爆炸压力计算

合集下载

怎样计算爆炸上限和下限

怎样计算爆炸上限和下限

爆炸温度计算【大纲考试内容要求】:1.了解爆炸温度和压力的计算;2.掌握爆炸上限和下限的计算。

【教材内容】:2.爆炸温度计算1)依照反应热计算爆炸温度理论上的爆炸最高温度可依照反应热计算。

[例]求乙醚与空气的混合物的爆炸温度。

[解](1)先列出乙醚在空气中燃烧的反应方程式:C4H100 + 602+ 22.6N→4C02 + 5H2O + 22.6N2式中,氮的摩尔数是按空气中N2∶O2=79∶21的比例确定的,即602对应的N2应为:6×79/21 = 22.6由反应方程式可知,爆炸前的分子数为29.6,爆炸后为31.6。

(2)计算燃烧各产物的热容。

气体平均摩尔定容热容计算式见表2—5。

表2-5气体平均摩尔定容热容计算式依照表中所列计算式,燃烧产物各组分的热容为:N:的摩尔定容热容为[(4.8 + O.00045t)×4186.8]J/(kmol·℃)H20的摩尔定容热容为[(4.0 + 0.00215t)X4186.8]J/(kmol·℃)CO。

的摩尔定容热容为[(9.0 + 0.00058t)X4186.8]J/(kmol·℃)燃烧产物的热容为:[22.6(4.8+0.00045t)×4186.8]J/(kmol·℃) = [(454+0.042t)×1O3]J/(kmol·℃)[5(4.0+0.00215t)×4186,8]J/(kmol·℃) = [(83.7+0.045t) ×1O3]J/(kmol·℃)[4(9.0+0.00058t)×4186.8]J/(kmol·℃)=E(150.7+0.0097t) ×1O3]J/(kmol·℃)燃烧产物的总热容为(688.4+0.0967t)×103J/(kmol·℃)。

气体球罐物理爆炸冲击波超压计算模型

气体球罐物理爆炸冲击波超压计算模型

制氧站多发事故为设备超压而发生的物理爆炸事故,下面计算可能发生的物理爆炸相当的TNT 摩尔量。

以氧气球罐为例,分析固有爆炸危险所产生的能量。

压力容器中介质为压缩气体,发生物理爆炸释放的能量为:
31101013.011⨯⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=-k k g p k Pv E E g ——发生物理爆炸释放的能量,kJ
p ——容器内气体绝对压力,MPa
v ——容器容积,m 3
k ——气体绝热指数
查常用气体绝热指数表可知k 取1.397;设计球罐容积400 m 3;工作压力3.0 MPa ,带入上式求得E g =3.903ⅹ106 kJ
查得每kgTNT 爆炸释放能量相为4.5ⅹ103 kJ ,摩尔质量137g/mol TNT 当量为 E g /4.5ⅹ103=867.33 kg =867330g
摩尔量为 867330/137=6330.88mol
因此,氧气球罐发生物理爆炸释放的能量,相当于TNT 质量867.33 kg ,折合摩尔量为6330.88mol 。

爆炸极限计算

爆炸极限计算

爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下:1爆炸反应当量浓度;爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大;实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质;可燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成:C αHβOγ+nO2→生成气体按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X%,可用下式表示:可燃气体在氧气中的化学当量浓度为Xo%,可用下式表示:也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在空气或氧气中的化学当量浓度;其中;可燃气体蒸气在空气中和氧气中的化学当量浓度2爆炸下限和爆炸上限;各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算;爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影响,但仍不失去参考价值;1根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下;爆炸下限公式:体积爆炸上限公式:体积式中 L下——可燃性混合物爆炸下限;L上——可燃性混合物爆炸上限;n——1mol可燃气体完全燃烧所需的氧原子数;某些有机物爆炸上限和下限估算值与实验值比较如表2:表2 石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考;2根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限;计算公式如下:此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%;例如甲烷爆炸极限的实验值为5%~15%,与计算值非常接近;但用以估算H2、C2H2以及含N2、Cl2等可燃气体时,出入较大,不可应用;3多种可燃气体组成混合物的爆炸极限;由多种可燃气体组成爆炸混合气的爆炸极限,可根据各组分的爆炸极限进行估算,其计算公式如下:式中 Lm——爆炸性混合气的爆炸极限%;L 1、L2、L3、Ln——组成混合气各组分的爆炸极限%;V 1、V2、V3、…Vn——各组分在混合气中的浓度%;V 1+V2+V3+…Vn=100该公式用于煤气、水煤气、天然气等混合气爆炸极限的计算比较准确,而对于氢与乙烯、氢与硫化氢、甲烷与硫化氢等混合气及二硫化碳的混合气体,则计算的误差较大,不得应用;——摘自安全科学技术百科全书中国劳动社会保障出版社,2003年6月出版explosive limit 可燃性气体或蒸气与助燃性气体形成的均匀混合系在标准测试条件下引起爆炸的浓度极限值;助燃性气体可以是空气、氧气或其他助燃性气体;一般情况提及的爆炸极限是指可燃气体或蒸气在空气中的浓度极限;能够引起爆炸的可燃气体的最低含量称为爆炸下限;最高浓度称为爆炸上限;混合系的组分不同,爆炸极限也不同;同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化;一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高;因为系统温度升高,分子内能增加,使原来不燃的混合物成为可燃、可爆系统;系统压力增大,爆炸极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧反应更易进行;压力降低,则爆炸极限范围缩小;当压力降至一定值时,其上限与下限重合,此时对应的压力称为混合系的临界压力;压力降至临界压力以下,系统便不成为爆炸系统个别气体有反常现象;混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸;容器、管子直径越小,则爆炸范围就越小;当管径火焰通道小到一定程度时,单位体积火焰所对应的固体冷却表面散出的热量就会大于产生的热量,火焰便会中断熄灭;火焰不能传播的最大管径称为该混合系的临界直径;点火能的强度高、热表面的面积大、点火源与混合物的接触时间不等都会使爆炸极限扩大;除上述因素外,混合系接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围;可燃性蒸气的爆炸极限值是由可燃液体表面产生的蒸气浓度决定的;对于可燃液体而言,爆炸下限浓度对应的闪点温度又可以称为爆炸下限温度;爆炸上限浓度对应的液体温度又可以称为爆炸上限温度;混合气体、蒸汽的爆炸极限可以根据理.查特里法则计算L下= 1/N1/L1+N2/L2.....100%L上= 1/N1/L1+N2/L2.....100%理查特公式是对两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算,它是根据各组分已知的爆炸极限来计算的,适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物;Lm=100/V1/L1+V2/L2+……+Vn/Ln式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%;•爆炸与防爆:爆炸极限的计算42008/6/241 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中——常数;c0——爆炸气体完全燃烧时化学理论体积分数;若空气中氧体积分数按%计,c0可用下式确定c0=+n0式中 n0——可燃气体完全燃烧时所需氧分子数;如甲烷燃烧时,其反应式为CH4+2O2→CO2+2H2O此时n0=2则L下=×+2=由此得甲烷爆炸下限计算值比实验值5%相差不超过10%;2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:莱·夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限;用Pn表示一种可燃气在混合物中的体积分数,则:LEL=P1+P2+P3/P1/LEL1+P2/LEL2+P3/LEL3 V%混合可燃气爆炸上限:UEL=P1+P2+P3/P1/UEL1+P2/UEL2+P3/UEL3 V%此定律一直被证明是有效的;理·查特里公式理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之;该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物;Lm=100/V1/L1+V2/L2+……+Vn/Ln式中Lm——混合气体爆炸极限,%;爆炸极限的意义可燃物质、蒸气和与空气或氧气必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限;例如与空气混合的爆炸极限为%~80%;可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限;在低于爆炸下限时不爆炸也不着火;在高于爆炸上限不会发生爆炸,但会着火;这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故;当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力即根据完全燃烧反应方程式计算的浓度比例;影响爆炸极限的因素混合系的组分不同,爆炸极限也不同;同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化;一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高;因为系统温度升高,分子内能增加,使原来不燃的混合物成为可燃、可爆系统;系统压力增大,爆炸极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧反应更易进行;压力降低,则爆炸极限范围缩小;当压力降至一定值时,其上限与下限重合,此时对应的压力称为混合系的临界压力;压力降至临界压力以下,系统便不成为爆炸系统个别气体有反常现象;混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸;容器、管子直径越小,则爆炸范围就越小;当管径火焰通道小到一定程度时,单位体积火焰所对应的固体冷却表面散出的热量就会大于产生的热量,火焰便会中断熄灭;火焰不能传播的最大管径称为该混合系的临界直径;点火能的强度高、热表面的面积大、点火源与混合物的接触时间不等都会使爆炸极限扩大;除上述因素外,混合系接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围;爆炸极限与可燃物的危害可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大;这是因为爆炸极限越宽则出现爆炸条件的机会就多;爆炸下限越低则可燃物稍有泄漏就会形成爆炸条件;爆炸上限越高则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件;应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险;爆炸极限的表示爆炸极限的单位气体或蒸气的爆炸极限的单位,是以在混合物中所占体积的百分比%来表示的,如氢与空气混合物的爆炸极限为4%~75%;可燃粉尘的爆炸极限是以混合物中所占体积的质量比g/m^3来表示的,例如铝粉的爆炸极限为40g/m^3;可燃性蒸气的爆炸极限值是由可燃液体表面产生的蒸气浓度决定的;对于可燃液体而言,爆炸下限浓度对应的闪点温度又可以称为爆炸下限温度;爆炸上限浓度对应的液体温度又可以称为爆炸上限温度;可燃气体或蒸气分子式爆炸极限%下限上限氢气H2 75氨NH3 27一氧化碳CO甲烷CH4 14乙烷C2H6乙烯C2H4 32乙炔C2H2 81苯C6H6甲苯C7H8环氧乙烷C2H4O乙醚C2H5O乙醛CH3CHO丙酮CH32CO乙醇C2H5OH甲醇CH3OH 36醋酸乙酯C4H8O2 9常用可燃气体爆炸极限数据表LEL/UEL及毒性物质名称分子式爆炸浓度V% 毒性下限LEL 上限UEL甲烷CH4 5 15 ——乙烷C2H6 3丙烷C3H8丁烷C4H10戊烷液体C5H12己烷液体C6H14庚烷液体CH3CH25CH3辛烷液体C8H18 1乙烯C2H4 36丙烯C3H6 2丁烯C4H8 10丁二烯C4H6 2 12 低毒乙炔C3H4 100环丙烷C3H6煤油液体C10-C16 5城市煤气 4液化石油气 1 12汽油液体C4-C12松节油液体C10H16苯液体C6H6 中等甲苯C6H5CH3 低毒氯乙烷C2H5CL 中等氯乙烯C2H3CL 33氯丙烯C3H5CL 中等二氯乙烷CLCH2CH2CL 16 高毒四氯化碳CCL4 轻微麻醉三氯甲烷CHCL3 中等环氧乙烷C2H4O 3 100 中等甲胺CH3NH2 中等乙胺CH3CH2NH2 14 中等苯胺C6H5NH2 11 高毒二甲胺CH32NH 中等乙二胺H2NCH2CH2NH2 低毒甲醇液体CH3OH 36乙醇液体C2H5OH 19正丁醇液体C4H9OH甲醛HCHO 7 73乙醛C2H4O 4 60丙醛液体C2H5CHO 17乙酸甲酯CH3COOCH3 16乙酸CH3COOH 16 低毒乙酸乙酯CH3COOC2H5 11丙酮C3H6O丁酮C4H8O 10氰化氢氢氰酸HCN 40 剧毒丙烯氰C3H3N 28 高毒氯气CL2 刺激氯化氢HCL氨气NH3 16 25 低毒硫化氢H2S 神经二氧化硫SO2 中等二硫化碳CS2 50臭氧O3 刺激一氧化碳CO 剧毒氢H2 4 75本表数值来源基本上以SH3063-1999 石油化工企业可燃气体和有毒气体检测报警器设计规范为主,并与常用化学危险品安全手册进行了对照,补充;。

