000个0到1之间的随机数,模拟1000次掷硬币试验(正面概率为0.5)。

2.计算正面朝上的频率。

3.使用R语言绘制频率直方图和正态分布曲线。

4.重复步骤1-3多次(例如100次),观察频率的稳定性。

5.计算100次试验中每次试验得分的平均值的频数分布,并绘制直方图和正态分布曲线。

实验结果:
1.正面朝上的频率逐渐稳定于0.5。

2.频率直方图接近正态分布。

3.平均值的频数分布也接近正态分布。

实验分析:
实验结果验证了大数定律和中心极限定理。

在大量独立重复试验中,正面朝上的频率趋近于0.5,符合大数定律。

同时,试验结果的平均值分布接近正态分布,符合中心极限定理。

结论:通过R语言模拟实验,我们观察到了大数定律和中心极限定理的现象,加深了对这两个定理的理解。

R语言实验报告—回归分析在女性身高与体重的应用

R语言实验报告—回归分析在女性身高与体重的应用

R语言实验报告—回归分析在女性身高与体重的应用【引言】身高和体重是人体健康状况的重要指标之一,身高一般与体重成正比,但具体的关系因个体差异而异。

为了探究女性身高与体重之间的关系,并通过回归分析建立二者之间的数学模型,本实验使用R语言进行实验。

【数据获取与处理】从网上收集了100名女性的身高和体重数据作为样本。

数据处理阶段,首先对数据进行了基本统计分析,包括计算身高和体重的平均值、标准差等;然后,进行了数据可视化,使用散点图展示了身高和体重之间的关系。

【回归建模】接下来,使用R语言进行回归分析建模。

假设身高为自变量x,体重为因变量y,建立线性回归模型y=β0+β1x+ε,其中ε为误差项。

使用最小二乘法对样本数据进行拟合,估计模型参数β0和β1【模型评估】为了评估模型的拟合程度,使用R方值和均方根误差(RMSE)进行评估。

R方值越接近1表示模型拟合效果越好,RMSE值越小表示模型预测结果与实际数据越接近。

【结果讨论】根据回归分析得到的模型参数估计值,可以判断女性身高和体重之间存在正相关关系。

同时,R方值为0.8,表明模型拟合效果较好。

但是,RMSE为3.2,表示模型的预测误差较大,可能存在其他影响体重的因素未考虑。

【结论】回归分析可以帮助我们了解女性身高和体重之间的关系,并建立数学模型预测体重。

本实验结果显示女性的身高与体重存在正相关关系。

但是,模型的预测效果可能还可以改进,需要进一步考虑其他可能的影响因素,例如年龄、饮食习惯等。

[2] Guo SS, Chumlea WC. Tracking of body mass index in children in relation to overweight in adulthood. Am J Clin Nutr, 1999, 70(1):145S-148S.【附录】实验中使用的R代码如下:```R#数据处理与可视化data <- read.csv("data.csv") # 读取数据文件summary(data) # 统计数据plot(data$height, data$weight, xlab="身高", ylab="体重",main="身高与体重关系散点图") # 绘制散点图#回归分析model <- lm(weight ~ height, data=data) # 建立回归模型summary(model) # 查看模型摘要信息plot(data$height, data$weight, xlab="身高", ylab="体重",main="身高与体重关系散点图") # 绘制散点图abline(model, col="red") # 绘制回归线#模型评估Rsquared <- summary(model)$r.squared # 计算R方值RMSE <- sqrt(mean((data$weight-predict(model))^2)) # 计算RMSE值```【Acknowledgement】感谢所有参与实验的被试者,以及提供数据的相关组织或个人。

R语言实验报告

R语言实验报告

一、实验目的1.用 R 生成服从某些具体已知分布的随机变量二、实验内容在 R 中各种概率函数都有统一的形式,即一套统一的前缀+分布函名:d 表示密度函数(density);p 表示分布函数(生成相应分布的累积概率密度函数);q 表示分位数函数,能够返回特定分布的分位(quantile);r 表示随机函数,生成特定分布的随机数(random)。

1、通过均匀分布随机数生成概率分布随机数的方法称为逆变换法。

对于任意随机变量X,其分布函数为F,定义其广义逆为:F-(u)=inf{x;F(x)≥u}若u~u (0,1),则F-(u)和X 的分布一样Example 1 如果X~Exp(1)(服从参数为 1 的指数分布),F(x)=1-e-x。

若u=1-e-x并且u~u(0,1),则X=-logU~Exp(1)则可以解出x=-log(1-u)通过随机数生成产生的分布与本身的指数分布结果相一致R 代码如下:nsim = 10^4U = runif(nsim)X = -log(U)Y = rexp(nsim)X11(h=3.5)Xpar(mfrow=c(1,2),mar=c(2,2,2,2))hist(X,freq=F,main="Exp from Uniform",ylab="",xlab="",ncl=150,col="grey",xlim=c(0,8))curve(dexp(x),add=T,col="sienna",lwd=2)hist(Y,freq=F,main="Exp from R",ylab="",xlab="",ncl=150,col="grey",xlim=c(0,8))curve(dexp(x),add=T,col="sienna",lwd=2)2、某些随机变量可由指数分布生成。

R语言综合实验报告

R语言综合实验报告

学号:2013310200629姓名:王丹学院:理学院专业:信息与计算科学成绩:日期:年月日基于工业机器人能否准确完成操作的时间序列分析摘要:时间序列分析是预测领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测数据。

本文首先介绍了一些常用的时间序列模型,包括建模前对数据的预处理、模型的识别以及模型的预测等。

通过多种方法分析所得到的数据,实现准确建模,可以得出正确的结论。

关键词:自回归(AR)模型,滑动平均(MA)模型,自回归滑动平均(ARMA)模型,ARMA最优子集一、问题提出,问题分析随着社会日新月异的发展,不断创新的科技为我们的生活带来了越来越多的便利。

机器人也逐渐走向了我们的生活,工厂里使用机器人去工作也可以大大减少生产成本,但为了保证产品质量,工厂使用的机器人应该多次测试,确保动作准确无误。

现有一批数据,包含了来自工业机器人的时间序列(机器人需要完成一系列的动作,与目标终点的距离以英寸为单位被记录下来,重复324次得到该时间序列),对于这些离散的数据,我们期望从中发掘一些信息,以便对机器人做更好的改进或者确定机器人是否可以投入使用。

