高中数学文科选修1-1知识点总结
高考 必会 知识点:高中数学选修1-1知识点清单
高考必会知识点:高中数学选修1-1知识点清单一、函数概念1、定义:函数是一种特殊的数学关系,它满足一定的规律,可以把它表示为“y=f(x)”,其中x叫做函数f的自变量,y叫做函数f的因变量。
2、一次函数的直线性:如果一个函数的结果与自变量之间的比例是恒定的,那么这个函数就称为一次函数,它的自变量与因变量都是一次的关系,又因它的图象是一条直线,所以也叫直线性函数。
3、函数的分类:根据因变量与自变量之间的函数关系,把一元函数分为三大类:一次函数、二次函数和多项式函数,其中一次和二次函数是常见的。
二、一次函数性质1、一次函数的真或假性:当一次函数中存在着两个方程,即可以表示成y=ax+b,其中a和b是实数时,则此方程为真,如果a或b不是实数,则此方程为假。
2、一次函数的性质:一次函数的性质是自变量x和因变量y的关系是“线性的”。
一次函数的的横轴值与纵轴值的比值是恒定的,即一次函数的变化是线性的,这也是一次函数的最重要的特点。
此外,一次函数图象的最高点和最低点分别是图象的极值点,其中y值比x值改变的幅度最大,x值改变不会引起y值的改变。
3、一次函数的导数:一次函数的导数是表示一次函数变化量的量,其定义是:当自变量x增加某个极小量Δx时,函数f(x)的变化量与Δx的比值,即函数的变化率,该比值的极限为一个定值,也就是函数的导数。
四、多项式函数1、定义:多项式函数是多元函数,它指的是自变量是指数不同的有理数的乘积和,也可以把它看做是一次及以上次方的有理数系数的乘积之和。
例如多项式函数y=ax2+bx+c 就是3次多项式函数。
2、多项式函数的性质:它具有正面积性、抛物线性等特点,正面积性指的是多项式函数的图象大致是向上开口的曲线,抛物线性指的是多项式函数的图象会有拐点,多项式函数的极值也因此产生。
3、多项式函数的导数:多项式函数的导数也叫次导数,它是指函数变化量与自变量增加量的比值,也就是函数的变化率,它的极限为一定值,也就是次导数。
高中数学选修1-1知识点总结
数学选修1-1知识点总结导数及其应用一.导数概念的引入 1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x∆→+∆-∆ 例1. 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t(单位:s)存在函数关系2() 4.9 6.510h t t t =-++运动员在t=2s 时的瞬时速度是多少?解:根据定义0(2)(2)(2)lim 13.1x h x h v h x∆→+∆-'===-∆ 即该运动员在t=2s 是13.1m/s,符号说明方向向下2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()n x n f x f x k f x x x ∆→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆ 二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln xf x a a '=6 若()x f x e =,则()x f x e '=7 若()log x a f x =,则1()ln f x x a'=8 若()ln f x x =,则1()f x x '= 导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'= 考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x = ★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( ) 319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是()A.30°B.45°C.60°D.90° ★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用 1.函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.求单调性的步骤:① 确定函数)(x f y =的定义域(不可或缺,否则易致错);② 解不等式'()0'()0f x f x ><或;③ 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能用“”连结。
高中(文)数学选修1-1公式方法总结(重要)
第一章:逻辑语 1.四种命题的形式原命题:若 p 则 q 逆命题:若 q 则 p 否命题:若 ¬p 则 ¬q 逆否命题:若¬q 则¬p 结论:互为逆否的两个命题是等价的(1)原命题与逆否命题同真假(2)原命题的逆命题与否命题同真假 2.充分条件与必要条件:若 ,则称p 是q 的充分条件,q 是p 的必要条件 3. 充要条件:(3)若 且 ,则称p 是q 的必要不充分条件。
