气举反循环施工工艺
气举反循环清孔工艺操作要领.
摘要钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
钻孔灌注桩沉渣的清理是控制桩身质量的关键,传统的钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在浙江一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。
本文就此介绍气举反循环清孔工艺的运用,并比较对工程质量以及经济效益带来的影响。
关键词——钻孔灌注桩气举反循环二次清孔一、钻孔灌注桩工艺传统的钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。
成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。
钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。
钻孔应采用泥浆护壁措施,防止塌孔。
现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。
钻孔施工至设计标高时,立即进行第一次清孔。
第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。
孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目的。
清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔。
第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。
二、正、反循环清孔工艺介绍1、正循环清孔工艺第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10kN/m3以下;对于孔壁土层性能差、不稳定的则注入泥浆(泥浆密度11.5~12.5kN/M3)。
注入冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间上返,排出桩孔以外,以达到沉渣清理效果。
简单的说,正循化清孔的定义就是沉渣从导管外溢出的清渣工艺。
2、反循环清孔工艺从前文所述、顾名思义,反循环清孔的定义就是沉渣从导管内排出的清渣工艺。
反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。
近年来出现的气举反循环法相对工艺更为简单,清孔效果明显,推广较快。
地下连续墙遇障碍物气举反循环施工工法
地下连续墙遇障碍物气举反循环施工工法1.前言近年来,随着国内各大城市轨道交通迅猛发展,地连墙因其止水性能好被广泛应用于地铁车站围护结构中。
当施工范围内存在无法迁改的地下管线或其它障碍物时,直接影响地连墙的正常施工,影响施工进度。
采用地下连续墙遇障碍物气举反循环施工工法,可以有效解决以上问题。
其主要原理是采用潜水钻及修槽设备进行切削土体,使得切削的土体在泥浆中依靠自重下沉至孔底。
利用喷导管底部通气产生的气举效应,将槽内泥浆吸入喷导管内并排至地面。
本工法所用成槽设备简单、操作方便、施工成本低、适应能力强,从根本上保证施工安全、质量、进度,尤其在施工范围内存在不可迁改的管线或小型箱涵时,可跨越障碍物直接进行施工,是一种经济实用的施工技术。
项目施工单位成立工法编制工作组,历时一个月时间,结合气举反循环施工的工艺特点,总结提炼工法关键施工技术和控制措施,形成了本施工工法。
2.工法特点主要特点:1、适用范围广:该工法施工地下连续墙不受形状、槽段大小的约束,对异型或者不满足液压抓斗成槽的小槽段进行施工,尤其是利用改装“角度钻头”进行跨越地下障碍物施工,具有独特优势。
2、适应能力强:施工设备简单,便于运输、转场,可在场地狭小的区域完成地下连续墙施工;3、施工成本低:施工机械体积小、架体低、配套设备少、劳动强度低,钻头尺寸可根据墙体厚度自行加工。
4、质量可控:一次钻进、喷导管排渣,对槽壁扰动次数少,有效保证槽壁稳定,排渣能力强,槽底沉渣易清理;无需跳槽可连续作业,地连墙接缝施工质量得到有效保障;5、环保效应好:施工噪音小,泥浆可回收再利用,有利于文明施工。
3.适用范围适用于在软黏土、粉质粘土、砂层及砂砾层等地质条件特殊工况下市政工程围护结构和桩基的施工。
4.工艺原理本工法主要原理是首先利用垂直潜水钻和带角度潜水钻通过自重,沿喷导管自上而下高速旋转进行切削土体,使切削的土体在泥浆中依靠自重下沉至孔底。
将压缩空气沿喷导管两侧的通道输送到距离喷导管底部1米处的喷导管内,与管内泥浆形成气-水混合物,由于气体上浮,导致喷导管底部与气道末端区域形成负压,产生气举效应,将槽内泥浆吸入喷导管内并排至地面,直至钻孔完成。
气举反循环清孔施工技术
气举反循环清孔施工技术
《气举反循环清孔施工技术那些事儿》
嘿呀,今天咱就来说说气举反循环清孔施工技术。
这玩意儿可有意思啦!
我记得有一次在工地,大家都在为一个灌注桩的清孔问题犯愁呢。
这时候就有人提出用气举反循环清孔施工技术来试试。
于是乎,各种设备就被搬了过来。
那场面,就像要打一场大仗似的!
工人们开始忙碌起来,接管子的接管子,调试机器的调试机器。
我就在旁边好奇地看着,心里想着这到底能成不。
不一会儿,机器启动了,就听见“嗡嗡”的声音,那管子里的水啊就开始咕嘟咕嘟地流动起来。
嘿,还真神奇!
