步进电机及其驱动电路
步进电机驱动电路
R11 R10 361x4
IC6 TCP521-4
1 io4 Vdd 16 2 io6 io2 15 3 o/i io1 14 4 io7 io0 13 5 io5 io3 12 6 inh a 11 7 Vee b 10 8 Vss c 9
+5V
13 1A
14 Vcc 12 1Y
Nc
11 5A
10 5Y
+15V
14
1
Vcc 1A
1Y
3
1B
2
E7 E12/47u25V +5V
IC9
5
NE555
C41
8 VCC 4 RST
R26
470u 35V
C7
103
7 DHE 3 OUT D1
2 TGR 5 CTL
3
4 2A 2Y 6 5 2B 9 1A 1Y 8
1B 10
C16
R27 333 D2
6 TSD 1 GND
78L15
2
PC6
47u
25V
E2
C2
47u
25V
E3
C3
47u
25V
PC3 PC3 47u 25V
PT3
1
Vin
Vout
3
GND
78L15
2
PC7
47u
25V
E4
C4
47u
25V
驱动/电源板: H2P-8AH.PCB
P
222
N
1kV
2
3 1/9 12
8 10/7
PD1
PT4
1
Vin
Vout
3
GND
步进电机的驱动控制电路
绕组电 流小了, 输出转矩就会以12关系下降 1 21。此外, 在绕组电流截止时, 相绕组地两端 还会产生很高的反电动势。为提高步进电机 系统的性能和效率, 一般对驱动电路具有如 下要求: ①通电周期内能提供足够大的矩形波或 接近矩形波的电流。 ② 具有截止电流泻放回路, 以降低相绕组 两端的反电动势, 加快电流的衰减。 ③驱动电源效率高、功耗低, 运行稳定
蓄雾 蓄粼蹂。动路斩曝 盘瓷 严电 波 曹
,引言 步进电 机又称为脉冲电 它 机, 能将脉冲信 号变 换为 相应的角位移或直线位移, 输出 且 转 角、 转速与 输入脉冲的 个数、 频率有着严格的 同步关系川。由于步进电机能直接接受数字 量输入, 所以特别适合于微机控制。作为数字
控制系统中的重要执行组件, 步进电机广泛应 用于自 动指示装置、 数控机床、 计算机巡回检 测等多种领域中, 但一般数字电路的信号能量 不足以驱动步进电机, 因此需利用专门的电路 来驱动步进电机川。随着电力电子技术、自 动控制技术以及计算机技术的发展, 步进电机 驱动技术也得到 了 快速发展, 国内外对步进电 机驱动电路也进行了大量的研究和开发工作。
图3 高低压驱动
图1 步进电机驱动控制器
2 .2 工作要求 步进电机的励磁绕组是一个电感线圈, 其电感L 与励磁回路总电阻R 之比称为电机 驱动回路的时间常数 T , T = L/ R 。当步 即 进脉冲频率较低时,的影响可以不考虑, ( 电 机每走一步, 其相电流基本可以达到最大值。 当步进脉冲频率较高时, 的影响不能忽略, T 因为电机绕组中的电流是按指数规律 上 升 的, 大约经过 3 r 一5 T 的时间, 电流才能达 到稳态值。当步进脉冲频率较高, 使绕组通 电时间小于 3(时, 电机绕组的各相电流 1就 没有机会达到最大值, 而电机的转矩 MOC12,
步进电机工作原理及驱动器电路设计
步进电机工作原理及驱动器电路设计(含源程序)步进电机工作原理及驱动器设计步进电机在控制系统中具有广泛的应用。
它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。
有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。
本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。
本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。
1. 步进电机的工作原理该步进电机为一四相步进电机,采用单极性直流电源供电。
只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。
图1是该四相反应式步进电机工作原理示意图。
图1 四相步进电机步进示意图开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。
当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。
而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。
依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。
四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。
单四拍与双四拍的步距角相等,但单四拍的转动力矩小。
八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。
单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:a. 单四拍b. 双四拍 c八拍图2.步进电机工作时序波形图2.基于AT89C2051的步进电机驱动器系统电路原理步进电机驱动器系统电路原理如图3:图3 步进电机驱动器系统电路原理图AT89C2051将控制脉冲从P1口的P1.4~P1.7输出,经74LS14反相后进入9014,经9014放大后控制光电开关,光电隔离后,由功率管TIP122将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。
