高中数学必修四期末测试题(含答案)

合集下载

(完整版)高中数学必修四期末测试题( 含答案 ),推荐文档

(完整版)高中数学必修四期末测试题( 含答案 ),推荐文档

8
4
第5页共6页
由于 <<,可得 = 3 .
2
4
综上,所求解析式为 y=10sin π x+ 3π +20,x∈[6,14].
2
6.C 解析:在平行四边形 ABCD 中,根据向量加法的平行四边形法则知 AD +
AB = AC .
7.B 解析:由 T= 2π =,得 =2.
8.D
解析:因为 a∥b,所以-2x=4×5=20,解得 x=-10.
9.D
解析:tan(-)=
tan+ tan

3+
4 3
=1

1+ tan tan 1+ 4 3
3.C 解析:在直角坐标系中作出- 4 由其终边即知.
3
4.D 解析:由 cos >0 知,为第一、四象限或 x 轴正方向上的角;由 sin <0 知,为第三、四象限或 y 轴负方向上的角,所以 的终边在第四象限. 5.B 解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°= 3 .
A.-1
B.1
C.-3
D.3
12.下列函数中,在区间[0, ]上为减函数的是(
).
2
A.y=cos x
B.y=sin x C.y=tan x
D.y=sin(x- )
3
13.已知 0<A< ,且 cos A= 3 ,那么 sin 2A 等于(
).
2
5
A. 4
25
B. 7
25
C. 12
25
D. 24
5
16. 3 .
4
解析:在[0,)上,满足 tan =-1 的角 只有 3 ,故 = 3 .
4

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。

)。

A。

4.B。

8.C。

16.D。

322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。

)。

A。

(-∞,-1)。

B。

(1,+∞)。

C。

(-1,1)U(1,+∞)。

D。

(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。

)。

A。

a<b<c。

B。

b<c<a。

C。

c<a<b。

D。

c<b<a4.函数y=-x^2+4x+5的单调增区间是(。

)。

A。

(-∞,2]。

B。

[-1,2]。

C。

[2,+∞)。

D。

[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。

)。

A。

a≤2.B。

-2≤a≤2.C。

a≤-2.D。

a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。

)。

A。

y=x-2.B。

y=x-1.C。

y=x^2.D。

y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。

)。

A。

1/2.B。

2/3.C。

3/4.D。

1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。

)。

A。

1/5.B。

-1/5.C。

5.D。

-59.若tanα=3,则sinαcosα=(。

)。

A。

3.B。

3/2.C。

3/4.D。

9/410.sin600°的值为(。

)。

A。

3/2.B。

-3/2.C。

-1/2.D。

1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。

)。

A。

1.B。

-1.C。

5/8.D。

-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。

高中数学必修4测试题及答案之欧阳学文创作

高中数学必修4测试题及答案之欧阳学文创作

高中数学必修4测试试题欧阳学文第Ⅰ卷(选择题 共60分)一、选择题:本答题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.300°化为弧度是 ( ) A.34π- B.35π-C .32π-D .65π- 2.为得到函数)32sin(π-=x y 的图象,只需将函数)62sin(π+=x y 的图像( )A .向左平移4π个单位长度B .向右平移4π个单位长度 C .向左平移2π个单位长度 D .向右平移2π个单位长度 3.函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=4.若实数x 满足㏒x 2=2+sin θ,则 =-++101x x ( )A. 2x9B. 92xC.11D. 95.点A(x,y)是300°角终边上异于原点的一点,则x y 值为( ) A.3B. 3C. 33D. 336.函数)32sin(π-=x y 的单调递增区间是( ) A .⎥⎦⎤⎢⎣⎡+-125,12ππππk k Z k ∈B .⎥⎦⎤⎢⎣⎡+-1252,122ππππk k Z k ∈ C .⎥⎦⎤⎢⎣⎡+-65,6ππππk k Z k ∈D .⎥⎦⎤⎢⎣⎡+-652,62ππππk k Z k ∈ 7.sin(-310π)的值等于( ) A .21 B .-21 C .23D .-23 8.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角9.函数x x y sin sin -=的值域是 ( )A .0B .[]1,1-C .[]1,0D .[]0,2-10.函数x x y sin sin -=的值域是 ( )A .[]1,1-B .[]2,0C .[]2,2-D .[]0,2-11.函数x x y tan sin +=的奇偶性是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数12.比较大小,正确的是( )A .5sin 3sin )5sin(<<-B .5sin 3sin )5sin(>>-C .5sin )5sin(3sin <-<D . 5sin )5sin(3sin >->第Ⅱ卷(非选择题 共90分)二、填空题(每小题6分,共30分)13.终边在坐标轴上的角的集合为_________.14.时针走过1小时50分钟,则分钟转过的角度是______.15. 已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是________________.16.已知角α的终边经过点P(5,12),则sin α+2cos α的值为______.17.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是________________.三、解答题:本大题共4小题,共60分。

高中数学必修四期末测试题(含答案)(K12教育文档)

高中数学必修四期末测试题(含答案)(K12教育文档)

高中数学必修四期末测试题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修四期末测试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修四期末测试题(含答案)(word版可编辑修改)的全部内容。

A数学必修四试卷一、选择题(本大题共10小题,每小题5分,共50分)1.下列命题正确的是A 。

第一象限角是锐角B 。

钝角是第二象限角C.终边相同的角一定相等D.不相等的角,它们终边必不相同2.函数12sin()24y x π=-+的周期,振幅,初相分别是A 。

4π,2,4πB 。

4π,2-,4π- C. 4π,2,4π D. 2π,2,4π3.如果1cos()2A π+=-,那么sin()2A π+=A 。

12 B.12 C 。

12 D.124.函数2005sin(2004)2y x π=-是A 。

奇函数B 。

偶函数 C.非奇非偶函数 D 。

既是奇函数又是偶函数 5.给出命题(1)零向量的长度为零,方向是任意的. (2)若a ,b 都是单位向量,则a =b . (3)向量AB 与向量BA 相等.(4)若非零向量AB 与CD 是共线向量,则A ,B ,C ,D 四点共线. 以上命题中,正确命题序号是A.(1) B 。

(2) C.(1)和(3) D 。

(1)和(4) 6。

如果点(sin 2P θ,cos 2)θ位于第三象限,那么角θ所在象限是A.第一象限B.第二象限 C 。

第三象限 D.第四象限 7。

在四边形ABCD 中,如果0AB CD =,AB DC =,那么四边形ABCD 的形状是A.矩形 B 。

高中数学必修四试卷(含详细答案)

高中数学必修四试卷(含详细答案)

高中数学必修四试卷(含详细答案)高中数学必修四试卷(含详细答案)考试时间:2小时总分:100分一、选择题(共30小题,每小题2分,共60分)从每题所给的四个选项中,选出一个最佳答案。

1. 已知数列{an}的通项公式为an = 3n - 2,其中n为正整数。

则数列S = a1 + a2 + a3 + ... + a10的值为:A. 135B. 145C. 155D. 1652. 若函数f(x) = ax^3 + bx + 1在区间[-1,1]上具有单调性,则a和b 的关系是:A. a > 0,b > 0B. a > 0,b < 0C. a < 0,b > 0D. a < 0,b < 03. 曲线y = 2x^2 - 3x + c与x轴相交于两点,若这两点的横坐标之和为1,则c的值为:A. -1B. 0C. 1D. 24. 在△ABC中,已知∠A = 30°,边a = 5,边b = 10。

则△ABC的面积为:A. 10√3B. 15√3C. 20√3D. 25√3...(题目继续,共30题)二、解答题(共4题,共40分)题目1:已知函数f(x) = x^3 - 3x^2 - 4x + 2。

(1)求f(x)的零点;(2)求函数f(x)在区间[-2,2]上的最大值和最小值。

(1)令f(x) = 0,得到x^3 - 3x^2 - 4x + 2 = 0,进行因式分解得(x-1)(x+2)(x-1)=0,所以零点为x=-2, x=1。

(2)在区间[-2,2]上,先求f'(x)的值为0的点,即f'(x)=3x^2-6x-4=0。

通过求解方程可得x=2和x=-2/3。

将这三个点代入f(x)的表达式中,比较大小可得最大值和最小值。

题目2:若函数g(x)满足g(3)=1,并且对任意实数x有g(ax)=g(x)-3ax,其中a是一个常数。

求g(x)的表达式。

人教版高中数学必修4综合测试试题含答案(原创,难度适中)

人教版高中数学必修4综合测试试题含答案(原创,难度适中)

人教版高中数学必修4综合测试试题含答案(原创,难度适中)高中数学必修4综合测试满分:150分时间:120分钟注意事项:客观题请在答题卡上用2B铅笔填涂,主观题请用黑色水笔书写在答题卡上。

一、选择题:(共12小题,每小题5分,共60分。

)1.sin300°的值为A。

-31 B。

3 C。

22 D。

1/22.角α的终边过点P(4,-3),则cosα的值为A。

4 B。

-3 C。

2/5 D。

-4/53.cos25°cos35°-sin25°sin35°的值等于A。

3/11 B。

3/4 C。

2/11 D。

-2/114.对于非零向量AB,BC,AC,下列等式中一定不成立的是A。

AB+BC=AC B。

AB-AC=BCC。

AB-BC=BC D。

AB+BC=AC5.下列区间中,使函数y=sinx为增函数的是A。

[0,π] B。

[π,2π] C。

[-π/2,π/2] D。

[-π,0]6.已知tan(α-π/3)=1/√3,则tanα的值为A。

4/3 B。

-3/5 C。

-5/3 D。

-3/47.将函数y=sinx图象上所有的点向左平移π/3个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为A。

y=sin(2x+π/3) B。

y=sin(2x+2π/3)C。

y=sin(2x-π/3) D。

y=sin(2x-2π/3)8.在函数y=sinx、y=sin(2x+π/2)、y=cos(2x+π)中,最小正周期为π的函数的个数为()A。

1个 B。

2个 C。

3个 D。

4个9.下列命题中,正确的是A。

|a|=|b|→a=b B。

|a|>|b|→a>bC。

|a|=0→a=0 D。

a=b→a∥b10.函数y=Asin(ωx+φ)在一个周期内的图象如右图所示,此函数的解析式为y=2sin(2x-π/3)11.方程sin(πx)=x的解的个数是()A。

高中数学必修四总复习测试题

高中数学必修四总复习测试题

高中数学必修四总复习测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.化简sin()2απ+等于( ). A.cos α B.sin α C.cos α- D.sin α-2.已知M 是ABC ∆的BC 边上的一个三等分点,且BM MC <,若AB = a ,AC =b ,则AM 等于( ).A.1()3-a bB.1()3+a bC.1(2)3+b aD.1(2)3+a b3.已知3tan =α,则αααα22cos 9cos sin 4sin 2-+的值为( ). A.3 B.1021 C.31 D.301 4.化简=--+( ). A. B.0 C. D. 5.函数x x y 2cos 2sin =是( ). A.周期为4π的奇函数 B.周期为2π的奇函数 C.周期为2π的偶函数 D.周期为4π的偶函数 6.已知)7,2(-M ,)2,10(-N ,点P 是线段MN 上的点,且−→−PN −→−-=PM 2,则P 点的坐标为( ). A.)16,14(- B.)11,22(- C.)1,6( D.)4,2( 7.已知函数sin()y A x B ωφ=++(0,0,||2A ωφπ>><)的周期为T ,在一个周期内的图象如图所示,则正确的结论是( ). A.3,2A T ==π B.2,1=-=ωBC.4,6T φπ=π=-D.3,6A φπ== 8.将函数sin()3y x =-π的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移3π个单位,则所得函数图像对应的解析式为( ). A.1sin(26y x =-π B.1sin()23y x =-π C.1sin 2y x = D.sin(2)6y x =-π9.若平面四边形ABCD 满足0,()0AB CD AB AD AC +=-⋅=,则该四边形一定是( ).A.直角梯形B.矩形C.菱形D.正方形10.函数()sin 2cos2f x x x =-的最小正周期是( ).A.π2B.πC.2πD.4π11.设单位向量1e ,2e 的夹角为︒60,则向量1234e e +与向量1e 的夹角的余弦值是( ). A.43 B.375 C.3725 D.375 12.定义运算⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡df ce bf ae f e d c b a ,如⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡1514543021,已知αβ+=π,2αβπ-=,则=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡ββααααsin cos sin cos cos sin ( ). A.00⎡⎤⎢⎥⎣⎦ B.01⎡⎤⎢⎥⎣⎦ C.10⎡⎤⎢⎥⎣⎦D.11⎡⎤⎢⎥⎣⎦第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13.︒75sin 的值为 .14.已知向量(2,4)=a ,(1,1)=b ,若向量()⊥+λb a b ,则实数λ的值是.15.︒︒︒80cos 40cos 20cos 的值为_____________________________. 16.在下列四个命题中:①函数tan()4y x π=+的定义域是{,}4x x k k π≠+π∈Z ; ②已知1sin 2α=,且[0,2]α∈π,则α的取值集合是{}6π;③函数x a x x f 2cos 2sin )(+=的图象关于直线8x π=-对称,则a 的值等于1-;④函数2cos sin y x x =+的最小值为1-.把你认为正确的命题的序号都填在横线上____________________.三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.) 17.(本小题满分10分)已知4cos()45x π+=,(,)24x ππ∈--,求xxx tan 1sin 22sin 2+-的值.18.(本小题满分12分)已知函数()sin sin()2f x x x π=++,x ∈R . (1)求)(x f 的最小正周期;(2)求)(x f 的的最大值和最小值; (3)若43)(=αf ,求α2sin 的值.19.(本小题满分12分)(1)已知函数1()sin()24f x x π=+,求函数在区间[2,2]-ππ上的单调增区间; (2)计算:)120tan 3(10cos 70tan -︒︒︒.20.(本小题满分13分)已知函数()sin()f x x ωφ=+(0>ω,0φ≤≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(1)求)(x f 的解析式; (2)若(,)32αππ∈-,1()33f απ+=,求5sin(2)3απ+的值.21.(本小题满分13分)已知a ,b ,c 是同一平面内的三个向量,其中)2,1(=a .(1)若||=c ,且//c a ,求c 的坐标;(2)若||=b ,且2+a b 与2-a b 垂直,求a 与b 的夹角θ.22.(本小题满分14分)已知向量33(cos ,sin )22x x =a ,(cos ,sin )22x x =-b ,且[0,]2x π∈,()2||f x =⋅-λ+a b a b (λ为常数),求:(1)⋅a b 及||+a b ; (2)若)(x f 的最小值是23-,求实数λ的值.参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.A 由诱导公式易得A 正确.2.C BC =- b a ,11()33BM BC ==- b a ,11()(2)33AM AB BM =+=+-=+ a b a b a .3.B αααααααααα222222cos sin cos 9cos sin 4sin 2cos 9cos sin 4sin 2+-+=-+10211tan 9tan 4tan 222=+-+=ααα. 4.B )()(=-=+-+=--+. 5.B x x x y 4sin 212cos 2sin ==,故是周期为2π的奇函数. 6.D 设),(y x P ,则)2,10(y x ---=,)7,2(y x ---=, −→−PN ⎩⎨⎧==⇒⎩⎨⎧--=-----=-⇒-=−→−.4,2),7(22),2(2102y x y y x x PM 7.C ⎩⎨⎧-==⇒⎩⎨⎧-=+-=+,1,3,4,2B A B A B A ππππ42)32(342=⇒=--=T T ,21422===πππωT ,623421πϕπϕπ-=⇒=+⨯. 8.A sin()sin()sin[(]sin(3336111))2232y x y y x x x πππππ=-→=→==-+--.9.C 0AB CD AB CD +=⇒=-⇒四边形ABCD 为平行四边形,()0AB AD AC DB AC DB AC -⋅=⋅=⇒⊥,对角线互相垂直的平行四边形为菱形.10.B ()sin 2cos 2)4f x x x x π=-=-,ππ==22T .11.D 1||1=e ,1||2=e ,2160cos ||||2121=︒⋅=⋅e e e e ,543)43(2121121=⋅+=⋅+e e e e e e ,37|43|21===+e e ,375|||43|cos 121121=⋅+=e e e θ.12.A ⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡002cos sin )cos()sin(sin sin cos cos sin cos cos sin sin cos sin cos cos sin ππβαβαβαβαβαβαββαααα.二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13.426+ ︒︒+︒︒=︒+︒=︒30sin 45cos 30cos 45sin )3045sin(75sin 42621222322+=⨯+⨯=. 14.3- 30)4(2)4,2()1,1()()(-=⇒=+++=++⋅=+⋅⇒+⊥λλλλλλλ. 15.818120sin 8160sin 20sin 880cos 40cos 20cos 20sin 880cos 40cos 20cos =︒︒=︒︒︒︒︒=︒︒︒. 16.①③④ )(424Z k k x k x ∈+≠⇒+≠+πππππ,故①正确;1sin 2α=,且[0,2]6παπα∈⇒=或65πα=,故②不正确;函数)(x f 的图象关于直线8π-=x 对称1)4()0(-=⇒-=⇒a f f π,故③正确;22215cos sin 1sin sin (sin )24y x x x x x =+=-+=--+,451≤≤-y ,故④正确. 三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.) 17.解:∵)4,2(ππ--∈x , ∴)0,4(4ππ-∈+x ,∵54)4cos(=+x π, ∴53)4sin(-=+x π,4sin)4cos(4cos)4sin(]4)4sin[(sin ππππππx x x x +-+=-+=102722542253-=⋅-⋅-=, ∴102cos =x , ∴7528sin cos )sin (cos cos sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 22=+-=+-=+-x x x x x x xx x x x x x x .18.解:)4sin(2cos sin )2sin(sin )(ππ+=+=++=x x x x x x f ,(1))(x f 的最小正周期为ππ212==T ; (2))(x f 的最大值为2和最小值2-;(3)因为43)(=αf ,即167cos sin 2169)cos (sin 43cos sin 2-=⇒=+⇒=+αααααα,即1672sin -=α. 19.解:(1)由πππππk x k 2242122+≤+≤+-(Z k ∈)得ππππk x k 42423+≤≤+-(Z k ∈),当0=k 时,得223ππ≤≤-x , ]2,2[]2,23[ππππ-⊂-,且仅当0=k 时符合题意,∴函数)421sin()(π+=x x f 在区间]2,2[ππ-上的单调增区间是]2,23[ππ-. (2)︒︒-︒⋅︒⋅︒︒=-︒︒︒20cos 20cos 20sin 310cos 70cos 70sin )120tan 3(10cos 70tan ︒︒⋅︒︒-=︒︒-⋅︒⋅︒︒=20cos 20sin 70cos 70sin 20cos 10sin 210cos 70cos 70sin120cos 20sin 20sin 20cos -=︒︒⋅︒︒-=. 20.解:(1)∵图象上相邻的两个最高点之间的距离为π2,∴π2=T , 则12==Tπω, ∴)sin()(ϕ+=x x f ,∵)(x f 是偶函数, ∴)(2Z k k ∈+=ππϕ,又πϕ≤≤0, ∴2πϕ=, 则x x f cos )(=.(2)由已知得31)3cos(=+πα, ∵)2,3(ππα-∈, ∴)65,0(3ππα∈+, 则322)3sin(=+πα, ∴924)3cos()3sin(2)322sin()352sin(-=++-=+-=+παπαπαπα. 21.解:(1)设),(y x c =, ∵a c //,)2,1(=a , ∴02=-y x , ∴x y 2=,∵52||=, ∴5222=+y x , ∴2022=+y x , 即20422=+x x ,∴⎩⎨⎧==,4,2y x 或⎩⎨⎧-=-=,4,2y x∴)4,2(=或)4,2(--=(2)∵⊥+2-2, ∴)2(+0)2(=-⋅,∴023222=-⋅+b b a a , 即0||23||222=-⋅+b b a a , 又∵5||2=,45)25(||22==, ∴0452352=⨯-⋅+⨯b a , ∴25-=⋅b a , ∵5||=a ,25||=b , ∴125525||||cos -=⋅-=⋅=b a θ,∵],0[πθ∈, ∴πθ=. 22.解:(1)x xx x x 2cos 2sin 23sin 2cos 23cos=-=⋅, x x xx x x 222cos 22cos 22)2sin 23(sin )2cos 23(cos||=+=-++=+, ∵]2,0[π∈x , ∴0cos ≥x , x cos 2||=+.(2)2221)(cos 2cos 42cos )(λλλ---=-=x x x x f ,∵]2,0[π∈x , ∴1cos 0≤≤x ,①当0<λ时,当且仅当0cos =x 时,)(x f 取得最小值1-,这与已知矛盾;②当10≤≤λ,当且仅当λ=x cos 时,)(x f 取得最小值221λ--,由已知得23212-=--λ,解得21=λ; ③当1>λ时,当且仅当1cos =x 时,)(x f 取得最小值λ41-, 由已知得2341-=-λ,解得85=λ,这与1>λ相矛盾. 综上所述,21=λ为所求.。