但我们从中并不能看出什么,需要借助工具做一些处理,对数据进行分析。

时间序列分析是通过直观的数据比较或作图观测,去寻找序列中包含的变化规律,这种分析方法称为描述性时序分析。

在物理、天文、海洋学等科学领域,这种描述性时序分析方法经常能够使人们发现一些意想不到的规律,操作起来十分简单而且直观有效,因此从史前到现在一直被人们广泛使用,它也是我们进行统计时序分析的第一步。

我们将利用自回归(AR)模型、滑动平均(MA)模型以及自回归滑动平均(ARMA)模型去解决遇到的问题。

二、数据描述和初步分析下面是我们接收到的数据,数据来源:/~kchan/TSA.htm0.0011 0.0011 0.0024 0.0000 -0.0018 0.0055 0.0055 -0.00150.0047 -0.0001 0.0031 0.0031 0.0052 0.0034 0.0027 0.00410.0041 0.0034 0.0067 0.0028 0.0083 0.0083 0.0030 0.00320.0035 0.0041 0.0041 0.0053 0.0026 0.0074 0.0011 0.0011-0.0001 0.0008 0.0004 0.0000 0.0000 -0.0009 0.0038 0.00540.0002 0.0002 0.0036 -0.0004 0.0017 0.0000 0.0000 0.00470.0021 0.0080 0.0029 0.0029 0.0042 0.0052 0.0056 0.00550.0055 0.0010 0.0043 0.0006 0.0013 0.0013 0.0008 0.00230.0043 0.0013 0.0013 0.0045 0.0037 0.0015 0.0013 0.00130.0029 0.0039 -0.0018 0.0016 0.0016 -0.0003 0.0000 0.00090.0017 0.0017 0.0030 -0.0001 0.0070 -0.0008 -0.0008 0.00090.0025 0.0031 0.0002 0.0002 0.0022 0.0020 0.0003 0.00330.0033 0.0044 -0.0010 0.0048 0.0019 0.0019 0.0031 0.00200.0017 0.0014 0.0014 0.0039 0.0052 0.0020 0.0012 0.00120.0031 0.0022 0.0040 0.0038 0.0038 0.0007 0.0016 0.00240.0003 0.0003 0.0057 0.0006 0.0009 0.0040 0.0040 0.00350.0032 0.0068 0.0028 0.0028 0.0048 0.0035 0.0042 -0.0020-0.0020 0.0023 -0.0011 0.0062 -0.0021 -0.0021 0.0000 -0.0019-0.0005 0.0048 0.0048 0.0027 0.0009 -0.0002 0.0079 0.00790.0017 0.0034 0.0030 0.0025 0.0025 0.0004 0.0031 0.0057-0.0003 -0.0003 0.0006 0.0018 0.0022 0.0042 0.0042 0.0055-0.0005 -0.0053 0.0028 0.0028 0.0005 0.0036 0.0017 -0.0043-0.0043 0.0066 -0.0016 0.0055 -0.0011 -0.0011 -0.0049 0.00470.0056 0.0057 0.0057 -0.0002 0.0056 0.0037 0.0012 0.00120.0018 -0.0025 -0.0011 0.0027 0.0027 0.0039 0.0058 0.00030.0040 0.0040 0.0042 0.0000 0.0056 -0.0029 -0.0029 -0.00260.0016 0.0019 0.0015 0.0015 0.0007 0.0007 -0.0044 -0.0030-0.0030 0.0013 0.0029 -0.0010 0.0009 0.0009 -0.0016 0.00000.0000 0.0014 0.0014 -0.0003 0.0009 -0.0068 0.0003 0.0003-0.0012 0.0037 -0.0019 0.0023 0.0023 -0.0033 -0.0002 -0.00100.0021 0.0021 0.0026 -0.0002 0.0011 0.0028 0.0028 -0.00040.0026 -0.0015 0.0002 0.0002 0.0018 -0.0005 0.0004 -0.0008-0.0008 0.0018 0.0019 0.0029 -0.0022 -0.0022 0.0010 -0.00330.0020 0.0000 0.0000 0.0003 0.0007 -0.0009 -0.0035 -0.00350.0010 0.0007 0.0028 -0.0008 -0.0008 -0.0034 -0.0010 -0.0018-0.0021 -0.0021 -0.0006 -0.0018 -0.0046 -0.0017 -0.0017 -0.0001-0.0029 0.0020 -0.0049 -0.0049 -0.0021 -0.0027 -0.0018 -0.0015-0.0015 0.0051 -0.0002 0.0000 -0.0006 -0.0006 -0.0012 0.00120.0000 0.0021 0.0021 -0.0001 0.0022 0.0055 -0.0010 -0.00100.0048 0.0006 0.0026 0.0004 0.0004 0.0000 0.0000 0.00080.0044 0.0044 0.0002 0.0036这一群数目庞大的数据,以我们直观的判断,它们错综复杂,且毫无规律可言,根本不能从中得到有用的消息。

r语言实验报告

r语言实验报告

r语言实验报告R语言实验报告介绍•本文旨在对R语言实验报告进行相关介绍和指导。

准备工作•在开始编写R语言实验报告之前,需要进行一些准备工作:–安装R语言环境–确保安装必要的R包–理解实验要求和相关数据集实验报告结构•一个完整的R语言实验报告通常包含以下几个部分:1. 标题•实验报告的标题应简明扼要地描述实验内容。

2. 引言•引言部分应包含以下内容:–实验的背景和目的–实验所采用的数据集和方法的简要介绍3. 数据分析•数据分析部分是实验报告的重点,应包含以下内容:–数据的读取和预处理–数据的可视化–统计分析方法的应用–结果的解释和讨论4. 结论•结论部分应总结实验的结果,并对实验的目的和方法进行评价。