然后我就看着那些泥沙啥的被一股脑儿地从孔里带了出来,就好像是被施了魔法一样。
工人们都特别专注地看着,生怕出啥岔子。
我呢,也紧张得不行,感觉比他们还揪心。
随着时间一点点过去,孔慢慢地就被清理干净啦!大家都特别高兴,就跟打了一场胜仗似的欢呼起来。
我也特别兴奋,觉得这气举反循环清孔施工技术可真是太牛了!
从那以后啊,我每次看到灌注桩施工,都会想起那次的场景,想起气举反循环清孔施工技术带来的神奇效果。
这就是我对气举反循环清孔施工技术的一次特别记忆呀,真的是印象深刻呢!怎么样,你是不是也对这技术有了新的认识啦?哈哈!。
气举反循环成槽施工工法
气举反循环成槽施工工法气举反循环成槽施工工法一、前言气举反循环成槽施工工法是一种应用于土木工程领域的施工技术,通过利用气举原理和反循环原理,可以有效地完成成槽工程的施工。
本文将全面介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例,以便读者全面了解和掌握该工法。
二、工法特点气举反循环成槽施工工法具有以下特点:1. 施工速度快:采用气举原理,能够快速排除成槽现场的水分,从而加快施工速度。
2. 施工质量高:利用反循环原理,可以有效地控制施工过程中的水位,保证了施工的准确性和质量。
3. 技术难度低:相比传统的成槽施工方法,气举反循环成槽施工工法技术难度较低,施工过程简单易行。
4. 环境友好:施工过程中无需大量用水,减少了对环境资源的污染和浪费。
三、适应范围气举反循环成槽施工工法适用于以下场景:1. 需要快速完成的成槽工程,如基坑、河道开挖等。
2. 施工现场水位较高,需要快速降低水位进行施工。
3. 需要保证施工质量的场合,如地铁隧道施工、水下管道施工等。
四、工艺原理气举反循环成槽施工工法基于气举原理和反循环原理,通过对施工工法与实际工程之间的联系和采取的技术措施进行分析和解释,让读者了解该工法的理论依据和实际应用。
工艺原理的关键是利用气体的浮力将水排出,并通过建立反循环系统来控制水位。
具体的工艺流程包括:1. 准备工作:确定施工现场的情况,选择合适的施工方案和工艺流程。
2.安装气举设备:根据需求,选择适当的气举设备并进行安装和调试。
3. 排除水分:通过对气举设备的操作,将水分排出至所需水位以下。
4. 建立反循环系统:通过设置围堰或悬挖等方式阻止水位回升。
5. 准备施工:根据施工需要,做好土方开挖、支护、回填等工艺准备。
6. 施工完成:按照预定的施工过程进行操作,保持反循环系统的稳定,完成成槽工程施工。
五、施工工艺气举反循环成槽施工工法的施工过程中包括以下几个阶段:1. 施工现场准备:对施工现场进行勘察,确定施工范围、固定边界和设置相应的临时设施。
气举反循环施工工艺
气举反循环施工工艺气举反循环钻进工艺气举反循环钻进,是将压缩空气通过气水龙头、经双壁主动钻杆、双壁钻杆的内管与外管之间的环状间隙送到气水混合器后进入内管,这时压气膨胀,液气混合,形成一种密度小于液体密度的液气混合物,由于气体不断进入钻井液,产生气举作用,使得管内的液气混合物同井内的钻井液之间产生压差,从而将气、液、固三相流以较高的速度带出孔外,流经震动筛,排入沉淀池。
经过沉淀的钻井液再流回井内,经井底进入钻杆内,补充钻井液消耗的空间,这样不断循环形成了连续钻进的过程。
气举反循环钻进具有排屑能力强、钻进效率高、钻头寿命长、成井质量好、辅助时间少和劳动强度低等优点,所以在地热井钻探施工中采用优势很大。
气举反循环的输水管路,一般均没有断面收缩,排渣条件比较有利,由于钻杆内的冲洗液上升流速与钻杆内外液柱的密度差有关,因此当井深增大后,只要相应增加供气压力和供气量,钻进仍能保持较高的效率。
一般钻进深度大的孔以及大直径的孔均采用气举反循环钻进工艺。
钻进工作原理如图1所示。
气举反循环钻进工艺特点:1、沉渣厚度大大减小,提高孔壁质量,优化孔壁结构。
地热井成孔质量,取决于孔壁泥浆和岩屑挂壁程度,气举反循环与常规钻进相比,钻进过程中形成的泥皮较薄,孔底沉渣清除较为彻底,其钻进过程也就是洗井过程,防止了泥浆对孔壁及裂隙的堵塞,从而大大提高了地热井的成孔质量。