【沪科版】高中数学必修四期末试卷含答案(1)

【沪科版】高中数学必修四期末试卷含答案(1)

一、选择题1.已知tan α,tan β是方程2506x x a -+=的两个实数根,且()tan 1αβ+=,则实数a =( )A .16B .116C .512D .7122.设函数22()cos sin 2cos sin f x x x x x =-+,下列说法中,错误的是( ) A .()f x 的最小值为2- B .()f x 在区间,48ππ⎡⎤-⎢⎥⎣⎦上单调递增. C .函数()y f x =的图象可由函数2sin y x =的图象先向左平移4π个单位,再将横坐标缩短为原来的一半(纵坐标不变)而得到. D .将函数()y f x =的图象向左平移4π个单位,所得函数的图象关于y 轴对称. 3.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =32,则有( ) A .c <a <bB .b <c <aC .a <b <cD .b <a <c4.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 3cos 23b A a B b c -=-,则A =( )A .3π B .4π C .6π D .23π 5.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B .25C .5D .36.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .727.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-8.在ABC 中,D 为AB 的中点,E 为AC 边上靠近点A 的三等分点,且BE CD ⊥,则cos2A 的最小值为( ) A .267B .27-C .17-D .149-9.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (512AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④10.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 11.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C12.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫= ⎪⎝⎭,()f x 在443,ππ⎛⎫-⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ= 二、填空题13.已知1cos 3α=,且02πα-<<,则()()()cos sin 2tan 23sin cos 22αππαπαππαα--+-=⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭______. 14.sin 347°cos 148°+sin 77°cos 58°=________. 15.已知sin 4πα⎛⎫+= ⎪⎝⎭,()0,απ∈,则cos 26πα⎛⎫+= ⎪⎝⎭__________. 16.已知平面向量a ,b 不共线,且1a =,1a b ⋅=,记b 与2a b +的夹角是θ,则θ最大时,a b -=_______.17.设1e ,2e 是单位向量,且1e ,2e 的夹角为23π,若12a e e =+,122b e e =-,则a 在b 方向上的投影为___________.18.如图,在矩形ABCD 中,3AB =,4=AD ,圆M 为BCD △的内切圆,点P 为圆上任意一点, 且AP AB AD λμ=+,则λμ+的最大值为________.19.已知函数()()()cos 0,0f x x ωϕωϕπ=+>≤≤是奇函数,且在,64ππ⎡⎤-⎢⎥⎣⎦上单调递减,则ω的最大值是__________. 20.已知函数sin cos |sin cos |3()22+--=+x x x x f x [0,]m 上恰有4个零点,则实数m 的取值范围为________.三、解答题21.已知函数()2sin cos 144f x x x ππ⎛⎫⎛⎫=+--⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的最小正周期;(2)若函数()()223g x f x x =-,求函数()g x 的单调增区间.22.已知函数23()3sin cos (0)2f x x x x ωωωω=+->的最小正周期为π. (1)求()f x 的解析式;(2)将()f x 图象上所有的点向左平移4π个单位长度,得到函数()y g x =的图象,若对于任意的12,,66x x ππϕϕ⎛⎫∈---+⎪⎝⎭,当12x x >时,()()()()1212f x f x g x g x ->-恒成立,求ϕ的取值范围.23.已知4a =,8b =,a 与b 的夹角是120(1)计算:①a b +,②42a b-;(2)当k 为何值时,2a b +()与ka b -()垂直? 24.已知||4,||2a b ==,且a 与b 夹角为120︒, 求:(1)||a b +; (2)a 与a b +的夹角.25.已知函数2()3cos cos (0)f x x x x ωωωω=->周期是2π. (1)求()f x 的解析式,并求()f x 的单调递增区间;(2)将()f x 图像上所有点的横坐标扩大到原来的2倍,再向左平移6π个单位,最后将整个函数图像向上平移32个单位后得到函数()g x 的图像,若263x ππ≤≤时,()2g x m -<恒成立,求m 得取值范围.26.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,28M π⎛⎫⎪⎝⎭、5,28N π⎛⎫- ⎪⎝⎭分别为其图象上相邻的最高点、最低点. (1)求函数()f x 的解析式; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间和值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先利用韦达定理求得5tan tan 6αβ+=,tan tan a αβ⋅=,再结合()tan 1αβ+=,利用两角和正切公式得到关于a 的等量关系式,求得结果. 【详解】因为tan α,tan β是方程2506x x a -+=的两个实数根, 所以有5tan tan 6αβ+=,tan tan a αβ⋅=, 因为()tan 1αβ+=,所以有5611a=-,所以16a =,故选:A. 【点睛】思路点睛:该题考查的是有关两角和正切公式,解题思路如下: (1)先利用韦达定理,写出两根和与两根积;(2)利用两角和正切公式,结合题中条件,得到等量关系式,求得结果.2.D解析:D 【分析】由二倍角公式及辅助角公式化简,再根据正弦型函数性质判断AB ,利用图象平移伸缩判断CD. 【详解】由22()cos sin 2cos sin cos 2sin 2)4f x x x x x x x x π=-+=+=+,可知函数的最小值为,故A 正确;当,48x ππ⎡⎤∈-⎢⎥⎣⎦时,2,442x πππ⎡⎤+∈-⎢⎥⎣⎦,由正弦函数单调性知())4f x x π=+单调递增,故B 正确;y x =的图象先向左平移4π个单位得)4y x π=+,再将横坐标缩短为原来的一半(纵坐标不变)得)4y x π=+,故C 正确;将函数()y f x =的图象向左平移4π个单位得)]))44424y x x x πππππ=++=++=+,图象不关于y 轴对称,故D 错误. 故选:D 【点睛】关键点点睛:首先要把函数解析式化简,利用正弦型函数的图象与性质判断值域与单调性,利用图象变换的时候,注意平移与伸缩都变在自变量上,属于中档题.3.A解析:A 【分析】利用两角和的正弦函数公式化简a ,利用二倍角的余弦公式及诱导公式化简b ,再利用特殊角的三角函数值化简c ,根据正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,甶角度的大小,得到正弦值的大小,进而得到,a b 及c 的大小关系. 【详解】化简得()17cos45cos1745174562a sin sin sin sin =+=+=,()22cos 131cos26cos 906464b sin =-==-=,60c sin ==,正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,606264sin sin sin ∴<<,即c a b <<,故选A. 【点睛】本题考查了二倍角的余弦公式,两角和与差的正弦公式,诱导公式,以及特殊角的三角函数,正弦函数的单调性,属于中档题. 比较大小主要有四种方法:(1)作差法;(2)作商法;(3)函数单调性法;(4)基本不等式法.4.C解析:C 【分析】由正弦定理,两角和的正弦函数公式化简已知等式,结合sin 0B ≠,可得2sin 23A π⎛⎫+= ⎪⎝⎭,根据题意可求范围(0,)A π∈,根据正弦函数的图象和性质即可求解A 的值. 【详解】解:∵ bsin cos 2A B b -=,∴由正弦定理可得:sin sin cos 2sin B A A B B C =, ∴sin sin cos 2sin B A A B B C =2sin cos cos sin )B A B A B =-+,∴sin sin 2sin sin B A B A B =,又∵sin 0B ≠,∴sin 2A A +=, ∴2sin 23A π⎛⎫+= ⎪⎝⎭,可得232A k πππ+=+,Z k ∈, 又(0,)A π∈,∴6A π=.故选:C . 【点睛】本题考查正弦定理和三角恒等变换的运用,考查运算求解能力,求解时注意角的范围.5.B解析:B 【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.6.B解析:B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||222PC CA PC =-=-≥- ⎪⎝⎭52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.7.C解析:C 【分析】建立直角坐标系,利用向量的坐标运算求解即可. 【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯=故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.8.D解析:D 【分析】作出图形,用AB 、AC 表示向量BE 、CD ,由BE CD ⋅可得出2232cos 7c b A bc+=,利用基本不等式求得cos A 的最小值,结合二倍角的余弦公式可求得cos2A 的最小值. 【详解】 如下图所示:13BE AE AB AC AB =-=-,12CD AD AC AB AC =-=-, BE CD ⊥,则2211711032623BE CD AC AB AB AC AB AC AB AC ⎛⎫⎛⎫⋅=-⋅-=⋅--= ⎪ ⎪⎝⎭⎝⎭,即22711cos 0623cb A c b --=,可得22322626cos 7c b bc A bc +=≥= 当且仅当62b =时,等号成立, 所以,22261cos 22cos 12149A A =-≥⨯-=-⎝⎭. 故选:D. 【点睛】本题考查二倍角余弦值最值的求解,考查平面向量垂直的数量积的应用,同时也考查了基本不等式的应用,考查计算能力,属于中等题.9.A解析:A 【分析】 设51AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯, ()25135ED =-=所以(352m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(22227342m π-⨯==,))271222l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l n l n l n ++===⋅(1132m π==⨯,所以211m l n ≠+, 故④不正确;所以①②正确, 故选:A 【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n 的值.10.C解析:C 【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.11.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.12.A解析:A 【分析】5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调,再利用排除法可得答案. 【详解】因为5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值,所以函数满足518f π⎛⎫=⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫- ⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=-⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 084f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.二、填空题13.【分析】用同角间的三角函数关系计算用诱导公式化简后再计算然后计算可得【详解】∵且∴∴故答案为:【点睛】方法点睛:本题考查诱导公式同角间的三角函数关系三角函数求值问题首先要进行化简应用诱导公式化简应用解析:-【分析】用同角间的三角函数关系计算sin α,用诱导公式化简后再计算.然后计算tan α,可得. 【详解】∵1cos 3α=,且02πα-<<,∴sin 3α==-, ∴()()()cos sin 2tan 2cos sin (tan )sin tan 3cos (sin )cos sin cos 22αππαπααααααππααααα--+---=====---⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.故答案为:-. 【点睛】方法点睛:本题考查诱导公式,同角间的三角函数关系.三角函数求值问题,首先要进行化简,应用诱导公式化简,应用同角间的三角函数关系化简,最后才代入求值.应用诱导公式应牢记:奇变偶不变,符号看象限,应用同角间的三角函数关系应注意在应用平方关系求函数值需确定角的范围,以确定正弦余弦值的正负.14.【分析】首先根据诱导公式将然后结合两角和正弦公式的逆用化简即可求值【详解】sin347°cos148°+sin77°cos58°=sin(270°+77°)cos(90°+58°)+sin77°co解析:2【分析】首先根据诱导公式将sin347cos77︒=-︒、cos148sin58︒=-︒,然后结合两角和正弦公式的逆用化简,即可求值 【详解】sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58° =(-cos 77°)·(-sin 58°)+sin 77°cos 58° =sin 58°cos 77°+cos 58°sin 77° =sin(58°+77°) =sin 135°=2故答案为:2【点睛】本题考查了利用三角函数的诱导公式、两角和正弦公式化简求值,注意有大角要根据诱导公式将其转化为小角,进而应用三角恒等变换化简求值15.【分析】构造角再用两角和的余弦公式及二倍公式打开【详解】故答案为:【点睛】本题是给值求值题关键是构造角应注意的是确定三角函数值的符号解析:26- 【分析】 构造角22643πππαα⎛⎫+=+- ⎪⎝⎭,cos 4πα⎛⎫+ ⎪⎝⎭求,再用两角和的余弦公式及二倍公式打开. 【详解】()50,,,444πππαπα⎛⎫∈+∈ ⎪⎝⎭,sin 42πα⎛⎫+=< ⎪⎝⎭,cos 4πα⎛⎫∴+= ⎪⎝⎭,22cos 22cos 1443ππαα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝⎭⎝⎭,sin 22sin cos 444πππααα⎛⎫⎛⎫⎛⎫+=+⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos 2cos 2cos 2cos sin 2sin 6434343πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2132⎛=⨯+= ⎝⎭故答案为:26【点睛】本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.16.【分析】把表示为的函数利用函数的性质求出当最大时的值进而可求出的值【详解】设则所以易得当时取得最小值取得最大值此时故答案为:【点睛】本题考查平面向量的有关计算利用函数的思想求最值是一种常见思路属于中【分析】把cos θ表示为|b|的函数,利用函数的性质求出当θ最大时|b|的值,进而可求出a b -的值. 【详解】 设()0b x x =>,则()22·222b a b a b b x +=⋅+=+,22|2+|=448a b a a b b +⋅+=+,所以()2·2cos 28b a bb a bx θ+==++易得cos 0θ>,()()()2222222222211cos 124811411222263x x x x x x θ+===+⎛⎫-++--+⎪+++⎝⎭, 当24x =时,2cos θ取得最小值,θ取得最大值,此时22||=212ab a a b b --⋅+=-=【点睛】本题考查平面向量的有关计算,利用函数的思想求最值是一种常见思路.属于中档题.17.【分析】根据平面向量数量积的定义求出与并计算出平面向量的模再利用公式即可求解【详解】由平面向量的数量积的定义可得即所以在方向上的投影为故答案为:【点睛】本题主要考查了平面向量的数量积的定义以及向量的 解析:14【分析】根据平面向量数量积的定义求出12e e ⋅与a b ⋅,并计算出平面向量b 的模b ,再利用公式,即可求解. 【详解】由平面向量的数量积的定义,可得1221211cos11()322e e e e π⋅=⋅=⨯⨯-=-, 222222111111()(2)22122a b e e e e e e e e ⋅=+-=+⋅-=--=,22221112221(2)4444()172e e e e e e b =-=-⋅+=-⨯-+=,即7b =,所以a 在b 方向上的投影为127a b b⋅==. 【点睛】本题主要考查了平面向量的数量积的定义,以及向量的投影的应用,其中解答中熟记平面向量的数量积的计算公式,以及向量的投影的计算是解答本题的关键,着重考查了推理与运算能力,属于中档试题.18.【分析】以点B 为坐标原点建立平面直角坐标系如下图所示由已知条件得出点坐标圆M 的方程设由得出再设(为参数)代入中根据三角函数的值域可求得最大值【详解】以点B 为坐标原点建立平面直角坐标系如下图所示因为在解析:116【分析】以点B 为坐标原点,建立平面直角坐标系如下图所示,由已知条件得出点坐标,圆M 的方程,设(),P x y ,由AP AB AD λμ=+,得出134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩,再设3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),代入λμ+中,根据三角函数的值域,可求得最大值. 【详解】以点B 为坐标原点,建立平面直角坐标系如下图所示,因为在矩形ABCD 中,3AB =,4=AD ,所以圆M 的半径为3+4512r -==, 所以()0,0B ,()0,3A ,()4,0C ,()4,3D,()3,1M ,圆M 的方程为()()22311x y -+-=,设(),P x y ,又AP AB AD λμ=+,所以()()(),30,34,0x y λμ-=-+,解得134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩, 又点P 是圆M 上的点,所以3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),所以()1sin 3cos 517sin 1+1+34312124+y x θθβθλμ+=+--+=-=,其中3tan 4β=, 所以,当()sin 1βθ-=时,λμ+取得最大值116, 故答案为:116.【点睛】本题考查向量的线性表示,动点的轨迹中的最值问题,属于中档题.19.【分析】先根据函数为奇函数结合的取值范围可求得的值化简可得由求得可得出进而得出关于的不等式组由此可得出实数的最大值【详解】函数是奇函数则函数在区间上单调递减则解得因此的最大值是故答案为:【点睛】本题 解析:2【分析】先根据函数()y f x =为奇函数结合ϕ的取值范围可求得ϕ的值,化简可得()sin f x x ω=-,由,64x ππ⎡⎤∈-⎢⎥⎣⎦求得,64x πωπωω⎡⎤∈-⎢⎥⎣⎦,可得出,,6422πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,进而得出关于ω的不等式组,由此可得出实数ω的最大值. 【详解】函数()()()cos 0,0f x x ωϕωϕπ=+>≤≤是奇函数,则()0cos 0f ϕ==,0ϕπ≤≤,2πϕ∴=,()cos sin 2f x x x πωω⎛⎫∴=+=- ⎪⎝⎭.,64x ππ⎡⎤∈-⎢⎥⎣⎦,,64x πωπωω⎡⎤∴∈-⎢⎥⎣⎦. 函数()y f x =在区间,64ππ⎡⎤-⎢⎥⎣⎦上单调递减,则,,6422πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦, 62420πωππωπω⎧-≥-⎪⎪⎪∴≤⎨⎪>⎪⎪⎩,解得02ω<≤,因此,ω的最大值是2.故答案为:2. 【点睛】本题考查三角函数的图象与性质,主要考查利用奇偶性与单调性求参数,考查计算能力,属中等题.20.【分析】周期为先考查一个周期函数判断零点个数及坐标再结合周期性即可求解【详解】是函数的一个周期当时当时只有四个零点在上恰有4个零点实数m 的取值范围为故答案为:【点睛】本题考查函数的零点个数求参数注意 解析:517[,)36ππ 【分析】()f x 周期为2π,先考查一个周期函数,判断零点个数及坐标,再结合周期性,即可求解【详解】2x π=是函数()f x 的一个周期,当[0,2]x π时,5cos [,]44()5sin [0,][,2]244x x f x x x πππππ⎧∈⎪⎪=⎨⎪+∈⋃⎪⎩当[0,2]x π时,()f x 只有四个零点5745,,,6633ππππ, 在[0,]m 上恰有4个零点,实数m 的取值范围为517[,)36ππ. 故答案为:517[,)36ππ. 【点睛】本题考查函数的零点个数求参数,注意函数图像和性质的应用,属于中档题.三、解答题21.(1)最小正周期为π;(2)5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,. 【分析】(1)由三角函数恒等变换化简函数得()sin 2f x x =,由三角函数的周期公式可得答案;(2)由余弦的二倍角公式和辅助角公式得()gx 2sin23x π=-(),再由正弦函数的性质可求得函数的单调增区间. 【详解】 解:(1)函数()22sin cos 12cos 1cos 2sin 24444f x x x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+--=--=⨯-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以函数()f x 的最小正周期为22ππ=. (2)()()22sin 22cos 1sin 2g x f x x x x x x =-=-=)2sin 23x π=-(),令222232k x k k Z πππππ-≤-≤+∈,,得51212k x k k Z ππππ-≤≤+∈,, 所以函数()g x 的单调增区间为51212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,,. 【点睛】方法点睛:解决三角函数的周期和单调性等相关问题,先利用三角函数的恒等变换化简函数为一个角一个三角函数,再运用整体思想代入是常用的方法.22.(1)()sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)08πϕ<≤【分析】(1)利用二倍角公式以及辅助角公式可得()sin 23f x x πω⎛⎫=+ ⎪⎝⎭,再由22T ππω==即可求解.(2)由三角函数的平移变换可得()cos 23g x x π⎛⎫=+⎪⎝⎭,设()()()212h x f x g x x π⎛⎫=-=+ ⎪⎝⎭,将不等式化为()h x 在区间,66ππϕϕ⎛⎫---+ ⎪⎝⎭上单调递增,只需22,22,2,124422x k k k Z πππππϕϕππ⎛⎫⎡⎤+∈---+⊆-++∈ ⎪⎢⎥⎝⎭⎣⎦即可. 【详解】(1)()2sin 2()sin cos 1cos 22x f x x x x x ωωωωω=+=++-12sin 2sin 223x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又0>ω,22T ππω==,解得1ω=, 所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭.(2)由题意可得()sin 2cos 2433g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 设()()()sin 2cos 233h x f x g x x x ππ⎛⎫⎛⎫=-=+-+ ⎪ ⎪⎝⎭⎝⎭223412x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭,12,,66x x ππϕϕ⎛⎫∈---+ ⎪⎝⎭,当12x x >时,()()()()1212f x f x g x g x ->-恒成立,即()()()()1122f x g x f x g x ->-恒成立, 即()()12h x h x >恒成立,()h x ∴在区间,66ππϕϕ⎛⎫---+ ⎪⎝⎭上单调递增,,66x ππϕϕ⎛⎫∈---+ ⎪⎝⎭,则22,22,2,124422x k k k Z πππππϕϕππ⎛⎫⎡⎤+∈---+⊆-++∈ ⎪⎢⎥⎝⎭⎣⎦, 224222422244k k ππϕπππϕπππϕϕ⎧--≥-+⎪⎪⎪∴-+≤+⎨⎪⎪--<-+⎪⎩,8380k k πϕππϕπϕ⎧≤-⎪⎪⎪∴≤+⎨⎪>⎪⎪⎩, 08πϕ∴<≤【点睛】关键点点睛:本题考查了三角恒等变换、三角函数的平移变换,三角函数的单调性,解题的关键是结合不等式将问题转化为()()()212h x f x g x x π⎛⎫=-=+ ⎪⎝⎭在区间是单调递增函数,考查了计算能力、分析能力以及转化能力. 23.(1)①②2)7k =-. 【分析】利用数量积的定义求解出a b ⋅的值;(1)将所求模长平方,从而得到关于模长和数量积的式子,代入求得模长的平方,再开平方得到结果;(2)向量互相垂直得到数量积等于零,由此建立方程,解方程求得结果. 【详解】由已知得:cos ,48cos12016a b a b a b ⋅=⋅=⨯⨯=- (1)①222216326448a b a a b b +=+⋅+=-+= 43a b ∴+=②2224216164256256256768a b a a b b -=-⋅+=++= 42163a b ∴-=(2)若2a b +与ka b -垂直,则()()20a b ka b +⋅-=()222120ka k a b b ∴+-⋅-=即:1616(21)2640k k ---⨯=,解得:7k =- 【点睛】本题考查利用数量积求解向量的模长、利用数量积与向量垂直的关系求解参数的问题.求解向量的模长关键是能够通过平方运算将问题转化为模长和数量积运算的形式,从而使问题得以求解.24.(1)2)6π. 【分析】(1)由已知利用向量的数量积的 定义可求||||cos120a b a b =︒,然后由222||()2a b a b a a b b +=+=++可求(2)设a 与a b +的夹角θ,代入向量的夹角公式2()cos ||||423a ab a a a b θ+==+⨯可求θ【详解】 解:(1)||4a =,||2b =,且a 与b 夹角为120︒∴1||||cos12042()42a b a b =︒=⨯⨯-=-∴222||()2164a b a b a a b b +=+=++=+-(2)设a 与a b +的夹角θ则2()3cos ||||42383a ab a a a b θ+====+⨯0θπ∴6πθ=.【点睛】本题主要考查了向量的数量积的定义及向量的数量积的性质的简单应用,属于基础试题 25.(1)1()sin 462f x x π⎛⎫=-- ⎪⎝⎭,单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈;(2)()0,2. 【分析】(1)根据正弦和余弦的二倍角公式化简可得1()sin 262f x x πω⎛⎫=-- ⎪⎝⎭,由222T ππω==,解得2ω=,带入正弦函数的递增区间242262k x k πππππ-≤-≤+,化简即可得解; (2)根据三角函数的平移和伸缩变换可得()sin 216g x x π⎛⎫=++ ⎪⎝⎭,根据题意只需要max min [()2][()2]g x m g x -<<+,分别在263x ππ≤≤范围内求出()g x 的最值即可得解. 【详解】(1)2()cos cos f x x x x ωωω=-12(cos 21)22x x ωω=-+ 1sin 262x πω⎛⎫=-- ⎪⎝⎭由222T ππω==,解得2ω=所以,1()sin 462f x x π⎛⎫=-- ⎪⎝⎭ ∵242262k x k πππππ-≤-≤+∴224233k x k ππππ-≤≤+∴21226k k x ππππ-≤≤+ ∴()f x 的单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈ (2)依题意得()sin 216g x x π⎛⎫=++ ⎪⎝⎭因为|()|2g x m -<,所以()2()2g x m g x -<<+因为当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()2()2g x m g x -<<+恒成立所以只需max min [()2][()2]g x m g x -<<+转化为求()g x 的最大值与最小值当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()y g x =为单调减函数所以max ()1126g x g π⎛⎫==+= ⎪⎝⎭,()min21103g x g π⎛⎫==-+= ⎪⎝⎭, 从而max [()2]0g x -=,min [()2]2g x +=,即02m <<所以m 的取值范围是()0,2. 【点睛】本题考查了三角函数的单调性和最值,考查了三角函数的辅助角公式和平移伸缩变换,有一定的计算量,属于中档题.本题关键点有: (1)三角函数基本量的理解应用; (2)三角函数图像平移伸缩变换的方法; (3)恒成立思想的理解及转化. 26.(1)()2sin 24f x x π⎛⎫=+⎪⎝⎭;(2)单调递增区间为0,8π⎡⎤⎢⎥⎣⎦,单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦,()f x 值域为⎡⎤⎣⎦. 【分析】(1)利用最高点与最低点坐标可求出A 和周期T ,由2T πω=可求得ω的值,再将点,28M π⎛⎫⎪⎝⎭代入即可求得ϕ的值,进而可得函数()f x 的解析式;(2)解不等式222242k x k πππππ-≤+≤+,k Z ∈,可得()f x 的单调的增区间,再与0,2π⎡⎤⎢⎥⎣⎦求交集即可得()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间,利用单调性求出最值即得值域. 【详解】(1)因为()f x 图象上相邻两个最高点和最低点分别为,28π⎛⎫ ⎪⎝⎭,5,28π⎛⎫- ⎪⎝⎭所以2A =,52882T πππ=-=,则T π=, 又2||T πω=,0>ω,所以2ω=,()2sin(2)f x x ϕ=+, 又图象过点,28π⎛⎫ ⎪⎝⎭,所以22sin 28πϕ⎛⎫=⨯+ ⎪⎝⎭,即sin 14πϕ⎛⎫+= ⎪⎝⎭,所以242k ππϕπ+=+,k Z ∈,即24k πϕπ=+,k Z ∈.又||2ϕπ<,所以4πϕ=,所以()2sin 24f x x π⎛⎫=+ ⎪⎝⎭.(2)由222242k x k πππππ-≤+≤+,k Z ∈,得388k x k ππππ-≤≤+,k Z ∈, 所以()f x 的单调递增区间为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈, 又0,2x π⎡⎤∈⎢⎥⎣⎦,所以()f x 的单调递增区间为0,8π⎡⎤⎢⎥⎣⎦, 同理()f x 的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦.又(0)2sin 4f π==28f π⎛⎫= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 值域为⎡⎤⎣⎦. 【点睛】关键点点睛:本题解题的关键点是由五点法作图的特点得出相邻两个最高点和最低点横坐标之差的绝对值为半个周期,纵坐标为振幅,利用峰点或谷点坐标求ϕ,利用整体代入法求()f x 的单调区间,利用单调性求最值.。