5. 参考文献•参考文献部分应列举实验报告中所引用的相关文献。

编写要点•在编写R语言实验报告时,需要遵守以下要点:1. 语法规范•使用清晰、准确的语法表达实验过程和结果。

2. 结果的解释•对于结果的解释,应该尽量采用简洁明了的语言,避免使用过于专业的术语或过于复杂的句子结构。

3. 图表的使用•图表是实验报告中常用的可视化工具,应合理使用图表来展示数据和结果,并配以简洁明了的图题和注解。

4. 逻辑性和连接性•实验报告应具有良好的逻辑性和连接性,各部分之间应有明确的联系和衔接,以确保整篇报告的连贯性。

结语•编写一份规范、完整的R语言实验报告需要系统的学习和实践,希望本文对您有所帮助。

参考文献•[参考文献1]•[参考文献2]继续编写一份更详细的R语言实验报告:R语言实验报告介绍•本文旨在对R语言实验报告进行相关介绍和指导。

准备工作•在开始编写R语言实验报告之前,需要进行一些准备工作:–安装R语言环境:确保在电脑上成功安装R语言的最新版本。

–确保安装必要的R包:根据实验需求,安装并加载所需的R包,例如ggplot2、dplyr等。

–理解实验要求和相关数据集:认真阅读实验要求,理解实验的目的和需求,并熟悉所使用的数据集。

R语言 上机实验一 EXCEL的应用

R语言 上机实验一  EXCEL的应用

上机实验一Excel的应用基础训练:1.在Excel2000中按下列要求建立数据表格和图表:成分含量比例碳0.02氢0.25镁 1.28氧 3.45具体要求如下:1)将下列某种药品成分构成情况的数据建成一个数据表(存放在A1:C5的区域内),并计算出各类成分所占比例(保留小数点后面3位),其计算公式是:比例=含量(mg)/含量的总和(mg)2)对建立的数据表建立分离型三维饼图,图表标题为“药品成分构成图”,并将其嵌入到工作表的A7:E17区域中。

步骤:操作二、把下列表格录入。

2006级部分学生成绩表学号姓名性别数学礼仪计算机英语总分平均分最大值最小值200601孙志男72828162200602张磊男78747880200603黄亚女80706870200604李峰男79716276200605白梨女58824265200606张祥女78717052按下列要求操作:(1)把标题行进行合并居中。

(2)用函数求出总分,平均分、最大值、最小值。

(3)用总分成绩递减排序,总分相等时用学号递增排序。

(4)筛选计算机成绩大于等于70分且小于80分的纪录。

并把结果放在sheet2中。

(5)把sheet1工作表命名为“学生成绩”,把sheet2工作表命名为“筛选结果”。

操作三、在Excel中录入下列表格学生成绩表编号姓名英语计算机数学总成绩001张三858086002李四628195003王五858282004赵六988382005马七787875006杨八858582007刘九657875008张四758582009李十359565010王六755875平均分最高分按要求操作:1、设置工作表行、列:标题行:行高30;其余行高为20。

2、设置单元格:(1)标题格式:字体:楷书;字号:20;字体颜色为红色;跨列居中;底纹黄色。

(2)将成绩右对齐;其它各单元格内容居中。

3、设置表格边框:外边框为双线,深蓝色;内边框为细实心框,黑色。

R语言实验报告

R语言实验报告

R语言实验报告一、试验目的R是用于统计分析、绘图的语言和操作环境。

R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。

本次试验要求掌握了解R语言的各项功能和函数,能够通过完成试验内容对R语言有一定的了解,会运用软件对数据进行分析。

二、试验环境Windows系统,RGui(32-bit)三、试验内容模拟产生电商专业学生名单(学号区分),记录高数、英语、网站开发三科成绩,然后进行统计分析。

假设有的100名学生,起始学号为210222001,各科成绩取整,高数成绩为均匀分布随机数,都在75分以上。

英语成绩为正态分布,平均成绩80,标准差为7。

网站开发成绩为正态分布,平均成绩83,标准差为18。

把正态分布中超过100分的成绩变成100分。

1把上述信息组合成数据框,并写到文本文件中;2计算各种指标:平均分,每个人的总分,最高分,最低分,(使用apply函数)3求总分最高的同学的学号4绘各科成绩直方图、散点图、柱状图丶饼图丶箱尾图(要求指定颜色和缺口)5画星相图,解释其含义6画脸谱图,解释其含义,7画茎叶图、qq图四、试验实现(一)按要求随机生成学号,和对于的高数、英语、网站开发三科成绩。

A、生成学号B、生成高数成绩高数成绩要求:高数成绩为均匀分布随机数,都在75分以上均匀分布函数:runif(n,min=0,max=1)其中,n为产生随机值个数(长度),min为最小值,max为最大值。

C、生成英语成绩英语成绩要求:正态分布,平均成绩80,标准差为7正态分布函数:rnorm(n,mean=0,sd=1)其中,n为产生随机值个数(长度),mean是平均数,sd是标准差。

D、生成网站开发成绩网站开发成绩要求:网站开发成绩为正态分布,平均成绩83,标准差为18。

其中大于100的都记为100。

(二)把上述信息组合成数据框,并写到文本文件中;计算各种指标:平均分,每个人的总分,最高分,最低分,(使用apply函数)A、生成文本文件B、打开数据框C、在数据框中命名变量D、计算各种指标:平均分,每个人的总分,最高分,最低分平均分(x4):总分(x5):最低分(x6):最高分(x7):(三)将生成成绩写入文本文件中(四)求总分最高的同学的学号(五)绘各科成绩直方图、散点图、柱状图丶饼图丶箱尾图(要求指定颜色和缺口)直方图散点图柱状图饼图箱尾图(要求指定颜色和缺口)(六)画星相图,解释其含义(七)画脸谱图,解释其含义(八)画茎叶图(九)qq图五、试验总结 这次试验是我第一次接触R 语言,刚开始遇到了很多困难,对于R语言一窍不通,后来经过老师的悉心指导,以及自己积极的去查找资料,对R语言有了进一步的了解。

武汉理工大学R语言实验报告

武汉理工大学R语言实验报告

第二部分:实验过程记录(可加页)(包括实验原始数据记录,实验现象
记录,实验过程发现的问题等)
原始数据(E:/fire.txt):
xy
3.4 26.2
1.8 17.8
4.6 31.3
2.3 23.1
3.1 27.5
5.5 36
0.7 14.1
3 22.3
2.6 19.6
4.3 31.3
2.1 24
1.1 17.3
6.1 43.2
4.8 36.4
3.8 26.1
打开 R 软件后依次按一下程序输入函数命令进行回归分析
1.数据准备
fire <- read.table('E:/fire.txt', head = T)
#读取数据
2.回归分析
plot(fire$y ~ fire$x)
#散点图:
fire.reg <- lm(fire$y ~ fire$x, data = fire)
summary(fire.reg)
#回归分析表:
#回归拟合
anova(fire.reg)
#方差分析表
abline(fire.reg, col = 2, lty = 2)
#拟合直线
3.残差分析 fire.res <- residuals(fire.reg) #残差 fire.sre <- rstandard(fire.reg) #学生化残差 plot(fire.sre) abline(h = 0) text(11, fire.sre[11], label = 11, adj = (-0.3), col = 2) #标注点
2. 一旦我们将时间序列读入 R,下一步通常是用这些数据绘制时间序列图,我 们可以使用 R 中的 plot.ts()函数。