2、清渣速度快,缩短工期。
采用气举反循环法施工时,能提高了劳动生产率,加快设备周转周期,直接缩短了施工工期。
3、清渣速度快,泥浆排放量减少,减少环境污染。
图1 气举反循环钻进工艺工作原理在我院长期的施工过程中,气举反循环钻进工艺一直得到很好的应用。
2009年在临沂市汤头镇前期打出十几个废井的前提下,我院应用气举反循环施工工艺成功打出一眼高质量地热井,水温52?,水3量480m/d,本次施工为该地区地热资源的开发利用打开了先河,临沂市电视台对该项目进行了专门的报道。
气举反循环成槽施工工法_secret
气举反循环成槽施工工法一、前言随着地下深、大基础工程兴建的愈来愈多,作为基坑支护种类之一的地下连续墙得到更加广泛的应用。
施工地下连续墙的关键在于成槽,如何把成槽工艺加以改进,在保证质量的同时,降低成本、缩短工期成为探索的方向。
气举反循环成槽工艺克服了原成槽工艺的一些缺点,不失为一种具有发展前途的施工方法。
二、工法特点:与以往抓斗成槽、冲击钻成槽、及回转式成槽技术相比,该施工工法有以下特点:1、该工艺将成槽、制浆、清渣、洗槽四合为一,因而成槽工效高,成本低,效益较为显著;2、通过找平机身,可很好地保证成槽的垂直度。
由于机械对槽壁的扰动少,因而扩孔系数小,完成的槽壁光滑,槽壁稳定,因此可顺利地吊放钢筋笼。
浇筑后的墙面平整,混凝土超量少。
3、成槽机械简单,体积小,重量轻,行走、倒运方便,正常施工时,2名工人用撬棍即可使其从一个槽段移至下一个槽段;同时,导墙也可以适当减薄。
4、占地面积小,对于地形比较狭小的地方更为有利。
5、可以一个槽段接着一个槽段地施工,不必跳槽施工。
因此可节省机械行走、吊放的时间。
6、噪音小,有利于文明施工。
三、适用范围:适用于软粘土、粉质粘土、粉砂及小颗粒砂砾层等地质条件。
特别在密集的建筑群内,或邻近高层及重要建筑物处皆能安全而高效率地进行施工,或在港口、码头等地形比较险峻的地方更能体现出它的优点。
四、施工工艺(一)工艺流程(二)工艺原理1、此工艺有两方面的关键内容:一是利用潜水组合钻切削土体,二是利用输送导管排除泥渣。
首先利用潜水组合钻的高速旋转切削土体,使切削的土体融入泥浆中,并依靠自重不断下沉。
同时将压缩空气沿固定在喷导管上的气道高压输送到喷导管的下部约距导管底1m处,并进入喷导管内,与管内泥浆形成气-水混合物。
该气-水混合物比重低于未与气体混合的泥浆,自行往上移动;同时由于自由气体上浮,致使喷导管底与气道末端的区域形成负压,将槽内泥浆及切削的土体源源不断地吸入管内,并排出到地面上的容渣斗内。
超长正循环钻孔气举反循环清孔施工工法
超长正循环钻孔气举反循环清孔施工工法超长正循环钻孔气举反循环清孔施工工法一、前言超长正循环钻孔气举反循环清孔施工工法是一种应用于地基处理的高效施工工法。
它通过组合超长正循环钻孔与气举反循环清孔两个工艺,可以提高施工效率、降低施工成本,同时保证工程质量。
本文将对该工法进行详细介绍,并给出了工法的应用范围、工艺原理、施工工艺以及质量控制和安全措施等方面的内容。
二、工法特点超长正循环钻孔气举反循环清孔施工工法的特点如下:1. 可以施工超长孔径的钻孔;2. 施工过程中利用气举技术进行清孔,高效快速;3. 反循环清孔可以清除孔内的岩屑和水泥浆;4. 施工过程中可根据实际情况调整钻孔材料,灵活可控;5. 施工速度快,施工周期短,适用于时间紧迫的工程。
三、适应范围超长正循环钻孔气举反循环清孔施工工法适用于以下情况:1. 需要处理地下水位较高的地基;2. 针对土壤或岩石的改良和加固工程;3. 适用于桩基工程、基坑支护等可以利用气举技术进行清孔的场合。
四、工艺原理超长正循环钻孔气举反循环清孔施工工法的工艺原理是将钻孔与清孔两个过程结合起来,通过连续钻孔的方式形成超长孔洞,然后再利用气举技术进行反循环清孔,达到清除孔内碎石和水泥浆的目的。
具体来说,施工过程中先进行正循环钻孔,形成钻孔洞,然后根据孔径选择合适的气举技术进行反循环清孔,清除孔内的岩屑和水泥浆,最后根据需要注入适当的钻孔材料完成施工。
