实用电容测量仪设计
电容电阻电感测量仪设计报告
简易数字式电阻、电感和电容测量仪摘要本系统主控制部分采用TI公司的16位超低功耗单片机MSP430F149。
以自制电源作为LRC测量模块和各个主要控制芯片的输入电源,测量原理是通过测量电阻、电容或者电感和标准电阻各自的引起的频率变化,利用频率与电阻、电容、电感的函数关系推算出电阻值、电容值或者电感值。
测量的原理是LM311组成的LC震荡器的震荡回路的频率由单片机采样,然后再依据震荡频率计算出对应的电容或电感值,以及由NE555多谐振荡电路实现对电阻的测量。
软件设计部分使用C语言编程编写了包括控制测量程、按键处理、电阻电感电容计算、液晶显示程序。
利用MSP430F149单片机控制测量和计算结果,测量结果采用12864液晶模块实时显示。
关键词: MSP430F149、NE555芯片、LRC测量、12864液晶目录1 系统总体方案设计 (1)1.1系统方案选择 (1)1.2系统软硬件总体设计 (1)1.2.1硬件部分 (1)1.2.2软件部分 (2)2系统模块设计 (3)2.1硬件模块设计 (3)2.1.1电感电容测量模块 (3)2.1.2电阻测量模块 (4)2.1.3主控制模块 (5)2.1.4 AD采样模块 (5)2.1.5 液晶显示模块 (5)2.2软件模块设计 (5)2.2.1 控制测量程序模块 (5)2.2.2按键处理程序模块 (6)2.2.3电阻电感电容计算程序 (7)2.2.4液晶显示程序模块 (7)3系统测试 (8)3.1测试原理 (8)3.2测试方法 (8)3.3测试结果 (8)3.4测试分析 (9)4系统总结 (9)参考文献: (10)1 系统总体方案设计1.1系统方案选择方案一.基于模拟电路的测量仪利用模拟电路,电阻可用比例运算器法和积分运算器法,电容可用恒流法和比较法,电感可用时间常数法和同步分离法等,虽然避免了编程的麻烦,但电路复杂,所用器件较多,灵活性差,测量精度低,现在已较少使用。
简单的电容测量仪设计
电子技术课程设计评分标准电子技术课程设计任务书设计题目:电容测量仪学生姓名:学号:专业班级: 09自动化一、设计条件1.可选元件(1)双运放芯片(),二极晶体管;(2)电阻、电容、电位器等;(3)引脚插座,排针。
2.可用仪器万用表,示波器,直流稳压电源。
二、设计任务及要求1.设计任务根据电路技术要求的指标,制作一个简易电容测量装置,完成选题电路的设计、装配、焊接与调试。
2.设计要求(1)电容测量的范围:1uf~1000uf,100nf~1uf;(2)选择电路方案,完成对确定方案电路的设计。
包括:计算电路元件参数、选择元件、画出总体电路原理图;(3)用软件仿真整体或部分核心实验电路,得出适当结果;(4)装配、调试作品,按规定格式写出课程设计报告书。
三、时间安排1.第9周:布置设计任务,讲解设计要求、实施计划、设计报告等要求,完成选题。
2.第10~14周:完成资料查阅、作品设计、模拟仿真,领取元件、实际制作。
3.第15~16周:制作并调试设计作品。
4.第17周:作品检查、评价、验收,撰写设计报告。
5.第18周:抽选作品答辩,提交设计报告。
指导教师签名:年月日目录摘要 (1)关键词 (1)1 绪论 (1)2 需求分析 (1)2.1 设计任务及要求 (1)2.1.1 设计任务 (1)2.1.2 设计要求 (1)2.2 设计思想 (1)3 设计方案 (1)3.1 方案论证 (1)3.1.1 文氏桥振荡电路 (2)3.1.2 反向比例运算电路 (3)3.1.3 C/ACV转换电路 (3)3.1.4 有源滤波电路 (4)3.2 工作原理 (5)4 电路详细设计 (5)4.1 文氏桥振荡电路分析 (5)4.2 反向比例运算以及C/ACV转换电路分析 (6)4.3 有源滤波电路分析 (7)5 实验结果 (7)5.1 文氏桥振荡实验 (7)5.2 反向比例电路实验 (8)5.3 有源滤波实验 (8)5.4 结果分析 (9)5.4.1 文氏桥振荡以及反向比例运算电路分析 (9)5.4.2 有源滤波以及C/ACV电路分析 (9)6 结论 (10)6.1 设计成果 (10)6.2 设计特点 (10)6.3 存在问题及改进方法 (10)参考文献 (10)致谢 (10)附录A 电路全图 (11)附录B 元器件清单 (11)题目摘要本文主要通过用容抗法来完成一个电路对电容值的测量。
毕业设计 基于单片机的电容测量仪设计
前言基于单片机的电容测试仪设计前言目前,随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电容的大小。
在电子产品的生产和维修中,电容测量这一环节至关重要,一个好的电子产品应具备一定规格年限的使用寿命。
因此在生产这一环节中,对其产品的检测至关重要,而检测电子产品是否符合出产要求的关键在于检测其内部核心的电路,电路的好坏决定了电子产品的好与坏,而电容在基本的电子产品的集成电路部分有着其不可替代的作用。
同样,在维修人员在对电子产品的维修中,电路的检测是最基本的,有时需要检测电路中各个部件是否工作正常,电容器是否工作正常。
因此,设计可靠,安全,便捷的电容测试仪具有极大的现实必要性。
基于单片机的电容测试仪设计1选题背景1.1电容测试仪的发展历史及研究现状当今电子测试领域,电容的测量已经在测量技术和产品研发中应用的十分广泛。
电容通常以传感器形式出现,因此,电容测量技术的发展归根结底就是电容传感器的发展。
由最初的用交流不平衡电桥就能测量基本的电容传感器。
最初的电容传感器有变面积型,变介质介电常数型和变极板间型。
现在的电容式传感器越做越先进,现在用的比较多的有容栅式电容传感器,陶瓷电容压力传感器等。
电容测量技术发展也很快现在的电容测量技术也由单一化发展为多元化。
现在国内外做传感器的厂商也比较多,在世界范围内做电容传感器做的比较好的公司有:日本figaro、德国tecsis、美国alphasense。
中国本土测量仪器设备发展的主要瓶颈。
尽管本土测试测量产业得到了快速发展,但客观地说中国开发测试测量仪器还普遍比较落后。
每当提起中国测试仪器落后的原因,就会有许多不同的说法,诸如精度不高,外观不好,可靠性差等。
实际上,这些都还是表面现象,真正影响中国测量仪器发展的瓶颈为:1.测试在整个产品流程中的地位偏低。
由于人们的传统观念的影响,在产品的制造流程中,研发始终处于核心位置,而测试则处于从属和辅助位置。
毕业设计论文电容测试仪设计
编号毕业设计题目电容测试仪设计学生学号系部专业班级指导教师电容测试仪设计摘要随着电子工业的发展,电子元器件急剧增加,电子元器件的适用围也逐渐广泛起来,在应用中我们常常要测定电容的大小。
因此,设计可靠,安全,便捷的电容测试仪具有极大的现实必要性。
在系统硬件设计中,以STC89C52RC单片机为核心的电容测试仪,使用对应的振荡电路转化为频率实现参数的测量。
电容是采用555多谐振荡电路产生的,将振荡频率送入STC89C52RC的计数端端口,通过定时并且计数可以计算出被测频率,再通过该频率计算出被测参数。
在系统软件设计中,是以Keil4.0为仿真平台,使用C语言编程编写了运行程序;包括主程序模块、显示模块、电容测试模块。
最后,实际制作了一台样机,在实验室里进行了测试,结果表明该样机的功能和指标得到了设计要求。