四相步进电机驱动电路及驱动程序设计
四相步进电机驱动电路及驱动程序设计我们用一个单片机控制多个步进电机指挥跳舞机器人的双肩、双肘和双脚伴着音乐做出各种协调舒缓充满感情的动作,荣获一等奖。
电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机(Atc52)作脉冲序列信号发生器。
程序设计基于中断服务和总线分时利用方式,实时更新各个电机的速度、方向。
整个舞蹈由运动数据所决定的一截截动作无缝连接而成。
本文主要介绍一下这个机器人的四相五线制步进电机驱动电路及程序设计.1、步进电机简介步进电机根据内部线圈个数不同分为二相制、三相制、四相制等。
本文以四相制为例介绍其内部结构。
图1为四相五线制步进电机内部结构示意图。
2、四相五线制步进电机的驱动电路电路主要由单片机工作外围电路、信号锁存和放大电路组成。
我们利用了单片机的I/O端口,通过74373锁存,由74LS244驱动,ULN2003对信号进行放大。
8个电机共用4bit I/O端口作为数据总线,向电机传送步进脉冲。
每个电机分配1bit的I/O端口用作74373锁存信号,锁存步进电机四相脉冲,经ULN2003放大到12V驱动电机运转。
电路原理图(部分)如图2所示。
(1)Intel 8051系列单片机是一种8位的嵌入式控制器,可寻址64K字节,共有32个可编程双向I/O口,分别称为P0~P3。
该系列单片机上集成8K的ROM,128字节RAM可供使用。
(2)74LS244为三态控制芯片,目的是使单片机足以驱动ULN2003。
ULN2003是常用的达林顿管阵列,工作电压是12V,可以提供足够的电流以驱动步进电机。
关于这些芯片的详细介绍可参见它们各自的数据手册。
(3)74373是电平控制锁存器,它可使多个步进电机共用一组数据总线。
我们用P1.0~P1.7作为8个电机的锁存信号输出端,见表1。
这是一种基于总线分时复用的方式,以动态扫描的方式来发送控制信号,这和高级操作系统里的多任务进程调度的思想一致。
步进电机驱动电路的设计
U’o确定参考电位 o UI1和UI2两者都 UI1和UI2两者都 小于各自的参考电 压时,Uo=1, 压时,Uo=1,放电 管截止; 管截止; UI1和UI2两者都 UI1和UI2两者都 大于各自的参考电 压时,Uo=0, 压时,Uo=0,放电 管导通; 管导通;
V CC
RD 4
vIC
5
8
vI1
tW
T
脉冲周期T: 脉冲周期 :在周期性重复的脉冲系列 两个相邻脉冲间的间隔时间。 中,两个相邻脉冲间的间隔时间。 脉冲频率f: 脉冲频率 :单位时间内脉冲重复的次数 f=1/T。 。 占空比D:脉冲宽度与脉冲周期的比值 占空比 : D=tw/T。 。
如何获得脉冲信号? 如何获得脉冲信号?
利用脉冲振荡器直接产生脉冲信号; 利用脉冲振荡器直接产生脉冲信号;
典型的步进电机控制系统的组成
时钟电路
步进控制器——把输入的脉冲转换成环型脉冲 步进控制器——把输入的脉冲转换成环型脉冲, 把输入的脉冲转换成环型脉冲, 以控制步进电动机, 以控制步进电动机,并能进行正反转控制 功率放大器——把步进电动机输出的环型脉 功率放大器——把步进电动机输出的环型脉 冲放大, 冲放大,以驱动步进电动机转动
L297接线图与控制时序 L297接线图与控制时序
L298内部结构原理图 L298内部结构原理图
L298是一 是一 种双全桥驱动电 路,可用来驱动 各种小型直流电 机、两相双极步 进电机和四相单 极步进电机。 极步进电机。
L297和L298构成的步进电机控制系统 L297和L298构成的步进电机控制系统
0.9U m 0.1U m
tr
tf
上升时间t 脉冲上升沿从 脉冲上升沿从0.1Um上升到 上升到0.9Um所需的 上升时间 r:脉冲上升沿从 上升到 所需的 时间。 时间。 下降时间t 脉冲下降沿从 脉冲下降沿从0.9Um下降到 下降到0.1Um所需的 下降时间 f:脉冲下降沿从 下降到 所需的 时间。 时间。
步进电机工作原理及控制电路
因为它每走一步需要一定的时间,若信号频率过高,可能导致电机失步,甚至只
在原步颤动。
步进电机的步距角与工作拍数
对于一个步进电机,如果它的转子的齿数为
Nr,它的齿距角q z为:q z =2
Π/Nr,而步进电机运行k拍可使转子转动一个齿距位置。实际上步进电机每一
拍就执行一次步进,所以步进电机的步距角q s可以表示如下:
flag1=0; //步进数标志变量
init(); //液晶初始化子程序
while(1)
15 度;反应式步进
一般为三相,可实现大转矩输出,步进角一般为1.5 度,但噪声和振动都很大。
在欧美等发达国家80 年代已被淘汰;混合式步进是指混合了永磁式和反应式的
优点。它又分为两相和五相:两相步进角一般为1.8 度而五相步进角一般为
0.72
度。这种步进电机的应用最为广泛。
4.1反应式步进电机
图4.7一般的驱动电路
-A-A
图4.8 Bit
在实际应用中一般驱动路数不止一路,用上图的分立电路体积大,很多场合用
现成的集成电路作为多路驱动。常用的小型步进电机驱动电路可以用ULN2003
或ULN2803。ULN2003 是高压大电流达林顿晶体管阵列系列产品,具有电流增
益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类低速小功率
管T的集电极电阻;D是续流二极管,它为绕组放电提供回路;晶体管T是大功率