五、施工工艺超长正循环钻孔气举反循环清孔施工工艺的施工过程分为以下几个阶段:1. 准备阶段:选定施工地点,组织施工人员和机具设备,完成现场布置和安全措施的落实。
2. 正循环钻孔阶段:根据设计要求,进行正循环钻孔,形成钻孔洞。
3. 清孔准备阶段:根据孔径选择合适的气举设备,将气举设备准备好,并进行试运行和调试。
4. 气举反循环清孔阶段:利用气举设备进行反循环清孔,通过气举作用将孔内的岩屑和水泥浆排出。
5. 注浆施工阶段:根据需要选择合适的钻孔材料,注入到钻孔洞中,完成施工过程。
紧邻高速铁路路基桩基础气举反循环施工工法
紧邻高速铁路路基桩基础气举反循环施工工法紧邻高速铁路路基桩基础气举反循环施工工法一、前言紧邻高速铁路路基桩基础气举反循环施工工法是一种在紧邻高速铁路的路基桩基础施工中广泛应用的施工技术。
该工法以其高效、安全、节能等优点得到了广泛关注和应用。
本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例等方面的内容,以便读者充分了解和应用该工法。
二、工法特点紧邻高速铁路路基桩基础气举反循环施工工法具有以下特点:1. 高效:采用气举反循环施工工法可以显著提高施工效率,减少施工时间,以适应快速铁路建设的要求。
2. 安全:该工法采用了安全措施,确保了施工过程中的安全性,减少了事故发生的风险。
3. 节能:由于该工法减少了挖土运输的工序,大大减少了能耗,具有较好的节能效果。
4.环保:该工法减少了对周边环境的破坏和污染,对环境保护具有积极作用。
三、适应范围该施工工法适用于需要在紧邻高速铁路路基上进行桩基础施工的工程。
适用范围包括高速铁路、高速公路、城市道路等项目。
四、工艺原理该工法的施工原理是通过气举反循环技术,在保持基坑稳定的同时,将废土体进行挤压和提取,以完成桩基础的施工。
在实际应用中,还采取了一些技术措施来保证施工效果。
首先,通过对土壤力学特性的研究,确定了适合施工的土壤类型。
然后,在施工过程中,通过调整气举压力、泥浆密度等参数,保持基坑的稳定性,并提高废土的提取效率。
最后,通过监测和分析施工数据,对施工过程进行实时调整,确保施工质量。
五、施工工艺施工工法主要包括以下几个阶段:1. 工程准备:包括现场勘测、设计方案制定、机具设备和材料的准备等。
2. 基坑开挖:采用传统机械挖掘法开挖基坑,确保基坑的稳定性。
3. 气举反循环施工:根据设计要求,通过气举反循环技术完成桩基础的施工。
施工过程中,需要控制好气举压力、泥浆密度等参数,保证施工质量。
4. 提取废土:通过气举反循环技术将提取的废土体挤压,并送入集料场进行处理和利用。
浅谈气举反循环钻孔施工工艺_secret
浅谈气举反循环钻孔施工工艺[提要]介绍了气举反循环钻孔技术的原理及其特点,并根据xx特大桥施工实践,总结出了特定地质条件下,气举反循环钻孔施工的技术要点和参数。
[关键词]深长桩钻孔技术气举反循环技术要点参数1 工程概况xx特大桥位于宁波绕城公路跨越xx处,是连接镇海区和北仑区的重要桥梁,是宁波绕城公路东段的重要组成部分,主桥为双菱形双塔四索面钢箱梁斜拉桥,双菱形连体主塔高度(承台以上)为146.569m,主跨468m,主桥跨径组成为61+134+468+134+61m。
索塔承台为73.6×33×6m的矩形整体式钢筋混凝土结构,承台下设有78根Φ2.2m的钻孔灌注桩,顺桥向6根,横桥向13根。
钻孔深度119m,钻孔深度自原地面算起约122m,按设计要求入微风化岩深度不小于5m。
2 桥址区域的工程地质概况主桥基础均位于江堤两侧,属陆上桩,桩基距离江堤最短距离为20m左右,桥址区位于湖藻积、冲海积平原,区域地势平坦表层由灰黄色、灰褐色亚粘土构成的硬地壳,厚0.3~2.6m,软塑~硬塑,工程地质较差,水域部位缺失。
其下分布厚层海积淤泥质土,流塑状,厚度14~28m。
中部分布冲湖积亚砂土、粉砂层、含砾砂亚粘土层。
底部揭露基岩,岩性为粉砂质泥岩、凝灰质粉砂岩等。