判别步骤:①找出p 和q ② 考察 p 能否推出q 和 q 能否推出 p 判别技巧:推不出的一定能举反例 4.含逻辑联结词“且”“或”的命题真假的判断:确定形式→判断真假①判断p 且q 的真假:一假必假 ②判断p 或q 的真假:一真必真 ③p 与﹁q 的真假相反 5.全称命题 的否定是 特称命题 的否定是 第二章:圆锥曲线方程(一)、椭圆(1)定义:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).(2) 焦点的位置的判定依据是 22,y x 项中哪个分母大,焦点就在哪一条轴上。
焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 长轴的长=2a 短轴的长=2b焦点()1,0F c -、()2,0F c()10,F c -、()20,F cp q ⇒q p ⇒p q ⇒q p ⇒q p ⇒(1)若 且 ,则称p 是q 的充分必要条件,简称充要条件。
(2021年整理)高中数学(文科)选修1-1、1-2知识点归纳
高中数学(文科)选修1-1、1-2知识点归纳编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学(文科)选修1-1、1-2知识点归纳)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学(文科)选修1-1、1-2知识点归纳的全部内容。
选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句。
假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p " 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝。
7、⑴全称量词——“所有的”、“任意一个"等,用“∀”表示; 全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个"等,用“∃”表示; 特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:置图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称 离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 4、双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210,0x y a b a b -=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率 ()2211c b e e a a==+>渐近线方程b y x a=± a y x b=±5、实轴和虚轴等长的双曲线称为等轴双曲线.6、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.7、抛物线的几何性质:标准方程 22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴 x 轴y 轴8、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 9、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;第三部分 导数及其应用1、函数()f x 从1x 到2x 的平均变化率:()()2121f x f x x x --2、导数定义:()f x 在点0x 处的导数记作xx f x x f x f y x xx ∆-∆+='='→∆=)()(lim)(00000;.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.4、常见函数的导数公式:①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.8、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.9、导数在实际问题中的应用:最优化问题。
人教版高中数学【选修1-1】[知识点整理及重点题型梳理]_全称量词与存在量词_基础
人教版高中数学选修1-1知识点梳理重点题型(常考知识点)巩固练习全称量词与存在量词【学习目标】1.理解全称量词、存在量词和全称命题、特称命题的概念;2.能准确地使用全称量词和存在量词符号“∀” “∃ ”来表述相关的教学内容;3.掌握判断全称命题和特称命题的真假的基本原则和方法;4. 能正确地对含有一个量词的命题进行否定.【要点梳理】要点一、全称量词与全称命题全称量词全称量词:在指定范围内,表示整体或者全部的含义的量词称为全称量词.常见全称量词:“所有的”、“任意一个”、“每一个”、“一切”、“任给”等.通常用符号“∀”表示,读作“对任意”.全称命题全称命题:含有全称量词的命题,叫做全称命题.