R语言实验报告范文

R语言实验报告范文

R语言实验报告范文实验报告:基于R语言的数据分析摘要:本实验基于R语言进行数据分析,主要从数据类型、数据预处理、数据可视化以及数据分析四个方面进行了详细的探索和实践。

实验结果表明,R语言作为一种强大的数据分析工具,在数据处理和可视化方面具有较高的效率和灵活性。

一、引言数据分析在现代科学研究和商业决策中扮演着重要角色。

随着大数据时代的到来,数据分析的方法和工具也得到了极大发展。

R语言作为一种开源的数据分析工具,被广泛应用于数据科学领域。

本实验旨在通过使用R语言进行数据分析,展示R语言在数据处理和可视化方面的应用能力。

二、材料与方法1.数据集:本实验使用了一个包含学生身高、体重、年龄和成绩的数据集。

2.R语言版本:R语言版本为3.6.1三、结果与讨论1.数据类型处理在数据分析中,需要对数据进行适当的处理和转换。

R语言提供了丰富的数据类型和操作函数。

在本实验中,我们使用了R语言中的函数将数据从字符型转换为数值型,并进行了缺失值处理。

同时,我们还进行了数据类型的检查和转换。

2.数据预处理数据预处理是数据分析中的重要一步。

在本实验中,我们使用R语言中的函数处理了异常值、重复值和离群值。

通过计算均值、中位数和四分位数,我们对数据进行了描述性统计,并进行了异常值和离群值的检测和处理。

3.数据可视化数据可视化是数据分析的重要手段之一、R语言提供了丰富的绘图函数和包,可以用于生成各种类型的图表。

在本实验中,我们使用了ggplot2包绘制了散点图、直方图和箱线图等图表。

这些图表直观地展示了数据的分布情况和特点。

4.数据分析数据分析是数据分析的核心环节。

在本实验中,我们使用R语言中的函数进行了相关性分析和回归分析。

通过计算相关系数和回归系数,我们探索了数据之间的关系,并对学生成绩进行了预测。

四、结论本实验通过使用R语言进行数据分析,展示了R语言在数据处理和可视化方面的强大能力。

通过将数据从字符型转换为数值型、处理异常值和离群值,我们获取了可靠的数据集。

r语言实验报告

r语言实验报告

r语言实验报告R语言实验报告引言R语言是一种广泛应用于数据分析和统计建模的开源编程语言,具有丰富的包和函数库,适用于各种数据处理和可视化任务。

本实验旨在探讨R语言在数据处理和可视化方面的应用,通过实际案例展示其强大的功能和灵活性。

数据导入与处理我们需要导入数据集,并进行初步的处理。

在R语言中,可以使用read.csv()函数导入csv格式的数据文件,然后通过head()函数查看数据的前几行,以了解数据结构和内容。

接下来,可以使用subset()函数筛选出需要的数据列,并使用na.omit()函数删除缺失值,确保数据的完整性和准确性。

数据可视化数据可视化是数据分析的重要环节,可以帮助我们更直观地理解数据的分布和关系。

在R语言中,可以使用ggplot2包来绘制各种类型的图表,如散点图、折线图和直方图等。

通过设置不同的参数和颜色,可以定制化图表的样式,使其更具有美感和可读性。

统计分析除了数据可视化,R语言还提供了丰富的统计分析函数,可以帮助我们进行各种统计推断和建模分析。

例如,可以使用lm()函数进行线性回归分析,通过summary()函数查看回归模型的拟合效果和显著性检验结果。

此外,还可以使用t.test()函数进行假设检验,判断样本均值之间是否存在显著差异。

结果解释与总结我们需要对分析结果进行解释和总结。

在解释结果时,应该清晰地说明分析方法和推断过程,避免歧义和误导。

在总结部分,可以简要概括分析的主要发现和结论,指出数据分析对问题的解决和决策的重要性和价值。

结论通过本实验,我们深入探讨了R语言在数据处理和可视化方面的应用,展示了其强大的功能和灵活性。

R语言不仅可以帮助我们高效地处理和分析数据,还可以帮助我们更好地理解数据的特征和规律。

希望本实验可以帮助读者更好地掌握R语言的应用技巧,提升数据分析和统计建模的能力。

R语言上机实验

R语言上机实验

一、数据可视化1.对于iris数据,用每类花(iris$Speciees)的样本数作为高度,制作条形图。

2.用每类花的Sepal.Length、Sepal.Width、Petal.Length、Petal.Width的平均值分别制作条形图,四图同显。

3.分别制作Sepal.Length、Sepal.Width、Petal.Length、Petal.Width的直方图(用密度值做代表,设置prob=T),添加拟合的密度曲线,四图同显。

二、中国地图:(Note:首先从网上下载GIS数据,解压到GIS_data目录。

/wp-content/uploads/2009/07/chinaprovinceborderdata _tar_gz.zip)setwd('F:/GIS_data') ### 设置工作目录install.packages('maptools');library(maptools)china<- readShapePoly('bou2_4p.shp') ### 获得各省的边界信息plot(china)>> names(map_data)[1] "AREA" "PERIMETER" "BOU2_4M_" "BOU2_4M_ID" "ADCODE93"[6] "ADCODE99" "NAME"可以看出map_data中有7列,对应的字段名如上面显示。

>> map_data$AREA #925个区域单元的面积>> map_data$PERIMETER #925个区域单元的周长>> map_data$BOU2_4M_ #没有重复的数字,2~926,可作为区域单元ID>> map_data$BOU2_4M_ID #有重复数字,特定情况下可作为区域单元ID>> map_data$ADCODE93 #93版ADCODE地理编码>> map_data$ADCODE93 #99版ADCODE地理编码>> map_data$NAME #各区域单元所隶属的省级行政单元的名称>> unique(map_data$NAME) #查看各区域的名称是什么文本[1] 黑龙江省内蒙古自治区新疆维吾尔自治区吉林省[5] 辽宁省甘肃省河北省北京市[9] 山西省天津市陕西省宁夏回族自治区[13] 青海省山东省西藏自治区河南省[17] 江苏省安徽省四川省湖北省[21] 重庆市上海市浙江省湖南省[25] 江西省云南省贵州省福建省[29] 广西壮族自治区台湾省广东省香港特别行政区[33] 海南省<NA>33 Levels: 安徽省北京市福建省甘肃省广东省广西壮族自治区 ...重庆市provname=c("北京市","天津市","河北省","山西省","内蒙古自治区", "辽宁省","吉林省","黑龙江省","上海市","江苏省", "浙江省","安徽省","福建省","江西省","山东省", "河南省","湖北省","湖南省","广东省","广西壮族自治区","海南省","重庆市","四川省","贵州省", "云南省","西藏自治区","陕西省","甘肃省","青海省","宁夏回族自治区","新疆维吾尔自治区","台湾省", "香港特别行政区") ###省份向量pop=c(1633,1115,6943,3393,2405,4298,2730,3824,1858,7625,5060,6118,3581 ,4368,9367,9360,5699,6355,9449,4768,845,2816,8127,3762,4514,284,3748,26 17,552,610,2095,2296,693) ###各省人口向量根据各省人口数量给地图着色。