基岩埋深一般为93.0~111.3m,工程地质良好,可作为持力层。
3 气举反循环的钻进原理气举反循环的作用原理是采用双壁管或钻杆侧壁上安装的风管。
将压缩空气从供气管路送入孔内气水混合室,使钻杆内的冲洗液成为充气状态,在内外管环隙和内管形成液柱压差。
高速气流与充气气泡群从孔内上升,产生动能,动能与压差产生气举反循环,排出岩屑、岩粉。
4 气举反循环的钻进特点其相对于正循环比具有如下特点:4.1成井周期短,相对消耗少,经济收益高。
4.2钻孔保直好。
尤其以及气举反循环牙轮钻进工艺的,“孔底加压,悬垂钻进”特点,使钻孔的垂直度较高。
4.3 技术含量高。
地热井气举反循环施工方案
地热井气举反循环施工方案一、施工前准备地质勘察:对目标区域进行详细的地质勘察,了解地层结构、岩性分布、地热资源分布等基本情况,为钻井设计提供基础资料。
设备选型与采购:根据地质勘察结果和钻进要求,选择适当的气举反循环钻井设备和配套工具,完成设备的采购和验收工作。
施工组织:成立专门的施工队伍,进行安全、技术培训,确保施工人员熟悉设备操作和安全规程。
现场布置:合理规划施工现场,确保钻井设备、泥浆循环系统、排放设施等布置合理,方便施工操作。
二、钻井液循环系统钻井液配制:根据地层特点和钻进需求,选择合适的钻井液配方,确保钻井液的稳定性和携岩能力。
钻井液循环:建立有效的钻井液循环系统,确保钻井液在钻进过程中循环畅通,及时将岩屑带出井口。
钻井液监测:定期对钻井液的性能进行监测,包括密度、粘度、含砂量等指标,确保钻井液满足钻进要求。
三、气举反循环装置设备安装:按照设备说明书和施工图纸,正确安装气举反循环装置,确保设备性能正常。
设备调试:在安装完成后,对气举反循环装置进行调试,确保设备在钻进过程中运行稳定、可靠。
设备维护:定期对气举反循环装置进行检查和维护,确保设备的正常运行和使用寿命。
四、钻进工艺参数钻进压力:根据地层硬度和钻进速度要求,合理设定钻进压力,确保钻进过程的稳定进行。
钻进速度:根据地层特点和钻井设计要求,控制钻进速度,避免过快或过慢导致钻进困难或井壁失稳。
钻具组合:选择合适的钻具组合,确保钻进过程中的切削效率和钻进质量。
五、钻进过程控制钻进记录:对钻进过程进行详细记录,包括钻进深度、钻进速度、钻井液性能等指标,为施工总结提供依据。
异常情况处理:在钻进过程中遇到异常情况(如井壁坍塌、卡钻等),及时采取相应措施进行处理,确保施工安全和质量。
六、井壁保护技术井壁加固:根据地层特点和钻进要求,采取适当的井壁加固措施(如套管护壁、注浆加固等),确保井壁稳定。
井壁清洗:钻进过程中定期对井壁进行清洗,去除附着的岩屑和钻井液残留物,保持井壁清洁。
砂质地层地下连续墙气举反循环清槽施工工法(2)
砂质地层地下连续墙气举反循环清槽施工工法砂质地层地下连续墙气举反循环清槽施工工法一、前言砂质地层地下连续墙气举反循环清槽施工工法是一种应用于地下连续墙施工中的新技术,通过利用气体来清理施工槽道中的杂质和泥浆,提高施工效率和质量。
本文将介绍该工法的工艺原理、施工工艺、质量控制、安全措施以及经济技术分析等关键内容。
二、工法特点砂质地层地下连续墙气举反循环清槽施工工法具有以下几个特点:1. 施工速度快:通过气举反循环清槽的方式,能够迅速清除施工槽道中的泥浆和杂质,提高施工效率。
2. 施工质量高:清理槽道时,气体能够有效剥离槽壁上的杂质和泥浆,使槽道内壁面更加光滑,提高连续墙的稳定性和密封性。
3. 施工环保:该工法采用气体清理,无需使用大量水资源,减少对环境的影响。
4. 经济节能:与传统水压清槽相比,气吹清槽不需水泵等设备,节省了能源消耗和设备成本。
三、适应范围砂质地层地下连续墙气举反循环清槽施工工法适用于地下连续墙的施工,特别是适用于砂质地层。
该工法在高含水量、河道和湖泊附近等特殊环境中的施工效果更加显著。
四、工艺原理砂质地层地下连续墙气举反循环清槽施工工法基于以下原理:1. 气举原理:利用气体的轻质和压力对施工槽道中的泥浆和杂质进行冲刷和清理。
