七下第七章《平面图形的认识(二)》特优生拓展训练(2(有答案)

合集下载

第7章《平面图形的认识(二)》解答题专项练习(二) 七年级数学苏科版下册

第7章《平面图形的认识(二)》解答题专项练习(二)  七年级数学苏科版下册

七年级数学苏科版下册第7章《平面图形的认识(二)》解答题专项提升练习(二)1.如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠E=∠F,CE∥DF,求证:∠A =∠1.2.已知,点Q、A、D均在直线l1上,点B、C均在直线l2上,且l1∥l2,点E是BA延长上一点.(1)如图1,CD∥AB,CE与AD相交于点F,AC与BF相交于点O,∠1=∠2,求证∠3=∠4;(2)在(1)的条件下,若BF平分∠ABC,试直接写出∠CFB与∠ACF的数量关系为;(3)如图2,点N是∠QAB角平分线上一点,点M在射线BC上,若∠NMC与∠ABC满足2∠NMC﹣∠ABC=180°的数量关系,请判断直线MN与直线AN的位置关系,并说明理由.3.如图所示,直线AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 、∠DFE 的平分线相交于点K .(1)求∠EKF 的度数;(2)如图(2)所示,作∠BEK 、∠DFK 的平分线相交于点K 1,问∠K 1与∠K 的度数是否存在某种特定的等量关系?写出结论并证明.(3)在图(2)中作∠BEK 1、∠DFK 1的平分线相交于点K 2,作∠BEK 2、∠DFK 2的平分线相交于点K 3,依此类推,……,请直接写出∠K 4的度数.4.如图,已知三角形ABC 中,AD 平分∠BAC ,∠1=∠2.求证:(1)AD ∥GE ;(2)∠3=∠G .5.如图,已知AB ∥CD ,E 是直线AB 上的一点,CE 平分∠ACD ,射线CF ⊥CE ,∠1=32°,(1)求∠ACE 的度数;(2)若∠2=58°,求证:CF ∥AG .6.已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM ∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.7.如图1,直线MN与直线AB、CD分别交于点E、F,∠MEB与∠DFN互补.(1)若∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(2)如图2,在(1)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,请说明理由.8.如图,AD⊥BE,BC⊥BE,∠A=∠C,点C,D,E在同一条直线上.求证:AB∥CD.9.综合与探究问题情境在综合实践课上,老师组织七年级(2)班的同学开展了探究两角之间数量关系的数学活动,如图,已知射线AM∥BN,连接AB,点P是射线AM上的一个动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.探索发现“快乐小组”经过探索后发现:(1)当∠A=60°时,∠CBD=∠A.请说明理由.(2)不断改变∠A的度数,∠CBD与∠A却始终存在某种数量关系,用含∠A的式子表示∠CBD为.操作探究(3)“智慧小组”利用量角器量出∠APB和∠ADB的度数后,探究二者之间的数量关系.他们惊奇地发现,当点P在射线AM上运动时,无论点P在AM上的什么位置,∠APB与∠ADB 之间的数量关系都保持不变,请写出它们的关系,并说明理由.(4)点P继续在射线AM上运动,当运动到使∠ACB=∠ABD时,请直接写出2∠ABC+∠A的结果.10.如图,在△ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.求证:(1)EH∥AD;(2)∠BAD=∠H.11.喜欢思考的小泽同学,设计了一种折叠纸条的游戏.如图1,纸条的一组对边PN∥QM(纸条的长度视为可延伸),在PN,QM上分别找一点A,B,使得∠ABM=α.