一般形式:“对M 中任意一个x ,有()p x 成立”,记作:x M ∀∈,()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:有些全称命题在文字叙述上可能会省略了全称量词,例如:(1)“末位是0的整数,可以被5整除”;(2)“线段的垂直平分线上的点到这条线段两个端点的距离相等”;(3)“负数的平方是正数”;都是全称命题.要点二、存在量词与特称命题存在量词定义:表示个别或一部分的含义的量词称为存在量词.常见存在量词:“有一个”,“存在一个”,“至少有一个”,“有的”,“有些”等.通常用符号“∃ ”表示,读作“存在 ”.特称命题特称命题:含有存在量词的命题,叫做特称命题.一般形式:“存在M 中一个元素0x ,有0()p x 成立”,记作:0x M ∃∈,0()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:(1)一个特称命题中也可以包含多个变量,例如:存在,R R αβ∈∈使sin()sin sin αβαβ+=+.(2)有些特称命题也可能省略了存在量词.(3)同一个全称命题或特称命题,可以有不同的表述要点三、 含有量词的命题的否定对含有一个量词的全称命题的否定全称命题p :x M ∀∈,()p xp 的否定p ⌝:0x M ∃∈,0()p x ⌝;从一般形式来看,全称命题“对M 中任意一个x ,有p (x )成立”,它的否定并不是简单地对结论部分p(x)进行否定,还需对全称量词进行否定,使之成为存在量词,也即“任意,()x M p x ∈”的否定为“0x M ∃∈,0()p x ⌝”.对含有一个量词的特称命题的否定特称命题p :0x M ∃∈,0()p xp 的否定p ⌝:x M ∀∈,()p x ⌝;从一般形式来看,特称命题“0x M ∃∈,0()p x ”,它的否定并不是简单地对结论部分0()p x 进行否定,还需对存在量词进行否定,使之成为全称量词,也即“0x M ∃∈,0()p x ”的否定为“x M ∀∈,()p x ⌝”.要点诠释:(1)全称命题的否定是特称命题,特称命题的否定是全称命题;(2)命题的否定与命题的否命题是不同的.(3)正面词:等于 、 大于 、小于、 是、 都是、 至少一个 、至多一个、 小于等于否定词:不等于、不大于、不小于、不是、不都是、 一个也没有、 至少两个 、 大于等于.要点四、全称命题和特称命题的真假判断①要判定全称命题“x M ∀∈,()p x ”是真命题,必须对集合M 中的每一个元素x ,证明()p x 成立;要判定全称命题“x M ∀∈,()p x ”是假命题,只需在集合M 中找到一个元素x 0,使得0()p x 不成立,即举一反例即可.②要判定特称命题“0x M ∃∈,0()p x ”是真命题,只需在集合M 中找到一个元素x 0,使得0()p x 成立即可;要判定特称命题“0x M ∃∈,0()p x ”是假命题,必须证明在集合M中,使 ()p x 成立得元素不存在.【典型例题】类型一:量词与全称命题、特称命题【全称量词与存在量词395491例1】例1. 判断下列命题是全称命题还是特称命题.(1)∀x ∈R ,x 2+1≥1;(2)所有素数都是奇数;(3)存在两个相交平面垂直于同一条直线;(4)有些整数只有两个正因数.【解析】(1)有全称量词“任意”,是全称命题;(2)有全称量词“所有”,是全称命题;(3)有存在量词“存在”,是特称命题;(4)有存在量词“有些”;是特称命题。
高中数学选修1-1公式概念总结
焦点在 x 轴上: kOP
kAB
a2 b2
;焦点在
y
轴上: kOP
kAB
b2 a2
.
2.2 双曲线
2.2.1 双曲线及其标准方程 1、双曲线的定义:我们把平面内与两个定点 F1 , F2 的距离的差的绝对值等于常数(小于
F1F2 )的点的轨迹叫做双曲线。两个定点 F1 ,F2 叫做双曲线的焦点,两焦点的距离 F1F2
“非 p ”或“ p 的否定”.与集合 U A x x U 且 x A
选修 1-1 数学
2
6、 p 非 q 的真假:若 p 是真命题, p 必是假命题;若 p 是假命题,则 p 必是真命题。 简记为:与 p 真假性相反。
1.4 全称量词与存在量词
1.4.1 全称量词 1、定义:短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词,并用符号“ ”
b2 a2
cos OF2B
P 不在 y 轴上: e sin sin sin
cos
cos
2
2
9、交点三角形面积公式:
选修 1-1 数学
4
S
PF1F2
b2 sin 1 cos
b2 tan 2
C
yP
1 2
PF1
PF2
sin
周长公式: C 2a c
10、椭圆的第二定义:平面内,若动点 M (x, y) 与定点 F c, 0 的距离和它到定直线
11、直线与椭圆的位置关系
x2
位置关系的判定:联立
a
2
y2 b2
1 a
b
0
消去 x 或消去 y 解方程。
Ax By C 0
①当直线与椭圆有两个焦点时,直线与椭圆相交,即 0 ;②当直线与椭圆有一个焦点时, 直线与椭圆相切,即 0 ;③当直线与椭圆无焦点时,直线与椭圆相离,即 0 .