2. 反循环原理:通过在槽道两端设置贯流管和抽排管,实现气体在槽道内的循环流动,形成气举效果。
3. 清槽原理:气体在槽道内的流动通过剥离槽壁上的杂质和泥浆,使施工槽道达到清洁状态。
五、施工工艺砂质地层地下连续墙气举反循环清槽施工工艺包括以下阶段:1. 设置贯流管和抽排管:在施工槽道两端设置贯流管和抽排管,为气体的循环流动和排放提供通道。
2. 注入气体:利用压缩空气将气体注入施工槽道,形成气举效果,实现对泥浆和杂质的清理。
3. 排放污气:通过抽排管将清理后的气体排放至外部,以保持槽道内的压力和流动方式。
4.检查清理效果:使用特定检测工具对槽道内壁面的清洁程度进行检查和评估。
超深大直径灌注桩气举反循环清孔施工工法(2)
超深大直径灌注桩气举反循环清孔施工工法超深大直径灌注桩气举反循环清孔施工工法一、前言超深大直径灌注桩气举反循环清孔施工工法是一种应用于大型桥梁、高层建筑及其他深基坑工程的施工方法。
该方法通过气举沉桩和反循环清孔的方式,在巨大的深度和直径条件下,高效地完成灌注桩的施工,保证工程的稳定性和安全性。
二、工法特点1. 高效率:采用气举沉桩和反循环清孔的方式,施工速度快,节约人力资源。
2. 施工质量可控:通过灌注桩桩身清洗等工序,保证桩内混凝土的质量和均匀性。
3. 施工操作简便:机具设备成套,操作简单,人员安全性高。
4. 适应性强:适用于各种土层条件和桩基规模,具有较高的适应范围。
三、适应范围超深大直径灌注桩气举反循环清孔施工工法适用于各类土层,包括砂质土、软土、砾石土等,以及复杂地质条件下的施工。
原则上,适应于直径在3米以上的大直径灌注桩工程,如大型桥梁、高层建筑等。
四、工艺原理超深大直径灌注桩气举反循环清孔施工工法的原理是通过气举沉桩和反循环清孔的方式实现施工。
工艺原理包括以下几个方面:1. 气举沉桩:利用高压气体的推力,将桩的构件逐步沉入土层中,形成稳定的桩基。
2. 反循环清孔:通过对孔内的水土杂质进行反向冲刷,清除桩孔内的杂质,确保施工的质量和稳定性。
3. 构造打桩机:采用专门的设备,通过压缩空气和水的作用,实现气举和反循环清孔的过程。
4. 科学施工:根据不同的工程情况,调整气举沉桩和反循环清孔的工艺参数,以确保施工过程的安全和稳定。
五、施工工艺施工工艺包括以下几个施工阶段:1. 前期准备:包括选址、标志定位、施工方案和材料准备等。
2. 管线布置:根据设计要求布置桩基设备和管线,确保施工过程的顺利进行。
3. 预埋套筒:在桩孔内预埋套筒,保护桩孔的稳定和施工质量。
4. 气举沉桩:利用气举设备,将桩构件逐级沉入土层,形成稳定的桩基。
5. 反循环清孔:利用反循环清孔设备,对桩孔内的杂质进行清除,确保桩孔的质量和稳定性。
泥沙分离器+气举反循环清孔施工工法(2)
泥沙分离器+气举反循环清孔施工工法泥沙分离器+气举反循环清孔施工工法一、前言泥沙分离器+气举反循环清孔施工工法是一种用于地下工程施工中快速高效清除孔隙填充物的方法。
该工法通过泥沙分离器将钻孔中的泥沙分离出来,然后利用气举反循环原理将孔隙中的填充物清除,从而实现地下工程施工的顺利进行。
二、工法特点1. 清洁高效:通过泥沙分离器将钻孔中的泥沙分离出来,可以高效地将填充物清除,保证施工的顺利进行。
2. 环保节能:该工法采用气举反循环原理,不需要使用化学试剂,对环境无污染,同时能够节约能源,降低施工成本。
3. 灵活便捷:该工法适用于各种地质条件,采用机械设备施工,操作简单,灵活方便。
4. 施工质量高:通过泥沙分离器分离出的泥沙可以有效保护地下设施的安全,保证施工质量。
5. 成本低廉:该工法所需机具设备简单,成本低廉,适合小型项目和紧急施工。
三、适应范围泥沙分离器+气举反循环清孔施工工法适用于地下工程中,特别适用于地下管道、桩基施工、地下设施修复等工程。
四、工艺原理该工法的工艺原理是通过泥沙分离器将钻孔中的泥沙分离出来,然后利用气举反循环原理将孔隙中的填充物清除。
首先,将钻杆下放至钻孔底部,然后启动泥沙分离器,将泥沙分离出来。
接下来,使用气举设备将气体注入钻杆底部,形成气孔,然后通过气孔进行反循环排出孔隙中的填充物。