开关管。Rc也是个外接的功率电阻,它是一个消耗性负载,一一般为数欧姆。这
时线路的时间常数Tj为:
Tj = L / ( RL +RC )
公式(4.3)
其中:L单位为亨,Rc、RL单位为欧姆,Tj单位为秒。
步进电机及其驱动电路
第三节步进电动机及其驱动一、步进电机的特点与种类1.步进电机的特点步进电机又称脉冲电机。
它是将电脉冲信号转换成机械角位移的执行元件。
每当输入一个电脉冲时,转子就转过一个相应的步距角。
转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步。
只要控制输入电脉冲的数量、频率以及电机绕组通电相序即可获得所需的转角、转速及转向。
步进电动机具有以下特点:✍工作状态不易受各种干扰因素(如电压波动、电流大小与波形变化、温度等)的影响;✍步进电动机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零” ;✍由于可以直接用数字信号控制,与微机接口比较容易;✍控制性能好,在起动、停止、反转时不易“丢步”;✍不需要传感器进行反馈,可以进行开环控制;✍缺点是能量效率较低。
就常用的旋转式步进电动机的转子结构来说,可将其分为以下三种:(1)可变磁阻(VR-Variable Reluctance),也叫反应式步进电动机(2)永磁(PM—Permanent Magnet)型(3)混合(HB—Hybrid)型(1)可变磁阻(VR—Variable Reluctance)结构原理:该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称作反应式步进电动机.其结构原理如图3.5定子1上嵌有线圈,转子2朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁阻型。
图3。
6 可变式阻步进电机可变磁阻步进电机的特点:❖反应式电动机的定子与转子均不含永久磁铁,故无励磁时没有保持力;❖需要将气隙作得尽可能小,例如几个微米;❖结构简单,运行频率高,可产生中等转矩,步距角小(0。
09~9°)❖制造材料费用低;❖有些数控机床及工业机器人上使用。
(3)混合(HB—Hybrid)型结构原理这类电机是PM式和VR式的复合形式。
其定子与VR类似,表面制有小齿,转子由永磁铁和铁心构成,同样切有小齿,为了减小步距角可以在结构上增加转子和定子的齿数。
步进电机驱动电路
02
步进电机驱动电路设计要素
驱动电路的组成及工作原理
驱动电路的组成
• 电源模块:为驱动电路提供稳定的电压和电流 • 控制模块:接收控制信号,控制电流的方向和大小 • 驱动模块:将控制信号转换为驱动电流,驱动电机运行
驱动电路的工作原理
• 控制模块根据输入的控制信号生成驱动信号 • 驱动模块根据驱动信号产生相应的驱动电流,驱动电机运行 • 电源模块为驱动电路提供稳定的电压和电流,保证电路正常工作
04
步进电机驱动电路在实际应用中的注意事项
驱动电路与步进电机的匹配问题
驱动电路与步进电机的匹配原则
• 度要求选择合适的驱动电路
驱动电路与步进电机的匹配方法
• 通过实验和计算确定最佳匹配方案 • 参考产品手册和应用案例进行匹配
驱动电路的控制策略与优化
未来应用场景的拓展
• 在智能家居、机器人等领域的应用 • 在航空航天、武器装备等领域的应用
未来驱动电路的设计方向
• 高性能、高效率、高可靠性的驱动电路设计 • 绿色环保、节能减排的驱动电路设计
CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
模块化驱动电路的优势
• 便于维护和升级 • 提高设计灵活性,易于扩展
新型驱动技术与控制方法的研究与应用
新型驱动技术
• 永磁同步电机等高效电机的研究与应用 • 无刷直流电机等环保电机的研究与应用
新型控制方法
• PID控制等先进控制算法的研究与应用 • 模糊控制等人工智能技术的研究与应用
步进电机驱动电路在未来应用场景的拓展
双极性驱动电路的优缺点
• 优点:驱动能力强,能实现正反转控制 • 缺点:结构较复杂,成本较高
三相步进电机驱动电路设计
三相步进电机驱动电路设计一、引言步进电机是一种将电脉冲信号转换为机械转动的电动机,具有结构简单、定位精度高、起动停止快的特点,被广泛应用于数控机床、机器人、自动化设备等领域。
本文将介绍三相步进电机驱动电路的设计。
二、驱动原理三相步进电机的驱动原理基于磁场交替作用的原理,通过控制电流的改变,使电机在不同的磁场中转动。
它分为两种驱动方式:全、半步进驱动。
全步进驱动方式中,步进电机每接收一个脉冲信号就转动一个步距,而在半步进驱动方式中,步进电机每接收一个脉冲信号就转动半个步距。
本文以全步进驱动为例进行设计。
三、电路设计1.电源电路:步进电机驱动电路需要一个稳定的直流电源,通常使用电容滤波器和稳压电路来提供稳定的电压输出,保证电机正常工作。
2.脉冲发生及控制电路:脉冲发生电路产生脉冲信号,用于控制步进电机的转动。
常用的发生电路有震荡电路和微处理器控制电路。
本文以震荡电路为例,通过计算电容充放电时间确定震荡频率。
3.驱动电路:驱动电路是步进电机的核心,它将脉冲信号转换为电流控制信号,控制步进电机的转动。
常用的驱动方式有双H桥驱动和高低电平驱动。
本文以双H桥驱动为例进行设计。
4.电流检测和反馈电路:为了控制步进电机的转速和转矩,需要对电机的电流进行检测和反馈。
常用的检测电路有电阻检测和霍尔效应检测。