关键词:单片机,555多谐振荡电路,1602液晶屏The design of Capacitance testerAbstractWith the development of electronic industry,electronic components rapidly increased the scopeof electronic components widely up gradually,in applications we often measured capacitors size.Therefore,the design of reliable,safe,convenient capacitance tester of great practical necessity.In the system hardware design,take the MCS-51 monolithic integrated circuit as the core resistance,the use correspondence's oscillating circuit transforms for the frequency realizes each parameter survey. And the electric capacity is use 555 multi resonant circuits to produce,the oscillation frequency will send STC89C52RC the counting to be neat,through and fixed time counts may calculate by the frequency measurement rate,figures out again through this frequency meter is measured the parameter.In system's software design is take Keil4.0 as the simulation platform,used the C language programming has compiled the system application software;including master routine module,display module,display module,electric capacity test module and inductance test module.Finally,the actual production of a prototype,tested in the laboratory results show that the prototype of the functions and indicators are the design requirements.Key Words:Single slice of machine;555 multi resonant circuit; 1602 dynamic display module目录摘要 (ⅰ)Abstractⅱ第一章引言 (1)1.1 设计背景及意义 (1)1.2 电容测试仪的发展历史和研究现状 (1)1.3 本设计所做的工作 (1)第二章电容测试仪的系统设计 (3)2.1 电容测试仪设计方案比较 (3)2.2 系统的原理框图 (4)第三章电容测试仪系统的硬件设计 (5)3.1 RC振荡电路的设计 (5)3.1.1 555定时器简介 (5)3.1.2 RC振荡电路的设计 (8)3.2 单片机电路的设计 (9)3.2.1 单片机的选择-STC89C52RC (9)3.2.2 单片机时钟电路设计 (11)3.2.3 单片机复位电路设计 (13)3.2.4 单片机定时器/计数器设置 (15)3.3 显示电路的设计 (16)3.3.1 液晶显示器的选择 (16)3.3.2 显示电路设计 (17)第四章电容测试仪系统的软件设计 (18)4.1 主程序流程图 (18)4.2 频率参数计算的原理 (18)第五章PCB板的设计及系统的调试 (20)5.1 Protel99SE介绍与PCB板的设计 (20)5.2 系统的调试 (22)5.3 系统的测试 (23)第六章总结与展望 (25)6.1 工作总结 (25)6.2 技术展望 (25)参考文献 (27)致 (28)附录 (29)附录系统原理图及PCB (29)第一章引言1.1 设计背景及意义目前,随着电子工业的发展,电子元器件急剧增加,电子元器件的适用围也逐渐广泛起来,在应用中我们常常要测定电容的大小。
课程设计-简易电容测量仪
简易电容测试仪一、系统简介本文设计了一套简易电容系统,能够在误差允许的范围内测量普通电容的容值,并在液晶界面上显示相关信息。
二、系统实现原理系统分模拟部分和数字部分。
模拟部分是由集成运放结电阻和所测电容构成的方波发生器,产生的方波频率与所测试的电容具有函数关系。
因此只要知道产生方波的频率,就能反推出电容的容值。
此外,在方波发生器后面我们添加稳压电路和半波整形电路,使得方波的输入幅度在5V 以下且为正值,而不改变方波的频率。
数字部分是FPGA 作为主控的,负责频率的测量以及液晶的显示。
下面介绍测量频率的原理。
FPGA 测量频率有两种算法,就是常说的测频和测周。
测频是在一段闸门时间内对输入信号周期进行计数,而测周则相反,是在输入信号的时段内,对标准信号周期进行计数。
一般的原则是,高频测频,低频测周。
本系统用的是测频的方法。
我们可以用低频时钟的两个上升沿之间的那段时间作为闸门,对上升沿时间内输入信号周期进行计数。
最后通过计算得到频率。
显示部分我们使用1602液晶屏,通过FPGA 状态机驱动显示。
三、系统结构框图四、硬件电路设计 方波发生器 整形电路 FPGA LCD 显示图示电路产生方波的频率符合f=12R1Cln(1+2R3R2)的关系式,其中C为待测电容。
而且经稳压电路和半波整流电路后的幅度为0~3.3V,能直接输入给FPGA,符合要求。
五、程序设计//顶层文件//top.v`include “cepin.v”`include ”1602.v”module top(clkin,datain,rst,clkout,cnt,fre,rem,clk_LCD, LCD_EN,RS,RW,DB8);fre m1(.clkin(clkin),.datain(datain),.clkout(clkout),.cnt(cnt),.fre(fre),.rem(rem)); LCD_Driver m2(.clkin(clkin), .rst(rst),.fre( fre), .clk_LCD(clk_LCD),.LCD_EN (LCD_EN),.RS(RS),.RW(RW),.DB8(DB8));endmodule//测频模块://cepin.vmodule fre(clkin,datain,clkout,cnt,fre,rem);input clkin; //100Minput datain;output reg clkout = 1'b1;output reg [7:0] cnt = 8'b0;output wire [7:0] fre;output wire [7:0] rem;parameter N=100000; //1khzreg [1:0] datatmp = 0; //不初始化计数会仿真错误reg [15:0] clktmp = 0;reg [7:0] cnttmp = 0;//分频always @(posedge clkin)beginif(clktmp == N/2-1)beginclkout <= ~clkout;clktmp <= 16'b0;endelseclktmp <= clktmp+1'b1;end//拼接符号检测上升沿always @(posedge datain)datatmp = {clkout,datatmp[1]}; //捕获沿的方法//对慢时钟上升沿间的输入信号计数,为高频测频always @(posedge datain)beginif(datatmp == 2'b10) //上升沿begincnt <= cnttmp+1'b1; //加1补偿cnttmp <= 8'b0;endelsecnttmp <= cnttmp +1'b1;end//调用除法核计算电容,参数确定,公式确定LPM_DIVIDa m(.denom(…),.numer(…),.quotient(…),.remain(…)); //……endmodule//显示模块//1602.vmodule LCD_Driver(clkin, rst, fre, clk_LCD,LCD_EN,RS,RW,DB8);input clkin,rst,fre; //rst为全局复位信号(高电平有效)output