五、施工工艺1. 钻孔前期准备:准备好泥沙分离器、气举设备、钻杆等机具设备,并根据需要调整好各个设备的参数。
2. 钻孔作业:将钻孔钻进地下,直至达到施工要求的深度。
3. 泥沙分离:将泥沙分离器下放至钻杆底部,通过分离器分离出钻孔中的泥沙。
4. 气举反循环:启动气举设备,将气体注入钻杆底部形成气孔,然后通过气孔进行反循环排出孔隙中的填充物。
5. 清孔完成:反复进行气举反循环操作,直至孔隙中的填充物完全清除。
6. 钻杆回收:将钻杆从钻孔中回收出来。
六、劳动组织该工法的劳动组织需要有专业的施工人员进行操作,需要具备一定的技术和经验。
气举反循环成槽施工工法(2)
气举反循环成槽施工工法气举反循环成槽施工工法是一种常用的地下管道铺设工法,具有高效、节能、环保等优点。
下面将对该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例进行详细介绍。
一、前言随着城市的不断发展,地下管道建设成为一个重要的方面。
气举反循环成槽施工工法作为一种先进的施工方法,在地下管道工程中得到广泛应用。
本文将介绍该工法的特点、适应范围以及实际施工过程中的具体细节。
二、工法特点气举反循环成槽施工工法具有以下特点:1. 高效:该工法可以快速进行地下管道的铺设,施工效率高。
2. 节能:采用气体推动的方式进行施工,无需传统的机械或人工消耗大量的能源。
3. 环保:使用气体进行施工,减少了对环境的污染,符合可持续发展的要求。
4. 稳定:采用反循环原理,能够稳定地进行地下管道的铺设,保证施工质量。
三、适应范围气举反循环成槽施工工法适用于以下情况:1. 地下管道建设:适用于各种类型的地下管道建设,包括给水、排水、燃气等。
2. 土壤条件:适应各种地质条件下的施工,如黏土、砂土、软土等。
3. 管道类型:适用于各种材质的管道,如塑料管、钢管等。
四、工艺原理气举反循环成槽施工工法的工艺原理是通过气体推动管道,并采用反循环原理来稳定施工。
具体工艺原理如下:1. 气体推动:利用气体的压力将管道推入土壤中,实现管道的铺设。
2. 反循环:通过前后气流的调控,使管道在推动过程中不断进行上升和下降,保证管道稳定铺设。
五、施工工艺气举反循环成槽施工工法的施工过程分为以下几个阶段:1. 准备工作:包括施工准备、工地布置、机具设备准备等。
2. 土壤准备:对土壤进行处理,如挖掘成槽,并清理表面杂物。
3. 管道铺设:将管道通过气体推动逐段铺设至成槽中。
4. 压实工作:对铺设的管道进行压实,确保其稳定。
5. 收尾工作:施工结束后进行清理、整理等收尾工作。
六、劳动组织气举反循环成槽施工工法需要充分组织劳动力,包括施工人员、技术人员、监理人员等。
气举反循环施工工艺
气举反循环钻进工艺气举反循环钻进,是将压缩空气通过气水龙头、经双壁主动钻杆、双壁钻杆的内管与外管之间的环状间隙送到气水混合器后进入内管,这时压气膨胀,液气混合,形成一种密度小于液体密度的液气混合物,由于气体不断进入钻井液,产生气举作用,使得管内的液气混合物同井内的钻井液之间产生压差,从而将气、液、固三相流以较高的速度带出孔外,流经震动筛,排入沉淀池。
经过沉淀的钻井液再流回井内,经井底进入钻杆内,补充钻井液消耗的空间,这样不断循环形成了连续钻进的过程。
气举反循环钻进具有排屑能力强、钻进效率高、钻头寿命长、成井质量好、辅助时间少和劳动强度低等优点,所以在地热井钻探施工中采用优势很大。
气举反循环的输水管路,一般均没有断面收缩,排渣条件比较有利,由于钻杆内的冲洗液上升流速与钻杆内外液柱的密度差有关,因此当井深增大后,只要相应增加供气压力和供气量,钻进仍能保持较高的效率。
一般钻进深度大的孔以及大直径的孔均采用气举反循环钻进工艺。
钻进工作原理如图1所示。
气举反循环钻进工艺特点:1、沉渣厚度大大减小,提高孔壁质量,优化孔壁结构。
地热井成孔质量,取决于孔壁泥浆和岩屑挂壁程度,气举反循环与常规钻进相比,钻进过程中形成的泥皮较薄,孔底沉渣清除较为彻底,其钻进过程也就是洗井过程,防止了泥浆对孔壁及裂隙的堵塞,从而大大提高了地热井的成孔质量。