通过检测电流大小,可以调节驱动电流,以达到控制步进电机的效果。
5.保护电路:为了保护步进电机和驱动电路的安全,需要设计相应的保护电路。
常见的保护电路有过流保护电路、过热保护电路和短路保护电路等。
四、总结本文介绍了三相步进电机驱动电路的设计。
通过合理设计电路,可以实现对步进电机的控制和保护,提高步进电机的运行效果和寿命。
未来,可以进一步研究和改进三相步进电机驱动电路的设计,以满足更高精度、更高速度的步进电机应用需求。
步进电机的恒电流驱动电路原理
步进电机的恒电流驱动电路原理
恒电流斩波器的原理如下图所示,额定电流或设置的驱动电流值为I0时,加电压在绕圈上,若超过所设定的电流值I0,则把所加的电压V关断,使电流削减,若低于所设定的电流值I0,则把所加电压V打开,使电流再增加至所设定的电流值I0……如此反复,使I0为恒定电流。
左图中,V以及I表示1相关断的电压、电流,1相电压加到t1秒时间区间。
假如步进电机低速转动时,不用恒电流斩波器驱动,当流过电机线圈的电流超过额定电流时,电机会产生很高的温升,有可能会烧毁。
在高速运行时,1相绕组电压所加的时间若在左图的t0以下,使电源不能保证供应设定的电流I0值,此时变成恒压驱动。
即在高速运行中,有斩波才能变成恒电流驱动。
电流测量值与设定电流I0相对应的基准电压Vr用差动放大器比较,使其达到设定的电流值,施加到电机的电压斩波器的掌握端。
此处,恒电流斩波电路使用恒电压电路。
同一步进电机的恒电压与恒电流脉冲频率-转矩特性曲线比较如下图所示。
两者在同一额定电流约10pps以内时,具有相同的转矩,但低速时恒电流斩波驱动器产生转矩较大。
稳态电流值两者虽然相同,但由于恒电流斩波驱动器其电流上升快,所以其值略高于平均电流值,使用
上需要留意上述问题。
51单片机驱动步进电机电路及程序
51单片机驱动步进电机电路及程序(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--51单片机驱动步进电机电路及程序在这里介绍一下用51单片机驱动步进电机的方法。
这款步进电机的驱动电压12V,步进角为度 . 一圈 360 度 , 需要 48 个脉冲完成!!!该步进电机有6根引线,排列次序如下:1:红色、2:红色、3:橙色、4:棕色、5:黄色、6:黑色。
采用51驱动ULN2003的方法进行驱动。
ULN2003的驱动直接用单片机系统的5V电压,可能力矩不是很大,大家可自行加大驱动电压到12V。
;*********************************************************************************;********** ******************步进电机的驱动***************************************; DESIGN BY BENLADN911 FOSC = 12MHz ;---------------------------------------------------------------------------------; 步进电机的驱动信号必须为脉冲信号!!! 转动的速度和脉冲的频率成正比!!!; 本步进电机步进角为度 . 一圈 360 度 , 需要 48 个脉冲完成!!!;---------------------------------------------------------------------------------; A组线圈对应; B组线圈对应; C组线圈对应; D组线圈对应; 正转次序: AB组--BC组--CD组--DA组 (即一个脉冲,正转度);----------------------------------------------------------------------------------;----------------------------正转--------------------------ORG 0000HLJMP MAINORG 0100HMAIN:MOV R3,#144 正转 3 圈共 144 脉冲START:MOV R0,#00HSTART1:MOV P2,#00HMOV A,R0MOV DPTR,#TABLEMOVC A,@A+DPTRJZ START 对 A 的判断,当 A = 0 时则转到STARTMOV P2,ALCALL DELAYINC R0DJNZ R3,START1MOV P2,#00HLCALL DELAY1;-----------------------------反转------------------------MOV R3,#144 反转一圈共 144 个脉冲START2:MOV P2,#00HMOV R0,#05START3:MOV A,R0MOV DPTR,#TABLEMOVC A,@A+DPTRJZ START2 MOV P2,ACALL DELAYINC R0DJNZ R3,START3MOV P2,#00HLCALL DELAY1LJMP MAINDELAY: MOV R7,#40 步进电机的转速M3: MOV R6,#248DJNZ R6,$DJNZ R7,M3RETDELAY1: MOV R4,#20 2S 延时子程序DEL2: MOV R3,#200DEL3: MOV R2,#250DJNZ R2,$DJNZ R3,DEL3DJNZ R4,DEL2RETTABLE:DB 30H,60H,0C0H,90H 正转表DB 00 正转结束DB 30H,90H,0C0H,60H 反转表DB 00 反转结束END。