clk_LCD;output LCD_EN,RS,RW;//LCD_EN为LCD模块的使能信号(下降沿触发)//RS=0时为写指令;RS=1时为写数据//RW=0时对LCD模块执行写操作;RW=1时对LCD模块执行读操作output [7:0] DB8; //8位指令或数据总线reg [7:0] DB8;reg [111:0] Data_First_Buf,Data_Second_Buf; //液晶显示的数据缓存reg RS,LCD_EN_Sel;reg [3:0] disp_count; //用来判断是否已经写满一行reg [3:0] state; //状态机格式//状态机编码parameter Clear_Lcd = 4'b0000, //清屏并光标复位Set_Disp_Mode= 4'b0001, //设置显示模式:8位2行5x7点阵Disp_On =4'b0010, //显示器开、光标不显示、光标不允许闪烁Shift_Down =4'b0011, //文字不动,光标自动右移Write_Addr =4'b0100, //写入显示起始地址Write_Data_First= 4'b0101, //写入第一行显示的数据Write_Data_Second= 4'b0110, //写入第二行显示的数据Idel =4'b0111; //空闲状态parameter Data_First = "频率", //液晶显示的第一行的数据//Data_Second = “” ; //液晶显示的第二行的数据assign RW = 1'b0; //RW=0时对LCD模块执行写操作assign LCD_EN = LCD_EN_Sel ? clk_LCD : 1'b0; //通过LCD_EN_Sel信号来控制LCD_EN的开启与关闭//省去分频部分//……always @(posedge clk_LCD or negedge rst)beginif(!rst)beginstate <=Clear_Lcd; //复位:清屏并光标复位RS <=1'b0; //复位:RS=0时为写指令;DB8 <=8'b0; //复位:使DB8总线输出全0LCD_EN_Sel<= 1'b1; //复位:开启夜晶使能信号disp_count<= 4'b0;endelsecase(state) //初始化LCD模块Clear_Lcd:beginstate <=Set_Disp_Mode;DB8 <=8'b00000001; //清屏并光标复位endSet_Disp_Mode:beginstate <=Disp_On;DB8 <=8'b00111000; //设置显示模式:8位2行5x8点阵endDisp_On:beginstate <=Shift_Down;DB8 <=8'b00001100; //显示器开、光标不显示、光标不允许闪烁endShift_Down:beginstate <=Write_Addr;DB8 <=8'b00000110; //文字不动,光标自动右移endWrite_Addr:beginstate <=Write_Data_First;DB8 <=8'b10000001; //写入第一行显示起始地址:第一行第二个位置Data_First_Buf<= Data_First; //将第一行显示的数据赋给Data_First_Buf endWrite_Data_First: //写第一行数据beginif(disp_count== 14) //disp_count等于14时表示第一行数据已写完beginDB8 <=8'b11000001; //送入写第二行的指令RS <=1'b0;disp_count<= 4'b0;//Data_Second_Buf<= Data_Second;Data_Second_Buf<= fre;state <=Write_Data_Second; //写完第一行进入写第二行状态endelsebeginDB8 <=Data_First_Buf[111:104];Data_First_Buf<= (Data_First_Buf << 8);RS <=1'b1; //RS=1表示写数据disp_count<= disp_count + 1'b1;state <=Write_Data_First;endendWrite_Data_Second: //写第二行数据beginif(disp_count == 14)beginLCD_EN_Sel<= 1'b0;RS <=1'b0;disp_count<= 4'b0;state <=Idel; //写完进入空闲状态endelsebeginDB8 <=Data_Second_Buf[111:104];Data_Second_Buf<= (Data_Second_Buf << 8);RS <=1'b1;disp_count<= disp_count + 1'b1;state <=Write_Data_Second;endendIdel:beginstate <=Idel; //在Idel状态循环enddefault: state <= Clear_Lcd;//若state为其他值,则将state置为Clear_Lcd endcaseendendmodule六、测试验证方法在方波发生电路的电容处设计为插孔式,能插上不同容值的电容。
stm32电容测量仪实验报告
stm32电容测量仪实验报告
实验目的:
本实验旨在设计并实现一个基于STM32的电容测量仪,通过测量电容值来评估电容器的性能。
实验原理:
电容是一种存储电荷的元件,它由两个导体板之间的绝缘介质组成。
电容的大小与导体板之间的距离和绝缘介质的介电常数有关。
本实验采用了简单的充放电方法来测量电容值。
实验步骤:
1. 搭建电路:将待测电容器与STM32开发板相连,利用STM32的GPIO 口来控制充放电电路。
2. 设计程序:根据测量电容的原理,设计一个程序来控制充放电过程,并测量充电时间和放电时间。
3. 采集数据:通过程序获取充放电时间,并计算出电容值。
4. 显示结果:将测量得到的电容值通过串口或LCD显示出来,以便用户查看。
实验结果与分析:
经过多次实验,我们成功地测量了不同电容器的电容值。
实验结果表明,测量值与实际值之间存在一定的误差,这可能是由于电路中的电
阻和电感等元件的影响导致的。
因此,在实际应用中,我们需要对测量结果进行修正。
实验总结:
通过本实验,我们深入了解了电容测量的原理与方法,并成功地设计并实现了一个基于STM32的电容测量仪。
我们还发现了测量中可能存在的误差,并提出了对测量结果进行修正的建议。
这将有助于我们在实际应用中更准确地测量电容值,并评估电容器的性能。
展望:
在今后的研究中,我们可以进一步改进电容测量仪的设计,提高测量精度,并尝试应用更复杂的测量方法来提高测量效率。
另外,我们还可以将电容测量仪与其他传感器结合起来,构建一个多功能的电子测量系统,以满足不同应用领域的需求。
简易数字电容测量仪
电子技术课程设计报告——简易数字电容测量仪得设计设计题目:简易数字电容测量仪班级学号:学生姓名:目录一、预备知识.................... 错误!未定义书签。
二、课程设计题目:简易数字电容测量仪得设计错误!未定义书签。
三、课程设计目得及基本要求...... 错误!未定义书签。
四、设计内容提要及说明.......... 错误!未定义书签。
4、1设计内容..................................... 错误!未定义书签。
4、2设计说明..................................... 错误!未定义书签。
五、原理图及原理说明 ........................ 错误!未定义书签。
5、1功能模块电路原理图.................. 错误!未定义书签。
5、2模块工作原理说明...................... 错误!未定义书签。
六、调试、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、错误!未定义书签。