最新高中数学测试题组(必修4)全套含答案

最新高中数学测试题组(必修4)全套含答案

新课程高中数学训练题组目录:数学4(必修)数学4(必修)第一章:三角函数(上、下)[基础训练A组] 数学4(必修)第一章:三角函数(上、下)[综合训练B组] 数学4(必修)第一章:三角函数(上、下)[提高训练C组] 数学4(必修)第二章:平面向量 [基础训练A组]数学4(必修)第二章:平面向量 [综合训练B组]数学4(必修)第二章:平面向量 [提高训练C组]数学4(必修)第三章:三角恒等变换 [基础训练A组]数学4(必修)第三章:三角恒等变换 [综合训练B组]数学4(必修)第三章:三角恒等变换 [提高训练C组](数学4必修)第一章 三角函数(上)[基础训练A 组]一、选择题1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ.其中符号为负的有( ) A .① B .② C .③ D .④ 3.02120sin 等于( )A .23±B .23C .23- D .214.已知4sin 5α=,并且α是第二象限的角,那么 tan α的值等于( )A .43-B .34- C .43 D .345.若α是第四象限的角,则πα-是( )A .第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角 6.4tan 3cos 2sin 的值( )A .小于0B .大于0C .等于0D .不存在二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限. 2.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0, 其中正确的是_____________________________。

人教A版高中数学必修四测试题及答案全套

人教A版高中数学必修四测试题及答案全套

人教A版高中数学必修四测试题及答案全套人教A版高中数学必修四测试题及答案全套阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.在0°~360°的范围内,与-510°终边相同的角是()A。

330° B。

210° C。

150° D。

30°2.若sinα = 3/3,π/2 < α < π,则sin(α+π/2) = ()A。

-6/3 B。

-1/2 C。

16/2 D。

33.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A。

2 B。

2sin1 C。

2sin1 D。

sin24.函数f(x) = sin(x-π/4)的图象的一条对称轴是()A。

x = π/4 B。

x = π/2 C。

x = -π/4 D。

x = -π/25.化简1+2sin(π-2)·cos(π-2)得()A。

sin2+cos2 B。

cos2-sin2 C。

sin2-cos2 D。

±cos2-sin26.函数f(x) = tan(x+π/4)的单调增区间为()A。

(kπ-π/2.kπ+π/2),k∈Z B。

(kπ。

(k+1)π),k∈ZC。

(kπ-4π/4.kπ+4π/4),k∈Z D。

(kπ-3π/4.kπ+3π/4),k∈Z7.已知sin(π/4+α) = 1/√2,则sin(π/4-α)的值为()A。

1/3 B。

-1/3 C。

1/2 D。

-1/28.设α是第三象限的角,且|cosα| = α/2,则α的终边所在的象限是()A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限9.函数y = cos2x+sinx在[-π/6.π/6]的最大值与最小值之和为()A。

3/4 B。

2 C。

1/3 D。

4/310.将函数y = sin(x-π/3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移一个单位,得到的图象对应的解析式为()A。