高中数学选修1-1公式概念总结
选修1-1数学公式概念第一章 常用逻辑用语1.1 命题及其关系1.1.1 命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。
其中p 叫做命题的条件,q 叫做命题的结论。
1.1.2 四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。
其中一个命题叫做原命题,另一个叫做原命题的逆命题。
如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。
如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。
如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、以上总结概括:1.1.3 四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系: (1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。
原命题 若p ,则q 逆命题 若q ,则p 否命题 若p ⌝,则q ⌝ 逆否命题 若q ⌝,则p ⌝原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假假假假原命题逆命题否命题逆否命题互为 逆 否互为逆 否 互 逆 互否互否若p ⌝,则q ⌝ 若q ⌝,则p ⌝若p ,则q若q ,则p互逆1.2 充要条件与必要条件1.2.1 充分条件与必要条件1、充要条件与必要条件:一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q ⇒,并且说p 是q 的充分条件,q 是p 的必要条件。
高中数学选修1-1公式概念总结
选修1-1数学公式概念第一章 常用逻辑用语1.1 命题及其关系1.1.1 命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。
其中p 叫做命题的条件,q 叫做命题的结论。
1.1.2 四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。
其中一个命题叫做原命题,另一个叫做原命题的逆命题。
如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。
如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。
如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、以上总结概括:1.1.3 四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系: (1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。
原命题 若p ,则q 逆命题 若q ,则p 否命题 若p ⌝,则q ⌝ 逆否命题 若q ⌝,则p ⌝原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假假假假原命题逆命题否命题逆否命题互为 逆 否互为逆 否 互 逆 互否互否若p ⌝,则q ⌝ 若q ⌝,则p ⌝若p ,则q若q ,则p互逆1.2 充要条件与必要条件1.2.1 充分条件与必要条件1、充要条件与必要条件:一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q ⇒,并且说p 是q 的充分条件,q 是p 的必要条件。
高中数学选修1-1知识点归纳1#
高中数学选修1-1知识点归纳1#高中数学选修1-1知识点归纳高中数学选修1-1是数学学科的一部分,内容较为丰富,涉及到多个知识点。
下面将对这些知识点进行归纳和总结,具体内容如下:一、函数的概念和表示方法1、函数的定义:函数是一种描述因果关系的数学工具,将一个集合的每个元素都唯一地对应到另一个集合的元素上。
2、函数的表示方法:常见的函数表示方法有显式表示法、参数表示法和隐式表示法。
二、平方根函数1、平方根函数的定义:平方根函数是指以x为自变量,y为因变量的函数y = √x。
2、平方根函数的图像:平方根函数的图像为一条开口向上的抛物线曲线。
3、平方根函数的性质:平方根函数的定义域为非负实数集,值域为非负实数集。
三、指数函数1、指数函数的定义:指数函数是指以x为自变量,y为因变量的函数y = a^x,其中a是正常数且不等于1。
2、指数函数的图像:指数函数的图像为一条递增或递减的曲线。
3、指数函数的性质:(1)指数函数的定义域为全体实数集,值域为正实数集(当a>1时)或(0,1)区间上的实数集(当0<a<1时)。
(2)指数函数与底数a的关系:当a>1时,指数函数递增;当0<a<1时,指数函数递减。
四、对数函数1、对数函数的定义:对数函数是指以x为自变量,y为因变量的函数y = loga(x),其中a是一个正常数且不等于1。
2、对数函数的图像:对数函数的图像为一条递增或递减的曲线。
3、对数函数的性质:(1)对数函数的定义域为正实数集,值域为全体实数集。
(2)对数函数与底数a的关系:当a>1时,对数函数递增;当0<a<1时,对数函数递减。
五、指数方程和对数方程1、指数方程的定义:指数方程是指含有未知数的指数的等式。
2、求解指数方程的一般步骤:(1)移项(2)底数相等的条件3、对数方程的定义:对数方程是指含有未知数的对数的等式。
4、求解对数方程的一般步骤:(1)移项(2)底数相等的条件六、指数函数与对数函数的图像与性质1、指数函数与对数函数的关系:指数函数与对数函数是互为反函数的函数。
高二数学选修1-1、1-2数学知识点(文科)
高二数学选修1-1、1-2数学知识点(文科)高二数学选修1-11、数列的性质与特征(一)数列概念:数列是列有次序的一组有限个或无限个数构成的数组,又称有序数列。
(二)有序数列比较:任意两个有序数列可以比较是否有序,已经大小关系。
(三)数列等比:如果一个数列中每一项都是等比的,则该数列为等比数列。
2、等比数列的性质(一)等比数列的公比:等比数列的前两项的比值称为公比,记为q,如果前两项之比为正数,则称为正比,公比q也为正数;反之,反比,公比q为负数。
(二)特定的等比数列:(1)等比数列的通项公式:设等比数列的公比为q,使得a1,a2,…,an均成等差数列,则数列中任一项,可以表示为an=a1qn-1(2)定积分数:一列等比数列或它们的和称为定积分数,也称为定量数列。
3、等差数列的性质(一)等差数列的公差:等差数列的前后项的差称为公差,记为d。
4、等比数列与等差数列的混合(一)等比等差数列:等比等差数列是指一个拥有等比性质和等差性质的数列。
高二数学选修1-21、数学归纳法数学归纳法是一种发现规律的方法,它可以帮助我们用有限个具体的实例对一般情况作出正确的推论。
它包括三个步骤:(一)假设它是真的先假设某一定理是正确的,设定一个最初的论据。
(二)证明它是正确的为了证明这个定理是正确的,我们可以分别从可能的情况开始,例如从最小的情况,再一步步推导出更大的情况,以此来证明它是正确的。
(三)总结出结论最后要通过将实例抽象,归纳得出结论,它一般归纳为一个公式,表示一般情况。
2、数学归纳法的应用(一)证明定理:数学归纳法可以用来证明一般性的定理,先从特殊情况进行证明,再以特殊情况为基础归纳出一般性的结论。
(二)导出公式:我们可以用数学归纳法来导出感性的认识变成理性的形式,即由具体的实例可以推出一般性的公式来表示具体情况。
3、数学归纳法的注意事项(一)假设的充分性:在使用数学归纳法前,要确定假设是完全充分的,不可以太过抽象,要尽量把可能性全部考虑到。
人教版高中数学选修1-1知识点总结