七、设计中涉及得实验仪器与工具.... 错误!未定义书签。
八、课程设计心得体会 ........................ 错误!未定义书签。
九、参考文献 ........................................ 错误!未定义书签。
一、预备知识关于数字式简易数字电容测试仪得设计,我们提出了三种设计方法与思路。
在具体操作中,经过对资料得收集、分析,研究与对比,最终选择了简单易懂,而且精度较高得方法,即门控法。
本方法得基本理论就是单稳态触发器电路得输出脉宽wt与电容C成正比,再通过一系列得控制,计数,锁存,显示电路实现了对电容得一般测试与数字显示。
在本次数电课程设计得同时,对于中大规模集成电路从认识到分析、再到整体框图设计、单元模块设计、最终到电路得模拟与实际电路得成形有了一定得认识,同时使我们在电子设计方面有了一定得实际动手能力,也为这次数电课程设计打下了坚实得基础。
stm32 电容测量仪 毕业设计
【文章标题:深度探讨STM32电容测量仪的设计与应用】一、引言在现代电子技术领域,STM32单片机是一种非常常见且功能强大的微控制器,并且电容测量仪是电子工程领域中重要的测量仪器之一。
在毕业设计中选择使用STM32单片机设计电容测量仪是具有广泛实用价值和丰富技术含量的设计课题。
本文将深入探讨STM32电容测量仪的设计与应用。
二、STM32单片机的特点1. 引脚数量众多,丰富的外设资源STM32单片机具有丰富的引脚数量和多样的外设资源,且支持多种通信协议,适合用于设计电容测量仪。
2. 高性能的处理器和丰富的存储资源STM32单片机内置高性能处理器和丰富的存储资源,能够满足电容测量仪对数据处理和存储的需求。
3. 成熟的开发生态和丰富的资料支持STM32的开发生态非常成熟,配套有丰富的开发工具和资料支持,为设计电容测量仪提供了便利条件。
三、电容测量仪的原理与设计1. 电容测量原理电容测量仪是通过施加不同的电压或电流信号,来测量被测电容的大小。
利用STM32单片机的ADC模块,采集测量信号,并通过一定的算法计算出被测电容的数值。
2. 设计要点(1)选择合适的电压或电流信号源(2)设计合适的采样电路和ADC接口电路(3)编写数据处理算法和存储功能四、毕业设计中的应用与实现1. 电容测量仪的硬件设计(1)选择STM32单片机作为主控芯片,并搭建外围电路(2)设计精确的参考电压源和采样电路2. 电容测量仪的软件设计(1)编写ADC采样程序(2)编写数据处理算法和显示功能(3)实现对数据的存储和导出功能五、个人观点与总结STM32单片机作为主控芯片的电容测量仪,具有设计灵活、性能稳定、成本低廉等优点,适合在毕业设计中进行研究与实践。
设计与应用STM32电容测量仪,不仅可以提升学生对单片机和电子测量仪器的理解与掌握,同时也具有实际的工程应用意义。
六、结语通过本文的深入探讨,相信读者对STM32电容测量仪的设计与应用有了更深入的了解。
电容测试仪设计【开题报告】
毕业论文开题报告电子信息工程电容测试仪设计一、课题研究意义及现状目前,随着电子工业时代的发展,电子组件的急剧增加,电子的应用范围也越来越广,在应用中我们常常要用到容量大小不一的电容。
电容的测量仅仅用电容表已经满足不了而且不准确,那种高精度的仪器给在校大学生和普通大众使用又不实用。
因此,要测试电容的大小,设计一个可靠,简单的电容测试仪。
电容的测试发展已经很久,方法众多。
传统的电容测量方法有电桥法和谐振法两种。
前者精度高但速度慢;后者电路简单,速度快但精度低。
选择这个课题主要是想研究出一种高效率高精度的电容测试仪。
比较各种电容的测试方法,我选出了把测试电容的模拟量转化为数字量,这种数字量比较容易处理,使仪表实现智能化,避免由于传统的指针读数引起的误差电容的未来发展趋势为电容测量仪朝着小型化、轻型化方向发展。
全面实现数字化和自动化;参数自设定计术;过程自优化技术;故障自诊断技术;相关配套行业朝着专业化,规模化发展,社会分工更明显。
通过这次的课题研究让我把所学的理论与实际相结合起来,提高自己的动手能力和独立思考能力。
在现实社会中,实际的动手能力至关重要,而这种实际能力的培养单靠教学是远远不够的。
二、课题研究的主要内容和预期目标本课题来源于实验室,通过对本课题的研究,对我们今后相关课程的理论教学改革和实验教学改革可以起到积极的推动作用,并打下坚实的基础。
设计和实现一个电容测试仪-电容表。
将测电容变为测频率,即进行C-F转换,然后设计一个频率计,通过测频率F来显示或计算出电容的大小。
1:通过计算机软件的仿真。
2:能测试电容的范围为1000PF~1000uF,测试精度为10%3:通过3位数码管显示。
4:要搭建硬件电路,并进行实测。
三、课题研究的方法及措施实现一个电容测试仪-电容表。
将测电容转变为测频率,即进行C-F转换,然后设计一个频率计,通过测频率F来显示或计算出电容的大小。
电容转频率的电路是利用555芯片的单稳态触发器或电容的充放电规律等,可以把被测电容的大小转换成脉冲的宽度。
电容测量仪的课程设计
电容测量仪的课程设计一、课程目标知识目标:1. 学生能够理解电容的基本概念,掌握电容的单位、计算公式及测量方法。
2. 学生能够了解电容测量仪的原理、结构、功能及其使用方法。
3. 学生能够掌握用电容测量仪进行实验操作的基本步骤和注意事项。
技能目标:1. 学生能够正确使用电容测量仪进行电容值的测量,并能够处理实验数据。
2. 学生能够通过实际操作,提高实验操作能力和解决问题的能力。
3. 学生能够运用所学知识,设计简单的电容测量实验,培养创新意识和实践能力。
情感态度价值观目标:1. 学生在实验过程中,能够积极参与,主动探究,培养对物理实验的兴趣和热情。
2. 学生能够关注实验过程中的安全问题,养成良好的实验习惯。
3. 学生通过实验,体会物理学在生活中的应用,增强科学素养和科技强国意识。
课程性质分析:本课程为物理实验课程,旨在通过实际操作,让学生掌握电容测量仪的使用,提高实验操作能力和解决问题的能力。
学生特点分析:学生为八年级学生,具备一定的物理知识基础,但对实验操作相对陌生,需要教师在教学过程中给予指导。
教学要求:教师应注重理论与实践相结合,突出实验操作技能的培养,关注学生的个体差异,因材施教。
通过本课程的学习,使学生能够达到上述课程目标,为后续物理学习打下坚实基础。
二、教学内容1. 理论知识:- 电容的定义、单位、符号及计算公式。
- 电容测量仪的工作原理、结构组成、功能特点。
- 电容测量仪的操作步骤、注意事项及维护保养。
2. 实践操作:- 使用电容测量仪进行电容值测量。
- 电容测量实验数据记录、处理和分析。
- 设计简单的电容测量实验,培养创新意识和实践能力。
3. 教学大纲:- 第一课时:导入电容概念,介绍电容的单位、计算公式,让学生了解电容测量仪的工作原理和结构。
- 第二课时:详细讲解电容测量仪的使用方法,进行实际操作演示,指导学生正确使用测量仪。
- 第三课时:组织学生进行电容测量实验,关注操作步骤和注意事项,培养学生实验操作技能。
电阻、电容和电感测量仪的设计
XXX 学院电子设计竞赛作品研究与设计报告作品名称:电阻、电容和电感测量仪的设计作者:指导老师:摘要:本系统是基于AT89S52单片机测量电阻、电容和电感的对应振荡电路所产生的频率,从而实现各个参数的测量。
其中电阻和电容是采用555多谐振荡电路产生的,而电感则是根据电容三点式产生的。
AT89S52的定时器可以利用外部时钟源来计数,这里我们将 RCL的测量电路产生的频率作为单片机AT89S52的时钟源,通过计数则可以计算出被测频率在通过该频率计算出各个参数。
此系统一方面实现了测量精度高,测量误差小,另一方面便于使仪表实现自动化,系统能自动识别电阻、电容和电感,并自动进行量程切换及在128*64液晶屏上显示其数值大小。