人教A版高中数学必修四测试题及答案全套

人教A版高中数学必修四测试题及答案全套

人教A 版高中数学必修四测试题及答案全套阶段质量检测(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30° 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎫α+π2=( ) A .-63B .-12C.12D.633.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( ) A .2 B.2sin 1C .2sin 1D .sin 24.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π25.化简1+2sin (π-2)·cos (π-2)得( ) A .sin 2+cos 2 B .cos 2-sin 2 C .sin 2-cos 2 D .±cos 2-sin 26.函数f (x )=tan ⎝⎛⎭⎫x +π4的单调增区间为( )A.⎝⎛⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎫k π-3π4,k π+π4,k ∈ZD.⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z7.已知sin ⎝⎛⎭⎫π4+α=32,则sin ⎝⎛⎭⎫3π4-α的值为( )A.12B .-12 C.32 D .-32 8.设α是第三象限的角,且⎪⎪⎪⎪cosα2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.函数y =cos 2x +sin x ⎝⎛⎭⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32B .2 C .0 D.3410.将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝⎛⎭⎫12x -π2C .y =sin ⎝⎛⎭⎫12x -π6 D .y =sin ⎝⎛⎭⎫2x -π611.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎫2x -π4B .y =2sin ⎝⎛⎭⎫2x -π4或y =2sin ⎝⎛⎭⎫2x +3π4C .y =2sin ⎝⎛⎭⎫2x +3π4D .y =2sin ⎝⎛⎭⎫2x -3π412.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝⎛⎭⎫x -12=f ⎝⎛⎭⎫x +12,且f ⎝⎛⎭⎫-14=-a ,那么f ⎝⎛⎭⎫94等于( ) A .a B .2a C .3a D .4a二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 14.设f (n )=cos ⎝⎛⎫n π2+π4,则f (1)+f (2)+f (3)+…+f (2 015)等于________.15.定义运算a *b 为a *b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),例如1*2=1,则函数f (x )=sin x *cos x 的值域为________.16.给出下列4个命题:①函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝⎛⎭⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝⎛⎭⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 18.(12分)已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的单调递增区间. 19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象;(2)写出f (x )的值域、最小正周期、对称轴,单调区间.20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝⎛⎭⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合.21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎡⎦⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,求实数m 的取值范围.22.(12分)如图,函数y =2cos(ωx +θ)(x ∈R ,ω>0,0≤θ⎭⎫≤π2的图象与y 轴交于点(0,3),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A ⎝⎛⎭⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是P A 的中点,当y 0=32,x 0∈⎣⎡⎦⎤π2,π时,求x 0的值.答 案1. 解析:选B 因为-510°=-360°³2+210°,因此与-510°终边相同的角是210°.2. 解析:选A ∵sin ⎝⎛⎭⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3. 解析:选B 如图,由题意知θ=1,BC =1,圆的半径r 满足sin θ=sin 1=1r ,所以r =1sin 1,弧长AB =2θ·r =2sin 1.4. 解析:选C f (x )=sin ⎝⎛⎭⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4,当k =-1时,则其中一条对称轴为x =-π4.5. 解析:选C1+2sin (π-2)·cos (π-2)=1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.6. 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7. 解析:选C ∵⎝⎛⎭⎫π4+α+⎝⎛⎭⎫3π4-α=π, ∴3π4-α=π-⎝⎛⎭⎫π4+α,∴sin ⎝⎛⎭⎫3π4-α=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4+α=32. 8. 解析:选B ∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z .∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪cosα2=-cos α2,∴cos α2<0.∴α2是第二象限的角. 9. 解析:选A f (x )=1-sin 2x +sin x =-⎝⎛⎭⎫sin x -122+54,∵-π6≤x ≤π6, ∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10. 解析:选C 将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即将x 变为12x ,即可得y =sin ⎝⎛⎭⎫12x -π3,然后将其图象向左平移π3个单位,即将x 变为x +π3.∴y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +π3-π3=sin ⎝⎛⎭⎫12x -π6.11. 解析:选C 由图象可知A =2,因为π8-⎝⎛⎭⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝⎛⎭⎫-π8·2+φ=2,即sin ⎝⎛⎭⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎫2x +3π4.12. 解析:选A 由f ⎝⎛⎭⎫x -12=f ⎝⎛⎭⎫x +12,得f (x +1)=f ⎝⎛⎭⎫⎝⎛⎭⎫x +12+12=f ⎝⎛⎭⎫x +12-12=f (x ), 即1是f (x )的周期.而f (x )为奇函数, 则f ⎝⎛⎭⎫94=f ⎝⎛⎭⎫14=-f ⎝⎛⎭⎫-14=a . 13. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32, 所以cos α-sin α=-1+32.答案:-1+3214. 解析:f (n )=cos ⎝⎛⎭⎫n π2+π4的周期T =4,且f (1)=cos ⎝⎛⎭⎫π2+π4=cos 3π4=-22,f (2)=cos ⎝⎛⎭⎫π+π4=-22,f (3)=cos ⎝⎛⎭⎫3π2+π4=22, f (4)=cos ⎝⎛⎭⎫2π+π4=22.所以f (1)+f (2)+f (3)+f (4)=0, 所以f (1)+f (2)+f (3)+…+f (2 015) =f (1)+f (2)+f (3)=-22. 答案:-2215. 解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎡⎦⎤-1,22. 答案:⎣⎡⎦⎤-1,22 16. 解析:函数y =sin ⎝⎛⎭⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期为π2,故①正确.对于②,当x =7π12时,2sin ⎝⎛⎭⎫3³7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确.对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝⎛⎭⎫23,3长度73>2π3,显然④错误. 答案:①②③17. 解:由tan αtan α-1=-1,得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=12-312+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos α+2(cos 2α+sin 2α) =3sin 2α+sin αcos α+2cos 2αsin 2α+cos 2α=3tan 2α+tan α+2tan 2α+1=3⎝⎛⎭⎫122+12+2⎝⎛⎭⎫122+1=135.18. 解:(1)f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫13³5π4-π6=2sin π4=2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝⎛⎭⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19. 解:(1)列表如下:描点画图如图所示.(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎡⎦⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎡⎦⎤π4+2k π,5π4+2k π(k ∈Z ).20. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎫πx +π6的单调递增区间为⎣⎡⎦⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z .21. 解:(1)由题意,A =3,T =2⎝⎛⎭⎫7π12-π12=π,ω=2πT =2. 由2³π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝⎛⎭⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝⎛⎫2x +π3=m -16在⎣⎡⎤-π3,π6上有两个根.因为x ∈⎣⎡⎦⎤-π3,π6,所以2x +π3∈⎣⎡⎦⎤-π3,2π3.所以m -16∈⎣⎡⎭⎫32,1.所以m ∈[33+1,7).22. 解:(1)把(0,3)代入y =2cos(ωx +θ)中, 得cos θ=32. ∵0≤θ≤π2,∴θ=π6.∵T =π,且ω>0,∴ω=2πT =2ππ=2.(2)∵点A ⎝⎛⎭⎫π2,0,Q (x 0,y 0)是P A 的中点,y 0=32,∴点P 的坐标为⎝⎛⎭⎫2x 0-π2,3.∵点P 在y =2cos ⎝⎛⎭⎫2x +π6的图象上,且π2≤x 0≤π,∴cos ⎝⎛⎭⎫4x 0-5π6=32,且7π6≤4x 0-5π6≤19π6. ∴4x 0-5π6=11π6或4x 0-5π6=13π6.∴x 0=2π3或x 0=3π4.阶段质量检测(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在五边形ABCDE 中(如图),=( )2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-5,-10) B .(-4,-8) C .(-3,-6) D .(-2,-4)3.已知平面向量a =(1,-3),b =(4,-2),若λa +b 与a 垂直,则λ的值是( ) A .-1 B .1 C .-2 D .24.若|a |=2,|b |=2,且(a -b )⊥a ,则a 与b 的夹角是( ) A.π6 B.π4 C.π3 D.π2A.12 B .-12 C.32 D .-326.已知向量满足:|a |=2,|b |=3,|a -b |=4,则|a +b |=( ) A. 6 B.7 C.10 D.11A .内心B .外心C .垂心D .重心8.平面向量a =(x ,-3),b =(-2,1),c =(1,y ),若a ⊥(b -c ),b ∥(a +c ),则b 与c 的夹角为( ) A .0 B.π4 C.π2 D.3π49.已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设=a ,=b ,则等于( )A.43a +23b B.23a +43b C.23a -43b D .-23a +43bA.⎝⎛⎭⎫0,π3B.⎝⎛⎭⎫π3,5π6C.⎝⎛⎭⎫π2,2π3D.⎝⎛⎭⎫2π3,5π611.已知a =(-1,3),=a -b ,=a +b ,若△AOB 是以O 为直角顶点的等腰直角三角形,则△AOB 的面积是( )A. 3 B .2 C .2 2 D .412.已知向量m =(a ,b ),n =(c ,d ),p =(x ,y ),定义新运算m ⊗n =(ac +bd ,ad +bc ),其中等式右边是通常的加法和乘法运算.如果对于任意向量m 都有m ⊗p =m 成立,则向量p 为( )A .(1,0)B .(-1,0)C .(0,1)D .(0,-1) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a =(2x +3,2-x ),b =(-3-x ,2x )(x ∈R ).则|a +b |的取值范围为________. 14.设e 1,e 2为两个不共线的向量,若a =e 1+λe 2与b =-(2e 1-3e 2)共线,则实数λ等于________. 15.在边长为2的菱形ABCD 中,∠BAD =60°,E 为CD 的中点,则=________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.18.(12分)设向量a =(cos α,sin α)(0≤α<2π),b =⎝⎛⎭⎫-12,32,且a 与b 不共线.(1)求证:(a +b )⊥(a -b );(2)若向量3a +b 与a -3b 的模相等,求角α. 19.(12分)如图,平行四边形ABCD 中,=a ,=b ,H ,M 是AD ,DC 的中点,BF =13BC ,(1)以a ,b 为基底表示向量(2)若|a |=3,|b |=4,a 与b 的夹角为120°,求20.(12分)在边长为1的正△ABC 中,AD 与BE 相交于点F .21.(12分)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝⎛⎭⎫0≤θ≤π2.22.(12分)已知e 1,e 2是平面内两个不共线的非零向量,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若e 1=(2,1),e 2=(2,-2),求的坐标;(3)已知D (3,5),在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.答 案1. 解析:选B ∵==.2. 解析:选B ∵a ∥b ,∴-21=m2,∴m =-4,∴b =(-2,-4),∴2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 3. 解析:选A 由题意可知(λa +b )·a =λa 2+b ·a =0. ∵|a |=10,a ·b =1³4+(-3)³(-2)=10, ∴10λ+10=0,λ=-1.4. 解析:选B 由于(a -b )⊥a ,所以(a -b )·a =0,即|a|2-a ·b =0,所以a ·b =|a|2=2,所以 cos 〈a ,b 〉=a ·b |a||b|=222=22,即a 与b 的夹角是π4. 5.6. 解析:选C 由题意|a -b |2=a 2+b 2-2a ·b =16, ∴a ·b =-32.∴|a +b |2=a 2+b 2+2a ·b =10, ∴|a +b |=10. 7.∴P 是△ABC 的垂心.8. 解析:选C 由题意知b -c =(-3,1-y ),a +c =(x +1,y -3),依题意得⎩⎪⎨⎪⎧-3x -3(1-y )=0,x +1+2(y -3)=0,解得⎩⎪⎨⎪⎧x =1,y =2,∴c =(1,2),而b ·c =-2³1+1³2=0, ∴b ⊥c . 9.10.11. 解析:选D 由题意||=||且⊥,所以(a -b )2=(a +b )2且(a -b )·(a +b )=0, 所以a ·b =0,且a 2=b 2, 所以|a |=|b |=2,所以S △AOB =12||·||=12(a -b )2(a +b )2=12(a 2+b 2)2=4. 12. 解析:选A 因为m ⊗p =m ,即(a ,b )⊗(x ,y )=(ax +by ,ay +bx )=(a ,b ),所以⎩⎪⎨⎪⎧ax +by =a ,ay +bx =b ,即⎩⎪⎨⎪⎧a (x -1)+by =0,ay +b (x -1)=0. 由于对任意m =(a ,b ), 都有(a ,b )⊗(x ,y )=(a ,b )成立.所以⎩⎪⎨⎪⎧x -1=0,y =0,解得⎩⎪⎨⎪⎧x =1,y =0. 所以p =(1,0).故选A.13. 解析:因为a +b =(x ,x +2), 所以|a +b |=x 2+(x +2)2=2x 2+4x +4 =2(x +1)2+2≥2, 所以|a +b |∈[2,+∞). 答案:[2,+∞)14. 解析:因为a ,b 共线,所以由向量共线定理知,存在实数k ,使得a =k b , 即e 1+λe 2=-k (2e 1-3e 2)=-2k e 1+3k e 2 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧1=-2k ,λ=3k ,解得λ=-32.答案:-3215. 解析:以A 为原点,AB 所在的直线为x 轴,过A 且垂直于AB 的直线为y 轴建立平面直角坐标系.则由A (0,0),B (2,0),E (2,3),D (1,3,可得=1.答案:1 16.答案:[1,4]17. 解:(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x ) =1³(2x +3)+x (-x )=0.整理得x 2-2x -3=0,解得x =-1或x =3. (2)若a ∥b ,则有1³(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), ∴a -b =(-2,0),|a -b |=2;当x =-2时,a =(1,-2),b =(-1,2), ∴a -b =(2,-4),∴|a -b |=4+16=2 5. 综上所述,|a -b |为2或2 5.18. 解:(1)证明:由题意,得a +b =⎝⎛⎭⎫cos α-12,sin α+32,a -b =⎝⎛⎭⎫cos α+12,sin α-32,因为(a +b )·(a -b )=cos 2α-14+sin 2α-34=1-1=0,所以(a +b )⊥(a -b ).(2)因为向量3a +b 与a -3b 的模相等, 所以(3a +b )2=(a -3b )2,所以|a |2-|b |2+23a ·b =0,因为|a |=1,|b |=⎝⎛⎭⎫-122+⎝⎛⎭⎫322=1,所以|a |2=|b |2,所以a ·b =0, 所以-12cos α+32sin α=0,所以tan α=33, 又因为0≤α<2π, 所以α=π6或α=7π6.19. 解:(1)∵M 为DC 的中点,(2)由已知得a ·b =3³4³cos 120°=-6,=12a 2+⎝⎛⎭⎫1-112a ·b -16b 2 =12³32+1112³(-6)-16³42 =-113.20. 解:(1)由题意,D 为BC 边的中点,而△ABC 是正三角形,所以AD ⊥BC ,=12(a +b )·⎝⎛⎭⎫23b -a =13b 2-12a 2-16a ·b =13-12-16³1³1³12=-14.根据平面向量的基本定理有⎩⎪⎨⎪⎧-λ-22(λ+1)=-μ,λ2(λ+1)=2μ3,解得λ=4. 21.∴t =-2k sin θ+16.∵t sin θ=(-2k sin θ+16)sin θ =-2k ⎝⎛⎭⎫sin θ-4k 2+32k , ∵k >4,∴1>4k>0,当sin θ=4k 时,t sin θ取最大值为32k .由32k =4,得k =8,此时θ=π6,=(4,8),∴·=(8,0)·(4,8)=32.22. 解:(1)=(2e 1+e 2)+(-e 1+λe 2)=e 1+(1+λ)e 2.∵A ,E ,C 三点共线, ∴存在实数k ,使得,即e 1+(1+λ)e 2=k (-2e 1+e 2),得(1+2k )e 1=(k -1-λ)e 2.∵e 1,e 2是平面内两个不共线的非零向量,∴⎩⎪⎨⎪⎧1+2k =0,λ=k -1,解得k =-12,λ=-32.(2)=-3e 1-12e 2=(-6,-3)+(-1,1)=(-7,-2).(3)∵A ,B ,C ,D 四点按逆时针顺序构成平行四边形,即点A 的坐标为(10,7).阶段质量检测(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2cos 2x2+1的最小正周期是( )A .4πB .2πC .π D.π22.sin 45°²cos 15°+cos 225°²sin 15°的值为( ) A .-32B .-12C.12D.323.已知α是第二象限角,且cos α=-35,则cos ⎝⎛⎭⎫π4-α的值是( )A.210B .-210C.7210D .-72104.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α等于( ) A .-79B .-13C.13D.795.已知tan(α+β)=14,tan α=322,那么tan(2α+β)等于( )A.25B.14C.1318D.1322 6.1-3tan 75°3+tan 75°的值等于( )A .2+3B .2-3C .1D .-17.在△ABC 中,已知tan A +B2=sin C ,则△ABC 的形状为( )A .正三角形B .等腰三角形C .直角三角形D .等腰直角三角形8.若θ∈⎝⎛⎭⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( )A.32B .-32C .±32D .±129.若函数g (x )=a sin x cos x (a >0)的最大值为12,则函数f (x )=sin x +a cos x 的图象的一条对称轴方程为( )A .x =0B .x =-3π4C .x =-π4D .x =-5π410.已知tan α,tan β是方程x 2+33x +4=0的两个根,且-π2<α<π2,-π2<β<π2,则α+β为( )A.π6 B .-2π3C.π6或-5π6 D .-π3或2π311.设a =22(sin 17°+cos 17°),b =2cos 213°-1,c =sin 37°²sin 67°+sin 53°sin 23°,则( ) A .c <a <b B .b <c <aC .a <b <cD .b <a <c12.在△ABC 中,A ,B ,C 是其三个内角,设f (B )=4sin B ²cos 2⎝⎛⎭⎫π4-B 2+cos 2B ,当f (B )-m <2恒成立时,实数m 的取值范围是( )A .m <1B .m >-3C .m <3D .m >1二、填空题(本大题共4小题,每小题5分,共20分)13.已知α∈⎝⎛⎭⎫π2,π,sin α=55,则tan 2α=________. 14.已知等腰△ABC 的腰为底的2倍,则顶角A 的正切值是________.15.已知θ∈⎝⎛⎭⎫π2,π,1sin θ+1cos θ=22,则sin ⎝⎛⎭⎫2θ+π3的值为________. 16.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分 )已知cos θ=1213,θ∈(π,2π),求sin ⎝⎛⎭⎫θ-π6以及tan ⎝⎛⎭⎫θ+π4的值. 18.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. 19.(12分)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.20.(12分)已知f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2.(1)若f (α)=22,α∈⎝⎛⎭⎫-π2,0,求α的值; (2)若sin x 2=45,x ∈⎝⎛⎭⎫π2,π,求f (x )的值. 21.(12分)已知函数f (x )=cos 2x 2-sin x 2cos x 2-12. (1)求函数f (x )的最小正周期和值域;(2)若f (α)=3210,求sin 2α的值. 22.(12分)已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ).(1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)若f (x 0)=65,x 0∈⎣⎡⎦⎤π4,π2,求cos 2x 0的值.答 案1. 解析:选B ∵y =2cos 2x 2+1=⎝⎛⎭⎫2cos 2 x 2-1+2=cos x +2, ∴函数的最小正周期T =2π.2. 解析:选C sin 45°cos 15°+cos 225°sin 15°=sin 45°cos 15°-cos 45°sin 15°=sin(45°-15°)=sin 30°=12. 3. 解析:选A 由题意,sin α=45, cos ⎝⎛⎭⎫π4-α=cos π4cos α+sin π4sin α=210. 4. 解析:选A cos(2π3+2α)=cos[π-2(π6-α)]=-cos[2(π6-α)]=2sin 2⎝⎛⎭⎫π6-α-1=-79. 5. 解析:选A tan(2α+β)=tan (α+β)+tan α1-tan (α+β)tan α=25. 6. 解析:选D 1-3tan 75°3+tan 75°=33-tan 75°1+33tan 75° =tan 30°-tan 75°1+tan 30°·tan 75°=tan(30°-75°) =tan(-45°)=-1.7. 解析:选C 在△ABC 中,tan A +B 2=sin C =sin(A +B )=2sin A +B 2cos A +B 2,∴2cos 2A +B 2=1,∴cos(A +B )=0,从而A +B =π2,即△ABC 为直角三角形.8. 解析:选B 由sin θ-cos θ=22两边平方得,sin 2θ=12,又θ∈⎝⎛⎭⎫0,π2,且sin θ>cos θ,所以π4<θ<π2,所以π2<2θ<π,因此,cos 2θ=-32,故选B. 9. 解析:选B g (x )=a 2sin 2x (a >0)的最大值为12, 所以a =1,f (x )=sin x +cos x =2sin ⎝⎛⎭⎫x +π4, 令x +π4=π2+k π,k ∈Z 得x =π4+k π,k ∈Z .故选B. 10. 解析:选B 由题意得⎩⎨⎧tan α+tan β=-33,tan α·tan β=4>0, 所以tan α<0,tan β<0, 所以-π2<α<0,-π2<β<0,-π<α+β<0. 又tan(α+β)=tan α+tan β1-tan αtan β=-331-4= 3. 所以α+β=-2π3.故选B. 11. 解析:选A a =cos 45°sin 17°+sin 45°cos 17°=sin 62°,b =cos 26°=sin 64°,c =sin 37°cos 23°+cos 37°sin 23°=sin 60°,故c <a <b .12. 解析:选D f (B )=4sin B cos 2⎝⎛⎭⎫π4-B 2+cos 2B =4sin B ·1+cos ⎝⎛⎭⎫π2-B 2+cos 2B =2sin B (1+sin B )+(1-2sin 2B )=2sin B +1.∵f (B )-m <2恒成立,∴2sin B +1-m <2恒成立,即m >2sin B -1恒成立.∵0<B <π,∴0<sin B ≤1.∴-1<2sin B -1≤1,故m >1.13. 解析:因为sin α=55,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-255. 所以tan α=sin αcos α=-12,所以tan 2α=2tan α1-tan 2α=-11-14=-43. 答案:-4314. 解析:由题意,sin A 2=14,∴cos A 2=154, ∴tan A 2=1515.∴tan A =2tan A 21-tan 2A 2=157. 答案:157 15. 解析:由已知条件可得sin ⎝⎛⎭⎫θ+π4=sin 2θ, 又θ∈⎝⎛⎭⎫π2,π,由三角函数图象可知θ+π4+2θ=3π, 即θ=11π12,sin ⎝⎛⎭⎫2θ+π3=sin 13π6=12. 答案:1216. 解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45,所以sin(α+π6)=35,sin 2⎝⎛⎭⎫α+π6=2425,cos 2⎝⎛⎭⎫α+π6=725,所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4=22³1725=17250. 答案:1725017. 解:因为cos θ=1213,θ∈(π,2π), 所以sin θ=-513,tan θ=-512, 所以sin ⎝⎛⎭⎫θ-π6=sin θcos π6-cos θsin π6 =-513³32-1213³12=-53+1226, tan ⎝⎛⎭⎫θ+π4=tan θ+tanπ41-tan θtan π4=-512+11-⎝⎛⎭⎫-512³1=717. 18. 解:(1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2. ∴[f (β)]2-2=4sin 2π4-2=0. 19. 解:(1)由|a|2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,及|a |=|b |,得4sin 2x =1.又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈⎣⎡⎦⎤0,π2时,sin ⎝⎛⎭⎫2x -π6取最大值1,此时f (x )取得最大值,最大值为32. 20. 解:(1)f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2 =sin x +sin ⎝⎛⎭⎫x +π2=sin x +cos x =2sin ⎝⎛⎭⎫x +π4. 由f (α)=22,得2sin ⎝⎛⎭⎫α+π4=22,∴sin ⎝⎛⎭⎫α+π4=12. ∵α∈⎝⎛⎭⎫-π2,0,∴α+π4∈⎝⎛⎭⎫-π4,π4. ∴α+π4=π6,∴α=-π12. (2)∵x ∈⎝⎛⎭⎫π2,π,∴x 2∈⎝⎛⎭⎫π4,π2. 又∵sin x 2=45,∴cos x 2=35. ∴sin x =2sin x 2cos x 2=2425, cos x =-1-sin 2x =-725. ∴f (x )=sin x +cos x =2425-725=1725. 21. 解:(1)f (x )=cos 2x 2-sin x 2cos x 2-12=12(1+cos x )-12sin x -12=22cos ⎝⎛⎭⎫x +π4.所以f (x )的最小正周期为2π,值域为⎣⎡⎦⎤-22,22. (2)由(1)知f (α)=22cos ⎝⎛⎭⎫α+π4=3210, 所以cos ⎝⎛⎭⎫α+π4=35. 所以sin 2α=-cos ⎝⎛⎭⎫π2+2α=-cos 2⎝⎛⎭⎫α+π4 =1-2cos 2⎝⎛⎭⎫α+π4=1-1825=725. 22. 解:(1)由f (x )=23sin x cos x +2cos 2x -1,得f (x )=3(2sin x cos x )+(2cos 2x -1)=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. ∴函数f (x )的最小正周期为π.∵f (x )=2sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,π6上为增函数,在区间⎝⎛⎦⎤π6,π2上为减函数,又f (0)=1,f ⎝⎛⎭⎫π6=2, f ⎝⎛⎭⎫π2=-1,∴函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值为2,最小值为-1. (2)由(1)可知f (x 0)=2sin ⎝⎛⎭⎫2x 0+π6. 又∵f (x 0)=65,∴sin ⎝⎛⎭⎫2x 0+π6=35. 由x 0∈⎣⎡⎦⎤π4,π2,得2x 0+π6∈⎣⎡⎦⎤2π3,7π6. 从而cos ⎝⎛⎭⎫2x 0+π6=- 1-sin 2⎝⎛⎭⎫2x 0+π6=-45. ∴cos 2x 0=cos ⎣⎡⎦⎤⎝⎛⎭⎫2x 0+π6-π6 =cos ⎝⎛⎭⎫2x 0+π6cos π6+sin ⎝⎛⎭⎫2x 0+π6sin π6 =3-4310.。