高中数学选修1—1知识点总结第一章 简单逻辑用语● 命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.● “若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. ● 原命题:“若p ,则q ” 逆命题: “若q ,则p ”否命题:“若p ⌝,则q ⌝" 逆否命题:“若q ⌝,则p ⌝” ● 四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. ● 若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件). 利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件; 若A =B ,则A 是B 的充要条件;● 逻辑联结词:⑴且:命题形式p q ∧; ⑵或:命题形式p q ∨; ⑶非:命题形式p ⌝.● ⑴全称量词--“所有的”、“任意一个"等,用“∀”表示.全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃. ⑵存在量词——“存在一个”、“至少有一个"等,用“∃”表示. 特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀.第二章 圆锥曲线● 平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. ● 椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<● 平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. ● 双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>渐近线方程b y x a=±a y x b=±● 实轴和虚轴等长的双曲线称为等轴双曲线.● 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线. ● 抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤ 0y ≥ 0y ≤● 过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. ● 焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p F x P =+; 若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p F y P =+;第三章 导数及其应用● 函数()f x 从1x 到2x 的平均变化率:()()2121f x f x x x --● 导数定义:()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim)(00000.● 函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.● 常见函数的导数公式:①'C 0=; ②1')(-=n n nxx ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a xx ln )('=; ⑥xx e e =')(; ⑦ax x a ln 1)(log '=; ⑧x x 1)(ln '=● 导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦; ()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.● 在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.● 求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.。
高中数学选修1-1公式概念总结
3.1 变化率与导数3.1.1 变化率问题1、平均变化率:设1x ,2x 是函数()y f x =定义域内两个不同的数,把式子()()2121f x f x x x --称为函数()y f x =从1x 到2x 的平均变化率。
习惯上用x ∆表示21x x -,也可把x ∆看作是相对于1x 的一个“增量”,可用1x x +∆代替2x ;类似地,()()21y f x f x ∆=-.于是,平均变化率可以表示为yx∆∆ 3.1.2 导数的概念2、瞬时速度把物体在某一时刻的速度称为瞬时速度。
一般地,函数()y f x =在0x x =处的瞬时变化率是()()0000lim lim x x f x x f x yx x ∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作()0'f x 或0'x x y =,即()()()00000'lim lim x x f x x f x yf x x x ∆→∆→+∆-∆==∆∆ 3.1.3 导数的几何意义3、切线方程:求函数在点()()00,x f x 处的导数()()()0000'limx f x x f x f x k x∆→+∆-==∆,得到曲线在点()()00,P x f x 处的切线的斜率。
3.2导数的计算3.2.2 基本初等函数的导数公式及导数的运算法则4.基本初等函数的导数公式(1)若()f x c =,则()'0f x =;(2)若()()*a f x x a Q =∈,则()1'a f x ax -=;(3)若()sin f x x =,则()'cos f x x =;(4)若()cos f x x =,则()'sin f x x =-; (5)若()xf x a =,则()()'ln 0x f x a a a =>;(6)若()x f x e =,则()'xf x e =;(7)若()log a f x x =,则()1'ln f x x a =(0a >,且1a ≠); (8)若()ln f x x =,则()1'f x x =;(9)若()1f x x =,则()21'f x x=-.6、导数的运算法则(10)()()()()'''f x g x f x g x ±=±⎡⎤⎣⎦;(11)()()()()()()'''f x g x f x g x f x g x ⋅=+⎡⎤⎣⎦;(12)()()()()()()()()()2'''0f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎡⎤⎣⎦⎣⎦; (13)()()()()''''cf x c f x c f x cf x =+=⎡⎤⎡⎤⎣⎦⎣⎦. 推导:(14)()()()()()()()()()()()()''''f x g x h x f x g x h x f x g x h x f x g x h x ⋅⋅=++⎡⎤⎣⎦ (15)()()()()()()''''f x g x h x f x g x h x ±±=±±⎡⎤⎣⎦3.3 导数在研究函数中的应用3.3.1 函数的单调性与导数1、函数的单调性与其导函数的关系:在某个区间(),a b 内,如果()'0f x >,那么函数()y f x =在这个区间内单调递增;如果()'0f x <,那么函数()y f x =在这个区间内单调递减。
高中数学文科选修1-1知识点总结
第一章:命题与逻辑结构知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定 是特称命题.考点:1、充要条件的判定 2、命题之间的关系★1.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>,★2、给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 (A)3(B)2(C)1(D)0★3. 已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第二章:圆锥曲线 知识点: 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<准线方程2a x c=±2a y c=±3、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.4、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.5、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>准线方程2a x c=±2a y c=±渐近线方程b y x a=±a y x b=±6、实轴和虚轴等长的双曲线称为等轴双曲线.7、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.8、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.9、抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤0y ≥ 0y ≤10、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即2p AB =.