关键词:AT89S52555芯片74LS197分频电路CD4052多路开关目录1引言 (3)2方案设计 (4)2.1设计思路 (4)2.2方案比较与选择 (4)2.3硬件模块设计 (5) (5) (6) (7) (8) (9) (9) (10)2.4系统软件设计 (10)3数据测试及误差分析 (11)4结论 (13)参考文献 (14)附录 (15)1引言目前,市场上如万用表等测量电阻、电容和电感的元器件数不胜数,但是随着技术的进步,人们对元器件功能、精度和效率等的要求越来越高,为此,我们通过AT89S52单片机设计了测量电阻、电容和电感对应振荡电路所产生的频率实现各个参数的测量。
本系统分为四个部分,第一部分,通过555电路构成的多谐振电路将被测电阻转化为频率信号;第二部分,与第一部分相似也是采用555电路将电容转化为相应的频率信号输出;第三部分,采用电容的三点式振荡电路将电感转化为与之对应的频率信号输出;最后一部分,也就是显示部分,具体的讲就是用MSP430单片机运用一定的软件系统将输入的频率信号转化为相应的被测量的一个过程。
这四大版块共同构成了建议电阻电容和电感测试仪的整个电路系统。
简易电阻、电容和电感测试仪设计.(DOC)
元器件参数测量仪的设计一、课程目的1.加深对电路分析、模拟电路、数字逻辑电路、微处理器等相关课程理论知识的理解;2.掌握电子系统设计的基本方法和一般规则;3.熟练掌握电路仿真方法;4.掌握电子系统的制作和调试方法;二、设计任务1.设计并制作一个元器件参数测量仪。
2.(基本要求)电阻阻值测量,范围:100欧~1M欧;3.(基本要求)电容容值测量,范围:100pF~10 000pF;4.(基本要求)测量精度:正负5% ;5.(基本要求)4位显示对应数值,并有发光二极管分别指示所测器件类型;6.(提高要求)增加电感参数的测量;7.(提高要求)增加三极管直流放大倍数的测量;8.(提高要求)扩大量程;9.(提高要求)提高测量精度;10.(提高要求)测量量程自动切换;三、任务说明:电阻电容电感参数测量常用电桥法,该方法测量精度,但是电路复杂。
也可为简化起见,电阻测量也可采用简单的恒流法,电容采用555定时电路;1、绪论在现代化生产、学习、实验当中,往往需要对某个元器件的具体参数进行测量,在这之中万用表以其简单易用,功耗低等优点被大多数人所选择使用。
然而万用表有一定的局限性,比如:不能够测量电感,而且容量稍大的电容也显得无能为力。
所以制作一个简单易用的电抗元器件测量仪是很有必要的。
现在国内外有很多仪器设备公司都致力于低功耗手持式电抗元器件测量仪的研究与制作,而且精度越来越高,低功耗越来越低,体积小越来越小一直是他们不断努力的方向。
该类仪器的基本工作原理是将电阻器阻值的变化量,电容器容值的变化量,电感器电感量的变化量通过一定的调理电路统统转换为电压的变化量或者频率的变化量等等,再通过高精度AD采集或者频率检测计算等方法来得到确定的数字量的值,进而确定相应元器件的具体参数。
2、电路方案的比较与论证2.1电阻测量方案方案一:利用串联分压原理的方案V CC GNDR x R0图2-1串联分压电路图根据串联电路的分压原理可知,串联电路上电压与电阻成正比关系。
简易数字电容测量仪设计
简易数字电容测量仪设计引言电容是电子电路中常见的元件之一,用于存储电荷和调节电路的频率响应。
因此,对电容进行准确测量是电子工程师和爱好者常常面临的挑战之一。
本文将介绍一种简易数字电容测量仪的设计,该仪器可以实现对电容的快速、准确测量。
一、设计原理数字电容测量仪的设计基于计时电路的原理。
当一个已知电容通过一个已知电阻充电或放电时,可以测量所需的时间来计算电容的值。
具体而言,我们需要设计一个计时电路,通过测量电容充电或放电所需的时间,然后使用公式 C = t / (R * ln(2)) 来计算电容的值。
二、硬件设计1. 电路图我们的数字电容测量仪的电路图如下所示:2. 元件选择为了简化设计,我们选择了一些常用的元件。
电阻选用1kΩ的标准电阻,电容选用10μF的陶瓷电容。
此外,我们还需要一个微控制器来处理计时和计算电容值。
3. 电路实现根据电路图,我们可以使用常见的电子元件将电路实现。
首先,将电容和电阻按照图中的连接方式进行连接。
然后,将微控制器与电路连接,以便进行计时和计算。
最后,将电路供电,即可完成硬件的设计。
三、软件设计1. 计时和计算我们需要编写一个程序来实现计时和计算电容值。
首先,我们需要初始化计时器,并设置为充电或放电模式。
然后,我们可以使用计时器来测量所需的时间,并存储在一个变量中。
最后,我们使用上述公式来计算电容的值。
2. 显示结果为了方便使用者查看测量结果,我们可以在液晶显示屏上显示电容的值。
我们需要编写一个程序来将计算得到的电容值转换为适当的格式,并将其显示在液晶屏上。
四、实验结果与讨论我们通过使用实际的电容进行测试,验证了我们设计的数字电容测量仪的准确性和可靠性。
实验结果表明,我们的测量仪可以精确地测量电容的值,并将其显示在液晶屏上。
五、总结本文介绍了一种简易数字电容测量仪的设计。
通过使用计时电路和微控制器,我们可以实现对电容的快速、准确测量。
该仪器的设计原理简单,硬件和软件设计也相对简单,适合初学者和爱好者使用。
简易电容电感测量仪的制作
收稿日期:2005—09—10作者简介:纪丽凤(1971-),女,辽宁营口市人,工程师,主要从事电子技术教学研究.【学术研究】简易电容电感测量仪的制作纪丽凤1,张廷辉2(11辽宁信息职业技术学院,辽宁辽阳111000;21辽河油田,辽宁盘锦124000) 摘 要:介绍一种简易电容电感测量仪的原理、制作与使用注意事项.关键词:交流电桥法;信号源;平衡指示器;振荡器中图分类号:T M938 文献标识码:A 文章编号:1008-5688(2005)04-0017-01电容和电感都是构成电路的最基本元件,测量电容和电感可以用伏安计法、电桥法、谐振法等多种方法.本文中设计的电容电感测量仪采用交流电桥法,具有测量范围较宽、精度较高、工作稳定、使用方便的特点,而且制作调试简单容易.1 电容电感测量仪电路组成 电容电感测量仪既可以测量电容,又可以测量电感,由一个测量选择开关决定.电容测量范围为:5pF ~100μF ,共分7档量程;电感测量范围为:5μH ~100H ,共分7档量程;可通过量程开关选择.各档位测量范围见表1.图1为电容电感测量仪电路原理图.电路中使用了4个集成运算放大器,分别构成信号源和平衡指示器.电阻R 10~R 17、电位器R P 、电容器C 5以及被测电容或电感等构成测量电桥.S 1是量程开关,S 2是测量选择开关.构成电桥桥臂的阻容元件阻值或容量必须准确,以保证测量精度. 表1S 1档位测C 测L 1100μF 011mH 210μF 1mH 31μF 10mH 31μF 10mH 4011μF 100mH 50101μF 1mH 61000pF 10H 7100pF 100H 2 测量原理分析211 测量原理测量原理如图2所示.被测元件阻抗Z X 与已知元件阻抗Z A 、Z B 、Z C 构成电桥的4个臂,电桥的一组对角线A 、B 间接交流信号源,另一组对角线C 、D 间接平衡指示器.当Z X Z C =Z A Z B 时,电桥平衡,C 、D 间电(下转75页)第7卷第4期2005年10月 辽宁师专学报Journal of Liaoning T eachers College V ol 17N o 14Oct 12005明:实验组台阶指数成绩高于对照组.说明登山运动处方在实施过程中主要是走、跑交替的耐力性运动,它可以有效提高实验对象的耐力素质.增强学生的心肺功能.31113 登山运动处方对身体素质指标的影响实验前后,实验组在50m 、800m 、腰、腹和下肢各关节灵活性、坐位体前屈几方面素质上有显著提高.其中在耐力和灵活性上呈非常显著性差异,这说明了学生平时参加运动的机会很少,尤其在速度、耐力和灵敏素质方面的锻炼较少.这样一旦运动起来很容易表现出显著性.同时,由于高职学生的专业特点,更加约束了他们参加运动的时间和效果.因此,以灵活多样的运动形式和内容,适时地增加学生参加运动的时间和机会,能够全面发展学生的身体素质.312 登山运动处方对人文知识掌握的影响本实验目的之一是通过本地域登山运动处方的实施,提高学生人文素质.