爆炸计算

爆炸计算

液化气体与高温饱和水爆破事故后果模拟分析液化气体和高温饱和水一般在容器内以气液两态存在,当容器破裂发生爆炸时,除了气体的急剧膨胀做功外,还有过热液体激烈的蒸发过程。

在大多数情况下,这类容器内的饱和液体占有容器介质重量的绝大部分,它的爆破能量比饱和气体大得多,一般计算时不考虑气体膨胀做的功。

过热状态下液体其伤亡半径、财产损失半径计算如下:1、盛装过热液体容器爆破事故计算模型 1.1爆破能量的计算(1)过热状态下液体在容器破裂时释放出的爆破能量m T S S i i E b l ])()[(2121---= (1-1)式中:l E ——过热状态下液体的爆破能量,KJ1i ——爆破前液化气体的焓,KJ/Kg 2i ——在大气压力下饱和液体的焓,KJ/Kg1S ——爆破前饱和液体的熵,KJ/(Kg ·K ) 2S ——在大气压力下饱和液体的熵,KJ/(Kg ·K )m ——饱和液体的质量,Kg T b ——介质在大气压力下的沸点,K(2)饱和水容器爆破能量V C E w w =式中:w E ——饱和水容器的爆破能量,KJV ——容器内饱和水所占容积,m 3wC ——饱和水爆破能量系数,KJ/m 3饱和水的爆破能量系数由压力决定,下表列出了常用压力下饱和水容器的爆破能量系数。

常用压力下饱和水容器的爆破能量系数 表1-11.2将爆破能量换算成TNT 当量q爆破能量换算成TNT 当量q 。

因为1KgTNT 爆炸所放出的爆破能量为4320~4836KJ/Kg ,一般取平均爆破能量为4500KJ/Kg ,故其关系为:4500lTNT l E q E q ==(1-2) 1.3爆炸的模拟比实验数据表明,不同数量的炸药发生爆炸时,如果距离爆炸中心的距离R 之比与炸药量q 三次方根之比相等,则所产生的冲击波超压相同,用公式表示如下:α==310)(q qR R 则0p p ∆=∆ (1-3)式中 R ——目标与爆炸中心的距离 R 0——目标与基准爆炸中心的距离 q 0——基准爆炸能量,TNT 当量q ——爆炸时产生冲击波所消耗的能量,TNT 当量,kg p ∆——目标处的超压,MPa0p ∆——基准目标处的超压,MPaα——炸药爆炸试验的模拟比根据式(1-3)拨破能量与1000KgTNT 爆炸的模拟比为:31313101.0)1000()(q q q q ===α (1-4)1.4 1000KgTNT 爆炸时死伤半径、财产损失半径的计算超压准则认为,只要冲击波超压达到一定值便会对目标造成一定的破坏或损伤。

爆炸极限计算

爆炸极限计算
nW E E
➢当β<1时,表示反应系统在受能源激发后,放热越来越少,也就是说,引起 反应的分子数越来越少,最后反应停止,不能形成燃烧或爆炸。 ➢当β=1时,表示反应系统在受能源激发后能均衡放热,有一定数量的分子在 持续进行反应。这就是决定爆炸极限的条件(严格说稍微超过一些才能爆炸)。 ➢当β>1时,表示放热量越来越大,反应分子越来越多,形成爆炸
x1下
x2下
x3下
xi下
(5)设
100
%
V 1/V 10 V 0 2/V 10 V 0 3/V 10 0 V i/V 100
x1 下
x2下
x3下
xi下
P1=VV1 100 P2=VV2 100
P3=VV3 100

Pi=VVi 100
x下=P1
P2
100 P3 Pi
%
x1下 x2下 x3下
xi下
➢当混合气燃烧时,其波面上的反应如下式: A+B→C+D+Q
E W
➢反应热Q=W-E
A+B
C+D
B
1
➢ 设燃烧波内反应物浓度为n 则单位体积放出能量为nw。 燃烧波向前传递,使前方分子活化,活化概率为α(α≤1) 则活化分子的浓度为αnW/E。第二批活化分子反应后再放出能量为αnW2/E。
➢前后两批分子反应时放出的能量比为 nW 2/EW1Q
13
例题
➢ 有燃气体含C2H6 40%,C4H10 60%,取1m3该燃气与19m3空气混 合。该混合气体遇明火是否有爆炸危险?(C2H6和C4H10在空气 中的爆炸上限分别为12.5%、8.5%,下限为3.0%、1.6%)
解: 乙烷:P1=40% 丁烷:P2=60%
x下=4010600%2.0% 3 1.6