步进电机的驱动原理与驱动电路
步进电机是一种专门用于位置和速度精准操纵的特种电机.是一种将电脉冲转化为角位移的执行机构。
通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(即步进角)。
您能够通过操纵脉冲个数来操纵角位移量,从而达到准确信位的目的;同时您能够通过操纵脉冲频率来操纵电机转动的速度和加速度,从而达到调速的目的。
步进电机分三种:永磁式(PM),反映式(VR)和混合式(HB)永磁式:一样为两相,转矩和体积较小,步进角一样为度或15度;反映式:一样为三相,可实现大转矩输出,步进角一样为度,但噪声和振动都专门大。
混合式:是指混合了永磁式和反映式的优势。
它又分为两相和五相:两相步进角一样为度而五相步进角一样为度。
这种步进电机的应用最为普遍。
上图为六线式四相步进电机,共有两组线圈,每一个线圈有两相,每一相有一条引出线,两个公共端若是归并为一条线确实是五线式。
将公共端C接到电源上,依次给各个相的引出线加低电平脉冲信号,步进电机将持续转动。
二、步进电机的特点1、输出角与输入脉冲严格成正比,且在时刻长同步。
步进电机的步距角不受各类干扰因素,如电压大小、电流的数值、波形的阻碍,转子的速度要紧取决与脉冲信号的频率,总的位移量那么取决与总脉冲数。
2、步进电机的转向能够通过改变通电顺序来改变。
3、转子惯量小,启、停时刻短。
4、步进电机具有自锁能力,一旦停止输入脉冲,只要维持绕组通电机就能够够维持在该固定位置。
5、步进电机的步进角有误差、转子转过必然步数以后也会显现累计误差,但转子转过一转时刻以后,其积存误差为零,可不能长期积存。
6、与运算机接口容易,维修方便,寿命长。
步进电机本身确实是一个数/模转换器,能够直接同意计算机的输出的数字量。
7、能量效率低,存在失步现象。
三、步进电机的励磁方式步进电机有2相、4相和5相电机。
在4相电机中有4组线圈,假设电流按顺序通过线圈那么使电机产生转动。
4相电机的励磁方式中有1 相(单向)励磁、2 相(双向)励磁和1-2 相(单-双向)励磁方式。
步进电机驱动电路原理图讲解
步进电机驱动电路原理图讲解双极性步进电机的驱动电路如图所示,它会使用八颗晶体管来驱动两组相位。
双极性驱动电路可以同时驱动四线式或六线式步进电机,虽然四线式电机只能使用双极性驱动电路,它却能大幅降低量产型应用的成本。
双极性步进电机驱动电路的晶体管数目是单极性驱动电路的两倍,其中四颗下端晶体管通常是由微控制器直接驱动,上端晶体管则需要成本较高的上端驱动电路。
双极性驱动电路的晶体管只需承受电机电压,所以它不像单极性驱动电路一样需要箝位电路。
步进电动机不能直接接到工频交流或直流电源上工作,而必须使用专用的步进电动机驱动器,如图2所示,它由脉冲发生控制单元、功率驱动单元、保护单元等组成。
图中点划线所包围的二个单元可以用微机控制来实现。
驱动单元与步进电动机直接耦合,也可理解成步进电动机微机控制器的功率接口,这里予以简单介绍。
图2 步进电动机驱动控制器1.单电压功率驱动接口实用电路如图3所示。
在电机绕组回路中串有电阻Rs,使电机回路时间常数减小,高频时电机能产生较大的电磁转矩,还能缓解电机的低频共振现象,但它引起附加的损耗。
一般情况下,简单单电压驱动线路中,Rs是不可缺少的。
Rs对步进电动机单步响应的改善如图3(b)。
{{分页}}图3 单电压功率驱动接口及单步响应曲线图4 双电压功率驱动接口2.双电压功率驱动接口双电压驱动的功率接口如图4所示。
双电压驱动的基本思路是在较低(低频段)用较低的电压UL驱动,而在高速(高频段)时用较高的电压UH驱动。
这种功率接口需要两个控制信号,Uh为高压有效控制信号,U为脉冲调宽驱动控制信号。
图中,功率管TH和二极管DL构成电源转换电路。
当Uh低电平,TH关断,DL正偏置,低电压UL对绕组供电。
反之Uh高电平,TH导通,DL反偏,高电压UH对绕组供电。
这种电路可使电机在高频段也有较大出力,而静止锁定时功耗减小。
3.高低压功率驱动接口图5 高低压功率驱动接口高低压功率驱动接口如图5所示。
单极步进电机驱动电路方案
单极步进电机驱动电路方案
以下是 8 条关于单极步进电机驱动电路方案的内容:
1. 哇塞,你知道单极步进电机驱动电路方案吗?就像给电机注入了神奇的力量!比如你家里的那种自动窗帘,它就是靠这样的驱动电路来实现平稳开合的呀!是不是很神奇?
2. 嘿,单极步进电机驱动电路方案真的超厉害的!好比是电机的最佳伙伴!像那些数控机床能那么精准地工作,可少不了它的功劳啊!
3. 你想过没有,单极步进电机驱动电路方案简直就是个幕后英雄啊!比如说我们常见的打印机,能那么快速准确地打印文件,它在其中起着关键作用呢,你说牛不牛?
4. 单极步进电机驱动电路方案啊,它就如同夜空中最亮的星!想想看,自动贩卖机能够快速准确地送出商品,这可不就是它的威力嘛!
5. 哎呀呀,单极步进电机驱动电路方案可是很了不起的哟!就像为电机铺就了一条顺畅大道。
比如说那些模型小火车能够欢快地跑起来,很大程度上就靠它啦!
6. 单极步进电机驱动电路方案,那绝对是电机的魔法助手呀!好比如智能门锁的顺畅开关,不就是它在默默发力吗?真的好厉害!
7. 哇哦,单极步进电机驱动电路方案可是不容小觑呀!好似是电机的秘密武器!像那些医疗设备能够精确运作,它功不可没呀,能不厉害吗?
8. 单极步进电机驱动电路方案,真的是让电机如虎添翼啊!比如说自动取款机的稳定运行,这当中它起到了至关重要的作用。
总之,它真的是超重要的啦!