考点:1、圆锥曲线方程的求解2、直线与圆锥曲线综合性问题3、圆锥曲线的离心率问题典型例题:★★1.设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为( )A .214pB 21pC 13p D .1336p★★2.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 .★★★3.(本小题满分14分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:l y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB为直径的图过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.第三章:导数及其应用 知识点:1、若某个问题中的函数关系用()f x 表示,问题中的变化率用式子()()2121f x f x x x --fx ∆=∆表示,则式子()()2121f x f x x x --称为函数()f x 从1x 到2x 的平均变化率. 2、函数()f x 在0x x =处的瞬时变化率是()()210021limlimx x f x f x fx x x ∆→∆→-∆=-∆,则称它为函数()y f x =在0x x =处的导数,记作()0f x '或0x x y =',即()()()0000limx f x x f x f x x∆→+∆-'=∆.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.曲线()y f x =在点()()00,x f x P 处的切线的斜率是()0f x ',切线的方程为()()()000y f x f x x x '-=-.若函数在0x 处的导数不存在,则说明斜率不存在,切线的方程为0x x =.4、若当x 变化时,()f x '是x 的函数,则称它为()f x 的导函数(导数),记作()f x '或y ',即()()()limx f x x f x f x y x∆→+∆-''==∆.5、基本初等函数的导数公式:()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=; ()3若()sin f x x =,则()cos f x x '=;()4若()cos f x x =,则()sin f x x '=-; ()5若()x f x a =,则()ln x f x a a '=;()6若()x f x e =,则()x f x e '=;()7若()log a f x x =,则()1ln f x x a '=;()8若()ln f x x =,则()1f x x'=. 6、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦. 7、对于两个函数()y f u =和()u g x =,若通过变量u ,y 可以表示成x 的函数,则称这个函数为函数()y f u =和()u f x =的复合函数,记作()()y f g x =. 复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是x u x y y u '''=⋅.8、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.9、点a 称为函数()y f x =的极小值点,()f a 称为函数()y f x =的极小值;点b 称为函数()y f x =的极大值点,()f b 称为函数()y f x =的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.10、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.11、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用典型例题★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A .2B. 3C. 4D.5★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 16 ★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。
高中数学选修1-1知识点及课本例题
第一章常用逻辑用语1.1 命题及其关系1、命题(1)一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(2)“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论。
2、四种命题(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。
其中一个命题叫做原命题(“若p,则q”),另一个叫做原命题的逆命题(“若q,则p”)。
(2)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题(“若p⌝,则q⌝”)。
(3)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题(“若q⌝,则p⌝”)。
3、四种命题间的相互关系例1下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5)2)2-;(2=(6)15x。
>例2指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分。
例3将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等。
例4证明:若022=x,则0=+yx。
-y1.2 充分条件与必要条件1、充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理得出q。
这是,我们就说,由p可推出q,记作qp⇒,并且说p是q的充分条件,q是p的必要条件。
2、充要条件一般地,如果既有qq⇒,就记作qp⇔。
高中数学选修1-1知识点
选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,能够判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没相关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p qp q ∧ p q ∨ p ⌝ 真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存有量词——“存有一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。
高中数学选修1-第一章-1.1空间向量及其运算-重点知识点
第一章空间向量与立体几何1.1空间向量及其运算知识点一:空间向量的概念及几类特殊向量1.空间向量:在空间中,具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模。
2.单位向量:模为1的向量。
3.零向量:长度为0的向量。
4.相等向量:长度相等且方向相同的向量。
5.相反向量:长度相等且方向相反的向量6.共线(平行)向量:如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线(平行)向量。