爆炸公式汇总

爆炸公式汇总

一、物理爆炸能量1、压缩气体与水蒸气容器爆破能量当压力容器中介质为压缩气体,即以气态形式存在而发生物理爆炸时,其释放的爆破能量为:式中,E为气体的爆破能量kJ, 为容器内气体的绝对压力MPa,V为容器的容积m3, k 为气体的绝热指数,即气体的定压比热与定容比热之比;常用气体的绝热指数2、介质全部为液体时的爆破能量当介质全部为液体时,鉴于通常用液体加压时所做的功,作为常温液体压力容器爆炸时释放的能量,爆破能量计算模型如下:式中,El为常温液体压力容器爆炸时释放的能量kJ,p为液体的绝对压力Pa,V为容器的体积m3,βt为液体在压力p和温度T下的压缩系数Pa-1;3、液化气体与高温饱和水的爆破能量液化气体和高温饱和水一般在容器内以气液两态存在,当容器破裂发生爆炸时,除了气体的急剧膨胀做功外,还有过热液体激烈的蒸发过程;在大多数情况下,这类容器内的饱和液体占有容器介质重量的绝大部分,它的爆破能量比饱和气体大得多,一般计算时考虑气体膨胀做的功;过热状态下液体在容器破裂时释放出的爆破能量可按下式计算:式中,E为过热状态液体的爆破能量kJ,H1为爆炸前饱和液体的焓kJ/kg,H2为在大气压力下饱和液体的焓kJ/kg,S1为爆炸前饱和液体的熵kJ/kg℃,S2为在大气压力下饱和液体的熵kJ/kg℃,T1为介质在大气压力下的沸点℃,W为饱和液体的质量kg; 爆炸冲击波及其伤害、破坏模型、超压准则超压准则认为:爆炸波是否对目标造成伤害由爆炸波超压唯一决定,只有当爆炸波超压大于或等于某一临界值时,才会对目标造成一定的伤害;否则,爆炸波不会对目标造成伤害;研究表明,超压准则并不是对任何情况都适用;相反,它有严格的适用范围,即爆炸波正相持续时间必须满足如下条件:ωT>40式中:ω为目标响应角频率1/s,T为爆炸波持续时间s、冲量准则冲量准则认为,只有当作用于目标的爆炸波冲量达到某一临界值时,才会引起目标相应等级的伤害;由于该准则同时考虑了爆炸波超压、持续时间和波形,因此比超压准则更全面;冲量准则的适用范围为:ωT≤40、超压—冲量淮则房屋破坏式中Δps和Δ:分别为爆炸波超压和砖木房屋破坏的临界超压Pa,is和:分别为爆炸波冲量和砖木房屋破坏的临界冲量Pa·s,C为常数,与房屋破坏等级有关Pa2·s、冲击波超压的计算根据爆炸理论与试验,冲击波波阵面上的超压与产生冲击波的能量有关,同时也与距离爆炸中心的距离有关;冲击波的超压与爆炸中心距离的关系为:式中:ΔP为冲击波波阵面上的超压,MPa ;R 为距爆炸中心的距离,m;q为爆炸时产生冲击波所消耗的能量,kgTNT;、冲击波超压的计算TNT 在无限空气介质中爆炸时,空气冲击波峰值超压计算式为:、冲击波超压的计算将物理爆炸能量换算成TNT当量q因为1 kg TNT爆炸所放出的爆破能量为4 230 ~ 4 836 kJ / kg ,一般取1 kg TNT 爆炸所放出的平均爆破能量为4 500 kJ / kg,故其关系为:、爆炸死亡概率计算方法首先通过爆炸的事故后果模型得出计算位置处的冲击波超压数值,然后通过冲击波超压概率方程确定死亡概率冲击波超压伤害概率方程通常使用Purdy等人的经典概率方程:、人员非均匀分布时的死亡人数计算方法总死亡人数计算式:式中:N为总的死亡人数;D i为第i个网格的人口密度;S为网格面积;v i为第i 个网格的个人死亡率;n为网格的数目;ni第i个网格中的人数;个人死亡率3、水蒸汽锅炉爆炸后果计算、锅炉汽包爆炸能量计算特别在临界和亚临界锅炉、大功率锅炉情况下气液共存压力容器爆炸后果计算爆炸能量计算装压缩气体的压力容器爆炸后果计算爆炸能量计算装液体的压力容器爆炸后果计算爆炸能量计算爆源的一般特征爆源的爆炸长度的定义比例长度的定义比例超压的定义比例冲量的定义发生在理想气体中的点源爆炸,比例超压和比例冲量可以用下面的公式计算:对于发生在空气中的点源爆炸,比例冲量可以用下面的公式计算可压缩爆炸性气体,半径为Re的球形爆源的爆炸情况假设爆源能量E瞬间释放到源体积中,在能量释放过程中爆源体积不会发生膨胀,爆源能量E可写成:由爆源的爆炸长度的定义,代入上式可得式中Pe为定容爆炸产生的气体压力,k为爆炸产生的气体混合物的定压比热与定容比热之比,即绝热指数;对于烃~空气混合物爆炸Pe/P0≈8,k≈,代入上式计算,得到:Re/R0≈;也就是说,常见的烃~空气混合物瀑炸的爆源半径近似是爆炸长度的1/5;这说明这种爆源的能量密度比较高,随后的空气爆炸波的衰减规律与点源爆炸产生的爆炸波的衰减规律不应该有显着的不同,因此,爆炸波的比例超压、比例冲量等参数可以根据比例长度计算,尤其是在冲击半径远远大于源半径的情况下;对于TNT这样的凝聚相炸药爆炸,Pe≈100MPa,则Re/R0≈,爆源尺寸与爆炸长度相比可以忽略;因此,凝聚相炸药爆炸可以近似看作点源爆炸,除了离装药表面很近的区域外,凝聚相炸药爆炸产生的爆炸波行为与点源爆炸产生的爆炸波行为没有多大差别;可见,爆源半径与爆炸长度之比Re/R0可以衡量有限源爆炸与点源瀑炸产生的爆炸波的相似程度;该比值越接近于零,有限源爆炸产生的爆炸波越接近于点源爆炸产生的爆炸波;如果能量释放不是瞬间的,设能量释放持续时间为tR,则可以定义特征速度vr=Re/tR;例如,对于蒸气云爆炸,特征速度表示有效火焰速度或爆轰速度;如果反应速度是超声速的,即特征速度大干源介质的初始声速c0,则反应阵面前的物质不受波传播过程的扰动;源体积能量释放过程中保持不变;如果反应速度是亚声速的,即特征速度小于源介质的初始声速,则反应阵面前的介质被扰动;在这种情况下,由于热量释放,产物膨胀,使反应阵面位移,在燃烧完成时刻t=tR,源最终体积大于初始体积;对于典型的烃~空气混合物,能量释放完毕时的爆源半径近似为爆源初始半径的2倍,即RR/Re≈2;用爆炸释放总化学能来计算爆炸长度,则下式成立由爆源的爆炸长度的定义,代入上式可得为燃料—空气混合物的密度式中Hc为燃料—空气混合物的燃烧热J/kg,ρ为燃料—空气混合物中的声速m/s ;kg/m3,C对于典型的烃—空气混合物爆炸,取典型值从Hc/c02≈20, 得到:Re/R0 ≈ ;由于爆源的真实半径近似为初始半径的2倍,因此,爆源的真实半径近似为爆炸长度的倍,即RR/R0≈ ;这就是说,如果能量释放不是瞬间的,且反应速度是亚声速的,那么,爆源尺寸接近爆炸长度,瀑源的能量密度比较低,爆炸产生的空气爆炸波的行为与点源爆炸产生的空气爆炸波的行为有比较大的偏离;当然,冲击距离越远,这种偏离越小;在爆炸远场,这种偏离会完全消失;因为在爆炸远场,所有爆炸产生的爆炸波超压服从同样的衰减规律,即:爆炸场分区当爆炸波从爆源由近及远向外传播时,人们一般将爆炸场分成三个区,即:爆炸近场区爆炸波压力非常大,环境压力可以忽略不计;同时,爆炸波参数有分析解;爆炸中场区近场区外是中场区,在中场区爆炸波参数仍然很大,足以造成人员伤亡和建筑物、设备等的严重破坏,因此,研究中场区的爆炸波特性具有十分重要的意义;中场区爆炸波参数没有分析解,只有数值解;爆炸远场区远场区的爆炸波参数有近似的分析解;因此,如果知道远场区某点的爆炸波压力—时间历程,就能容易的求得远场区其他位置的爆炸波参数;由于TNT是一种常见的典型凝聚相炸药,就以TNT在平整地面上发生的爆炸事故为例,研究凝聚相爆炸事故的伤害机理,建立凝聚相爆炸事故的伤害模型,预测凝聚相瀑炸事故的严重度;如果是其它凝聚相爆炸危险品爆炸事故,可以先将参与爆炸的危险品质量转换为当量TNT质量,然后使用TNT爆炸事故伤害模型预测爆炸事故的严重度;求当量TNT质量的计算公式为式中WTNT 