r语言实验报告

r语言实验报告

r语言实验报告标题:R语言在数据分析中的应用及指导意义导语:R语言作为一种广泛应用于数据分析与统计建模的编程语言,在各个领域中发挥着重要的作用。

本文将对R语言在数据分析中的应用进行探讨,并总结出相关的指导意义,希望能够为数据分析初学者提供一定的参考和帮助。

一、R语言的基础概述R语言是一种开源的编程语言,具备灵活、高效、优雅的特点,被广泛应用于数据科学和统计学领域。

R语言拥有丰富的数据处理、数据可视化和数据分析库,能够满足不同层次的数据分析需求。

二、R语言在数据预处理中的应用1.数据清洗:R语言提供了丰富的数据清洗函数和技术,可以对数据中的缺失值、异常值和重复值进行处理,提高数据的质量。

2.数据转换:R语言能够通过函数和技术,对数据进行转换和重构,实现数据格式的统一和规整,为后续的分析提供基础。

三、R语言在数据分析中的应用1.统计分析:R语言提供了众多的统计分析函数和包,能够进行常见的统计分析,如描述性统计、假设检验、方差分析等。

2.数据建模:R语言拥有强大的建模功能,可以进行线性回归、逻辑回归、决策树、聚类等建模分析,为数据科学家提供了广泛的选择。

3.机器学习:R语言支持各种机器学习算法,如朴素贝叶斯、支持向量机、随机森林等,可以进行模式识别、预测和分类等任务。

四、R语言在数据可视化中的应用1.基础绘图:R语言提供了各类绘图函数,如散点图、柱状图、线图等,能够直观地展示数据的分布和趋势。

2.高级可视化:通过使用R语言的各种包,如ggplot2、plotly 等,可以制作专业、美观的可视化图表,提升数据分析的表达力。

3.交互式可视化:R语言可以与Shiny等工具结合,实现交互式可视化,使用户能够灵活地探索数据,在分析过程中进行实时调整和观察。

五、R语言在数据分析中的指导意义1.灵活性:R语言的灵活性使得分析人员能够根据需求进行自由创造和探索,满足不同场景下的分析需求。

2.社区支持:R语言拥有庞大的社区,用户可以在社区中获取丰富的资源、经验和技术支持,提高分析效率。

r语言上级实验一

r语言上级实验一

r语言上级实验一理学院实验报告班级:学号:姓名:实验编号:01实验一:初识R软件一、实验目的与要求:1、了解R软件的安装、启动和退出。

2、掌握软件包的安装和载入。

3、掌握R软件帮助功能。

4、会使用R的集成开发环境Tinn-R或Rstudio。

5、掌握用R进行基本的代数运算。

6、掌握用R生成向量、矩阵、数据框和列表的方法。

7、掌握提取数据子集的方法。

二、实验内容:1.按N的不同取值,计算∑=-Nii12)12(1,并求其与log(N)+1.0的距离,其中N=100,500,1000,1500.#计算其值> N<-c(100,500,1000,1500)> for(k in 1:length(N))+ {+ s=0+ for(i in 1:N[k]){+ s=s+1/(2*i-1)^2+ }+ print(s)+ }[1] 1.231201[1] 1.233201[1] 1.233451[1] 1.233534#求距离> y<-abs(s-(log(N)+1.0))> y[1] 4.371636 5.981074 6.674221 7.0796872.联合命令rep()和seq()生成(1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8,5,6,7,8,9). #用rep生成> rep(1:5,5)+rep(0:4,rep(5,5))[1] 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9 #用seq 生成> rep(seq(1,5),5)+rep(seq(0,4),rep(5,5))[1] 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 93. 利用命令matrix()将矩阵=4912011411435A 输入变量A ,并求A 的行列式、逆矩阵,T AA (转置命令为t())、A A T .#输入变量A> A<-matrix(c(35,14,1,4,11,0,12,9,4),nrow=3,ncol=3,byrow=T) > A [,1] [,2] [,3][1,] 35 14 1 [2,] 4 11 0 [3,] 12 9 4#计算A 值 > det(A) [1] 1220#计算A 逆> solve (A) %*%A[,1] [,2] [,3] [1,] 1.000000e+00 -5.551115e-17 0.000000e+00 [2,] -1.387779e-17 1.000000e+00 -1.734723e-18 [3,] -4.440892e-16 -4.440892e-16 1.000000e+00#计算AA T > A%*%t(A)[,1] [,2] [,3] [1,] 1422 294 550 [2,] 294 137 147 [3,] 550 147 241#计算A T A> t(A)%*%A[,1] [,2] [,3] [1,] 1385 642 83 [2,] 642 398 50[3,] 83 50 174. (1)利用命令data.frame()将下表数据读入变量sea,Season Salinity(盐度) Temperature winter 29.19 4 winter 27.37 6 spring24.997.3spring 28.79 8.2 spring 33.28 9.1 summer 32.69 18.1 summer31.9 17 summer NA 21 autumn 32.53 15.1 autumn32.53 13.8>Season<-c("winter","winter","spring","spring","spring","summer","summer ","summer","autu mn","autumn")> Salinity<-c(29.19,27.37,24.99,28.79,33.28,32.69,31.9,NA,32.53,32.53) > Temperature<-c(4,6,7.3,8.2,9.1,18.1,17,21,15.1,13.8) > sea<-data.frame(Season,Salinity,Temperature) > seaSeason Salinity Temperature 1 winter 29.19 4.0 2 winter 27.37 6.0 3 spring 24.99 7.3 4 spring 28.79 8.2 5 spring 33.28 9.1 6summer 32.69 18.1 7 summer 31.90 17.0 8 summer NA 21.0 9 autumn 32.53 15.1 10 autumn 32.53 13.8 > class(sea)[1] "data.frame"(2)将盐度的标准化变量加到这个数据框中;(标准化公式:ni s x x ,x 是样本均值,n s 是样本方差);#将标准化变量加入> sea<-data.frame(Season,Salinity,Temperature,scale(Salinity)) > seaSeason Salinity Temperature scale.Salinity.1 winter 29.19 4.0 -0.40437122 winter 27.37 6.0 -1.03160603 spring 24.99 7.3 -1.85183624 spring 28.79 8.2 -0.54222505 spring 33.28 9.1 1.00518406 summer 32.69 18.1 0.80184977 summer 31.90 17.0 0.52958848 summer NA 21.0 NA9 autumn 32.53 15.1 0.746708110 autumn 32.53 13.8 0.7467081(3)从数据框sea提取包含season和temperature变量的子数据框存入变量sea1,并计算温度的平均值和标准差;> sea1<-data.frame(sea$Season,sea$Temperature)> sea1Season Temperature1 winter 4.02 winter 6.03 spring 7.34 spring 8.25 spring 9.16 summer 18.17 summer 17.08 summer 21.09 autumn 15.110 autumn 13.8> mean(Temperature)[1] 11.96> sd(Temperature)[1] 5.782963(4) 从数据框sea提取包含season和salinity变量的子数据框存入变量sea2,并计算盐度的平均值和标准差(结果不能为NA);> sea2<-data.frame(sea$Season,sea$Salinity)> sea2sea.Season sea.Salinity1 winter 29.192 winter 27.373 spring 24.994 spring 28.795 spring 33.286 summer 32.697 summer 31.908 summer NA9 autumn 32.5310 autumn 32.53> mean(Salinity,na.rm=T)[1] 30.36333> sd(Salinity,na.rm=T)[1] 2.901625(5)利用命令list() 将上表读入变量sea.list, 再将盐度的标准化变量加入到这个列表中,并比较该方法与数据框方法的区别。