2、清渣速度快,缩短工期。
采用气举反循环法施工时,能提高了劳动生产率,加快设备周转周期,直接缩短了施工工期。
3、清渣速度快,泥浆排放量减少,减少环境污染。
图1 气举反循环钻进工艺工作原理在我院长期的施工过程中,气举反循环钻进工艺一直得到很好的应用。
2009年在临沂市汤头镇前期打出十几个废井的前提下,我院应用气举反循环施工工艺成功打出一眼高质量地热井,水温52℃,水量480m3/d,本次施工为该地区地热资源的开发利用打开了先河,临沂市电视台对该项目进行了专门的报道。
2008-2010年我院受山东黄金置业有限公司淄博分公司委托,于淄博市九级塔附近运用气举反循环施工工艺施工地热井三眼,并取得圆满成功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气举反循环钻进工艺
气举反循环钻进,是将压缩空气通过气水龙头、经双壁主动钻杆、双壁钻杆的内管与外管之间的环状间隙送到气水混合器后进入内管,这时压气膨胀,液气混合,形成一种密度小于液体密度的液气混合物,由于气体不断进入钻井液,产生气举作用,使得管内的液气混合物同井内的钻井液之间产生压差,从而将气、液、固三相流以较高的速度带出孔外,流经震动筛,排入沉淀池。
经过沉淀的钻井液再流回井内,经井底进入钻杆内,补充钻井液消耗的空间,这样不断循环形成了连续钻进的过程。
气举反循环钻进具有排屑能力强、钻进效率高、钻头寿命长、成井质量好、辅助时间少和劳动强度低等优点,所以在地热井钻探施工中采用优势很大。
气举反循环的输水管路,一般均没有断面收缩,排渣条件比较有利,由于钻杆内的冲洗液上升流速与钻杆内外液柱的密度差有关,因此当井深增大后,只要相应增加供气压力和供气量,钻进仍能保持较高的效率。
一般钻进深度大的孔以及大直径的孔均采用气举反循环钻进工艺。
钻进工作原理如图1所示。
气举反循环钻进工艺特点:
1、沉渣厚度大大减小,提高孔壁质量,优化孔壁结构。
地热井成孔质量,取决于孔壁泥浆和岩屑挂壁程度,气举反循环与常规钻进相比,钻进过程中形成的泥皮较薄,孔底沉渣清除较为彻底,其钻进过程也就是洗井过程,防止了泥浆对孔壁及裂隙的堵塞,
从而大大提高了地热井的成孔质量。
2、清渣速度快,缩短工期。
采用气举反循环法施工时,能提高了劳动生产率,加快设备周转周期,直接缩短了施工工期。
3、清渣速度快,泥浆排放量减少,减少环境污染。
图1 气举反循环钻进工艺工作原理
在我院长期的施工过程中,气举反循环钻进工艺一直得到很好的应用。
2009年在临沂市汤头镇前期打出十几个废井的前提下,我院应用气举反循环施工工艺成功打出一眼高质量地热井,水温52℃,水量480m3/d,本次施工为该地区地热资源的开发利用打开了先河,临
沂市电视台对该项目进行了专门的报道。
2008-2010年我院受山东黄金置业有限公司淄博分公司委托,于淄博市九级塔附近运用气举反循环施工工艺施工地热井三眼,并取得圆满成功。
HR1地热井水量经抽水试验确定为1538.64m3/d,水温60℃,水质达到医疗用水标准,H2SiO3、Li、F等的含量达到了矿水浓度,成井井深1800.18m;HR2地热井出水量经抽水试验确定为1008.0m3/d,水温53℃,水质达到医疗用水标准,H2SiO3、Li、F等多种微量元素的含量达到了矿水浓度,成井井深2003.68m;HR3地热井出水量经抽水试验确定为2640m3/d,水温55℃,水质达到医疗用水标准,H2SiO3、Li、F等多种微量元素含量达到矿水浓度,成井井深1804.0m。
三口地热井的成功为本区地热资源开发取得突破性进展,打破了一直以来“淄博地区无地热”的思维禁锢。
2010年我院受山东德誉隆基置业发展有限公司委托,于临淄太公湖体育公园施工地热井一眼,并取得成功,水量经两个落程抽水试验确定为1344.0m3/d,水温34℃,水质达到医疗用水标准,成井井深1314.0m。
该区地热资源利用一直处于空白状态,本次地热井施工成功尚属首次。