是当量TNT质量kg,W是实际参与爆炸事故的凝聚相爆炸品质量kg,QE是实际参与爆炸事故的凝聚相爆炸品爆热J/kg,QTNT为TNT爆热J/kg ;凝聚相爆炸事故伤害模型的总体思路及关键参数建立凝聚相爆炸事故伤害模型的总体思路是:分析凝聚相爆炸产生的爆炸波伤害效应分析爆炸火球热辐射伤害效应分析爆炸破片伤害效应分析爆炸波作用下房屋倒塌伤害效应在分析和比较各种伤害半径相对大小的基础上,提出预测凝聚相爆炸事故严重度的具体方法影响凝聚相爆炸事故严重度预测结果的关键参数有:凝聚相爆炸品的质量、爆热、爆源周围房屋密集程度、室内人员密度、室外人员密度和财产密度等;爆炸波对人的直接伤害爆炸波对人的直接伤害是指爆炸产生的爆炸波直接作用于人体而引起的人员伤亡;White认为,人和哺乳动物对入射超压、反射超压、动态超压、最大超压上升时间和爆炸波持续时间十分敏感;冲量也是影响伤害程度的重要因素;除了上述爆炸波特性参数外,影响伤害程度的因素还有环境压力、动物类型、体重、年龄、与爆炸波的相对方位等;研究表明,人体中相邻组织间密度差最大的部位最易遭受爆炸波的直接伤害;对人而言,肺是最易遭受爆炸波直接伤害的致命器官,肺遭受伤害的生理~病理效应多种多样,如肺出血、肺气肿、肺活量减小等,严重时导致死亡;耳是最易遭受爆炸波直接伤害的非致命器官;考虑爆炸波的伤害可以从考虑肺伤害和耳伤害入手;爆炸波对肺的伤害在研究爆炸波对肺的伤害时,不同研究人员的研究思路和使用的伤害准则不尽相同;下面介绍文献中出现的两个肺伤害模型,并通过数值计算和回归分析,推导肺伤害致死半径的具体计算公式:爆炸波对肺的伤害——肺伤害模型一1990年,Pietersen提出了一个估计肺伤害致死半径的初步设想;下面的算法是对该设想的完善和具体实现超压和冲量计算由于凝聚相爆炸可近似看成点源爆炸,因此可应用发生在理想气体中的点源爆炸,比例超压和比例冲量计算式,计算爆炸产生的爆炸波超压ΔPs和冲量is;由于是地面爆炸,式中爆源能量应取实际爆源能量的倍;爆炸波对耳的伤害死亡半径计算人耳是最易遭受爆炸波伤害的非致命器官;Eisenberg认为,入射超压只需44kPa即可造成50%耳鼓膜破裂;相应的回归方程分别为:W为爆源当量TNT质量kgTNT整个身体位移时的撞击伤害整个身体位移时的撞击伤害是指人体在爆炸波超压和爆炸气流的作用下,被抛入空中并发生位移,在飞行中与其他物体发生撞击,从而受到的伤害;这种伤害既可在加速阶段发生,又可在减速阶段发生,但在后一种情形下,伤害往往更严重;减速撞击伤害程度由撞击后的速度变化、撞击持续时间、距离、被撞击表面的类型、性质、被撞击的人体部位和撞击面积等因素决定;撞击死亡超压假设撞击发生在减速阶段,被撞击面为刚性表面,White据此推导出,头部撞击死亡概率为50%时所需要的撞击速度为5.49m/s,整个身体撞击导致50%死亡概率时所需的撞击速度为16.46m/s;Baker和Cox等人,假设人体在空气动力学上近似为圆柱体,长径比为,空气阻力系数取,环境压力取101350Pa,环境声速取340.29m/s;由此推导出头部撞击50%死亡率曲线和身体撞击50%死亡率曲线爆炸波作用下头部撞击50%死亡率曲线图整个身体位移时的撞击伤害撞击死亡超压对头部撞击50%死亡率曲线进行拟合得到爆炸波作用下身体撞击50%死亡率曲线图对身体撞击50%死亡率曲线进行拟合得到爆炸波对人的直接伤害整个身体位移时的撞击伤害头部是最容易遭受机械伤害的致命部位;在减速撞击过程中,除头部伤害以外,其他致命的内部器官也可遭到伤害,或发生骨折;应该指出,被掩击的人体部位是随机的;头部撞击头朝前致死距离的回归方程为:W为爆源当量TNT质量kgTNT整个身体随机撞击致死距离的回归方程为:为爆源当量TNT质量kgWTNT爆炸火球模型火球直径、持续时间与药量之间一般具有如下的指数关系式中D为火球直径m,W为爆炸消耗的燃料质量kg,t为火球持续时间s,a、b、c、d 为经验常数;常见的爆炸火球模型爆炸火球模型式中D为火球直径m,t为火球持续时间s, θ为火球温度K,W为火球中消耗的燃料质量kg;火球热辐射的传播为了估计爆炸火球的伤害距离,必须知道火球热辐射的传播规律;在不考虑空气对热辐射吸收作用的情况下,Baker和Cox等人得到了下面的热辐射传播公式:式中q为热通量w/m2,Q为热剂量J/m2,W为火球中消耗的燃料质量kg,θ为火球温度K,R为到火球中心的距离m,G为常量,F为常量,B为常量×104,D为火球直径m;代入火球直径表达式,可得如果己知目标伤害的临界热剂量Qcr,火球消耗燃料质量W和火球温度θ,利用上式就可以计算火球的伤害距离;爆炸火球的伤害距离在瞬间火灾条件下,伤害程度只取决于接受到的热剂量,其一度灼伤、二度灼伤、死亡和引燃木材的临界热剂量分别为172kJ/m2、392kJ/m2、592kJ/m2和1030kJ/m2;火球的伤害距离表达式简化为:从式中可见,伤害距离与火球温度无关;将常量B=×104和一度灼伤、二度灼伤、死亡、引燃木材的临界热剂量172kJ/m2、392kJ/m2、592kJ/m2、1030kJ/m2代入火球伤害距离式,得:破片伤害效应由于从爆炸中获得巨大的初始动能,爆炸产生的破片能够在空中飞行很远的距离,并能伤害飞行中遇到的目标;爆炸破片分成初始破片和次生破片两大类;初始被片是装药壳体或储存容器破裂产生的破片次生破片则是爆炸近场物体在爆炸波作用下产生的破片储存容器破裂通常只产生1~2块大破片,而装有炸药的炮弹或容器爆炸则能产生很多小破片;尽管这些小破片形状不规则,但它们基本上是短粗状的,各个方向的几何尺寸具有相同的数量级,破片质量一般不超过1g,爆轰装药壳体的破片速度一般是储存容器破片速度的十倍以上,达到每秒几十米;爆炸近场的各种物体,从建筑材料一直到地面上的树木、花草、庄稼和蔬菜,都可以成为次生破片;次生破片的飞行速度、飞行距离和穿透能力一般比初始破片小得多,但仍有可能对它遇到的目标造成伤害;破片速度可以通过爆源能量来估计;有壳药柱爆炸产生的破片,初始动能一般是爆源能量的20%~60%;因此,破片初始速度可用下式计算:式中V'是破片初始速度m/s,E是破片初始动能J,W是破片质量kgClancey假设各种尺寸的装药能将破片推进同样的距离,据此推导出TNT爆炸产生的壳体破片多数具有以下的初始速度:薄壳体,2438m/s;中等厚度壳体,1829m/a;厚竞体,1219m/s;尽管Clancey所作的假设不尽合理,因为大尺寸装药能将破片推进更远的距离,但他估计出的破片初始速度对爆炸破片的初步危险性分析很有帮助;Clancey同时建议用下面的经验式估计破片的飞行距离式中:X代表飞行距离m,V代表破片飞行X米路程后的速度m/s,k是常数,超声速飞行时为,亚声速飞行时为,a是阻力系数,与破片形状和飞行方向有关,破片越规则和对称,阻力系数越小;a的取值范围一般为:~;破片穿透建筑材料的能力用下式来估计是破片穿透距离m,k、a和b是常数,取值与目标材料的性质密切相关,对式中:d1混凝土材料,取值分别为:18×10-6、和;对泥砖材料,取值分别为:23×10-6、和:对中等强度钢材,取值分别为:6×10-5、和;应用上式时应该注意两点:不规则形状的破片,其穿透能力只有计算值的一半;而坚锐的破片,其穿透能力比计算值更大;因此,在估计破片的穿透距离时,从安全的角度考虑, 