从实验前后28名学生试卷成绩分析来看,说明了对人文知识的掌握还须有一个认识与强化的过程,通过实验组和对照组的成绩提高的差值来看,所施加学生当导游员的因素(导游员准备、导游等过程),也使学生的综合能力得到了充分地培养与提高.比如:语言表达能力,收集和处理材料的能力、随机应变的能力等.同时,在人文知识掌握的全过程中,注重学生智商和情商的有机融合,而同学们人文素质的积累就是情商的本质表现,这个智,的确达到了本次实验的目的.4 结论(1)本论文所设计的登山运动处方可改善高职学生身体状况,减少腹部、腰部皮褶厚度;可明显提高台阶指数,增强心肺功能;学生的耐力、灵活性和下肢爆发力得到明显改善.(2)在登山运动处方实验中,学生当导游员,可以强化学生对本地域人文知识的掌握.提高高职学生热爱家乡,为本地区经济建设服务的意识.(责任编辑 刘国忠,朱成杰)(上接17页)位差为零.由于Z A 、Z B 、Z C 已知,所以可测出Z X .212 电容的测量测量电容采用惠斯顿电桥,见图3.C X 为被测电容,C 0为标准电容,R A 、R B 为标准电阻,U 是交流信号源,P 是做平衡指示用的电流表.电桥平衡条件为C X R A =C 0R B ,当电桥平衡时,C X =(C 0R B )/R A .213 电感的测量测量电感采用马克斯韦电桥,如图4所示.L X 为被测电感,C 0为标准电容,R A 、R B 为标准电阻.电桥平衡条件为L X /C 0=R A R B ,当电桥平衡时,L X =C 0R A R B .为了简化电路、方便使用,本测量仪忽略了电容电感的损耗问题,完全可以满足业余测量对精度的要求.214 信号源和平衡指示器原理集成运放IC l -1等构成文氏桥振荡器,产生116kH z的正弦波作为测量电桥的信号源(见图5).IC i -2为缓冲放大器,以隔离电桥电路对振荡器的影响.IC 2-1和IC 2-2构成两级放大器,将电桥C 、D 间检测到的信号进行放大,总增益68dB (2500倍),使测量仪具有很高的检测灵敏度,易于调节电桥平衡,提高测量精度.放大器的输出接压电蜂鸣器B ,作为电桥平衡指示.电桥完全平衡时,蜂鸣器无声.信号源输出经变压器T 1耦合至电桥AB 间,电桥CD间的检测信号经变压器T 2耦合至平衡指示器,这样信号源与平衡指示器便可以有公共接地点,以便用一组直流电源供电,示意图如图6所示.(责任编辑 王立俊,王 巍)李雪松,等高职学生登山运动处方实践研究75 。
简易电阻、电容和电感测试仪设计原理
简易电阻、电容和电感测试仪设计原理简易电阻、电容和电感测试仪一、任务设计并制作一台数字显示的电阻、电容和电感参数测试仪,示意框图如下:二、要求1.基本要求.基本要求(1)测量范围:电阻100Ω~1M Ω;电容100pF 100pF~~10000pF 10000pF;电感;电感100μH ~10mH 10mH。
(2)测量精度:±5% 。
)测量精度:±5% 。
(3)制作4位数码管显示器,显示测量数值,并用发光二极管分别指示所测元件的类型和单位。
三、设计步骤三、设计步骤1、分模块测量电路的设计原理(1)电阻测量电路的基本原理电阻测量仪的关键技术是电阻测量仪的关键技术是R X /V 转换器,转换器,R R X 即所需测量的电阻,无论电路多么复杂,总可以把与R X 相并联的元件等效为两只互相串联的电阻R 1和R 2。
由此构成三角形电阻网络,其原理图如下所示:上图中R 0为量程电阻,只要使R 1两端呈等电位,此时U R1=0=0,则,则R 1相当于开路,路,R R 2变成运放的负载电阻,变成运放的负载电阻,R R 1和R 2就不起分流作用,这样即可直接测就不起分流作用,这样即可直接测 R R X 的阻值。
的阻值。
E E 为测试电压,为测试电压,I I S 为测试电流,设流过R X 和R 1的电流分别为I X 和I 1,根据基尔霍夫定律可知:,根据基尔霍夫定律可知:I S =I X + I 1又根据“虚地”原理,则又根据“虚地”原理,则U R1= I 1 R 1=0故I 1=0=0,可忽略不计。
由此得到:,可忽略不计。
由此得到:,可忽略不计。
由此得到:I S =I X再考虑到C 点接地,则D 点为“虚地”,因此:点为“虚地”,因此:I S=E/ R0进而推导出:进而推导出: U X= I X R X= I S R X= (E/ R0)·R X显然,只要能得到RX 两端的电压UX,就能求出RX的值,即:的值,即: R X= U X/(E/ R0)= U X R0/ E这就是电阻测量的基本原理。
简易数字式电阻电容和电感测量仪设计方案
简易数字式电阻电容和电感测量仪设计方案设计一个简易的数字式电阻、电容和电感测量仪可以分为以下几个步骤:1.设计测量电路:首先,需要设计一个测量电路,电路可以使用基本的电压和电流测量技术。
电阻测量可以使用恒流法或恒压法,电容测量可以使用充放电法或交流法,电感测量可以使用交流法。
根据选择的测量方法设计合适的电路。
2.选取合适的传感器:为了实现数字化测量,需要选择合适的传感器。
电阻可以使用电阻表,电容可以使用电容计,电感可以使用电感表。
根据需要选择合适的传感器并进行调试和校准。
3.连接传感器与微控制器:将选取的传感器与微控制器进行连接,确保传感器的输出信号可以被微控制器读取。
可以使用模拟输入通道或数字接口来连接传感器和微控制器。
4.编写微控制器程序:根据测量电路和传感器的特性,编写微控制器的程序,实现测量功能。
程序中需要包括对传感器信号的处理、测量结果的计算和存储等功能。
5.设计用户界面:为了方便使用,可以设计一个简单的用户界面。
可以使用液晶显示屏、按键或触摸屏等组件来实现用户界面。
用户界面可以用来选择测量类型、显示测量结果等。
6.调试和测试:将硬件和软件部分进行集成,并进行调试和测试。
确保测量准确性和可靠性,对测量仪进行必要的校准和调整。
总结:设计一个简易的数字式电阻、电容和电感测量仪需要选择合适的测量电路和传感器,采集传感器信号并经过微控制器处理、计算和显示。
同时需要设计合适的用户界面,实现用户操作和结果显示。
最后进行调试和测试,确保测量仪的准确性和可靠性。
电容测量仪课程设计
电容测量仪课程设计一、课程目标知识目标:1. 学生能够理解电容测量仪的基本原理,掌握其操作方法和使用步骤。
2. 学生能够描述电容测量仪在电子测量中的应用,了解不同类型电容器的特点。
3. 学生能够运用电容测量仪测量电容器的电容值,并准确读取数据。
技能目标:1. 学生能够正确操作电容测量仪,进行电容器的测量实验。
2. 学生能够通过观察和记录实验数据,分析电容器的性能和影响因素。
3. 学生能够运用解决实际问题的能力,利用电容测量仪进行电子电路的检测和故障排查。
情感态度价值观目标:1. 学生培养对电子测量学科的兴趣,激发探索科学原理的积极性。
2. 学生养成严谨、细致的实验操作习惯,注重团队合作,互相交流和分享实验心得。
3. 学生认识到电容测量技术在现代电子技术中的重要性,培养对科技创新的尊重和关注。
课程性质分析:本课程为电子测量学科的一部分,侧重于实践操作和实际应用。
课程设计紧密结合教材内容,以电容测量仪为教学载体,提升学生对电子测量技术的理解和掌握。
学生特点分析:考虑到学生所在年级的特点,他们具备一定的电子基础知识,但对电容测量仪的操作和应用尚不熟悉。
因此,课程目标旨在通过实践操作,使学生将理论知识与实际应用相结合。
教学要求:1. 教师应提供明确的指导,确保学生正确操作电容测量仪。
2. 教学过程中注重启发式教学,引导学生主动思考、分析和解决问题。
3. 教学评估以学生的实际操作能力和实验结果为主要依据,关注学生在知识、技能和情感态度价值观方面的综合发展。
二、教学内容本章节教学内容紧密围绕课程目标,依据教材相关章节进行组织与安排,确保科学性和系统性。