r语言实验报告

r语言实验报告

r语言实验报告R语言实验报告一、引言R语言是一种广泛应用于数据分析、统计建模和可视化的编程语言。

本实验报告旨在介绍使用R语言进行数据分析的过程和结果。

二、实验设计本次实验的目标是分析某公司过去一年的销售数据,以了解销售业绩的情况。

实验设计包括以下步骤:1. 数据收集:从公司内部数据库中提取过去一年的销售数据,并将其导入R语言环境。

2. 数据清洗:对数据进行清理和预处理,包括处理缺失值、异常值和重复值等。

3. 数据探索:通过绘制统计图表和计算描述性统计指标,对销售数据进行探索性分析。

4. 模型建立:根据销售数据的特征和目标,选择适当的模型进行建立和训练。

5. 模型评估:使用交叉验证等方法对模型进行评估,并选择最佳模型。

6. 结果解释:根据模型的结果,对销售业绩进行解释和预测。

三、实验过程和结果1. 数据收集:从公司数据库中提取过去一年的销售数据,并导入R语言环境。

2. 数据清洗:对数据进行清理和预处理,包括处理缺失值、异常值和重复值等。

清洗后的数据包括销售额、销售数量、产品类别、销售时间等变量。

3. 数据探索:通过绘制统计图表和计算描述性统计指标,对销售数据进行探索性分析。

例如,绘制柱状图展示不同产品类别的销售额情况,计算销售数量的平均值和标准差等。

4. 模型建立:根据销售数据的特征和目标,选择适当的模型进行建立和训练。

例如,可以使用线性回归模型来预测销售额与销售数量之间的关系。

5. 模型评估:使用交叉验证等方法对模型进行评估,并选择最佳模型。

例如,可以计算模型的均方根误差(RMSE)来评估模型的预测精度。

6. 结果解释:根据模型的结果,对销售业绩进行解释和预测。

例如,可以通过模型预测某产品在未来一个月的销售额。

四、实验结论通过对过去一年销售数据的分析,我们得出以下结论:1. 不同产品类别的销售额存在差异,其中某些产品类别的销售额较高。

2. 销售数量与销售额呈正相关关系,即销售数量增加时,销售额也增加。

r语言实验报告总结

r语言实验报告总结

竭诚为您提供优质文档/双击可除r语言实验报告总结篇一:R语言实验心得模板实验心得姓名:杨辉学号:132085124接触R语言不久,一开始以为R语言很简单,很多时候只是一句代码的问题。

但学起来才知道,不是那么一回事。

看到不少同学问一些基础的问题,结合自己犯过的错,总结以下几条关于数据类型的学习心得:(1)R语言中向量和矩阵的是不同的。

一般人会认为向量就是一维(:r语言实验报告总结)的矩阵,但R语言不是这样操作,不同类型对应不同的操作。

如dim()函数可返回矩阵的行、列数,但是dim()作用域一个向量,则会返回nuLL;同时,若将向量强制转化为矩阵,不是像显示向量时的行矩阵,而是一个列矩阵;(2)R中矩阵提取行、列存在意外将维的问题。

这其实和第一条有密切联系,进而导致些意外的错误。

具体而言,若从矩阵中提取某一行出来,R会默认的将改行用向量存储,而不再是矩阵,而言导致涉及矩阵的操作出错。

一个明显的例子就是apply(),该函数的第二个参数需要制定数据操作的维度,但若矩阵已不再是矩阵(转成向量),那么指定1、2都没有意义了。

因此,矩阵提取时要注意,不要改变数据维度,常用的做法是设置drop=FALse,如从3*2的矩阵中提取第二行,应该为m[2,,drop=FALse];(3)因子和数值的转化。

这是个有趣的问题。

假如c=(1,3,5)是个数值向量,将之转为因子类型是没有问题的,对应的水平也为1,3,5,但是若再次将因子转为数值时,转化后的结果不再是数据向量(1,3,5),而是(1,2,3),也就是说对因子转数值,默认的操作应该是对因子排序,然后依次转为连续的数值,而不是直接将显示的因子转为数值,此处需要格外注意。

篇二:R语言判别分析实验报告R语言判别分析实验报告班级:应数1201学号:12404108姓名:麦琼辉时间:20XX年11月28号1实验目的及要求1)了解判别分析的目的和意义;2)熟悉R语言中有关判别分析的算法基础。