高中数学必修四期末试题和答案解析

高中数学必修四期末试题和答案解析

必修四期末测试题一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.sin 150°的值等于( ). A .21B .-21 C .23 D .-23 2.已知=(3,0)等于( ). A .2B .3C .4D .53.在0到2?范围内,与角-34π终边相同的角是( ). A .6πB .3πC .32π D .34π 4.若cos ?>0,sin ?<0,则角 ??的终边在( ). A .第一象限B .第二象限C .第三象限D .第四象限5.sin 20°cos 40°+cos 20°s in 40°的值等于( ). A .41B .23 C .21D .43 6.如图,在平行四边形ABCD 中,下列结论中正确的是( ). A .= B .-= C .+= D .+=7.下列函数中,最小正周期为 ??的是( ). A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos4x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ). A .10B .5C .-25 D .-109.若tan ?=3,tan ?=34,则tan(?-?)等于( ). A .-3B .3C .-31D .3110.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-111.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥BC ,那么c 的值是( ). A .-1B .1C .-3D .3BAC (第6题)12.下列函数中,在区间[0,2π]上为减函数的是( ). A .y =cos x B .y =sin x C .y =tan xD .y =sin(x -3π) 13.已知0<A <2π,且cos A =53,那么sin 2A 等于( ). A .254B .257 C .2512 D .2524 14.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).A .(-3,-2)B .(3,-2)C .(-2,-3)D .(-3,2)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 ??的终边经过点P (3,4),则cos ??的值为 .16.已知tan ?=-1,且 ?∈[0,?),那么 ??的值等于 .17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 .18.某地一天中6时至14时的温度变化曲线近似 满足函数T =A sin(?t +?)+b (其中2π<?<?),6 时至14时期间的温度变化曲线如图所示,它是上 述函数的半个周期的图象,那么这一天6时至14 时温差的最大值是 °C ;图中曲线对应的 函数解析式是________________.三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.19.(本小题满分8分) 已知0<?<2π,sin ?=54.(1)求tan ??的值; (2)求cos 2?+sin ⎪⎭⎫ ⎝⎛2π + α的值.(第18题)20.(本小题满分10分)已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=21. (1)求|b |;(2)当a ·b =21时,求向量a 与b 的夹角 ??的值.21.(本小题满分10分) 已知函数f (x )=sin ?x (?>0).(1)当 ?=?时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式; (2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求 ??的值.期末测试题参考答案一、选择题: 1.A解析:sin 150°=sin 30°=21. 2.B=0+9=3. 3.C解析:在直角坐标系中作出-34π由其终边即知. 4.D解析:由cos ?>0知,??为第一、四象限或 x 轴正方向上的角;由sin ?<0知,??为第三、四象限或y 轴负方向上的角,所以 ??的终边在第四象限.5.B解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 6.C解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知+=. 7.B 解析:由T =ωπ2=?,得 ?=2.8.D解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D解析:tan(?-?)=βαβαtan tan +1tan -tan =4+134-3=31. 10.B解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.11.D解析:易知=(2,2),=(-1,c -2),由⊥,得2×(-1)+2(c -2)=0,解得c =3.12.A解析:画出函数的图象即知A 正确. 13.D解析:因为0<A <2π,所以sin A =54=cos -12A ,sin 2A =2sin A cos A =2524.14.A解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以q =(-3,-2).二、填空题: 15.53. 解析:因为r =5,所以cos ?=53. 16.43π. 解析:在[0,?)上,满足tan ?=-1的角 ??只有43π,故 ?=43π. 17.(-3,-5).解析:3b -a =(0,-3)-(3,2)=(-3,-5). 18.20;y =10sin(8πx +43π)+20,x ∈[6,14]. 解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin(?x +?)+b 的半个周期的图象,所以A =21(??-??)=10,b =21(30+10)=20. 因为21·ωπ2=14-6,所以 ?=8π,y =10sin ⎪⎭⎫⎝⎛ϕ + 8πx +20.将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<?<?,可得 ?=43π.综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题: 19.解:(1)因为0<?<2π,sin ?=54, 故cos ?=53,所以tan ?=34.(2)cos 2?+sin ⎪⎭⎫ ⎝⎛α + 2π=1-2sin 2? +cos ?=?-2532+53=258.20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2=21, 所以|b |2=|a |2-21=1-21=21,故|b |=22.(2)因为cos ?=ba ba ·=22,故 ?=??°.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫⎝⎛0 , 32π点,得sin 32π?=0,所以32π?=k ?,k ∈Z .即 ?=23k ,k ∈Z .又?>0,所以k ∈N*. 当k =1时,?=23,f (x )=sin 23x ,其周期为34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数; 当k ≥2时,?≥3,f (x )=sin ?x 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,?=23.。

2017-高中数学必修4期末考试

2017-高中数学必修4期末考试

2017-高中数学必修4期末考试2017年高一数学必修4模块期末考试一、选择题1.若向量OO=(-5,4),OO=(7,9),则与向量OO同向的单位向量坐标是()A.(−13,−13)B.(13,13)C.(−13,13)D.(13,−13)2.下列各式中值等于125的是()A。

5^3 B。

25^2/5 C。

3^5 D。

125^1/33.已知O(O)=OOOO+3OOOO(O∈O),函数y=f(x+φ)的图象关于直线x=0对称,则φ的值可以是()A。

2 B。

3 C。

4 D。

64.在四边形ABCD中,则四边形ABCD OO=O+2O,OO=−4O−O,OO=−5O−3O,的形状是()A。

长方形 B。

平行四边形 C。

菱形 D。

梯形5.如图所示,在△ABC中,AD=DB,F在线段CD上,设OO=O,OO=O,则O+O的最小值为()A。

6+2√2 B。

9/4 C。

9 D。

6+4√26.在△ABC中,OO=O,OO=O.若点D满足OO=(O+3O)/3=2OOOO,则O的坐标为()A。

(2b/3.c/3) B。

(b/3.2c/3) C。

(2c/3.b/3) D。

(c/3.2b/3)7.在△ABC中,tanAsin2B=tanBsin2A,则△ABC一定是()三角形.A。

锐角 B。

直角 C。

等腰 D。

等腰或直角8.将函数f(x)=cos2ωx的图象向右平移4π个单位,得到函数y=g(x)的图象,若y=g(x)在[−4,6]上为减函数,则正实数ω的最大值为()A。

2 B。

1 C。

2/π D。

39.cos555°的值为()A。

6+2√13/2 B。

2-6√13/2 C。

6-2√13/2 D。

-6+2√13/210.满足条件a=4,b=5,A=45°的△ABC的个数是()A。

1 B。

2 C。

无数个 D。

不存在11.已知角α是第四象限角,角α的终边经过点P(4,y),且sinα=5/13,则tanα的值是()A。

【湘教版】高中数学必修四期末试题附答案(1)

【湘教版】高中数学必修四期末试题附答案(1)