7.方向向量:在直线l上取非零向量a,把与向量a平行的非零向量称为直线l的方向向量。
8.共面向量:平行于同一个平面的向量,叫做共面向量。
知识点二:空间向量的线性运算1.加法:三角形法则:a+b=OA→+AB→=OB→;平行四边形法则:a+b=OA→+OC→=OB→2.减法:a-b=OA→-OC→=CA→ 3.数乘运算当λ>0时,λa=λOA→=PQ→(与a同向)当λ<0时,λa=λOA→=MN→(与a反向)当λ=0时,λa=04.运算律(λ,μ∈R)交换律:a+b=b+a结合律:(a+b)+c=a+(b+c),λ(μa)=(λμ)a分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb知识点三:空间向量共线、共面的有关定理1.共线向量定理对任意两个空间向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb2.共面向量定理向量p 与不共线的两个空间向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y),使p =x a +y b知识点四:空间向量的数量积1.数量积:a ·b =|a ||b |cos<a ,b >,其中<a ,b >为两个非零向量a ,b 的夹角。
2.运算律:(λa )·b =λ(a ·b );λ∈R ;a ·b =b ·a (交换律);(a +b )·c =a ·c +b ·c (分配律)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:命题与逻辑结构知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定 是特称命题.考点:1、充要条件的判定 2、命题之间的关系★1.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>,★2、给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 (A)3(B)2(C)1(D)0★3. 已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第二章:圆锥曲线 知识点: 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<准线方程 2a x c=±2a y c=±3、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.4、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.5、双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b-=>>()222210,0y x a b a b -=>>范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>准线方程2a x c =±2a y c=±渐近线方程b y x a=±a y x b=±6、实轴和虚轴等长的双曲线称为等轴双曲线.7、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==. 8、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.9、抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤0y ≥ 0y ≤10、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即2p AB =.考点:1、圆锥曲线方程的求解2、直线与圆锥曲线综合性问题3、圆锥曲线的离心率问题典型例题:★★1.设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为( )A .214pB.2Cp D .1336p ★★2.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 .★★★3.(本小题满分14分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:l y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB为直径的图过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.第三章:导数及其应用 知识点:1、若某个问题中的函数关系用()f x 表示,问题中的变化率用式子()()2121f x f x x x --fx ∆=∆表示,则式子()()2121f x f x x x --称为函数()f x 从1x 到2x 的平均变化率. 2、函数()f x 在0x x =处的瞬时变化率是()()210021lim limx x f x f x f x x x ∆→∆→-∆=-∆,则称它为函数()y f x =在0x x =处的导数,记作()0f x '或0x x y =',即()()()0000limx f x x f x f x x∆→+∆-'=∆.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.曲线()y f x =在点()()00,x f x P 处的切线的斜率是()0f x ',切线的方程为()()()000y f x f x x x '-=-.若函数在0x 处的导数不存在,则说明斜率不存在,切线的方程为0x x =.4、若当x 变化时,()f x '是x 的函数,则称它为()f x 的导函数(导数),记作()f x '或y ',即()()()lim x f x x f x f x y x∆→+∆-''==∆.5、基本初等函数的导数公式:()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=; ()3若()sin f x x =,则()cos f x x '=;()4若()cos f x x =,则()sin f x x '=-; ()5若()x f x a =,则()ln x f x a a '=;()6若()x f x e =,则()x f x e '=; ()7若()log a f x x =,则()1ln f x x a '=;()8若()ln f x x =,则()1f x x'=. 6、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦. 7、对于两个函数()y f u =和()u g x =,若通过变量u ,y 可以表示成x 的函数,则称这个函数为函数()y f u =和()u f x =的复合函数,记作()()y f g x =. 复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是x u x y y u '''=⋅.8、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.9、点a 称为函数()y f x =的极小值点,()f a 称为函数()y f x =的极小值;点b 称为函数()y f x =的极大值点,()f b 称为函数()y f x =的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.10、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.11、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用典型例题★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A .2B. 3C. 4D.5★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 16 ★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。