1. 电容测量仪原理:- 电容测量仪的工作原理及其分类- 电容测量仪的电路组成与功能- 电容测量仪的技术参数及其影响2. 电容测量仪操作方法:- 电容测量仪的连接与准备- 电容测量仪的操作步骤与注意事项- 电容测量仪的校准与维护3. 电容器测量实验:- 不同类型电容器的特点与应用- 电容器的电容值测量方法- 实验数据的记录与分析4. 教学大纲安排:- 第一课时:电容测量仪原理及操作方法介绍- 第二课时:电容测量仪的实际操作与练习- 第三课时:电容器测量实验及数据记录与分析5. 教学内容进度:- 第一周:电容测量仪原理及其操作方法- 第二周:电容器测量实验及数据分析- 第三周:复习与巩固,解决学生疑问教学内容与教材关联性:本章节教学内容与教材中关于电子测量、电容测量仪及电容器测量的章节紧密相关,确保学生在学习过程中能够结合教材内容,形成完整的知识体系。
多功能电容测量仪的设计
2 系统 的 硬 件 设计 和 实现
21 系统组成 . 该 电容测试仪系统功能框架如图 1 所示 . 该系统主要由用户控制 模块 、 中央处理系统 、 终端显示部分 、 电容测试模块 以及其 它附加功能 模块等组成 。当用户需要 测量某一器件的值时 , 只需要把此器件放在 相应 的测试处 , 选择好量程 , 测试仪即可 自动测试出此器件的值 , 并把 测试值显示 在液 晶屏上 ; 该测试仪还具 有记忆功能 , 可存储 最近十次 的测 量 结 果 。
222 单片机 .. SC O1 P E 6 A型单片机是凌 阳科技 公司最新推 出的一 款 1 6位微处 理器 , 具有体积小 、 集成度高 、 易扩展 、 可靠性 高 、 低 、 功耗 结构简单 、 中 断处理能 力强等 特点 , 内嵌 3K字闪存 F A H, 2 L S 处理速 度高 , 够很 能 方便地完成普通单片机 的功能 .其 内部有两路 l O位数, 模转换( A 1 D C 输 出通道 和 7通道 1 O位电压模/ 转换 器( D 和单 通道声音模/ 数 A C) 数 转换器 . 可以满足将较复杂 的电路模/ 数转换和数, 模转换的需求 . 不需 要外接转换 芯片. 节省成本 . 降低电路的复杂程度 . 尤其适应于数字语 音播报和识别等应用 领域 . 得到广泛应用 22 .3 液 晶 显示 采用 1 86 2 "4的点阵式液晶显示模块 .可以把各种信息及时 的显 示在液 晶屏 上 , 方便用户读取 . 采用 18 6 2 "4的点阵式液 晶显 示模块 . 使系统和用户有了 良好 的人机交互界面 . 给用户带来极大地方便 224 用 户 输 入 .. 系统采用的是 4 4的矩阵式键盘 .方便用户对系统进行控制 . * 使 系统功能更加完善 , 更加多样化 . 满足用户不同的需求
stm32电容测量仪实验报告
stm32电容测量仪实验报告一、引言电容是一种重要的电子元件,广泛应用于电路中的滤波、耦合、调谐等功能。
为了准确测量电路中的电容值,我们设计并制作了一款基于STM32微控制器的电容测量仪。
本实验报告将详细介绍实验的背景、设计原理、实验步骤和结果分析。
二、实验背景在电子电路实验中,常常需要测量电容的数值。
传统的测量方法主要依赖于万用表或LCR表,但它们的使用方法相对复杂且不够灵活。
为了解决这一问题,我们选择使用STM32微控制器来设计一款简单易用的电容测量仪。
三、设计原理本实验采用的是简单的RC模型,通过测量电容充放电的时间来计算电容值。
具体的工作原理如下:1. 首先,我们通过一个位于STM32开发板上的定时器来产生一个固定频率的方波信号。
2. 然后,将方波信号经过一个电阻与待测电容相连,形成一个RC电路。
3. 当方波信号上升沿来临时,开始充电,测量时间直至电压达到一定阈值(例如1/2的工作电压)。
4. 当方波信号下降沿来临时,开始放电,测量时间直至电压降至一定阈值(例如1/2的工作电压)。
5. 根据充电和放电的时间,可以计算出电容值。
四、实验步骤1. 连接电路:将STM32开发板上的定时器输出端口与电阻和待测电容相连。
2. 程序设计:使用STM32开发板上的开发环境编写程序,配置定时器的工作模式和频率,并编写计算电容的算法。
3. 烧录程序:将程序烧录到STM32开发板上。
4. 进行测量:将待测电容连接到电路上,启动测量程序,观察测量结果。
五、实验结果与分析我们使用了几个不同值的电容进行了实验测量,并将测量结果与实际值进行了比较。
实验结果表明,我们设计的电容测量仪能够准确测量电容的数值,并且测量误差较小。
然而,由于电阻的存在,测量结果可能会受到电阻的影响,所以在实际应用中需要进行一定的修正。
六、结论本实验成功设计并制作了一款基于STM32微控制器的电容测量仪。
实验结果表明,该测量仪能够准确测量电容的数值,并具有较低的测量误差。
电容测量仪课课程设计
电容测量仪课课程设计一、教学目标本课程旨在通过电容测量仪的相关知识,让学生掌握电容测量仪的基本原理、使用方法以及相关的应用场景。
在知识目标方面,要求学生了解电容测量仪的基本结构,掌握其工作原理,并能够运用电容测量仪进行基本的电容值测量。
在技能目标方面,要求学生能够熟练操作电容测量仪,掌握数据处理的基本方法,并能够对测量结果进行分析和解释。
在情感态度价值观目标方面,通过实验操作,培养学生的动手能力,提高其对物理实验的兴趣,使其能够主动探索科学知识。
二、教学内容本课程的教学内容主要包括电容测量仪的基本原理、使用方法以及相关的应用场景。
首先,介绍电容测量仪的基本结构,包括各个部分的功能和相互关系。
然后,讲解电容测量仪的工作原理,包括电容的定义、测量方法以及测量仪器的工作流程。
最后,通过实际操作,让学生熟悉电容测量仪的使用方法,掌握数据处理的基本方法,并对测量结果进行分析和解释。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法。
首先,通过讲授法,向学生传授电容测量仪的基本原理和相关知识。
其次,通过讨论法,让学生参与到课堂讨论中,加深对知识的理解和记忆。
然后,通过案例分析法,让学生分析实际案例,提高其应用知识解决问题的能力。
最后,通过实验法,让学生亲自动手操作,培养其动手能力和实验技能。
四、教学资源为了支持教学内容和教学方法的实施,我们将选择和准备适当的教学资源。
教材方面,我们将使用《电容测量仪》教材,为学生提供基础知识。
参考书方面,我们将推荐《电容器原理与应用》等书籍,供学生深入研究。
多媒体资料方面,我们将准备相关的实验视频和操作演示,帮助学生更好地理解知识。
实验设备方面,我们将准备电容测量仪和相关实验器材,让学生能够进行实际操作。
五、教学评估为了全面、客观、公正地评估学生的学习成果,我们将采用多种评估方式。
平时表现方面,将通过观察学生的课堂表现、参与度等来评估其学习态度和理解程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1602采用标准的16脚接口,其中:
第1脚:VSS为地电源
第2脚:VDD接5V正电源
第3脚:V0为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度
第4脚:RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。
这次的设计采用MCS-51的内部时钟方式。因为外部时钟方式是用外部振荡脉冲信号,用于多片MCS-51单片机同时工作。在这次设计中只用一个MCS-51单片机,不需要振荡脉冲信号。
3.3 555芯片电路
555芯片电路的应用电路很多,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。在实际应用中,除了单一品种的电路外,还可组合出很多不同电路。本次设计中应用的电路是直接反馈型无稳类电路。电路如图3.4所示。
图3.2 内部时钟电路
MCS-51单片机内部有一个用与构成振荡器的高增益反相放大器,该高增益反相放大器的输入端为芯片引脚XTAL1,输出端为引脚XTAL2。这两个引脚接石英晶体振荡器和微调电容,就构成一个稳定的自激振荡器电路。
电路中的电容C1和C2典型值通常选择为30PF左右。对外接电容的值虽然没有严格的要求,但是电容的大小会影响振荡器频率的高低、振荡器的稳定性和起振的快速性。晶体的振荡频率的范围通常是在1.2MHz—12MHz之间。晶体的频率越高,则系统的时钟频率也就越高,单片机的运行速度也就越快。为了提高温度稳定性,应采用温度稳定性能好的NPO高频电容。MCS-51单片机常选择振荡频率6MHz或12MHz的石英晶体。