R语言实战第一章代码

R语言实战第一章代码

#2.1.1data() #查看数据集列表data(CO2) #载入CO2数据集(来自datasets)library(MASS) #载入package MASSdata(package="MASS") #查看MASS中数据集data(SP500,package="MASS") #载入MASS中的SP500数据集,也可简化为data(SP500)#2.1.2getwd() #返回当前工作目录setwd("d:/data") #也可以写成setwd("d:\\data")getwd()data=read.table("d:/data/salary.txt",header=T) #读取数据data=read.table("salary.txt",header=T)datadata=read.csv("salary.csv",header=T)data2=scan("salary.txt",skip=1,what=list(City="",Work=0,Price=0,Salary=0)) #由于不存在header参数,skip=1说明读取时跳过表示名称的第一行data2mode(data)names(data)dim(data)data$Salaryattach(data)Salarydetach(data)Salary#2.1.3data.fwf=read.fwf("d:/data/fwf.txt",widths=c(2,4,4,3),s=c("W","X","Y","Z"))data.fwf#2.1.4data.excel=read.delim("clipboard") #clipboard即剪切板mode(data.excel);dim(data.excel)install.packages("RODBC")library(RODBC)channel=odbcConnectExcel2007("d:/data/Salary.xlsx") #获取Excel连接sqlTables(channel) #列出excel中的表格#获取Sheet1中的数据,可以使用如下的任意一种方式data.excel2=sqlFetch(channel,"Sheet1") #直接获取data.excel2=sqlQuery(channel,"select*from[Sheet1$]") #使用SQL语句获取close(channel) #关闭ODBC连接,释放空间mode(data.excel2);dim(data.excel2)#2.1.5odbcDataSources() #查看可用的数据源#通过RMySQL/DBI读取数据库library(RMySQL) #同时也会加载DBI程序包con=dbConnect(MySQL(),user=”root”,password=”111111”,dbname = "test") #打开一个MySQL数据库的连接s=dbListTables(con) # 数据库中的表名存入s,方便查看s=dbListFeilds(con,”students”) # 列出表students中的字段dbReadTable(con,”students”) #获得并列出整个表dbSendQuery(con, “SET NAMES gbk”) #传送查询,说明用什么字符集来获取数据库字段,gbk或utf8要与之前设置的保持一致。

r语言实验报告(一)

r语言实验报告(一)

r语言实验报告(一)R语言实验报告介绍•R语言是一种用于数据分析和统计建模的开源编程语言。

•本报告将介绍如何使用R语言进行实验分析及报告撰写。

实验设计•确定实验目的和假设。

•设计实验方案,包括样本选择、实验流程和数据收集方式。

数据预处理•导入实验数据,并进行数据清洗和整理。

•检查数据质量,包括缺失值处理、异常值处理等。

数据分析•运用统计学方法进行数据分析,包括描述统计、推断统计和回归分析等。

•可视化数据,通过绘制图表来展示分析结果。

•对实验结果进行解释,包括与初期假设的关联、统计显著性等。

•讨论实验结果的启示和限制。

结论•总结实验结果及其对研究问题的回答。

•提出未来研究的建议,探讨实验的局限性。

参考文献•在报告结尾列出参考文献,引用使用合适的引用格式。

通过以上步骤,可以使用R语言完成一份实验报告。

R语言具备丰富的数据处理和统计分析库,并支持生成高质量的图表,能够有效地帮助实验者进行数据分析和报告撰写。

注意在整个过程中保证数据的准确性和可靠性,以确保实验结果的可信度。

R语言实验报告介绍R语言是一种用于数据分析和统计建模的开源编程语言。

它的强大功能和丰富的数据处理、统计分析库使得它成为科学研究和实验分析的重要工具。

本报告将介绍如何使用R语言进行实验分析及报告撰写的基本步骤和规则。

•确定实验目的和假设。

在开始实验前,明确研究问题是什么,想要验证的假设是什么。

•设计实验方案。

根据实验目的和假设,选择合适的实验变量和控制变量,制定实验流程和数据收集方式。

数据预处理•导入实验数据。

在R语言中,可以使用read.table()或read.csv()等函数将数据导入到工作空间中。

•进行数据清洗和整理。

检查数据中是否存在缺失值、异常值等问题,并进行相应处理,如删除或填补缺失值,修正异常值等。

•数据质量检查。

使用summary()和str()等函数对数据进行初步的统计描述和结构检查,确保数据的正确性和一致性。

数据分析•描述统计。

R语言实验一

R语言实验一

实验1 R基础(一)一、实验目的:1.熟悉实验报告书的书写要求;2.熟悉R的界面及基本操作。

二、实验内容:1.熟悉R官方网站及下载安装方法;2.熟悉R的界面及菜单功能;3.掌握R的简单操作;4.利用R 软件进行一些简单的数学运算。

练习:要求:①完成练习并粘贴运行截图到文档相应位置(截图方法见下),并将所有自己输入文字的字体颜色设为红色(包括后面的思考及小结),②回答思考题,③简要书写实验小结。

④修改本文档名为“本人完整学号姓名1”,其中1表示第1次实验,以后更改为2,3,...。

如文件名为“1305543109张立1”,表示学号为1305543109的张立同学的第1次实验,注意文件名中没有空格及任何其它字符。

最后连同数据文件、源程序文件等(如果有的话,本次实验没有),一起压缩打包发给课代表,压缩包的文件名同上。

截图方法:法1:调整需要截图的窗口至合适的大小,并使该窗口为当前激活窗口(即该窗口在屏幕最前方),按住键盘Alt键(空格键两侧各有一个)不放,再按键盘右上角的截图键(通常印有“印屏幕”或“Pr Scrn”等字符),即完成截图。

再粘贴到word文档的相应位置即可。

法2:利用QQ输入法的截屏工具。

点击QQ输入法工具条最右边的“扳手”图标,选择其中的“截屏”工具。

)1.访问R的官方网站,了解网站基本框架和内容:/。

2.在镜像网站CRAN下载最新版R安装程序。

选择离自己最近的国内的镜像网站,点击进入其中一个镜像网站后,下载最新版的Windows下的安装程序。

3. 安装R 程序(如果实验电脑已经安装,则可跳过此步骤)。

双击R-3.2.3-win.exe (目前最新版)开始安装。

一直点击下一步,各选项默认。

4. 在R 中进行简单的计算。

实验基本原理与方法:(1) R 的基本界面是一个交互式命令窗口,命令提示符是一个大于号“>”,命令的结果马上显示在命令下面。

(2) R 命令主要有两种形式:表达式或赋值运算(用“<-”表示)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理学院实验报告班级:学号:姓名:实验编号:01实验一:初识R软件一、实验目的与要求:1、了解R软件的安装、启动和退出。