上式计算出的穿透距离应再乘以、的安全系数;破片穿透皮肤可能引起人的死亡;死亡可能性大小与破片质量与撞击速度有关;荷兰应用科学研究院的研究结果表明,它们之间存在如下关系:式中:Pr为死亡几率单位非穿透性破片的质量和速度如果足够大,同样可以造成人员伤亡;荷兰应用科学研究院通过实验研究,推导的非穿透性破片撞击死亡几率单位方程为:英国炸药储存与运输委员会认为,破片的撞击动能必须大于或等于80J,才能够将人撞击致死;该委员会还建议,如果落入地面的破片密度为每56m2一块破片,则在室外开阔地面,人被破片击中的概率为1%;爆炸波对房屋的破坏爆炸能不同程度地破坏周围的房屋和建筑设施,造成直接经济损失;房屋的破坏程度不但与爆源性质、爆源总能量、房屋离爆源距离有关,而且与房屋本身的结构有关常见的房屋结构可以分为以下几类:钢筋结构混凝上结构钢筋混凝土结构砖石结构为了得到爆炸波与房屋破坏之间的关系,确定炸药库房与周围房屋之间的安全距离,英国炸药储存与运输委员会对100次爆炸事故进行了系统的调查研究;被调查的爆炸事故涉及到的炸药有TNT、硝化甘油、硝化棉和铝未混合炸药,药量从136.1kg到×106kg;1968年,Jarrett对英国炸药储存与运输委员会所做的这些工作进行了归纳和总结,提出了英式砖石结构房屋破坏程度与药量、距离间的如下关系式:式中R为爆炸波作用下的房屋破坏半径m,K为常量,与房屋破坏程度有关;Jarrett 将房屋的破坏程度分为A、B、Cb、Ca和D五级,其中A级破坏最严重,D级破坏最轻微;对K的取值分别为、、、28和56;房屋破坏等级分类A类破坏是指房屋几乎被完全摧毁;B类破坏是指房屋50%~75%的外部砖墙被摧毁,或不能继续安全使用,必须推倒;Cb类破坏是指屋顶部分或完全坍塌,或1~2个外墙部分被摧毁,或承重墙严重破坏,需要修复;Ca类破坏是指房屋隔板从接头上脱落,房屋结构至多受到轻微破坏;D类破坏是指屋顶和盖瓦受到一定程度的破坏,10%以上的窗玻璃破裂,房屋经过修复可继续居住;利用上式计算出的破坏距离应作如下理解:破坏距离以内的房屋全部遭受相应程度的破坏,而破坏距离以外的房屋无一遭受相应程度的破坏;或者说,破坏距离以内没有遭受相应程度破坏的房屋正好被破坏距离以外遭受相应程度破坏的房屋抵消;在实际发生的爆炸事故中,房屋倒塌是人员伤亡的一个重要原因;但室内人员因房屋倒塌死亡的概率与房屋的倒塌程度和房屋倒塌的突然程度有密切关系;因为,如果房屋倒塌之前有警告,人们就可以根据危险的严重性和紧迫性,采取不同的应对措施,如跑到室外,或呆在室内比较安全的地方,从而降低伤亡的概率;为了估计房屋倒塌的死亡人数,Withers和Lees对历史上的大量爆炸案例进行了分析,得到了爆源质量、室内人员密度与房屋倒塌致死人数间的关系:式中:N为房屋倒塌致死人数人,a为在室内的人,因房屋倒塌而死亡的概率,ρ为室内人员密度人/m2,R为爆炸使英式砖石房屋破坏得不能居住的最大距离m;应用上式时要注意两点:爆炸必须发生在建筑密集地区;爆炸必须是突然发生的,事前无警告,因而房屋倒塌时人们无法采取预防措施;爆炸使英式砖石房屋破坏得不能居住的最大距离凝聚相爆炸事故严重度预测方法到目前为止,已经讨论了凝聚相爆炸事故的爆炸波伤害效应、火球伤害效应、破片伤害效应和房屋倒塌伤害效应,推导或介绍了各种伤害效应的作用范围,比较了它们的相对大小;下面将在此基础上提出凝聚相爆炸事故严重度预测方法;基本假设为了预测凝聚相爆炸事故的严重度,需要用到如下假设:爆炸事故指凝聚相爆炸品在平整地面突然发生的无约束或弱约束爆炸事故,人们来不及采取任何躲避措施;只考虑房屋倒塌对室内人员产生的伤害效应,不考虑对室外人员产生的伤害效应,也不考虑初始破片和热辐射产生的伤害效应;死亡半径指爆炸波作用下头部撞击致死半径;重伤半径指50%耳鼓膜破裂半径;轻伤半径指1%耳鼓膜破裂半径;财产损失半径指爆炸波作用下砖石房屋Cb级破坏半径;室内平均人员密度和室外平均人员密度分别为ρ1和ρ2人/m2,平均财产密度为ρ3万元/m2,房屋占地百分比为f预测凝聚相爆炸事故严重度时,只考虑事故造成的直接财产损失和人员伤亡折合财产损失,不考虑事故造成的间接财产损失;预测凝聚相爆炸事故严重度的步骤如下:输入模型参数爆炸品质量Wkg、爆热QE J/kg、室内人员密度ρ1人/m2、室外人员密度ρ2人/m2、财产密度ρ3万元/m2、房屋占地百分比f将爆源质量W算成当量TNT质量WTNTkg;计算爆炸波作用下头部撞击致死半径R1m;计算爆炸波作用下耳鼓膜50%破裂半径R2m;计算爆炸波作用下耳鼓膜1%破裂半径R3m;计算砖石房屋Cb级破坏半径R4m;计算房屋破坏得不能居住半径R5m;按下式计算死亡人数N1人:式中:a为室内人员因房屋倒塌死亡的概率;上式右边第一项代表室内爆炸波直接致死人数,第二项代表室外爆炸波直接致死人数,第三项代表爆炸波作用下室内人员因房屋倒塌死亡人数;当房屋破坏得不能居住半径R5m大于耳鼓膜50%破裂半径R2m时,按下式计算重伤人数N2人:式中常量b是房屋倒塌中室内人员受重伤概率,建议b=上式右边第一项代表室内爆炸波直接致重伤人数,第二项代表室外爆炸波直接致重伤人数,第三项代表爆炸波作用下室内人员倒塌受重伤人数;当房屋破坏得不能居住半径R5m小于耳鼓膜50%破裂半径R2m时,按下式计算重伤人数N2人:上式右边第一项代表室内爆炸波直接致重伤人数,第二项代表室外爆炸波直接致重伤人数;当耳鼓膜50%破裂半径R2m、耳鼓膜1%破裂半径R3m和房屋破坏得不能居住半径R5m依次增大时,按下式计算轻伤人数N3人:式中常量c是房屋倒塌中室内人员受轻伤概率,取c=;右边第一项代表室内爆炸波直接致轻伤人数,第二项代表室外爆炸直接致轻伤人数,第三项代表爆炸波作用下室内人员因房屋倒塌受轻伤人数;当耳鼓膜50%破裂半径R2m、房屋破坏得不能居住半径R5m和耳鼓膜1%破裂半径R3m依次增大时,按下式计算轻伤人数N3人:右边第一项代表室内爆炸波直接致轻伤人数,第二项代表室外爆炸直接致轻伤人数,第三项代表爆炸波作用下室内人员因房屋倒塌受轻伤人数;当房屋破坏得不能居住半径R5m、耳鼓膜50%破裂半径R2m和耳鼓膜1%破裂半径R3m依次增大时,按下式计算轻伤人数N3人:右边第一项代表室内爆炸波直接致轻伤人数,第二项代表室外爆炸直接致轻伤人数;凝聚相爆炸事故造成的财产损失S1万元按下式计算:。