为了编写程序的方便,我们只计算 ,后面的单位可以根据使用的量程自行添加。测量范围的大小0.001uF~655.35uF。
4.2 软件设计流程图
图4.2为整个程序设计的流程。
图4.2 软件设计流程图
4.3 编写程序
根据上面的流程图,编写程序:
#include "reg51.h"
#include"intrins.h"//库函数
6 设计总结………………………………………………………………………22
7 参考文献
1功能说明:基于AT89C51单片机和555芯片的数显式电容测量。该方案主要是根据555芯片的应用特点,把电容的大小转变成555输出频率的大小,进而可以通过单片机对555输出的频率进行测量,再通过该频率计算出被测参数。在系统软件设计中,是以Proteus为仿真平台,使用C语言编程编写了运行程序。该测量仪具有结构简单,成本低廉,精度较高,方便实用等特点。
图3.4 555芯片电路
555芯片芯片输出的频率为 ,只要我们改变电阻R,就可以达到改变电阻量程的目的,图中提供了四组电阻,所以说有四组的电容测量量程,每个量程之间的跨度是10倍的关系。
在555芯片输出方波后,由于硬件的原因,输出的方波会有很多毛刺,为了去除这些毛刺本设计中使用了一个两输入与门(74HC08),让信号通过74HC08后会使输出的波形毛刺减少很多,使单片机的测量结果变得精确。
2 整体方案设计
本设计的整体思路是:基于AT89C51单片机和555芯片的数字式电容测量。该方案主要是根据555芯片的应用特点,把电容的大小转变为555输出频率的大小,进而可以通过单片机对555输出的频率进行测量。
2.1 方案论证
设计中采用了两个方案,具体的方案见方案一和方案二。
方案一:利用多谐振荡原理如图2.1所示。电容C电阻R和555芯片构成一个多谐振荡电路。在电源刚接通时,电容C上的电压为零,多谐振荡器输出V0为高电平V0通过R对电容C充电。当C上冲得的电压Vc=Vr时,施密特触发器翻转,V0变为低电平,C又通过R放电,Vc下降。当Vc=Vr时施密特触发器又翻转,输出Vc又变为高电平,如粗往复产生震荡波形。
图3.6 按键电路
3.6 系统总电路图
当各个部分的电路设计完成后,下面的工作就是组合成一个总的电路图。
图3.7 总电路图
4 软件设计
4.1 软件设计原理及所用工具
本次设计所选用Keil C51中的编译/连接器软件Keil uVision2作为编译器/连接工具。
整个程序设电容的大小。在前面的介绍中我们知道:555时基芯片的输出频率跟所使用的电阻R和电容C的关系是:
实用电容测量仪设计
姓名:刘立鹏
专业:电子信息工程
班级:电子10
学号:
时间:2013年4月8日
1功能说明………………………………………………………………………3
2 整体方案设计…………………………………………………………………4
2.1 方案论证……………………………………………………………………4
2.2 方案选择……………………………………………………………………6
3 单元模块设计
通过简单的系统框图,系统主要由四个主要部分组成:单片机,晶振电路设计,555芯片电路设计,显示电路设计,复位电路设计。
3.1
本设计的核心是单片机电路,考虑到需要一个中断输入,存储容量、外部接口对单片机端口的需要以及兼顾到节约成本的原则,选用了常用的AT89C51单片机。AT89C51是低功耗、高性能、经济的8位CMOS微处理器,工作频率为0—24MHz,内置4K字节可编程只读闪存,128x8位的内部RAM,16位可编程I/O总线。它采用Atmel公司的非易储器制造技术,与MCS51的指令设置和芯片引脚可兼容。AT89C51可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。AT89C51工作的最简单的电路是其外围接一个晶振和一个复位电路,给单片机接上电源和地,单片机就可以工作了。其最简单的工作原理图如下图。
第15~16脚:空脚
3.5
按键是实现人机对话的比较直观的接口,可以通过按键实现人们想让单片机做的不同的工作。键盘是一组按键的集合,键是一种常开型开关,平时按键的两个触点处于断开状态,按下键是它们闭合。键盘分编码键盘和非编码键盘,案件的识别由专用的硬件译码实现,并能产生键编号或键值的称为编码键盘,而缺少这种键盘编码电路要靠自编软件识别的称为非编码键盘。在单片机组成的电路系统及智能化仪器中,用的更多的是非编码键盘。图3.6就是一种比较典型的按键电路,在按键没有按下的时候,输出的是高电平,当按键按下去的时候,输出的低电平。
3 单元模块设计
3.1 AT89C51单片机工作电路…………………………………………………6
3.2系统时钟电路………………………………………………………………7
3.2.1内部时钟电路……………………………………………………………7
3.2.2外部时钟电路……………………………………………………………8
图3.1单片机工作电路
3.2
时钟在单片机中非常重要,单片机各功能部件的运行都是以时钟频率为基准。时钟频率直接影响单片机的速度,时钟电路的质量也直接影响单片机系统的稳定性。常用的时钟电路有两种方式,一种是内部时钟方式,另一种为外部时钟方式。
3.2.1内部时钟电路
内部时钟方式:内部时钟方式电路图如下图3.2所示。
#define DATA P0
sbit RW=P2^1;//1602写数据
sbit RS=P2^0;//1602写地址
sbit EN=P2^2; //1602工作使能
sbit b_test=P3^7; //开始测量电容的按键输入
sbit _reset=P3^5; //555时基芯片工作控制信号
unsigned int T_flag,N,C,i,Dis1,Dis0;
又因为 ,所以
即:
如果单片机采用12M的晶振,计数器T0的值增加1,时间就增加1μS,我们采用中断的方式来启动和停止计数器T0,中断的触发方式为脉冲下降沿触发,第一次中断到来启动T0,计数器的值为 ,第二次中断到来停止T0,计数器器的值为 ,则测量方波的周期为 ,如何开始时刻计数器的值 ,则 。
简单时序图如下。
图2.3 基于AT89C51单片机和555芯片构成的多谐振荡电路电容测量
2.2 方案选择
通过对上述方案的比较,已知方案三不仅硬件结构简单,而且软件设计业简便。能够满足测量精度高、易于实现自动化测量等设计需要,而且单片机构成的应用系统有较大的可靠性、系统扩展、系统配置灵活,容易构成各种规模的系统。所以选择方案三。
for(i=100;i>0;i--);
}
/***************检查忙否*****************/
图2.1 多谐振荡原理图
这种方法是利用了一个参考的电容实现,虽然硬件结构简单,软件实现却相对比较复杂。
方案二:直接根据充电放电时间判断电容值
这种电容测量方法主要利用了电容的充放电特性Q=UC,放电常数r=RC,通过测量与被测电容相关电路的充放电时间来确定电容值。一般情况下,可设计电路使T=ARC(T为振荡周期或处罚时间;A为电路常数与电路参数有关)。这种方法中应用于555芯片组成的单稳态触发器,在秒脉冲的作用下产生触发脉冲,来控制门电路实现计数,从而确定脉冲时间,通过设计合理的电路参数,使计数值与被测电容相对应。其原理如图2.2所示.
图2.2 根据充电放电时间判断电容值原理
这种方法硬件结构相对复杂,实际上是通过牺牲硬件部分来减轻软件部分的负担,但在具体设计中会碰到很大的问题,而且硬件一旦设计好,可变性不大。
方案三:基于AT89C51单片机和555芯片构成的多谐振荡电路电容测量
这种电容测量方法主要是通过一块555芯片来测量电容,让555芯片工作在直接反馈无稳态的状态下,555芯片输出一定频率的大小跟被测量的电容之间的关系是:f=0.772/(R*Cx),我们固定R的大小,其公式就可以写为:f=k/C x,只要我们能测量出555芯片输出的频率,就可以计算出测量的电容。如图2.3所示。