一、选择题1.已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα-=,则cos α=( )A .15B C .35D 2.已知3(,)4παβπ∈,,3sin()5αβ+=-,12sin()413πβ-=,则cos()4πα+=( ) A .5665-B .3365-C .5665D .33653.若α∈(2π,π),且3cos 2α=sin(4π-α),则sin 2α的值为( ) A .-118 B .118C .-1718D .17184.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形5.已知点G 是ABC 的重心,(),AG AB AC R λμλμ=+∈,若120,2,A AB AC ∠=︒⋅=-则AG 的最小值是( )A B .2C .12D .236.已知O 为正三角形ABC 内一点,且满足()10OA OB OC λλ+++=,若OAB 的面积与OAC 的面积之比为3,则λ=( ) A .12B .14C .34D .327.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( )A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-8.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .239.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (512AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④10.已知函数()cos2sin 2f x x x =-,将()y f x =的图象向左平移a (0a >)个单位长度可以得到一个奇函数的图象,将()y f x =的图象向右平移b (0b >)个单位长度可以得到一个偶函数的图象,则a b -的最小值等于( ) A .0B .8π C .4π D .2π 11.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( ) A .()f x 的最小正周期23T π=B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦12.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .59169二、填空题13.给出下列命题:①存在实数α使得sin cos 1αα=; ②存在实数α使得3sin cos 2αα+=; ③5sin 22y x π⎛⎫ ⎪⎝=⎭-是偶函数; ④8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程; ⑤若α、β是第一象限角,且αβ>,则tan tan αβ>, 其中正确命题的序号是______.14.化简tan 20tan 25tan 20?tan 25︒+︒+︒︒=_____.15.已知角θ的终边经过点(4,3)P -,则22cos sin 12)4--=+θθπθ_____________.16.已知向量a ,b 及实数t 满足|(1)(1)|1t a t b ++-=,若22||||1a b -=,则t 的最大值是________.17.已知向量()3,2OA =,()2,1OB =,O 点为坐标原点,在x 轴上找一个点M ,使得AM BM ⋅取最小值,则M 点的坐标是___________.18.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.19.函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下结论中正确的是______(写出所有正确结论的编号). ①图象C 关于直线1112π=x 对称; ②图象C 关于点2,03π⎛⎫⎪⎝⎭对称; ③函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数; ④由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C . 20.如图,某地一天从614时的温度变化曲线近似满足函数()sin y A x b ωϕ=++,则这段曲线的函数解析式为______________.三、解答题21.如图,设A 是一块麦田,射线,AB AC 夹角为60°,若将水管P 设在BAC ∠围成的区域内(不含边界)(1)若P 到,AB AC 的距离之和为定值20,设PAB θ∠=,试将PA 的长用含θ的式子表示,并求出水管想要浇灌到麦田的最小射程;(2)若P 在以A 为圆心,10为半径的圆弧上运动,过P 作AP 的垂线分别交,AB AC 于,Q R 两点,求AQ AR +的最小值.22.在①36f π⎛⎫-= ⎪⎝⎭,②()f x 的最大值在12x π=处取到,③当()()121f x f x -=,则12min 2x x π-=这三个条件中任选一个,补充并解答下面问题.问题:已知函数()sin cos 3f x x x πωω⎛⎫=+ ⎪⎝⎭,(]0,3ω∈.若_______,求实数ω的值.注:如果选择多个条件分别解答,按第一个解答计分.23.在ABCD 中,2AB =,23AC =,向量AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值.24.如图,某公园摩天轮的半径为40m ,圆心O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在距地面最近处.(1)已知在(min)t 时点P 距离地面的高度为()sin()0,0,||2f t A t h A πωϕωϕ⎛⎫=++>>≤ ⎪⎝⎭,求2020t =时,点P 距离地面的高度;(2)当离地面(503)m +以上时,可以看到公园的全貌,求转一圈中在点P 处有多少时间可以看到公园的全貌.25.已知函数1()2sin cos 62f x x x π⎛⎫=-- ⎪⎝⎭. (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间[]0,π上的单调递增区间. 26.已知向量()cos ,sin m x x =-,()3,3n =,[]0,x π∈. (1)若m 与n 共线,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题解析:D 【分析】先利用二倍角公式化简整理得到1sin cos 2αα=,再利用同角三角函数的平方关系,结合范围解出cos α即可. 【详解】由2sin 2cos21αα-=,0,2πα⎛⎫∈ ⎪⎝⎭,得2sin 21cos2αα=+,cos 0α>,所以24sin cos 2cos ααα=,即2sin cos αα=,故1sin cos 2αα=, 代入22sin cos 1αα+=得,25cos 14α=,故24cos 5α=,因为cos 0α>,所以cos α=. 故选:D. 【点睛】 关键点点睛:本题解题关键在于熟记公式并准确运算,还要注意角的范围的限制,才能突破难点.2.A解析:A 【分析】 由角的变换可知()()44ππααββ+=+--,利用同角三角基本关系及两角差的余弦公式求解即可. 【详解】3(,)4παβπ∈,, 3(,2)2παβπ∴+∈,3(,)424πππβ-∈,4cos()5αβ∴+=,5cos()413πβ-=-,cos()cos[()()cos ()]cos (()s )sin ()444in 4πππααβαβαπββββ∴+=+-++-=-+-453125651351365=-⨯-⨯=-,故选:A 【点睛】本题主要考查了角的变换,同角三角函数的基本关系,两角差的余弦公式,属于中档题.解析:C 【分析】按照二倍角的余弦以及两角差的正弦展开可得()3cos sin 2αα+=,对等式平方即可得结果. 【详解】由3cos 2sin 4παα⎛⎫=- ⎪⎝⎭,可得())223cos sin cos sin 2αααα-=-, 又由,2παπ⎛⎫∈⎪⎝⎭,可知cos sin 0αα-≠,于是()3cos sin 2αα+=,所以112sin cos 18αα=+, 故17sin 218α=-, 故选:C. 【点睛】本题主要考查了两角差公式以及二倍角公式的应用,属于中档题.4.B解析:B 【分析】利用两角和与差公式化简原式,可得答案. 【详解】因为sin 2sin cos B A C =, 所以sin()2sin cos A C A C +=所以sin cos cos sin 2sin cos A C A C A C += 所以sin cos cos sin 0A C A C -= 所以sin()0A C -=, 所以0A C -=, 所以A C =.所以三角形是等腰三角形. 故选:B. 【点睛】本题考查三角恒等变换在解三角形中的应用,考查两角和与差公式以及两角和与差公式的逆用,考查学生计算能力,属于中档题.5.D解析:D 【分析】先根据重心得到()13AG AB AC =+,设0,0AB x AC y =>=>,利用数量积计算4xy =,再利用重要不等式求解()2219A AGB AC =+的最小值,即得结果.【详解】点G 是ABC 的重心,设D 为BC 边上的中点,则()2133AG AD AB AC ==+, 因为120,2,A AB AC ∠=︒⋅=-设0,0AB x AC y =>=>,则cos1202xy ︒=-,即4xy =,故()()()222211144249999AG x y x B ACy A =+-≥-=+=,即23AG ≥, 当且仅当2x y ==时等号成立,故AG 的最小值是23. 故选:D. 【点睛】 关键点点睛:本题的解题关键在于通过重心求得向量关系()13AG AB AC =+,利用数量积得到定值,才能利用重要不等式求最值,突破难点,要注意取条件的成立.6.A解析:A 【分析】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,由平面向量的线性运算可得OD OE λ=-,进而可得13OACAEC S S =△△,即可得解. 【详解】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,如图,所以DE 是ABC 的中位线,因为()10OA OB OC λλ+++=,所以()OA OC OB OC λ+=-+, 所以OD OE λ=-,所以D 、E 、O 三点共线,所以111363OAC OAB ABC AEC S S S S ===△△△△,所以13OD ED =即12OD OE =-,所以12λ-=-即12λ=.故选:A. 【点睛】本题考查了平面向量共线、线性运算及基本定理的应用,考查了运算求解能力与转化化归思想,属于中档题.7.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭,∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭, ∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.8.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=, 故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.9.A解析:A 【分析】设1AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】不妨设1AB =,则2BC =,所以)12l BE π==⨯,)213ED =-=所以(32m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(222234m π⨯==,))2122l n ππ⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l n l n l n ++===⋅(1132m π==⨯,所以211m l n ≠+, 故④不正确;所以①②正确, 故选:A 【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n 的值.10.A解析:A 【分析】先整理函数,再根据平移后函数的奇偶性得到a ,b 的值,即可得结果. 【详解】解:函数()cos 2sin 224f x x x x π⎛⎫=-=+ ⎪⎝⎭,函数()24f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移a 个单位得到()224g x x a π⎛⎫=++ ⎪⎝⎭,又因为函数为奇函数,则242a k πππ+=+(k Z ∈),整理得28k a ππ=+(k Z ∈);函数()24f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移b 个单位得到()224h x x b π⎛⎫=-+ ⎪⎝⎭,由于得到的函数的图象为偶函数,2=4b k ππ-+-,=,()82k b k Z ππ+∈; 当0k =时,min 0a b -= 故选:A. 【点睛】本题考查了三角函数的平移变换和奇偶性,属于中档题.11.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确; ()311cos 216f x x π⎛⎫=-⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即 ,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确.故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 12.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.二、填空题13.③④【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;解析:③④ 【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式,结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;利用特殊值法可判断⑤的正误. 【详解】对于命题①,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦, 所以,不存在实数α使得sin cos 1αα=,①错误;对于命题②,sin cos 4πααα⎛⎫⎡+=+∈ ⎪⎣⎝⎭, 所以,不存在实数α使得3sin cos 2αα+=,②错误; 对于命题③,si o 5s 2n c 2i s n 222x y x x ππ⎛⎫⎛⎫== ⎪⎪⎝-⎭-⎭=⎝, ()cos 2cos2x x -=,所以,函数5sin 22y x π⎛⎫⎪⎝=⎭-是偶函数,③正确;对于命题④,当8x π=时,min 53sin 2sin 1842y y πππ⎛⎫=⨯+==-= ⎪⎝⎭, 所以,8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程,命题④正确; 对于命题⑤,取9244παππ=+=,4πβ=,αβ>,但tan 1tan αβ==,⑤错误.因此,正确命题的序号为③④. 故答案为:③④. 【点睛】本题考查有关三角函数命题真假的判断,考查了三角函数的有界性、正弦型函数的奇偶性、对称性以及正切值大小的比较,考查计算能力与推理能力,属于中等题.14.1【详解】分析:首先从式子中分析得出角的大小借助于两角和的正切公式得到与之间的关系借助于角的正切值求得结果详解:因为所以所以有故答案为:1点睛:该题考查的是有关三角函数化简求值问题在解题的过程中涉及解析:1 【详解】分析:首先从式子中分析得出2025︒︒+角的大小,借助于两角和的正切公式,得到tan 20tan 25︒︒+与tan 20tan 25︒︒⋅之间的关系,借助于45︒角的正切值,求得结果. 详解:因为tan 20tan 25tan(2025)1tan 20tan 25︒︒︒︒︒︒++=-,所以1tan 20tan 25tan 20tan 25︒︒︒︒-=+, 所以有tan 20tan 25tan 20tan 251︒︒︒︒++=, 故答案为:1.点睛:该题考查的是有关三角函数化简求值问题,在解题的过程中,涉及到的知识点有两角和的正切公式的逆用,注意45︒角的正切值的大小.15.7【分析】根据角终边定义得将所求分式用倍角公式和差公式化简化为齐次式代化简即可【详解】解:由角的终边经过点得所以故答案为:7【点睛】任意角的三角函数值:(1)角与单位圆交点则;(2)角终边任意一点则;解析:7 【分析】根据角终边定义得3tan 4θ=-,将所求分式用倍角公式、和差公式化简,化为齐次式,代3tan 4θ=-化简即可.【详解】解:由角θ的终边经过点(4,3)P -得3tan 4θ=-所以222cos sin 1(2cos 1)sin cos sin 22sin cos )coscos sin )444-----==+++θθθθθθπππθθθθθ31cos sin 1tan 473sin cos tan 114θθθθθθ⎛⎫-- ⎪--⎝⎭====++-+.故答案为:7 【点睛】任意角的三角函数值:(1)角α与单位圆交点(,)P x y ,则sin ,cos ,tan (0)yy x x xααα===≠; (2)角α终边任意一点(,)P x y,则sin tan (0)yx xααα===≠; 16.【分析】根据整理为再两边平方结合得到然后利用基本不等式求解【详解】因为所以两边平方得因为即所以而所以解得当且仅当时等号成立所以的最大值是故答案为:【点睛】关键点点睛:本题关键是由这一信息将转化为再遇解析:14【分析】根据|(1)(1)|1t a t b ++-=,整理为()()||1t a b a b ++-=,再两边平方结合22||||1a b -=,得到()()22212t a ba bt ++-=-,然后利用基本不等式求解.【详解】因为|(1)(1)|1t a t b ++-=,所以()()||1t a b a b ++-=,两边平方得()()()()22221t a b t a b a b a b +++-+-=, 因为22||||1a b -=,即()()1a b a b +-=, 所以()()22212t a b a b t ++-=-,而()()()()22222t a b a b t a b a b t ++-≥+⋅-=,所以122t t -≥, 解得14t ≤,当且仅当()()t a b a b +=-时等号成立, 所以t 的最大值是14故答案为:14【点睛】关键点点睛:本题关键是由22||||1a b -=这一信息,将|(1)(1)|1t a t b ++-=,转化为()()||1t a b a b ++-=,再遇模平方,利用基本不等式从而得解.17.【分析】设点的坐标是求出再利用配方法可得答案【详解】设点的坐标是即因为向量所以当时有最小值此时点的坐标是故答案为:【点睛】方法点睛:平面向量求最值有三种常见方法:1几何法;2三角函数有界法;3二次函解析:5,02⎛⎫⎪⎝⎭【分析】设M 点的坐标是(),0t ,求出AM BM ⋅,再利用配方法可得答案. 【详解】设M 点的坐标是(),0t ,即(),0OM t =, 因为向量()3,2OA =,()2,1OB =, 所以()3,2AM OM OA t =-=--,()2,1BM OM OB t =-=--,()()()()3221AM BM t t ⋅=--+-⨯-22575824t t t ⎛⎫=-+=-+ ⎪⎝⎭,当52t =时,AM BM ⋅有最小值74,此时M 点的坐标是5,02⎛⎫⎪⎝⎭, 故答案为:5,02⎛⎫ ⎪⎝⎭. 【点睛】方法点睛:平面向量求最值有三种常见方法:1、几何法;2、三角函数有界法;3、二次函数配方法.18.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.19.①②③【分析】利用整体代入的方式求出对称中心和对称轴分析单调区间利用函数的平移方式检验平移后的图象【详解】由题:令当时即函数的一条对称轴所以①正确;令当时所以是函数的一个对称中心所以②正确;当在区间解析:①②③ 【分析】利用整体代入的方式求出对称中心和对称轴,分析单调区间,利用函数的平移方式检验平移后的图象. 【详解】由题:()3sin 23x f x π⎛⎫=- ⎪⎝⎭,令2,32x k k Z πππ-=+∈,5,122k x k Z ππ=+∈, 当1k =时,1112π=x 即函数的一条对称轴,所以①正确; 令2,3x k k Z ππ-=∈,,62k x k Z ππ=+∈,当1k =时,23x π=, 所以2,03π⎛⎫⎪⎝⎭是函数的一个对称中心,所以②正确; 当5,1212x ππ⎛⎫∈- ⎪⎝⎭,,2223x ππ⎛⎫∈- ⎪⎝π⎭-,()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数,所以③正确;3sin 2y x =的图象向右平移3π个单位长度得到23sin 23sin 233y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,与函数()3sin 23x f x π⎛⎫=- ⎪⎝⎭不相等,所以④错误. 故答案为:①②③ 【点睛】此题考查三角函数的图象和性质,利用整体代入的方式求解对称轴对称中心,求解单调区间,根据函数的平移变换求解平移后的函数解析式.20.【分析】根据图象得出该函数的最大值和最小值可得结合图象求得该函数的最小正周期可得出再将点代入函数解析式求出的值即可求得该函数的解析式【详解】由图象可知从题图中可以看出从时是函数的半个周期则又得取所以解析:310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭,[]6,14x ∈ 【分析】根据图象得出该函数的最大值和最小值,可得max min 2y y A -=,max min2y y b +=,结合图象求得该函数的最小正周期T ,可得出2Tπω=,再将点()10,20代入函数解析式,求出ϕ的值,即可求得该函数的解析式.【详解】由图象可知,max 30y =,min 10y =,max min 102y y A -∴==,max min202y y b +==, 从题图中可以看出,从614时是函数()sin y A x b ωϕ=++的半个周期,则()214616T =⨯-=,28T ππω∴==. 又10228k πϕππ⨯+=+,k Z ∈,得()324k k Z πϕπ=+∈,取34πϕ=,所以310sin 2084y x ππ⎛⎫=++⎪⎝⎭,[]6,14x ∈. 故答案为:310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭,[]6,14x ∈. 【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.三、解答题21.(1)2003sin 3x πθπθ⎛⎫=<< ⎪⎛⎫⎝⎭+ ⎪⎝⎭,最小射程为20;(2)3. 【分析】(1)过点P 作PE AB ⊥于点,E PF AC ⊥于点F ,设PA x =,则可表示出,PE PF ,根据20PE PF +=,列出等式,化简整理,即可得PA 的表达式,根据θ的范围,即可求得答案;(2)设PAQ α∠=,则1010cos cos 3AQ AR παα+=+⎛⎫- ⎪⎝⎭,令6t πα=-,则,化简整理可得4cos cos AQ AR t t+=-,根据t 的范围,结合14cos cos y t t=-的单调性,即可求得答案. 【详解】(1)过点P 作PE AB ⊥于点,E PF AC ⊥于点F ,则20PE PF += 设PA x =,则sin ,sin 3x E PF x P πθθ⎛-==⎫⎪⎝⎭, 所以sin sin 203x x πθθ⎛⎫+-=⎪⎝⎭,即202003sin sin sin 33x πθππθθθ⎛⎫==<< ⎪⎛⎫⎛⎫⎝⎭+-+ ⎪ ⎪⎝⎭⎝⎭ 所以20PA ≥(当且仅当6πθ=时取“=”),即水管想要浇灌到麦田的最小射程为20. (2)由题可知:10PA =,设,(0,)3PAQ παα∠=∈,则1010cos cos 3AQ AR παα+=+⎛⎫- ⎪⎝⎭,令6t πα=-,则66t ππ-<<则10104cos cos cos cos 66AQ AR t t t t ππ+=+==⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭由66t ππ-<<,所以cos 12t <≤,且14cos cos y t t =-在为增函数,所以当cos 1t =时,14cos cos y t t=-有最大值3,所以10104cos cos cos cos 66AQ AR t t t t ππ+=+==≥⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭, 所以AQ AR +【点睛】解题的关键是根据题意,结合三角函数的概念,进行求解,以实际问题作为载体,考查三角函数的综合应用,属中档题. 22.①6f π⎛⎫-= ⎪⎝⎭,1ω=; ②()f x 的最大值在12x π=处取到,1ω=;③当()()121f x f x -=,则12min2x x π-=,1ω=.【分析】可先利用倍角公式将()f x 化简为()sin A x B ωϕ++的形式,再利用其性质逐一求解. 【详解】()sin cos 3f x x x πωω⎛⎫=+ ⎪⎝⎭1sin cos 2x x x ωωω⎛⎫=- ⎪ ⎪⎝⎭21sin cos sin 22x x x ωωω=⋅-11cos 2sin 2422x x ωω-=-11sin 2222x x ωω⎛⎫=+- ⎪ ⎪⎝⎭1sin 223x πω⎛⎫=+ ⎪⎝⎭. 选①64f π⎛⎫-=- ⎪⎝⎭,则sin 033ωππ-⎛⎫+= ⎪⎝⎭,()33k k Z ωπππ-+=∈ 解得13k ω=-,(]0,3ω∈,1ω∴= 选②()f x 的最大值在12x π=处取到,则有sin 163ωππ⎛⎫+=⎪⎝⎭()2632k k Z ωππππ+=+∈112k ω=+,(]0,3ω∈,1ω∴=选③当()()121f x f x -=,则12min 2x x π-= 代入可得1211sin 2sin 212323x x ππωω⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭ 12sin 2sin 2233x x ππωω⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,12min 2x x π-= 意味着函数()sin 23g x x πω⎛⎫=+⎪⎝⎭的相邻两条对称轴距离为2π T π∴=22T πππωω∴=== 1ω∴=【点睛】方法点睛:对于三角函数,解决最小正周期和最值,单调区间,对称轴等问题时,可先把所给三角函数式化为()sin A x B ωϕ++或()cos A x B ωϕ++的形式,再利用其性质求解.它们的最小正周期为2T πω=,最大值为A B +,最小值为A B -+.23.(Ⅰ)2AD =;(Ⅱ)0.【分析】(Ⅰ)设AB a =,AD b =,利用平面向量加法的平行四边形法则可得AC a b =+,由23AC =b 的方程,即可解得AD b =;(Ⅱ)计算得出0AC BD ⋅=,可得出AC BD ⊥,进而可得出结果.【详解】(Ⅰ)设AB a =,AD b =,则AC a b =+,BD AD AB b a =-=-.向量AB 与AD 的夹角为3π,cos 3a b a b b π∴⋅=⋅=. ()22222242AC a b a b a a b b b b ∴=+=+=+⋅+=++= 整理得2280b b +-=,0b ≥,解得2b =,即2AD =;(Ⅱ)()()220AC BD a b b a b a ⋅=+⋅-=-=,则AC BD ⊥,因此,AC 和BD 夹角的余弦值为0.【点睛】本题考查利用平面向量的数量积求向量的模,同时也考查了平面向量夹角余弦值的计算,考查计算能力,属于中等题.24.(1)70m ;(2)0.5min .【分析】(1)根据题意,确定()sin()f t A t h ωϕ=++的表达式,代入2020t =运算即可;(2)要求()50f t >+2cos3t π<,解不等式即可. 【详解】(1)依题意,40A =,50h =,3T =, 由23πω=得23πω=,所以2()40sin 503f t t πϕ⎛⎫=++ ⎪⎝⎭. 因为(0)10f =,所以sin 1ϕ=-,又||2πϕ≤,所以2πϕ=-. 所以2()40sin 50(0)32f t t t ππ⎛⎫=-+≥ ⎪⎝⎭, 所以2(2020)40sin 2020507032f ππ⎛⎫=⨯-+= ⎪⎝⎭. 即2020t =时点P 距离地面的高度为70m .(2)由(1)知22()40sin 505040cos (0)323f t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭.令()50f t >+2cos32t π<-, 从而()*52722N 636k t k k πππππ+<<+∈, ∴()*5733N 44k t k k +<<+∈. ∵()*751330.5N 442k k k ⎛⎫+-+==∈ ⎪⎝⎭, ∴转一圈中在点P 处有0.5min 的时间可以看到公园的全貌.【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题.25.(1)π;(2)单调递增区间为0,3π⎡⎤⎢⎥⎣⎦,5,6ππ⎡⎤⎢⎥⎣⎦. 【分析】(1)先根据二倍角公式、辅助角公式化简函数,再根据正弦函数的周期公式求周期;(2)根据正弦函数性质求单调区间,再取对应区间即得结果.【详解】(1)11()2sin sin 22f x x x x ⎫=+-⎪⎪⎝⎭1cos21222x x -=+-12cos 2sin 2226x x x π⎛⎫=-=- ⎪⎝⎭, 所以()f x 的最小正周期22T ππ==. (2)令26z x π=-,[]0,x π∈,则11,66z ππ⎡⎤∈-⎢⎥⎣⎦, 因为sin y z =,11,66z ππ⎡⎤∈-⎢⎥⎣⎦的单调增区间是,62ππ⎡⎤-⎢⎥⎣⎦,311,26ππ⎡⎤⎢⎥⎣⎦, 由2662x πππ-≤-≤或3112266x πππ≤-≤, 得:03x π≤≤或56x ππ≤≤, 所以()f x 在[]0,π内的单调递增区间为0,3π⎡⎤⎢⎥⎣⎦,5,6ππ⎡⎤⎢⎥⎣⎦. 【点睛】本题考查二倍角公式、辅助角公式、正弦函数性质,解题关键是要熟练掌握三角函数的性质,考查分析求解能力,属基础题.26.(1)2)6π 【分析】(13sin =-x x ,进而可得结果.(2)由平面向量的数量积可得3cos -x x ,进而可得结果.【详解】(1)由//m n 3sin tan =-⇒=x x x(2)13cos 3sin cos 132π⋅=-=⋅⋅=⨯m n x x m n 可得1sin()32x π-=-,因为2[0,],[,]333ππππ∈-∈-x x 所以366πππ-=-⇒=x x【点睛】本题考查了平面向量共线的坐标表示、平面向量数量积运算的坐标表示和三角恒等变换,考查了运算求解能力和逻辑推理能力,属于中档题目.。

高中数学必修4习题和复习参考题及对应答案

高中数学必修4习题和复习参考题及对应答案

高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x 轴上的角的集合. 答案:S={α|α=k·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k·360°,k ∈Z },-245°,115°; (5){β|β=90°+k·360°,k ∈Z },-270°,90°; (6){β|β=270°+k·360°,k ∈Z },-90°,270°; (7){β|β=180°+k·360°,k ∈Z },-180°,180°; (8){β|β=k·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k·360°<β<90°+k·360°,k ∈Z } {|22,}2k k k πβπβπ<<+∈Z二 {β|90°+k·360°<β<180°+k·360°,k ∈Z }{|22,}2k k k πβπβππ+<<+∈Z三 {β|180°+k·360°<β<270°+k·360°,k ∈Z }3{|22,}2k k k πβππβπ+<<+∈Z 四{β|270°+k·360°<β<360°+k·360°,k ∈Z }3{|222,}2k k k πβπβππ+<<+∈Z 说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k·360°<α<90°+k·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角.6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念.7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值;(2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =. 用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20 习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a≠0,求sinα,cosα,tanα的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-.说明:根据定义求三角函数值.3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin 2446663ππππππ-+-++;(4)2423sincos tan 323πππ+-. 答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题.6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号.7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号.8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值.9、求证:(1)角θ为第二或第三象限角当且仅当sinθ·tanθ<0; (2)角θ为第三或第四象限角当且仅当cosθ·tanθ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34 x x==-.说明:要分别对x是第三象限角和第四象限角进行讨论.12、已知3tan 3,2απαπ=<<,求cosα-sinα的值. 答案:1(31)2- 说明:角α是特殊角.13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α; (3)(cosβ-1)2+sin 2β=2-2cosβ; (4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cosβ+cos 2β+sin 2β=2-2cosβ;(4)左边=(sin 2x +cos 2x )2-2sin 2x·cos 2x=1-2sin 2x·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角. 答案:-2tanα说明:先变形,再根据同角三角函数的基本关系进行化简.3、已知tanα=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式.4、从本节的例7可以看出,cos 1sin 1sin cos x xx x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29 习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)si n263°42′=__________; (3)cos()6π-=__________; (4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π;(4)sin3π; (5)2cos 9π-;(6)-cos75°34′; (7)-tan87°36′; (8)tan6π-. 说明:利用诱导公式转化为锐角三角函数.2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′;(6)26sin()3π-.答案:(1)22;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)32 -说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-. 答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46 习题1.4A 组1、画出下列函数的简图: (1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32; 使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2kπ],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2kπ,(2k +1)π],k ∈Z 时,y=-cosx 是增函数.说明:利用正弦、余弦函数的单调性研究所给函数的单调性.6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期.答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解.8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°; (3)93tan 6tan(5)1111ππ-与; (4)7tantan 86ππ与. 答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tantan 86ππ<. 说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.10、设函数f (x )(x ∈R )是以 2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题.11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(kπ,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=kπ,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z . 说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题:(1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57 习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度 D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变 D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ). A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2)(3)(4)说明:研究了参数A、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48xy π=-,x ∈[0,+∞);(2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-.先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式. t 0t 02t 03t 0 4t 05t 06t 07t 08t 09t 0 10t 011t 012t 0s-20.0 -17.8 -10.10.110.3 17.7 20.0 17.7 10.30.1-10.1 -17.8 -20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos2A=-;(3)tanA=1;(4)3 tan3A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论.P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π; (4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ;(2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ; (4){β|β=2kπ,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解.3、确定下列三角函数值的符号: (1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sinφ,tanφ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sinφ的值,再求tanφ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==;当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cosα表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形.7、求证:(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2; (2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sinα+2cosα-2sinαcosα=1+sin 2α+cos 2α-2sinα+2cosα-2sinαcosα =右边.(2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形.8、已知tanα=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sinαcosα; (3)(sinα+cosα)2. 答案:(1)57;(2)310;(3)85. 说明:第(2)题可由222sin tan 9cos ααα==,得21c o s10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号.10、已知1sin()2πα+=-,计算:(1)cos(2π-α);(2)tan(α-7π).答案:(1)当α为第一象限角时,3 cos(2)2πα-=,当α为第二象限角时,3 cos(2)2πα-=-;(2)当α为第一象限角时,3 tan(7)3απ-=,当α为第二象限角时,3 tan(7)3απ-=-.说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算.11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°;(2)sin(-879°),313t a n(),c o s()810ππ--;(3)sin3,cos(sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216;(2)sin(-879°)=-0.358,3313tan()0.414,cos()0.588 810ππ-=--=-;(3)sin3=0.141,cos(sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证.12、设π<x<2π,填表:x 76π74πsinx -1cosx22-32tanx 3答案:x 76π54π43π32π74π116πsinx12-22-32--122-12-cosx32-22-12-2232tanx3313不存在-133-说明:熟悉各特殊角的三角函数值.13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z }; 最小值为1,此时x 的集合为{x|x=2kπ,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证.17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.170.340.500.640.770.870.940.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.。