2、掌握软件包的安装和载入。

3、掌握R软件帮助功能。

4、会使用R的集成开发环境Tinn-R或Rstudio。

5、掌握用R进行基本的代数运算。

6、掌握用R生成向量、矩阵、数据框和列表的方法。

7、掌握提取数据子集的方法。

二、实验内容:1.按N的不同取值,计算∑=-Nii12)12(1,并求其与log(N)+1.0的距离,其中N=100,500,1000,1500.#计算其值> N<-c(100,500,1000,1500)> for(k in 1:length(N))+ {+ s=0+ for(i in 1:N[k]){+ s=s+1/(2*i-1)^2+ }+ print(s)+ }[1] 1.231201[1] 1.233201[1] 1.233451[1] 1.233534#求距离> y<-abs(s-(log(N)+1.0))> y[1] 4.371636 5.981074 6.674221 7.0796872.联合命令rep()和seq()生成(1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8,5,6,7,8,9). #用rep生成> rep(1:5,5)+rep(0:4,rep(5,5))[1] 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9 #用seq 生成> rep(seq(1,5),5)+rep(seq(0,4),rep(5,5))[1] 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 93. 利用命令matrix()将矩阵⎪⎪⎪⎭⎫ ⎝⎛=4912011411435A 输入变量A ,并求A 的行列式、逆矩阵,T AA (转置命令为t())、A A T .#输入变量A> A<-matrix(c(35,14,1,4,11,0,12,9,4),nrow=3,ncol=3,byrow=T) > A[,1] [,2] [,3][1,] 35 14 1 [2,] 4 11 0 [3,] 12 9 4#计算A 值 > det(A) [1] 1220#计算A 逆> solve (A) %*%A[,1] [,2] [,3] [1,] 1.000000e+00 -5.551115e-17 0.000000e+00 [2,] -1.387779e-17 1.000000e+00 -1.734723e-18 [3,] -4.440892e-16 -4.440892e-16 1.000000e+00#计算AA T > A%*%t(A)[,1] [,2] [,3] [1,] 1422 294 550 [2,] 294 137 147 [3,] 550 147 241#计算A T A> t(A)%*%A[,1] [,2] [,3] [1,] 1385 642 83 [2,] 642 398 50[3,] 83 50 174. (1)利用命令data.frame()将下表数据读入变量sea,Season Salinity(盐度) Temperature winter 29.19 4 winter 27.37 6 spring24.997.3spring 28.79 8.2 spring 33.28 9.1 summer 32.69 18.1 summer 31.9 17 summer NA 21 autumn 32.53 15.1 autumn32.53 13.8>Season<-c("winter","winter","spring","spring","spring","summer","summer","summer","autu mn","autumn")> Salinity<-c(29.19,27.37,24.99,28.79,33.28,32.69,31.9,NA,32.53,32.53) > Temperature<-c(4,6,7.3,8.2,9.1,18.1,17,21,15.1,13.8) > sea<-data.frame(Season,Salinity,Temperature) > seaSeason Salinity Temperature 1 winter 29.19 4.0 2 winter 27.37 6.0 3 spring 24.99 7.3 4 spring 28.79 8.2 5 spring 33.28 9.1 6 summer 32.69 18.1 7 summer 31.90 17.0 8 summer NA 21.0 9 autumn 32.53 15.1 10 autumn 32.53 13.8 > class(sea)[1] "data.frame"(2)将盐度的标准化变量加到这个数据框中;(标准化公式:ni s x x ,x 是样本均值,n s 是样本方差);#将标准化变量加入> sea<-data.frame(Season,Salinity,Temperature,scale(Salinity))> seaSeason Salinity Temperature scale.Salinity.1 winter 29.19 4.0 -0.40437122 winter 27.37 6.0 -1.03160603 spring 24.99 7.3 -1.85183624 spring 28.79 8.2 -0.54222505 spring 33.28 9.1 1.00518406 summer 32.69 18.1 0.80184977 summer 31.90 17.0 0.52958848 summer NA 21.0 NA9 autumn 32.53 15.1 0.746708110 autumn 32.53 13.8 0.7467081(3)从数据框sea提取包含season和temperature变量的子数据框存入变量sea1,并计算温度的平均值和标准差;> sea1<-data.frame(sea$Season,sea$Temperature)> sea1Season Temperature1 winter 4.02 winter 6.03 spring 7.34 spring 8.25 spring 9.16 summer 18.17 summer 17.08 summer 21.09 autumn 15.110 autumn 13.8> mean(Temperature)[1] 11.96> sd(Temperature)[1] 5.782963(4) 从数据框sea提取包含season和salinity变量的子数据框存入变量sea2,并计算盐度的平均值和标准差(结果不能为NA);> sea2<-data.frame(sea$Season,sea$Salinity)> sea2sea.Season sea.Salinity1 winter 29.192 winter 27.373 spring 24.994 spring 28.795 spring 33.286 summer 32.697 summer 31.908 summer NA9 autumn 32.5310 autumn 32.53> mean(Salinity,na.rm=T)[1] 30.36333> sd(Salinity,na.rm=T)[1] 2.901625(5)利用命令list() 将上表读入变量sea.list, 再将盐度的标准化变量加入到这个列表中,并比较该方法与数据框方法的区别。

#利用list读表> sea.list<-list(Season,Salinity,Temperature)> sea.list[[1]][1] "winter" "winter" "spring" "spring" "spring" "summer" "summer" "summer" "autumn" "autumn"[[2]][1] 29.19 27.37 24.99 28.79 33.28 32.69 31.90 NA 32.53 32.53[[3]][1] 4.0 6.0 7.3 8.2 9.1 18.1 17.0 21.0 15.1 13.8#将盐度标准化变量加入> list(Season,Salinity,Temperature,scale(Salinity))[[1]][1] "winter" "winter" "spring" "spring" "spring" "summer" "summer" "summer" "autumn" "autumn"[[2]][1] 29.19 27.37 24.99 28.79 33.28 32.69 31.90 NA 32.53 32.53[[3]][1] 4.0 6.0 7.3 8.2 9.1 18.1 17.0 21.0 15.1 13.8[[4]][,1] [1,] -0.4043712 [2,] -1.0316060 [3,] -1.8518362 [4,] -0.5422250 [5,] 1.0051840 [6,] 0.8018497 [7,] 0.5295884 [8,] NA [9,] 0.7467081 [10,] 0.7467081attr(,"scaled:center")[1] 30.36333attr(,"scaled:scale")[1] 2.901625。

相关文档
最新文档