我的观点结论:单极步进电机驱动电路方案在各种设备中都有着不可或缺的地位,它让电机的性能得以充分发挥,给我们的生活带来了诸多便利和惊喜。
步进电机控制芯片与驱动电路
步进电机控制芯片TC1002特点:
44引脚QFP封装
高达10MHz时钟
内部集成模拟SINE/COSINE发生器,DAC
PWM电流控制,可自动减少电流
14种细分选择,细分数的改变不会中断马达的运行
Standalone or Buss模式
5V电源供电
过流保护ቤተ መጻሕፍቲ ባይዱ
过温保护
错误输出
整步输出
消除共振
TC1002步进电机控制芯片方案成本低,成品成本大概在75-85之间,更多技术支持请联系HP134-3440-1340Q363379189邓生/邓工。
步进电机控制芯片TC1002的应用驱动电路如下:
上面这种应用是与IR2103搭配使用。也可以与L298、L6203搭配使用。控制驱动电路如下:
步进电机控制芯片与驱动电路
步进电机控制芯片TC1002是一个高性能二相步进电机细分驱动控制器。TC1002支持14种细分等级,最大256细分,最大支持4.2A和8.0A电流。TC1002它包含一个模拟SINE/COSINE信号发生器,完整的数字控制集成在一颗芯片中,高集成度减少产品的设计周期。尽量的减少了外部的分立元件,提供给设计者一个简单但又高效的产品。
步进电机控制驱动电路设计
步进电机控制驱动电路设计一、任务步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件,它在速度、位置等控制领域被广泛地应用。
但步进电机必须由环形脉冲信号、功率驱动电路等组成控制系统方可使用。
设计一个三相步进电机控制驱动电路。
二、要求1.基本要求1)时钟脉冲产生电路,能实现步进电机的正转、反转、手动(点动)和自动控制;2)用IC设计一个具有“自启动”功能的三相三拍环形分配器;3)能驱动三相步进电机的功放电路。
使用的是三相步进电机,工作相电压为12V2.发挥部分1)设计的环形分配器可实现“三相单三拍”、“三相双三拍”和“三相六拍”的多工作方式选择;2)完成步进电机供电电源电路设计;3)其它创新。
操作说明(与实际电路相对应):(从上到下依次)(从左到右)短路环: 1 2 3 4 开关:1 4 工作模式:断开接通断开接通0 0 三相单三拍正转断开接通断开接通0 1 三相单三拍反转断开接通断开接通0 0 三相六拍反转断开接通断开接通0 1 三相六拍正转接通断开接通断开0 0 三相双三拍正转接通断开接通断开0 1 三相双三拍反转注意:按键按下为0 向上为1如果在工作时有异常情况请按复位键调节变阻器2可以调节速度的大小摘要本设计采用自己设计的电源来给整个电路供电,用具有置位,清零功能的JK触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,从而来完成题目中的要求。
并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。
本系统具有以下的特点:1.时钟脉冲产生电路,能实现步进电机的正转、反转、手动(点动)和自动控制;2.具有“自启动”的功能。
3.可以工作在“三相单三拍”、“三相双三拍”和“三相六拍”的多工作方式选择的状态下。
4.具有复位的功能。
(创新)5.具有速度可变的功能。
步进电机原理及简易驱动电路的制作
制作天地HANDS ON PROJECTS作者谢彪步进电机原理及简易驱动电路的制作步进电机是机电一体化的关键部件之一,是一种高精度的执行元件,它能将脉冲信号转变成角位移,即给一个脉冲,步进电机就转过一个角度,因此控制精度高,广泛地应用于各种自动化控制系统和机器人领域中,目前步进电机的控制器主要是通过单片机及专用集成芯片构成的,这样成本高、结构复杂、开发周期长。
广大的电子爱好者,尤其是一些初学者很难具备相应的条件,为此笔者设计并制作了一款成本低廉、性能稳定、控制简单、制作方便的步进电机控制器,供大家参考。
一、步进电机工作原理目前比较常用的步进电机主要有反应式(VR)、永磁式(PM)、混合式(HB)三种类型,这几种电机虽然在组成结构上有所差别,但总体的工作原理还是类似的,下面就以比较典型的反应式步进电机为例简述其工作原理:1.步进电机的结构组成步进电机可以分成转子和定子两部分。
以图太长,有条件的话,电烙铁最好外壳接地,焊音乐片时可先将音乐片的第一个脚进行上锡,注意不要太多,否则无法插入线路板上的小槽,音乐片与线路板焊接线,线路板上应全部上过锡,当插入音乐片后,先将第一只脚与线路板进行焊接,让其定位,然后再将最后一只脚焊上,等焊锡冷后,音乐片便牢牢地装在线路板上了,这时再去焊另外的引脚就会方便许多。
制作完成的接收线路板与电源及喇叭的接线如图6 所示。
图6三、系统调试1.发射器的调试:所有元件安装好后,将电路板装入遥控器盒子内,注意检查微动开关是否可听到清晰的开关声。
2.如有频率计或频谱仪等仪器,可在装入发射器电池后按动遥控器检测是否有高频无线电波发射,如没有这些仪器,也可用收音机或接上电脑音响,当按动遥控器时,可听到“吱、吱”声,这就表明发射部分工作正常,一般只要元件安装正确,元件焊接时线路板上无搭锡或虚焊,都能一次成功。
3.接收器的调试:全部元件安装完成后,将线路板装入塑料外壳内,电源引线连接时一定要注意极性不要装反。
步进电机驱动电路L297与L298以及原理分析
步进电机驱动电路原理图
L297与L298
步进电机驱动电路PCB图
原理分析:
电机转动过程中需要精密测出相应转过的角度,这就要求电机的灵敏度高,受惯性的影响较小,所以直流电机不满足要求。