爆炸极限、压力和温度的计算

爆炸极限、压力和温度的计算

五、建筑灭火器配置(一)、建筑灭火器适用范围度危险场所划分扑救A类火灾应选用水型、泡沫、磷酸铵盐干粉、卤代烷型灭火器。

扑救B类火灾应选用干粉、泡沫、卤代烷、二氧化碳型灭火器。

扑救极性溶剂B类火灾不得选用化学泡沫灭火器。

扑救C类火灾应选用干粉、卤代烷、二氧化碳、干粉型灭火器。

扑救A、B、C类和带电火灾应选用磷酸铵盐干粉、卤代烷型灭火器。

扑救D类火灾的灭火器材应由设计部门和当地公安消防监督部门协商解决。

危险场所分为严重危险级、中危险级、轻危险级。

(二)、建筑灭火器的配置基准与设置灭火器配置场所的火灾种类;灭火有效程度;对保护物品的污损程度;设置点的环境温度;使用灭火器人员的素质。

(三)、建筑灭火器的灭火级别与选择灭火器的灭火级别应由数字和字母组成,数字应表示灭火级别的大小,字母(A或B)、应表示灭火级别的单位及适用扑救火灾的种类。

(四)、建筑灭火器的使用与维护灭火器应设置在明显和便于取用的地点,且不得影响安全疏散。

灭火器应设置稳固,其铭牌必须朝外。

手提式灭火器宜设置在挂钩、托架上或灭火器箱内,其顶部离地面高度应小于1.50 m;底部离地面高度不宜小于0.15 m。

灭火器不应设置在潮湿或强腐蚀性的地点,当必须设置时,应有相应的保护措施。

设置在室外的灭火器,应有保护措施。

灭火器不得设置在超出其使用温度外范围的地点。

灭火器的使用温度范围应符合规范规定。

在卤代烷灭火器定期维修、水压试验或作报废处理时,必须使用经国家认可的卤代烷回收卤代烷灭火剂。

已配置在工业与民用建筑及人防工程内的所有卤代烷灭火器,除用于扑灭火灾外,不得随意向大气中排放。

在非必要配置卤代烷灭火器的场所已配置的卤代烷灭火器,当其超过规定的使用年限或达不到产品质量标准要求时,应将其撤换,并应作报废处理。

六、初起火灾的扑救与人员疏散逃生(一)、初起火灾扑救的方法和原则发生火灾后,要及时使用本单位(地区)、的灭火器材、设备进行扑救。

有手动灭火系统的应立即启动。

无限水介质中爆炸冲击波压力计算公式辨析

无限水介质中爆炸冲击波压力计算公式辨析

无限水介质中爆炸冲击波压力计算公式辨析周方毅;陈晓强;张可玉;詹发民【摘要】对无限水介质中爆炸的冲击波压力计算公式在实际应用中应如何选用进行了辨析,提出了不同条件下推荐使用的公式.【期刊名称】《爆破》【年(卷),期】2003(020)001【总页数】3页(P7-8,11)【关键词】水中冲击波;水介质;超压;水下爆破【作者】周方毅;陈晓强;张可玉;詹发民【作者单位】海军潜艇学院,山东,青岛,266071;海军潜艇学院,山东,青岛,266071;海军潜艇学院,山东,青岛,266071;海军潜艇学院,山东,青岛,266071【正文语种】中文【中图分类】工业技术第 20 卷第 l 期 2003 年 3 月爆破BLASTING Vol.20 No.lMar.2003 文章编号:1001- 487X(2003)01 - 0007 一 02无限水介质中爆炸冲击波压力计算公式辨析周方款,陈晓强,张可玉,金发民(海军浴艇学院.山东青岛 266071)摘要:对无限水介质中爆炸的冲击波压力计算公式在实际应用中应如何选用进行了辨析,提出了不同条件下狼荐使用的公式。

关键词 t水中冲击波;水介质;超压;水下爆破中国分类号:TD235.l + l 文献标识码:A AnalysesonFormulae of Pressure CausedbyExplosive ShockWaveinIndefinite Water MediaZHOUFang-yi, CHEN Xial qiang, ZHANG Ke-yu , ZHAN Fa-min( Navy Submarine Academy,Qingdao 266071, China) Abstract : Manypr田sure fo口nulae of explosive shock wave in indefinite water media andits difference indiffer­enr scale distance are distinguished,the formulae applied in practice arc selected,the recommended formulae on dif­fere ntconditiorui are analyzed.Keywords:shock wave inwater;watermedia;overpressure;underwater blasting 1 问题的提出目前,无限水介质中爆炸冲击力计算公式较多,且在不同的比例距离范围内各有区别,有不少读者在实际应用中却随便拿来就用,忽视了公式的使用条件,这就导致了计算值与实际值之间出现了较大的误差,更为严重的是有时将达不到爆破的预期目的。

爆炸极限理论与计算

爆炸极限理论与计算

第五节爆炸极限理论与计算一、爆炸极限理论可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。

实验发现,当混合物中可燃气体浓度接近化学反应式的化学计量比时,燃烧最快、最剧烈。

若浓度减小或增加,火焰蔓延速率则降低。

当浓度低于或高于某个极限值,火焰便不再蔓延。

可燃气体或蒸气与空气的混合物能使火焰蔓延的最低浓度,称为该气体或蒸气的爆炸下限;反之,能使火焰蔓延的最高浓度则称为爆炸上限。

可燃气体或蒸气与空气的混合物,若其浓度在爆炸下限以下或爆炸上限以上,便不会着火或爆炸。

爆炸极限一般用可燃气体或蒸气在混合气体中的体积百分数表示,有时也用单位体积可燃气体的质量(kg·m—3)表示。

混合气体浓度在爆炸下限以下时含有过量空气,由于空气的冷却作用,活化中心的消失数大于产生数,阻止了火焰的蔓延。

若浓度在爆炸上限以上,含有过量的可燃气体,助燃气体不足,火焰也不能蔓延。

但此时若补充空气,仍有火灾和爆炸的危险。

所以浓度在爆炸上限以上的混合气体不能认为是安全的。

燃烧和爆炸从化学反应的角度看并无本质区别。

当混合气体燃烧时,燃烧波面上的化学反应可表示为A+B→C+D+Q(4—1)式中A、B为反应物;C、D为产物;Q为燃烧热。

A、B、C、D不一定是稳定分子,也可以是原子或自由基。

化学反应前后的能量变化可用图4—4表示。

初始状态Ⅰ的反应物(A+B)吸收活化能正达到活化状态Ⅱ,即可进行反应生成终止状态Ⅲ的产物(C+D),并释放出能量W,W=Q+E。

图4-4 反应过程能量变化假定反应系统在受能源激发后,燃烧波的基本反应浓度,即反应系统单位体积的反应数为n,则单位体积放出的能量为nW。

如果燃烧波连续不断,放出的能量将成为新反应的活化能。

设活化概率为α(α≤1),则第二批单位体积内得到活化的基本反应数为anW/E,放出的能量为。

αnW2/E。

后批分子与前批分子反应时放出的能量比β定义为燃烧波传播系数,为现在讨论β的数值。

第3章__爆炸

第3章__爆炸
一、爆炸温度的计算 1.根据反应热计算爆炸温度 计算乙醚与空气混合的爆炸温度





(1)先列出乙醚在空气中燃烧的反应方程式: C4H10O + 6O2 + 22.6N2→ 4CO2 + 5H2O + 22.6N2 式中,氮的摩尔数是按空气中N2∶O2=79∶21的比 例确定的,即 6O2对应的N2应为: 6×79/21 = 22.6 由反应方程式可知,爆炸前的分子数为29.6,爆炸 后为31.6。
第二章
第1节
爆炸
爆炸及其分类
一、爆炸定义及其特征
1、爆炸的定义
所谓爆炸是指大量能量(物理能量或 化学能量)在瞬间迅速释放或急剧转化成 功和机械、光、热等能量形态的现象。
1
阳谷中石药业大火扑救现场发生 多次爆炸
2
地震了,快跑!”12月8日清晨,一声巨响 将聊城市阳谷县博济桥街道办事处官路 唐村、西宋村多户居民家中的门窗震裂, 从睡梦中惊起的村民四处奔逃。 这不是一场地震,而是两村庄附近 的山东中石药业有限公司一车间发生意 外爆炸并引发大火造成的。
27
4、爆炸极限的实用意义
可用来评定可燃气体和可燃液体燃爆危险 性的大小,作为可燃气分级和确定其火灾 危险性类别的标准。一般把爆炸下限 <10%的可燃气体划为一级可燃气体,其 火灾危险性列为甲类。 可作为设计依据。 可作为制定安全生产操作规程的依据。
28
三、可燃气体爆炸极限的影响因素 1、初始温度 可燃性混合气的初始温度升高,使爆 极限范围增大,即爆炸下限降低,上限增 高。这是因为温度升高,会使反应物分子 的活性增大,因而反应速度加快,反应时 间缩短,导致反应放热速率增加,散热减 少,使爆炸反应容易发生。