【北师大版】高中数学必修四期末第一次模拟试题(带答案)

【北师大版】高中数学必修四期末第一次模拟试题(带答案)

一、选择题1.已知,(0,2)αβπ∈,且满足1sin cos 2αα-=,1cos sin 2ββ-=,则sin()αβ+=( )A .1B .2-或1 C .34-或1 D .1或-12.已知0,2x π⎛⎫∈ ⎪⎝⎭,3cos 45x π⎛⎫+= ⎪⎝⎭,则sin x 的值为( )A .10-B .10 C .10D .10-3.角α的终边与单位圆的交点坐标为1)2,将α的终边绕原点顺时针旋转34π,得到角β,则cos()αβ+=( )A .4B .4C .14D .04.已知A 是函数()3sin(2020)sin(2020)2623f x x x ππ=++-的最大值,若存在实数1x ,2x 使得对任意实数x ,总有12()()()f x f x f x ≤≤成立,则12A x x 的最小值为( )A .2020πB .1010π C .32020πD 5.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( ) A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)6.如图,在平面直角坐标系xOy 中,原点O 为正八边形12345678PP P P P P P P 的中心,18PP x ⊥轴,若坐标轴上的点M (异于点O )满足0i j OM OP OP ++=(其中1,8i j ≤≤,且i 、j N *∈),则满足以上条件的点M 的个数为( )A .2B .4C .6D .87.在边长为2的菱形ABCD 中,60BAD ∠=︒,点E 是AB 边上的中点,点F 是BC 边上的动点,则DE DF ⋅的取值范围是( )A .0,3⎡⎤⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .3,3⎡⎤⎣⎦D .[]0,38.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .239.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π 10.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图,将()y f x =的图象向右平移π6个单位长得到函数y g x 的图象,则()g x 的单调增区间为( )A .()ππ2π,2π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()π5π2π,2π36k k k ⎡⎤++∈⎢⎥⎣⎦Z C .()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z D .()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z 11.675︒用弧度制表示为( ) A .114π B .134π C .154π D .174π 12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称B .最小正周期是πC .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦3二、填空题13.已知25cos 2βα⎛⎫-= ⎪⎝⎭,310cos 2αβ⎛⎫-= ⎪⎝⎭,且0,22βπα⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭,则2αβ+的值为__________. 14.已知cosα17=,cos(α﹣β)1314=,且0<β<α2π<,则sinβ=_____. 15.已知6sin 4πθ⎛⎫-= ⎪⎝⎭sin 2θ=___________. 16.已知平面向量a ,b 夹角为30,若2=a ,则12b a b +-的最小值为______. 17.O 为坐标原点,已知向量()1,5OA =,()4,2OB =,()6,8OC =,,x y 为非负实数且01x y ≤+≤,CD xCA yCB =+,则OD 的最小值为_______________18.已知P 为圆22(4)2x y +-=上一动点,点()1,1Q ,O 为坐标原点,那么OP OQ ⋅的取值范围为________.19.已知函数f (x ),任意x 1,x 2∈,22ππ⎛⎫- ⎪⎝⎭(x 1≠x 2),给出下列结论:①f (x +π)=f (x );②f (-x )=f (x );③f (0)=1;④1212()()f x f x x x -->0;⑤1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭.当()tan f x x =时,正确结论的序号为________. 20.已知函数sin cos |sin cos |()22+--=+x x x x f x [0,]m 上恰有4个零点,则实数m 的取值范围为________.三、解答题21.函数2()sin cos (0)f x x x x ωωωω=+⋅>且满足___________. ①函数()f x 的最小正周期为π;②已知12x x ≠,()()1212f x f x ==,且12x x -的最小值为2π,在这两个条件中任选一个,补充在上面横线处,然后解答问题. (1)确定ω的值并求函数()f x 的单调区间;(2)求函数()f x 在0,3x π⎡⎤∈⎢⎥⎣⎦上的值域. 22.已知函数()cos23f x x =-,()2cos 4g x a x a =-. (1)求函数()()2h x x f x =+的最大值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,求a 的取值范围. 23.已知向量(1,2),(,2),(3,1)==-=-OA OB m OC ,O 为坐标原点. (1)若AB AC ⊥求实数m 的值; (2)在(1)的条件下,求△ABC 的面积.24.在ABC 中,G 为ABC 的重心,过G 点的直线分别交,AB AC 于,P Q 两点,且,AP h AB AQ k AC ==,(1)求11h k+的值; (2)设,APQ ABC S S △△分别表示,APQ ABC △△的面积,求APQ ABCS S的最小值.25.在①()f x 的图象关于直线3x π=对称,②()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,③()f x 的图象上最高点中,有一个点的横坐标为6π这三个条件中任选一个,补充在下面问题中,并解答.问题:已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><<⎪⎝⎭的振幅为2,初相为3π,最小正周期不小于...π,且______. (1)求()f x 的解析式;(2)求()f x 在区间[],0π-上的最大值和最小值以及取得最大值和最小值时自变量x 的值.注:如果选择多个条件分别解答,按第一个解答计分. 26.已知函数1()sin 223f x x π⎛⎫=- ⎪⎝⎭. (1)当x ∈R 时,求()f x 的最小正周期及单调递增区间; (2)求()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大值及最小值,并指出相应x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由两角与差的正弦、余弦公式变形由已知求得sin()4πα-和cos()4πβ+,用平方关系求得cos()4πα-和sin()4πα+,而sin()sin ()()44ππαβαβ⎡⎤+=-++⎢⎥⎣⎦,展开后计算,注意分类讨论. 【详解】∵1sin cos 2αα-=,∴αα=sin()4πα-=1cos sin 2ββ-=ββ-=,cos()44πβ+=,∴cos()44πα-=±,sin()44πα+=±, sin()sin ()()sin()cos()cos()sin()444444ππππππαβαβαβαβ⎡⎤+=-++=-++-+⎢⎥⎣⎦, 当7cos()sin()448ππαβ-+=时,17sin()188αβ+=+=, 当7cos()sin()448ππαβ-+=-时,173sin()884αβ+=-=-, 故选:C . 【点睛】关键点点睛:本题考查两角和与差正弦、余弦公式.解题关键是确定已知角和未知角之间的关系,本题中已知等式变形得出4πα-和4πβ+,未知角有()()44ππαβαβ+=-++,这样易确定使用的公式与顺序.2.B解析:B 【分析】 先求得πsin 4x ⎛⎫+ ⎪⎝⎭的值,然后利用ππsin sin 44x x ⎛⎫=+-⎪⎝⎭,展开后计算得出正确选项. 【详解】由于πππ3π0,,,2444x x ⎛⎫⎛⎫∈+∈ ⎪ ⎪⎝⎭⎝⎭, 所以π4sin 45x ⎛⎫+== ⎪⎝⎭.故ππsin sin 44x x ⎛⎫=+- ⎪⎝⎭ππππsin cos cos sin4444x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭43525210=⨯-⨯=,故选B. 【点睛】本小题主要考查同角三角函数的基本关系式,考查化归与转化的数学思想方法,属于基础题.3.A解析:A 【分析】先求α的正余弦三角函数,再求β的正余弦三角函数,然后根据余弦的两角和与差的公式计算即可得到答案. 【详解】由角α的终边经过点1)2,得1sin ,cos 22αα==, 因为角β的终边是由角α的终边顺时针旋转34π得到的,所以3331sin sin()sin cos cos sin (4442πππβααα=-=-=⨯=3331cos cos()cos cos sin sin (4442πππβααα=-=+=+=1cos()cos cos sin sin 2αβαβαβ+=-==, 故选:A. 【点睛】本题主要考查了三角函数的定义以及两角和与差的正余弦公式的应用,属于中档题.4.C解析:C 【分析】利用三角恒等变换化()f x 为正弦型函数,由此求出A 、T 以及12x x -的最小值,可得解. 【详解】()3sin(2020))263f x x x ππ=+-,392020cos 2020cos 202020204444x x x x =+-+,320220cos 20202x x=-3sin(2020)6x π=-, ∴max ()3A f x ==,又存在实数1x ,2x ,对任意实数x 总有12()()()f x f x f x ≤≤成立, ∴2max ()()2f x f x ==,1min ()()2f x f x ==-, 则12x x -的最小值为函数()f x 的半个最小正周期长度,12min 1122220202020x x T ππ∴-==⨯=∴()12min32020A x x π⋅-=, 故选:C. 【点睛】本题考查三角函数的最值,着重考查两角和与差的正弦与余弦,考查三角恒等变换,突出正弦函数的周期性的考查,属于中档题.5.C解析:C 【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()1B -,)1C-,设(),P x y ,因为点P 是其内一点,所以x10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=, 可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C-,设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--,当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=, 当3,1x y ==-时AP AB ⋅最小为(()3312--=-,所以AP AB ⋅的取值范围是(2,4)-, 故选:C 【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值. 6.D解析:D 【分析】分点M 在x 、y 轴进行分类讨论,可得出点i P 、j P 关于坐标轴对称,由此可得出点M 的个数. 【详解】分以下两种情况讨论:①若点M 在x 轴上,则i P 、()1,8,,j P i j i j N*≤≤∈关于x 轴对称,由图可知,1P 与8P 、2P 与7P 、3P 与6P 、4P 与5P 关于x 轴对称,此时,符合条件的点M 有4个;②若点M 在y 轴上,则i P 、()1,8,,j P i j i j N*≤≤∈关于y 轴对称,由图可知,1P 与4P 、2P 与3P 、5P 与8P 、6P 与7P 关于y 轴对称,此时,符合条件的点M 有4个.综上所述,满足题中条件的点M 的个数为8. 故选:D. 【点睛】本题考查符合条件的点的个数的求解,考查了平面向量加法法则的应用,属于中等题.7.D解析:D 【分析】把DE 用,DA DB 表示,由三点共线把DF 用,DC DB 表示,然后计算数量积,利用函数的知识得取值范围. 【详解】∵菱形ABCD 边长为2,60BAD ∠=︒,2BD =,∴22cos602DA DB DB DC ⋅=⋅=⨯⨯︒=,22cos1202DA DC ⋅=⨯⨯︒=-, ∵E 是AB 边上的中点,∴1()2DE DA DB =+, 点F 是BC 边上,设BF xBC =(01x ≤≤),则()(1)DF DB BF DB xBC DB x DC DB xDC x DB =+=+=+-=+-,DE DF ⋅1()(1)2DA DB xDC x DB ⎡⎤=+⋅+-⎣⎦21(1)(1)2xDA DC x DA DB xDB DC x DB ⎡⎤=⋅+-⋅+⋅+-⎢⎥⎣⎦ []122(1)24(1)3(1)2x x x x x =-+-++-=-, ∵01x ≤≤,∴03(1)3x ≤-≤. 故选:D. 【点睛】本题考查平面向量的数量积,解题关键是对动点F 引入参数x :BF xBC=(01x ≤≤),这样所求数量积就可表示为x 的函数,从而得到范围.本题考查了向量共线的条件,属于中档题.8.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.9.C解析:C 【分析】作出函数1sin3y x =-的图像,利用割补法,补成长方形,计算面积即可. 【详解】作出函数1sin3y x =-的图象,如图所示,利用割补法,将23π到π部分的图象与x 轴围成的图形补到图中3π到23π处阴影部分,凑成一个长为3π,宽为2的长方形,后面π到53π,同理;∴1sin3y x =-的图象与直线3x π=,53x π=及x 轴所围成的面积为24233ππ⨯=,故选:C. 【点睛】用“五点法”作()sin y A ωx φ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 10.C解析:C 【分析】根据()f x 的图象,可求出()f x 的解析式,进而根据图象平移变换规律,可得到()g x 的解析式,然后求出单调增区间即可. 【详解】由()f x 的图象,可得1A =,311ππ4126T =-,即πT =,则2ππT ω==,所以2ω=,由π16f ⎛⎫= ⎪⎝⎭,可得πsin 216ϕ⎛⎫⨯+=⎪⎝⎭,所以ππ22π62k ϕ⨯+=+()k ∈Z ,则π2π6k ϕ=+()k ∈Z , 又π2ϕ<,所以π6ϕ=,故()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.将()f x 的图象向右平移π6个单位长得到函数πππsin 22sin 2666y x x ⎛⎫⎛⎫=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,故函数()πsin 26g x x ⎛⎫=- ⎪⎝⎭, 令πππ2π22π262k x k -≤-≤+()k ∈Z ,解得()ππππ63k x k k -≤≤+∈Z , 所以()g x 的单调增区间为()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z . 故选:C. 【点睛】本题考查三角函数的图象性质,考查三角函数图象的平移变换,考查三角函数的单调性,考查学生的推理能力与计算求解能力,属于中档题.11.C解析:C 【分析】根据弧度制与角度制的关系求解即可. 【详解】因为180π︒=弧度, 所以156********4ππ︒=⨯=, 故选:C12.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果. 【详解】根据图象得到:2A =,311341264T πππ=-=,所以T π=,所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭,则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确; 对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 262x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确. 故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.二、填空题13.【分析】求出和再由两角和余弦公式求得然后可得角的大小【详解】∵且∴同理∴又由得∴故答案为:【点睛】本题考查已知三角函数值求角一般要求角可先这个角的某个三角函数值最好先确定这个角的范围选用在此范围内三解析:4π. 【分析】求出sin()2βα-和sin()2αβ-,再由两角和余弦公式求得cos 2αβ+,然后可得角的大小. 【详解】∵cos 25βα⎛⎫-= ⎪⎝⎭,cos 210αβ⎛⎫-= ⎪⎝⎭,且0,22βπα⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭,∴sin()25βα-==sin()2αβ-10=, ∴coscos[()()]cos()cos()sin()sin()2222222αββαβαβααβαβαβ+=-+-=-----5105102=⨯-=, 又由0,22βπα⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭得(0,)2αβπ+∈,∴2αβ+4π=. 故答案为:4π. 【点睛】本题考查已知三角函数值求角.一般要求角可先这个角的某个三角函数值,最好先确定这个角的范围,选用在此范围内三角函数是单调的函数求函数值后再确定角的大小.14.【分析】利用同角三角函数的基本关系式求得的值由的值【详解】依题意则所以所以所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正弦公式考查化归与转化的数学思想方法属于基础题解析:2【分析】利用同角三角函数的基本关系式求得()sin ,sin ααβ-的值,由()sin sin βααβ=--⎡⎤⎣⎦的值. 【详解】 依题意02πβα<<<,则02πβ>->-,所以02παβ<-<,所以sin 7α==,()sin 14αβ-==()sin sin βααβ=--⎡⎤⎣⎦()()sin cos cos sin ααβααβ=---1317147147142=⨯-⨯==⨯.【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正弦公式,考查化归与转化的数学思想方法,属于基础题.15.【分析】根据可得的值将平方结合正弦的二倍角公式即可计算出的值【详解】因为所以所以所以且所以所以故答案为:【点睛】关键点点睛:解答本题的关键是通过展开得到的值再根据与之间的关系:去完成求解解析:23【分析】根据sin 46πθ⎛⎫-= ⎪⎝⎭可得sin cos θθ-的值,将sin cos θθ-平方结合正弦的二倍角公式即可计算出sin 2θ的值. 【详解】因为sin 4πθ⎛⎫-= ⎪⎝⎭,所以()sin cos 2θθ-=sin cos θθ-=, 所以()21sin cos 3θθ-=且22sin cos 1θθ+=, 所以112sin cos 3θθ-=,所以2sin 23θ=, 故答案为:23. 【点睛】关键点点睛:解答本题的关键是通过展开sin 4πθ⎛⎫-⎪⎝⎭得到sin cos θθ-的值,再根据sin cos θθ-与sin 2θ之间的关系:()2sin cos 1sin 2θθθ-=-去完成求解.16.【分析】首先设则结合向量夹角为利用对称关系求得其最小值也可以建系利用向量的坐标去求解【详解】解析1:(对称)设则过作于点由于向量夹角为则故所以最小值为到的距离为即的最小值为故答案为:解法2:(建系)【分析】首先设a OA =,b OB =,则a b BA -=,结合向量a ,b 夹角为30,利用对称关系,求得其最小值,也可以建系,利用向量的坐标去求解. 【详解】 解析1:(对称)设a OA =,b OB =,则a b BA -=,过B 作BH OA ⊥于点H . 由于向量a ,b 夹角为30,则12BH OB =,故12b a b BH AB BH A B '+-=+=+,所以最小值为A '到OA 的距离为3,即12b a b +-的最小值为3.3 解法2:(建系)设()2,0a =,则3,b m ⎛⎫=⎪⎝⎭,不妨设0m >, 则()222131342442333mb a b m m m m +-=+-+=+-+ 令()234443x f x x x =+-+ 则()2423334443x f x x x -'=+-+()0f x '=,解得1x =,即当1x =时,()min 3f x = 所以12b a b +-的最小值为3 3 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量模的和的最小值的求解,在解题的过程中,可以利用图形,从对称角度去分析,也可以建系,将其坐标化求解,属于中档题目.17.【分析】根据题意得表示的区域为及内部的点进而得当时取得最小值再计算即可得答案【详解】又为非负实数且所以表示的区域为及内部的点当时取得最小值因为所在的直线方程为即则取得最小值为故答案为:【点睛】本题考 解析:32【分析】根据题意得D 表示的区域为ABC 及内部的点,进而得当⊥OD AB 时,OD 取得最小值,再计算即可得答案. 【详解】()1,5OA =,()4,2OB =,()6,8OC =,又,x y 为非负实数且01x y ≤+≤,CD xCA yCB =+, 所以D 表示的区域为ABC 及内部的点, 当⊥OD AB 时,OD 取得最小值, 因为AB 所在的直线方程为()()5251114y x x --=-=---,即60x y +-=, 则OD 取得最小值为322=. 故答案为:32.【点睛】本题考查向量的模的求解与线性规划,解题的关键是根据题意明确D 表示的区域,是中档题.18.【分析】先将圆的方程化为参数方程设利用数量积运算结合三角函数的性质求解【详解】因为圆的方程所以其参数方程为:设所以因为所以故答案为:【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函 解析:[2,6]【分析】先将圆的方程化为参数方程2,42x cos R y θθθ⎧=⎪∈⎨=+⎪⎩,设(2,42)P θθ+,利用数量积运算结合三角函数的性质求解. 