故我们采用了带光耦隔离,利用抗干扰能力强的TLP521作为隔离保护;利用L297进行PWM脉宽平滑调速与输出限流保护;利用L298实现电机驱动及其正反转,并采用二极管进行续流保护。
如图所示,在步进电机驱动模块中,采用了带光耦隔离,抗干扰能力强的TLP521作为隔离电流保护芯片,其中L297的17脚通过给高低电平来控制步进电机的正反转,而18脚为步进时钟输入端,控制每个步数的时间增量,19脚步进电机的半步或者整步的选择,10脚为使能控制端,来控制电机的启停,而经过内部包含4 信道逻辑驱动电路、高压、大电流双H 桥式驱动器L298来控制电机的正反转(如图10)。
其中图6上的8个二极管起着续流保护的作用。
图10 L298内部原理图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节步进电动机及其驱动一、步进电机的特点与种类1.步进电机的特点步进电机又称脉冲电机。
它是将电脉冲信号转换成机械角位移的执行元件。
每当输入一个电脉冲时,转子就转过一个相应的步距角。
转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步。
只要控制输入电脉冲的数量、频率以及电机绕组通电相序即可获得所需的转角、转速及转向。
步进电动机具有以下特点:✍工作状态不易受各种干扰因素(如电压波动、电流大小与波形变化、温度等)的影响;✍步进电动机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零” ;✍由于可以直接用数字信号控制,与微机接口比较容易;✍控制性能好,在起动、停止、反转时不易“丢步”;✍不需要传感器进行反馈,可以进行开环控制;✍缺点是能量效率较低。
就常用的旋转式步进电动机的转子结构来说,可将其分为以下三种:(1)可变磁阻(VR-Variable Reluctance),也叫反应式步进电动机(2)永磁(PM-Permanent Magnet)型(3)混合(HB-Hybrid)型(1)可变磁阻(VR-Variable Reluctance)结构原理:该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称作反应式步进电动机。
其结构原理如图3.5定子1上嵌有线圈,转子2朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁阻型。
图3.6 可变式阻步进电机可变磁阻步进电机的特点:❖反应式电动机的定子与转子均不含永久磁铁,故无励磁时没有保持力;❖需要将气隙作得尽可能小,例如几个微米;❖结构简单,运行频率高,可产生中等转矩,步距角小(0.09~9°)❖制造材料费用低;❖有些数控机床及工业机器人上使用。
(3)混合(HB-Hybrid)型结构原理这类电机是PM式和VR式的复合形式。
其定子与VR类似,表面制有小齿,转子由永磁铁和铁心构成,同样切有小齿,为了减小步距角可以在结构上增加转子和定子的齿数。
其结构如图3.7所示。
混合式步进电机特点:HB兼有PM和VR式步进电机的特点:步距角可以做得较小(0.9~3.6°);无励磁时具有保持力;可以产生较大转矩,应用较广。
拍:从一相通电换接到另一相通电称为一拍。
三相单三拍:通电方式A-B-C-A →… ,步距角为30度三相双三拍:通电方式AB→BC→CA→AB →… ,步距角为30°三相六拍:通电方式A→AB→B→BC→C→CA→A→…,步距角为l5°(见图3.9)。
二、步进电机的工作原理步进电动机的步距角越小,意味着它所能达到的位置精度越高。
通常的步矩角是1.5o或0.75o。
为此需要将转子做成多极式的,并在定子磁极上制成小齿,定子磁极上的小齿和转子磁极上的小齿大小、齿宽和齿距一样。
当一相定子磁极的小齿与转子的齿对齐时,其它两相磁极的小齿都与转子的齿错过一个角度。
按着相序,后一相比前一相错开的角度要大。
步距角的大小与通电方式和转子齿数有关,用下式计算:α=360o/(Zm)式中,Z—转子齿数;m—运行拍数,通常等于相数或相数整数倍,即m=KN(N 为电动机的相数,单拍时K=1,双拍时K=2)。
三、步进电动机的性能指标及运行特性1. 步距角α(分辨力)0.6/1.2,0.75/1.5,0.9/1.8,1/2,1.5/3步距角为α与系统脉冲当量为δ和丝杠基本导程为l0的条件下,减速比的匹配关系:δ={[α/(3600)]/i}l0所以,i=αl0/(3600)δ2. 静态特性:步进电动机的静态特性是指它在稳定状态时的特性,包括矩-角特性、静转矩等。
在空载状态下,给步进电动机某相通以直流电流时,转子齿的中心线与定子齿的中心线相重合,转子上没有转矩输出。
如果在电动机转于轴上加一负载转矩TL,定子与转子之间将有一角位移θe(见图3.11),称为失调角。
此时转子上的电磁转矩与负载转矩相等,称为静态转矩T j。
T j-θe的关系曲线为矩-角特性曲线(图3.12 )。
3动态特性1)动态稳定区2)启动转矩在某一通电方式下,各相的矩-角特性总和为矩-角特性曲线族,每一曲线依次错开的电角度为θe=2π/3m,m为运行拍数。
A相与B相矩-角特性曲线之交点所对应的转矩T q被称为起动转矩。
3)空载启动频率与惯-频特性:在空(负)载条件下,步进电机转子从静止状态不失步地起动的最大控制频率称为空载起动频率 (fq)。
当带负载起动时,所允许的起动控制频率会大大下降,它反映了电机跟踪的快速性,且随负载惯量的增加而下降。
步进电动机带动惯性负载时的起跳频率与负载转动惯量之间的关系为惯-频特性。
除惯性负载之外,还有外负载转矩,则起跳频率将会进一步下降。
90BF002型步进电动机的启动矩频特性曲线和运行矩频特性。