爆炸伤害计算

爆炸伤害计算

1)蒸气云爆炸事故情景制氧车间氢气站设有容积20m3氢气罐一个,事故预测时按超压(10Mpa)计算氢气量。

氢气储罐大规模破裂时,气体泄漏形成气云,达到爆炸极限时遇激发能源即可发生气体爆炸,对气体爆炸,按超压-冲量准则预测蒸气云爆炸事故后果。

2)蒸气云爆炸总能量蒸气云爆炸总能量由下式计算:E=1.8 aVfQf式中:1.8-地面爆炸系数;a-可燃气体蒸气云的当量系数,取0.04;Vf-氢罐内气体体积;Vf =2000 Nm3Qf-氢气燃烧热,Qf =12770 kJ/m3。

经计算:E=1.8×0.04×2000×12770 = 1839 MJ 3)蒸气云爆炸当量蒸气云TNT当量由下式计算:WTNT = aWfQf/QTNT式中:WTNT、a、Wf、Qf计算同上;QTNT—TNT爆炸热,取QTNT=4520 kJ/kg。

WTNT =1839000/4520=407 kg4)爆炸冲击波超压伤害范围(1)死亡区范围死亡区按下式计算:R=13.6(WTNT/1000)0.37=13.6(407/1000)0.37=10m(2)重伤和轻伤区范围蒸气云爆炸冲击波超压按下式计算:Ln(△PS /P0)= -0.9126-1.5058 LnZ+0.167 Ln2Z-0.032 Ln3Z 式中: Z = R (P0/E)1/3R—目标到蒸气云中心距离,m;P0—大气压,101325Pa;E—蒸气云爆炸总能量,1839 MJ。

蒸气云爆炸冲击波重伤超压按44Kpa计,轻伤超压按17Kpa 计,根据蒸气云爆炸冲击波超压计算公式得出:重伤半径:R1=25 m;轻伤半径:R2=47 m。

氢气储罐大规模破裂泄漏,形成氢气云团发生爆炸,爆炸破坏范围计算见下氢气储罐破裂发生气体爆炸伤害范围气体爆炸能量1839MJ爆炸TNT当量407Kg死亡半径10m重伤半径25m轻伤半径47m再来看看爆炸的气体特点:丙烯 C3H6或CH3CHCH21.别名·英文名Propene、Propylene.2.用途生产丙酮、异丙基苯、异丙醇、异丙基卤化物和异丙基氧;聚合丙烯塑料。

一个氧气瓶爆炸半径计算

一个氧气瓶爆炸半径计算

4.2物理爆炸事故后果模拟4.2.1模拟计算本项目选取氧气瓶作为预测评价单元。

20℃时,氧气气瓶的爆炸极限压力为1.9MPa ,气瓶容积为40L ; 计算发生爆炸事故时的危害程度,计算公式如下:①当压力容器中的介质为压缩气体时,其以气态形式存在而发生物理爆炸的能量为:式中:Eg -气体的爆破能量,kJ ; p —容器内气体的绝对压力,MPa ; V —容器的容积,m 3;k —气体的绝热指数,及气体的定压比热与定容比热之比。

②将能量Eg 换算成TNT 当量q : q = Eg / q TNT = Eg / 4500 ③求出爆炸的模拟比α α=(q /1000)1/3④求出在1000kgTNT 爆炸试验中的相当距离R 0 R 0=R /α⑤根据R 0值找出距离为R 0处的超压△P 0,此即所求距离为R 处的超31101013.011⨯⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=-k k gP k PV E压。

根据超压△P0找出爆炸对人员和建筑物的伤害和破坏作用。

根据公式事故后果模拟计算结果见表4-1所示。

表4-1 事故后果模拟计算表4.2.2事故后果分析⑴爆炸的伤害分区爆炸的伤害分区即为人员的伤害区域。

为了估计爆炸所造成的人员伤亡情况,本项目的爆炸伤害分区情况见表4-2所示。

表4-2 爆炸伤害分区表⑵建筑物及设施的破坏分区爆炸能不同程度的破坏周围的建筑物和设施等,造成直接经济损失。

根据爆炸破坏模型,可估计建筑物的不同破坏程度,据此可将爆炸源周围划分为几个不同的区域。

本项目爆炸建筑物破坏情况见表4-3所示。

表4-3建筑物破坏情况表死亡半径R=13.6(W TNT/1000)0.37=13.6(0.021/1000)0.37=0.25m。

注安:爆炸反应浓度、爆炸温度和压力的计算

注安:爆炸反应浓度、爆炸温度和压力的计算

注册安全工程师:爆炸反应浓度、爆炸温度和压力的计算1.爆炸完全反应浓度计算爆炸混合物中的可燃物质和助燃物质完全反应的浓度也就是理论上完全燃烧时在混合物中可燃物的含量,根据化学反应方程式可以计算可燃气体或蒸气的完全反应浓度。

现举例如下:[例]求乙炔在氧气中完全反应的浓度。

[解]写出乙炔在氧气中的燃烧反应式:2C2H2+502 = 4C02+2H20+Q根据反应式得知,参加反应物质的总体积为2+5 = 7。

若以7这个总体积为100,则2个体积的乙炔在总体积中占:Xo = 2/7 = 28.6%答:乙炔在氧气中完全反应的浓度为28.6%。

可燃气体或蒸气的化学当量浓度,也可用以下方法计算。

燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1 mol气体所必需的氧的物质的量为n,则燃烧反应式可写成:CαHβOγ+ nO2 → 生成气体如果把空气中氧气的浓度取为20.9%,则在空气中可燃气体完全反应的浓度x(%)一般可用下式表示:1 20.9X = ———— = -----———% (2—4)n 0.209+ n又设在氧气中可燃气体完全反应的浓度为X0(%),即:100X0 = ——% (2—5)1+n式(2—4)和式(2—5)表示出X和X。

与n或2n之间的关系(2n表示反应中氧的原子数)。

CαHβOγ+ nO2 →αCO2 + 1/2βH2O式中2n = 2α+1/2β-γ,对于石蜡烃β=2a+2。

因此,2n = 3a+1-γ。

根据2n的数值,从表2 4中可直接查出可燃气体或蒸气在空气(或氧气)中完全反应的浓度。

[例]试分别求H2、CH3OH、C3H8 C6H6在空气中和氧气中完全反应的浓度。

[解](1)公式法:20.9X( H2 )= —————— % =29.48%0.209+ 0.5100X0 ( H2 )= —— % = 66.7 %1+n20.9X(CH3OH )= —————— % =12.23%0.209+ 1.5100X0 (CH3OH )=——— % = 40 %1+1.520.9X(C3H8)= —————— % =4.01%0.209 + 5100X0 (C3H8)= —— % = 16.7 %1+ 520.9X(C6H6)=—————— % =2.71%0.209+ 7.5100X0 (C6H6 )=——— % = 11.8 %1+7.5(2)查表法:根据可燃物分子式,用公式2n = 2α+1/2β-γ,求出其2n值。