【详解】因为圆的方程22(4)2x y +-=,所以其参数方程为:2,42x cos R y θθθ⎧=⎪∈⎨=⎪⎩, 设(2,42)P θθ,所以2cos (42sin )2sin()44πθθθ⋅=++=++OP OQ ,因为[]sin()1,14πθ+∈-,所以[2,6]⋅∈OP OQ . 故答案为:[2,6] 【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函数的性质,还考查了运算求解的能力,属于中档题.19.①④【分析】根据正切函数的周期判断①是否正确正切函数的奇偶性判断②是否正确由判断③是否正确由正切函数的单调性判断④是否正确由正切函数的图象判断⑤是否正确【详解】由于f(x)=tanx 的周期为π故①正解析:①④ 【分析】根据正切函数()tan f x x =的周期判断①是否正确,正切函数的奇偶性判断②是否正确,由tan 00=判断③是否正确,由正切函数的单调性判断④是否正确,由正切函数的图象判断⑤是否正确. 【详解】由于f (x )=tan x 的周期为π,故①正确; 函数f (x )=tan x 为奇函数,故②不正确; f (0)=tan 0=0,故③不正确;④表明函数为增函数,而f (x )=tan x 为区间,22ππ⎛⎫- ⎪⎝⎭上的增函数,故④正确;⑤由函数f (x )=tan x 的图象可知,设A =12()()2f x f x +,B =122x x f +⎛⎫⎪⎝⎭故函数在区间,02π⎛⎫- ⎪⎝⎭上有1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭, 在区间0,2π⎛⎫⎪⎝⎭上有1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭,故⑤不正确. 故答案为:①④本题考查了正切函数的图象和性质,属于中档题.20.【分析】周期为先考查一个周期函数判断零点个数及坐标再结合周期性即可求解【详解】是函数的一个周期当时当时只有四个零点在上恰有4个零点实数m 的取值范围为故答案为:【点睛】本题考查函数的零点个数求参数注意 解析:517[,)36ππ 【分析】()f x 周期为2π,先考查一个周期函数,判断零点个数及坐标,再结合周期性,即可求解【详解】2x π=是函数()f x 的一个周期,当[0,2]x π时,5cos [,]244()5sin [0,][,2]244x x f x x x πππππ⎧+∈⎪⎪=⎨⎪+∈⋃⎪⎩当[0,2]x π时,()f x 只有四个零点5745,,,6633ππππ, 在[0,]m 上恰有4个零点,实数m 的取值范围为517[,)36ππ. 故答案为:517[,)36ππ. 【点睛】本题考查函数的零点个数求参数,注意函数图像和性质的应用,属于中档题.三、解答题21.条件选择见解析;(1)1ω=,单调增区为,()63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,单调减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)30,2⎡⎤⎢⎥⎣⎦.【分析】化简()f x 1sin 262x πω⎛⎫=-+ ⎪⎝⎭. (1)若选① ,根据周期公式可得ω;若选②,由12min22T x x π-==,可得周期和ω,再根据正弦函数的单调性可得()f x 单调区间; (2)由x 的范围求出26x π-及1sin 262x π⎛⎫-+ ⎪⎝⎭的范围可得答案.1cos 2()cos 2xf x x x ωωω-=+112cos 2222x x ωω=-+ 1sin 262x πω⎛⎫=-+ ⎪⎝⎭.(1)若选① ,则有T π=,222πωπ∴==,即1ω=,若选②,则有12min22T x x π-==, 222πωπ∴==,即1ω=,综上1()sin 262f x x π⎛⎫=-+ ⎪⎝⎭,于是由222()262πππππ-+≤-≤+∈k x k k Z ,解得()63ππππ-+≤≤+∈k x k k Z ,即()f x 单调增区为,()63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,由3222()262k x k k Z πππππ+≤-≤+∈, 解得5()36k x k k Z ππππ+≤≤+∈, 所以()f x 单调减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)1()sin 262f x x π⎛⎫=-+ ⎪⎝⎭,若0,3x π⎡⎤∈⎢⎥⎣⎦,则2,662x πππ⎡⎤-∈-⎢⎥⎣⎦, 则13sin 20,622x π⎛⎫⎡⎤-+∈ ⎪⎢⎥⎝⎭⎣⎦, 所以()f x 值域为30,2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查了()()sin f x A x b ωϕ=++的性质,有关三角函数的解答题,考查基础知识、基本技能和基本方法,且难度不大,主要考查以下四类问题;(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角三角函数的基本关系和诱导公式求三角函数值及化简和等式证明的问题;(4)与周期、对称性有关的问题,考查了计算能力.22.(1)-1;(2)()4-+∞ 【分析】(1)易得()2sin 233h x x π⎛⎫=+- ⎪⎝⎭,再利用正弦函数的性质求解. (2)将0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,转化为0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立,令[]cos 0,1t x =∈,利用二次函数的性质求()22244r t t at a =-+-的最小值即可.【详解】(1)因为函数()cos23f x x =-,所以()2cos 232sin 233h x x x x π⎛⎫=+-=+- ⎪⎝⎭,当22,32x k k Z πππ+=+∈,即 ,12x k k Z ππ=+∈时, sin 213x π⎛⎫+= ⎪⎝⎭,所以()h x 的最大值是-1; (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,cos232cos 4x a x a >--恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立, 令[]cos 0,1t x =∈ ()22244r t t at a =-+- 当02a≤,即 0a ≤时, ()()min 0440r t r a ==->,解得 1a >,此时无解; 当012a <<,即 02a <<时, ()2min 44022a a r t r a ⎛⎫==-+-> ⎪⎝⎭,解得44-<+,此时42a -<;当12a≥,即 2a ≥时, ()()min 1220r t r a ==->,解得 1a >,此时2a ≥;综上:a 的取值范围是()4-+∞ 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.23.(1)1;(2) 【分析】(1)根据向量(1,2),(,2),(3,1)==-=-OA OB m OC ,得到向量,AB AC ,再由AB AC ⊥,利用坐标运算求解.(2)由(1)得到 ,AB AC ,然后由12ABCS AB AC =⨯⨯求解. 【详解】(1)因为向量(1,2),(,2),(3,1)==-=-OA OB m OC , 所以向量(1,4),(4,1)AB m AC =--=--, 又因为AB AC ⊥, 所以4(1)40m --+=, 解得 2m =.(2)由(1)知:(0,4),(4,1)AB AC =-=--, 所以4,17AB AC ==所以11422ABCSAB AC =⨯⨯=⨯= 【点睛】本题主要考查平面向量的数量积的坐标运算,还考查了运算求解的能力,属于中档题. 24.(1)3;(2)49. 【分析】(1)G 为ABC 的重心,可得1331AG AB AC =+,再由,,P G Q 三点共线,利用共线的充要条件可得(1)AG AP AQ λλ=+-,结合已知和向量的基本定理,即可求出,h k 关系;(2)由三角形面积公式可得APQ ABCS hk S=,利用(1)中结论,结合基本不等式,即可求出结论. 【详解】(1)设BC 中点为D ,则,,A G D 三点共线,且211333AG AD AB AC ==+, ,,P G Q 三点共线,存在唯一的λ,使得(1)(1)AG AQ QP AP AQ hAB k AC λλλλλ=+=+-=+-,,AB AC 不共线,131(1)3h k λλ⎧=⎪⎪⎨⎪-=⎪⎩, 整理得31()1,31h h k h k k=+=+; (2)1||||sin 21||||sin 2APQ ABCAP AQ BACS hk S AB AC BAC ⋅⋅∠==⋅⋅∠ 114))911()((299k h h k h k h k =+++≥+=, 当且仅当23h k ==时,等号成立. APQ ABCS S的最小值为49. 【点睛】本题考查向量基本定理以及共线充要条件的应用,注意运用基本不等式求最值,属于中档题.25.(1)见解析(2)见解析 【分析】(1)由题意可知2,3A πϕ==,选择条件①,由正弦函数的对称性求出ω,进而得出解析式;选择条件②,由正弦函数的对称性求出ω,进而得出解析式;选择条件③,由正弦函数的性质求出ω,进而得出解析式;(2)由[],0x π∈-,求出x ωϕ+的范围,再结合正弦函数的性质求出最值. 【详解】(1)由题意可知2,3A πϕ==选择条件①因为()f x 的图象关于直线3x π=对称,所以332k πππωπ+=+,解得13,2k k Z ω=+∈由21321302kk k Z ππ⎧≥⎪+⎪⎪⎨⎪+>⎪⎪∈⎩,解得0k =,即12ω=故1()2sin 23f x x π⎛⎫=+ ⎪⎝⎭选择条件②因为()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称,所以,26,63k k k Z ππωπω-+==-∈由226260k k k Zππ⎧≥⎪-⎪⎨->⎪⎪∈⎩,解得0k =,即2ω=故()2sin 23f x x π⎛⎫=+ ⎪⎝⎭选择条件③因为()f x 的图象上最高点中,有一个点的横坐标为6π,所以2,632k k Z πππωπ+=+∈,解得112,k k Z ω=+∈由21121120k k k Zππ⎧≥⎪+⎪⎨+>⎪⎪∈⎩,解得0k =,即1ω= 故()2sin 3f x x π⎛⎫=+ ⎪⎝⎭(2)选择条件①1,2363x πππ⎡⎤+∈-⎢⎥⎣⎦当1236x ππ+=-,即x π=-时,min ()2sin 16f x π⎛⎫=-=- ⎪⎝⎭当1233x ππ+=,即0x =时,max ()2sin 3f x π== 选择条件②52,333x πππ⎡⎤+∈-⎢⎥⎣⎦当5233x ππ+=-或233x ππ+=,即x π=-或0x =时,max ()2sin 3f x π==当232x ππ+=-,即512x π=-时,min ()2sin 22f x π⎛⎫=-=- ⎪⎝⎭选择条件③2,333x πππ⎡⎤+∈-⎢⎥⎣⎦当33x ππ+=,即0x =时,max ()2sin3f x π==当32x ππ+=-,即65x π=-时,min ()2sin 22f x π⎛⎫=-=- ⎪⎝⎭【点睛】关键点睛:解决本题的关键是将正弦型函数的问题转化为正弦函数的性质进行求解,利用已知知识解决未知问题.26.(1)T π=,单调递增区间为5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (2)12x π=-时函数取得最小值12-,4x π=时函数取得最大值14.【分析】(1)根据周期公式计算,用整体代换法化简222()232k x k k Z πππππ-≤-≤+∈即可得出单调递增区间;(2)用整体代换法得当,44x ππ⎡⎤∈-⎢⎥⎣⎦时52636πππ-≤-≤x ,当232x ππ-=-时函数取得最小值12-,当236x ππ-=时函数取得最大值14.【详解】解:(1)()f x 的最小正周期为22T ππ== 由222()232k x k k Z πππππ-≤-≤+∈得5()1212k x k k Z ππππ-≤≤+∈ 所以()f x 的单调递增区间为5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时52636πππ-≤-≤x 所以当232x ππ-=-即12x π=-时函数取得最小值12-, 当236x ππ-=即4x π=时函数取得最大值14.【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u(或t),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AFBDEG数学必修四试卷一、选择题(本大题共10小题,每小题5分,共50分)1.下列命题正确的是A.第一象限角是锐角B.钝角是第二象限角C.终边相同的角一定相等D.不相等的角,它们终边必不相同 2.函数12sin()24y x π=-+的周期,振幅,初相分别是A.4π,2,4π B. 4π,2-,4π- C. 4π,2,4π D. 2π,2,4π3.如果1cos()2A π+=-,那么sin()2A π+=A.12B.12C.12D.124.函数2005sin(2004)2y x π=-是A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数 5.给出命题(1)零向量的长度为零,方向是任意的. (2)若a ,b 都是单位向量,则a =b . (3)向量AB 与向量BA 相等.(4)若非零向量AB 与CD 是共线向量,则A ,B ,C ,D 四点共线. 以上命题中,正确命题序号是A.(1)B.(2)C.(1)和(3)D.(1)和(4) 6.如果点(sin 2P θ,cos 2)θ位于第三象限,那么角θ所在象限是 A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在四边形ABCD 中,如果0AB CD =,AB DC =,那么四边形ABCD 的形状是 A.矩形 B.菱形 C.正方形 D.直角梯形8.若α是第一象限角,则sin cos αα+的值与1的大小关系是 A.sin cos 1αα+> B.sin cos 1αα+= C.sin cos 1αα+< D.不能确定 9.在△ABC 中,若sin 2cos sin C A B =,则此三角形必是A.等腰三角形B.正三角形C.直角三角形D.等腰直角三角形 10.如图,在△ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确的是A.23BG BE =B.2CG GF =C.12DG AG =D.121332DA FC BC +=二、填空题(本大题共4小题,每小题5分,共20分)11.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .12.已知tan 2α=,3tan()5αβ-=-,则tan β= . 13.已知(3a =,1),(sin b α=,cos )α,且a ∥b ,则4sin 2cos 5cos 3sin αααα-+= .14.给出命题:(1)在平行四边形ABCD 中,AB AD AC +=.(2)在△ABC 中,若0AB AC <,则△ABC 是钝角三角形. (3)在空间四边形ABCD 中,,E F 分别是,BC DA 的中点,则1()2FE AB DC =+. 以上命题中,正确的命题序号是 .三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)已知3sin 25α=,53[,]42αππ∈. (1)求cos2α及cos α的值;(2)求满足条件sin()sin()2cos 10x x ααα--++=-的锐角x .已知函数()sin22x xf x =+,x R ∈. (1)求函数()f x 的最小正周期,并求函数()f x 在[2,2]x ππ∈-上的单调递增区间; (2)函数()sin ()f x x x R =∈的图象经过怎样的平移和伸缩变换可以得到函数()f x 的图象.17.(本小题满分13分)已知电流I 与时间t 的关系式为sin()I A t ωϕ=+. (1)下图是sin()I A t ωϕ=+(0,)2πωϕ><sin()I A t ωϕ=+的解析式;(2)如果t 在任意一段1150秒的时间内,电流 sin()I A t ωϕ=+ 那么ω的最小正整数值是多少?已知向量(3,4)OA =-,(6,3)OB =-,(5,3)OC m m =---. (1)若点,,A B C 能够成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且A ∠为直角,求实数m 的值.19.(本小题满分13分)设平面内的向量(1,7)OA =,(5,1)OB =,(2,1)OM =,点P 是直线OM 上的一个 动点,且8PA PB =-,求OP 的坐标及APB ∠的余弦值.20.(本小题满分13分) 已知向量33(cos,sin )22x x a =,(cos ,sin )22x x b =-,且[,]2x ππ∈. (1)求a b 及a b +;(2)求函数()f x a b a b =++的最大值,并求使函数取得最大值时x 的值.高中数学必修(4)试卷参考答案及评分标准一、选择题二、填空题11. 2 12. -13 13. 5714. (1)(2)(3) 三、解答题15.解:(1)因为5342παπ<<,所以5232παπ<<. ………………………(2分) 因此4cos 25α==-. ………………………………(4分)由2cos 22cos 1αα=-,得cos α=. ……………………(8分) (2)因为sin()sin()2cos x x ααα--++=, 所以2cos (1sin )x α-=1sin 2x =. ………………………(11分) 因为x 为锐角,所以6x π=. ………………………………………………(13分)16.解:sin2sin()2223x x x y π==+. (1)最小正周期2412T ππ==. ……………………………………………(3分)令123z x π=+,函数sin y z =单调递增区间是[2,2]()22k k k Z ππππ-++∈.由 1222232k x k πππππ-+≤+≤+,得 544,33k x k k Z ππππ-+≤≤+∈. ………………………………(5分)取0k =,得533x ππ-≤≤,而5[,]33ππ-⊂[2,2]ππ-, 所以,函数sin 22x x y =,[2,2]x ππ∈-得单调递增区间是5[,]33ππ-. …………………………………………………………………………(8分) (2)把函数sin y x =图象向左平移3π,得到函数sin()3y x π=+的图象,…(10分)再把函数sin()3y x π=+的图象上每个点的横坐标变为原来的2倍,纵坐标不变,得到函数sin()23x y π=+的图象, …………………………………(11分) 然后再把每个点的纵坐标变为原来的2倍,横坐标不变,即可得到函数2sin()23x y π=+的图象. …………………………………………………(13分)17.解:(1)由图可知300A =,设11900t =-,21180t =, ……………………(2分)则周期211112()2()18090075T t t =-=+=, …………………………(4分) ∴2150T πωπ==. ………………………………………………………(6分)1900t =-时,0I =,即1sin[150()]0900πϕ⋅-+=,sin()06πϕ-=.而2πϕ<, ∴6πϕ=.故所求的解析式为300sin(150)6I t ππ=+. ……………………………(8分)(2)依题意,周期1150T ≤,即21150πω≤,(0)ω>, …………………(10分) ∴300942ωπ≥>,又*N ω∈,故最小正整数943ω=. ……………(13分) 18.解:(1)已知向量(3,4)OA =-,(6,3)OB =-,(5,3)OC m m =---,若点,,A B C 能构成三角形,则这三点不共线,即AB 与BC 不共线. ……(4分) (3,1)AB =,(2,1)AC m m =--, 故知3(1)2m m -≠-, ∴实数12m ≠时,满足条件. …………………………………………………(8分) (若根据点,,A B C 能构成三角形,必须任意两边长的和大于第三边的长,即由ABBC CA +>去解答,相应给分)(2)若△ABC 为直角三角形,且A ∠为直角,则AB AC ⊥, …………(10分)∴3(2)(1)0m m -+-=, 解得74m =. …………………………………………………………………(13分) 19.解:设(,)OP x y =. ∵点P 在直线OM 上,∴OP 与OM 共线,而OM (2,1)=,∴20x y -=,即2x y =,有(2,)OP y y =. ………………………………(2分) ∵(12,7)PA OA OP y y =-=--,(52,1)PB OB OP y y =-=--,……(4分) ∴(12)(52)(7)(1)PA PB y y y y =--+--,即252012PA PB y y =-+. …………………………………………………(6分)又8PA PB =-, ∴2520128y y -+=-,所以2y =,4x =,此时(4,2)OP =. ……………………………………(8分) (3,5),(1,1)PA PB =-=-. 于是34,2,8PA PB PA PB ===-. …………………………………(10分)∴cos 34PA PB APB PA PB∠===⋅. ………………………(13分)20.解:(1)33coscos sin sin cos 22222x x x xa b x =-=, ……………………(3分) (cosa b += ………………………(4分)=2cos x == …………………………………………(7分) ∵[,]2x ππ∈, ∴cos 0x <.∴2cos a b x +=-. …………………………………………………………(9分) (2)2()cos 22cos 2cos 2cos 1f x a b a b x x x x =++=-=-- 2132(cos )22x =-- …………………………………………………(11分) ∵[,]2x ππ∈, ∴1cos 0x -≤≤, ……………………………………(13分)∴当cos 1x =-,即x π=时max ()3f x =. ………………………………(15分)(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档