4)最高连续运行频率及矩-频特性:步进电机在连续运行时所能接受的最高控制频率被称为最高运行频率(f max)。
电动机在连续运行状态下,其电磁转矩随控制频率的升高而逐步下降。
这种转矩与控制频率之间的变化关系称为矩-频特性。
四、步进电机的型号表示方法不同生产厂家的步进电机型号表示方法也不尽相同,举例如下:步进电机的尺寸实物的步进电机及驱动器五、步进电机的驱动与控制1.步进电机的驱动步进电机的驱动包括脉冲分配器和功率放大器等微机或数控装置等送来的脉冲信号及方向信号应按要求的配电方式自动循环地供给电动机各相绕组,以驱动电动机转子正反向旋转。
只要控制输入电脉冲的数量及频率就可精确控制步进电动机的转角及转速。
(1)脉冲分配器步进电机的各相绕组必须按一定的顺序通电才能正常工作,(环形)脉冲分配器就是实现该功能的。
实现方法有三种:①软环分:利用查表或计算方法来进行脉冲的环形分配。
以下图所示的微机控制三相步进电机为例,对其软环分状态进行详细介绍。
可将表中状态代码0lH、03H、02H、06H、04H、05H列入程序数据表中,通过软件可顺次在数据表中提取数据并通过输出接口输出即可,通过正向顺序读取和反向顺序读取可控制电动机进行正反转。
通过控制读取一次数据的时间间隔可控制电动机的转速。
该方法能充分利用计算机软件资源以降低硬件成本,尤其是对多相的脉冲分配具有更大的优点。
但由于软环分占用计算机的运行时间,故会使插补一次的时间增加,易影响步进电动机的运行速度。
②采用小规模集成电路搭接图3.15为用双稳态触发器C1、C2、C3搭接而成的三相六拍环形脉冲分配器,利用这种方式可搭接任意相任意通电顺序的环形分配器,同时在工作时不占用计算机的工作时间,但柔性较差,硬件一旦完成就不易修改。
③采用专用环形分配器器件图为市售的CH250即为一种三相步进电动机专用环形分配器。
它可以实现三相步进电动机的各种环形分配(双三拍,单六拍等),使用方便、接口简单。
图3.16为CH250的管脚图,图b为三相六拍接线图。
③采用专用环形分配器器件管脚A、B、C为相输出端;管脚R、R*用于确定初始励磁相:若为10,则为A相,若为01,则为A、B相,若为00,则为环形分配器工作状态;管脚CL、EN为进给脉冲输入端:若EN=1,进给脉冲接CL,脉冲上升沿使环形分配器工作,若CL=0,进给脉冲接EN,脉冲下降沿使环形分配器工作,否则环形分配器状态锁定;管脚J3r、J3L、J6r、J6L为三拍或六拍工作方式的控制端;管脚UD、US为电源端。
(2)功率放大器从计算机输出口或从环形分配器输出的信号脉冲电流一般只有几个毫安,须采用功率放大器将脉冲电流进行放大才能驱动步进电动机运转。
电动机各相绕组都是感性负载,通电时,电流上升率受到限制;断电时,又会产生反电动势,为使电流尽快衰减,增加适当的续流回路。
仅仅介绍简单的单电压功率放大电路。
单电压功率放大电路优点:是线路简单;缺点是电流上升慢,高频时负载能力低。
实用驱动系统KT350步进电动机驱动器的外形及接口图。
其中接线端子排A、A、B、B、C、C、D、D、E、E接至电动机的各相;AC为电源进线,用于接50Hz、80V的交流电源,端子G用于接地;连接器CN1为一个9芯连接器,可与控制装置连接。
RPW、CP为两个LED指示灯;SW是一个四位拨动开关,用于设置步进电动机的控制方式。
其中第1位用于脉冲控制模式的选择,OFF位置为单脉冲控制方式,ON位置为双脉冲控制方式;第2位用于运行方向的选择(仅在单脉冲方式时有效),OFF位置为标准运行,ON位置为单方向运行;第3位用于整.半步运行模式选择,OFF 位置时,电动机以半步方式运行,ON位置时,电动机以整步方式运行;第4位用于运行状态控制,OFF位置时,驱动器接受外部脉冲控制运行,ON位置时,自动试机运行(不需外部脉冲)。
图示为混合式步进电动机驱动器的典型接线图。
图混合式步进电动机驱动器的典型接线图步进电机控制系统2.步进电机的控制(1)控制方式:使用微机对步进电动机进行控制有串行和并行两种方式。
①串行控制:将微机送出的脉冲串和方向信号送入驱动电源,由驱动电源进行脉冲分配和功率放大,并驱动步进电机转动(图3.24a)。
特点是使用的信号线少;可进行远距离传输;但驱动电源中必须含有环形分配器。
②并行控制:由微机对脉冲串进行分配,并同时经并行端口送入驱动电源驱动步进电机转动(图3.24b)。
特点是使用的信号线多;传输速度快;一般由微机进行软环分,所以驱动电源只需进行功率放大。
(2)速度控制控制步进电动机的运行速度,实际上就是控制系统发出步进脉冲的频率或者换相的周期。
系统可用两种办法来确定步进脉冲的周期:①软件延时通过调用延时子程序的方法来实现,占有CPU时间。
②用定时器通过设置定时器时间常数的方法来实现,需硬件支持。
①软件延时②用定时器加减速规律一般有①按照直线规律升速②按指数规律升速两种。
其实现也可以由软件延时和定时器两种方法。
当利用定时器方式时,实质就是不断改变定时器装载值的大小。
为了减少每步计算装载值的时间,可用阶梯曲线来逼近理想升降曲线。
这样,每次装载,软件系统可通过查表的方法,查出所需要的装载值。
下面以最简单的等加速、等减速的加减速过程对直线加减速规律进行介绍:加速和减速的速度曲线有图3.25所示两种。
2.步进电机的控制图中,f q为起跳频率,f n为正常运行频率,起始频率f q=0 时(图 a),直线加速的斜率为:K= f n /(t n -t0)= f n /(t n)。
则电机的回转角速度为:ω=Kαt,α为步距角。
在如下图所示的步进电机速度—时间曲线中(加减速过程是线性且对称的),A、B、C…各相当于一个步距角对应的面积,假设电机起动频率为0HZ,稳定运行频率为4500HZ,电机从零时刻起动,加减速时间为0.5s。