防爆铅板压力运算公式

防爆铅板压力运算公式

防爆铅板压力运算公式
公式的推导和使用涉及到一些工程学和物理学的知识。

一般而言,防爆铅板受到爆炸冲击时所受的压力可以用以下公式来计算:
P = K (W / A)。

其中,P代表防爆铅板受到的压力,单位为帕斯卡(Pa);K是
一个与爆炸特性和距离有关的修正系数;W代表爆炸释放的能量,
单位为焦耳(J);A代表防爆铅板的有效面积,单位为平方米
(m^2)。

在实际应用中,需要根据具体的爆炸情况和防爆铅板的特性来
确定修正系数K的数值。

同时,爆炸释放的能量W可以通过爆炸装
置的特性参数来计算,而防爆铅板的有效面积A则是根据实际情况
进行测量和计算。

需要注意的是,防爆铅板压力运算公式是在一定假设条件下推
导出来的,实际应用中还需要考虑其他因素,如爆炸波的传播特性、防爆铅板的材质和结构等。

因此,在工程实践中,需要综合考虑多
种因素,进行全面的分析和设计,以确保防爆铅板能够有效地减轻爆炸冲击带来的压力影响。

气瓶爆炸计算

气瓶爆炸计算

本项目中最可能发生事故是氧气钢瓶发生物理爆炸,具体分析如下:TNT当量计算当氧气钢瓶发生爆炸时,气体膨胀所释放的能量(即爆破能量)不仅与气体压力和储罐的容积有关而且与介质在容器内的物性相态相关。

氧气为非热力气体,无焓值、熵值;承压状态下称压缩气体,承压钢瓶破裂时属物理性爆炸;其能量计算,与瓶内压力、瓶体容积、气体绝热指数有关。

本项目中运用压缩气体爆破能量计算模型计算,其释放的爆破能量为:Eg=2.5PV/(k-1)[1-(0.1013/p)k-1/k] ×103式中, Eg-气体的爆破能量,kJ;P-容器内气体的绝对压力,MPa;V-容器的容积,m3;k-气体的绝热指数,即气体的定压比热与定容比热之比,此处取1.4;令:Cg=2.5P[1-(0.1013/P)0.2857]×103则:Eg= Cg·V式中, Cg–常用压缩气体破能量系数,kJ/m3,此处取值为 1.1×103 kJ/m3;本项目氧气实瓶储存量为400个,假设均发生爆炸,则V=16m³;则Eg= Cg·V=1.1×103 kJ/m3×16m³=1.76×104 kJ;将爆破能量换算成TNT当量W TNT。

因为1kg TNT爆炸所放出的爆破能量为4230~4836 kJ,一般取平均爆破能量为4500kJ,故其关系为:W=Eg/4500=1.76×104/4500=0.39㎏,即氧气钢瓶爆炸释放的能量相当于0.39kgTNT爆炸所放出的爆破能量。

冲击波计算1、爆炸模拟比为aa=(q/q0)1/3=(0.39/1000)1/3=0.0732、求出在1000kgTNT爆炸试验中相当距离Ro的相应值Ro=R/a按照模拟比值和1000kgTNT在空气中爆炸试验中所产生的冲击波距离Ro/m值计算结果见下表:表F4.1 钢瓶模拟爆炸产生的冲击波超压数值3、从表F4.2和表F4.3中得到钢瓶爆炸所造成的冲击波对人体的伤害作用和对建筑物的破坏作用。

储罐爆炸计算

储罐爆炸计算

1)计算原理低温液体容器爆破所释放出来的能量为气体的能量和饱和液体的能量,由于前者量很小,往往可忽略不计,因为暴沸低温液体爆炸在瞬间完成,所以是一个绝热过程,其爆破能量可用下式计算:1121w 11k k p v p k p -⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥-⎝⎭⎢⎥⎣⎦W :储罐物理爆炸能量(J ); P 1:储罐爆炸时压力; P 2:大气压力,取101325pa ;V :储罐体积(储存最高液位的体积,贮存低温液体时,充装率不得大于0.95,取充装率为0.95。

)K :气体的绝热指数,(双原子1.4;多原子1.29) (2)储罐的爆炸能计算 液氧:P 1=0.785MP ,V=28.5,K=1.4 液氮 P 1=0.785MP ,V=9.5,K=1.4 液氩 P 1=0.785MP ,V=14.25,K=1.4 液态二氧化碳:P 1=2.16MP ,V=28.5,K=1.29所得液氧、液氮、液氩、液态二氧化碳储罐物理爆炸能见表(3)储罐物理爆炸的TNT 当量计算:TNTTNTw w Q =TNT Q =4520 kJ/kg所得液氧、液氮、液氩、液态二氧化碳储罐物理爆炸的TNT 当量见表5)爆炸冲击及伤害破坏 (1)爆炸的模拟比α与基准炸药量(1000kg 的TNT )爆炸模拟比。

30qqa ==(TNT Q /1000)1/3=0.47445所得液氧、液氮、液氩、液态二氧化碳储罐物理爆炸的模拟比α见表(2)基准炸药量(1000kg 的TNT )爆炸实验中的相当距离R 0=R/a表5.3-1冲击波超压对人体的伤害作用表5.3-2 1000kgTNT 爆炸时的冲击波超压根据表5.3-1的内容,选择冲击波超压的3个阈值0.02、0.03、0.05、用插入法在表5.3-2的内容基础上计算出3个相当距离为56m、42.5m和32.5m。

6)爆炸伤害半径计算根据公式R0=R/a求出该项目液氧、液氮、液氩、液态二氧化碳储罐一旦发生物理爆炸其不同程度的伤害半径见表。

冲击波超压基本计算公式1

冲击波超压基本计算公式1

冲击波超压基本计算公式1
、IMP亦9.81Kgf/cm^。

表5-仃地⾯爆炸时空⽓冲击波峰值超压的⼈⾝伤害准则
见《安全⽣产技术》中压⼒容器爆炸的危害
⼆、点爆炸冲击波超压基本计算公式
△ P=0.084R+0.27R2+0.7R3(适⽤范围:1< F K 10-15)式中:△ P-⽔泥地⾯上爆炸时的冲击波峰值超压;单位MPa
R—⽐例距离(对⽐距离),是爆炸中⼼的距离r (m)与爆炸
药量W (您)的⽴⽅根之⽐,即:R=r/W1/3。

W按TNT当量计算,单位kg。

1、在钢性地⾯上发⽣爆炸
△ P=0.106R+0.43R2+1.4/R3(适⽤范围:1< R< 15) 2、在普通地⾯上发⽣爆炸
△ P=0.10^R+0.399/R2+1.26^R3(适⽤范围:1< R< 10-15)
△ P=0.09^R+0.39/R2+1.^R3(适⽤范围:0.1 W R< 1) 2、爆炸源周围有标准⼟围
△ P=0.41R+0.69/R2+0.66^R3(适⽤范围:1< R< 10-15)△ P=0.09^R+0.39/R2+1.^R3(适⽤范围:0.1 W R W 1)三、⼀般将烟花爆⽵⼯房当作点爆炸源计算,需坑道中或线状爆炸源
计算公式时再联系
四、建议将晾晒场、晾棚等⽆约束或露天的爆炸源,TNT当量按0.4计算,根据试验结果,在露天条件下,⿊⽕药的TNT当量约为0.4, 雷药的TNT当量约为0.69。

参考资料:《爆炸基本原理》《爆炸作⽤原理》计算时可参考上述公式进⾏,如有其它问题可随时联系。

聂学辉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.爆炸压力的计算
可燃性混合物爆炸产生的压力与初始压力、初始温度、浓度、组分以及容器的形状、大小等因素有关。

爆炸时产生的最大压力可按压力与温度及摩尔数成正比的规律确定,根据这个规律有下列关系式:
以上计算的爆炸温度与压力都没有考虑热损失,是按理论的空气量计算的,所得的数值都是最大值。

三)爆炸上限和下限的计算,含有惰性气体组成混合物爆炸极限计算
1.爆炸上限和下限的计算
1)根据完全燃烧反应所需氧原子数,估算碳氢化合物的爆炸下限和上限,其经验公式如下:
乙烷在空气中的爆炸下限浓度为3.38%,爆炸上限浓度为10.7%。

实验测得乙烷的爆炸下限为3.0%,爆炸上限为12.5%,对比上述估算结果,可知用此方法估算的爆炸上限值小于实验测得的值。

相关文档
最新文档