如图2,将纸条作第一次折叠,使BM'与BA在同一条直线上,折痕记为BR.1解决下面的问题:(1)聪明的小白想计算当α=90°时,∠BR 1N '的度数,于是他将图2转化为下面的几何问题,请帮他补全问题并求解:如图3,PN ∥QM ,A ,B 分别在PN ,QM 上,且∠ABM =90°,由折叠:BR 1平分 ,BM '∥R 1N ',求∠BR 1N '的度数.(2)聪颖的小桐提出了一个问题:按图2折叠后,不展开纸条,再沿AR 1折叠纸条(如图4),是否有可能使AM ''⊥BR 1?如果能,请直接写出此时α的度数;如果不能,请说明理由.(3)笑笑看完此题后提出了一个问题:当0°<α≤90°时,将图2记为第一次折叠;将纸条展开,作第二次折叠,使BM '与BR 1在同一条直线上,折痕记为BR 2(如图5);将纸条展开,作第三次折叠,使BM '与BR 2在同一条直线上,折痕记为BR 3;…以此类推. ①第二次折叠时,∠BR 2N '= (用α的式子表示);②第n 次折叠时,∠BR n N '= (用α和n 的式子表示).12.如图,已知点D,E分别为AB,BC上的点,连接DE,∠BAC=70°,∠ADE=110°.(1)求证:∠C=∠BED;(2)画图:连接AE,过点D画DF∥AE,交BC于点F,若∠EAC=28°,∠C=62°,求∠DFC的度数.13.完成推理填空.填写推理理由:如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.∵EF∥AD,∴∠2=,()又∵∠1=∠2,∴∠1=∠3,∴AB∥,()∴∠BAC+ =180°,()又∵∠BAC=70°,∴∠AGD=110°.14.如图,已知AB∥CD,BE平分∠ABC,CE平分∠BCD.请判断△BEC的形状,并说明理由.15.如图,已知,AB∥CD,CE平分∠ACD交AB于点E.(1)若∠FCD=50°,求∠1的度数;(2)若有∠FAB的平分线AP交CE于点P,请你画出图形,并判断∠CAP与∠ACP是否为互余关系,说明理由.参考答案1.证明:∵CE∥DF,∴∠F=∠2,∵∠E=∠F,∴∠E=∠2,∴AE∥BF,∴∠A=∠1.2.解:(1)证明:∵∠1=∠2,∴∠1+∠ACF=∠2+∠ACF即:∠BCE=∠ACD,∵AB‖CD,∴∠ACD=∠4,∴∠BCE=∠4,∵l1∥l2∴∠3=∠BCE∴∠3=∠4;(2)如图,设∠ABF=∠5,∠ACF=∠6,∠CFB=∠7,∵BF平分∠ABC,∴∠ABC=2∠5,∠CBF=∠5,∵l1∥l2,∴∠AFB=∠CBF=∠5,∴∠AFC+∠BCF=180°,即∠1+∠6+∠5+∠7=180°①,∵AB‖CD,l1∥l2,∴∠ABC+∠BCD=180°,∠BCD+∠CDF=180°,∴∠CDF=2∠5,∴∠1+∠6+∠2+2∠5=180°,∵∠1=∠2,∴2∠1+∠6+2∠5=180°,∴∠1+∠6+∠5=90°②,∴①﹣②得:∠6+∠7=90°,∴∠CFB与∠ACF的数量关系为∠CFB+∠ACF=90°.故答案为:∠CFB+∠ACF=90°.(3)直线MN与直线AN的位置关系为:MN⊥AN.理由如下:过点N作NR∥l1,∵l1∥l2,NR∥l2,∴∠ABC=∠QAB,∠QAN=∠ANR,∠RNM=∠NMB,∵NA平分∠QAB,∴∠QAB=2∠QAN,不妨设∠QAN=x°,∠NAM=∠NMB=y°,∴∠ABC=∠QAB=2x°,∴y+∠NMC=180°①,∵2∠NMC﹣∠ABC=180°,∴2∠NMC﹣2x=180°,∠NMC﹣x=90°②,①﹣②得:x+y=90°,∴∠ANM=90°,3.解:(1)如图(1),过K 作KG ∥AB ,交EF 于G ,∵AB ∥CD ,∴KG ∥CD ,∴∠BEK =∠EKG ,∠GKF =∠KFD ,∵EK 、FK 分别为∠BEF 与∠EFD 的平分线,∴∠BEK =∠FEK ,∠EFK =∠DFK ,∵AB ∥CD ,∴∠BEK +∠FEK +∠EFK +∠DFK =180°,即2(∠BEK +∠DFK )=180°,∴∠BEK +∠DFK =90°,则∠EKF =∠EKG +∠GKF =90°;(2)∠K =2∠K 1,理由为:∵∠BEK 、∠DFK 的平分线相交于点K 1,∴∠BEK 1=∠KEK 1,∠KFK 1=∠DFK 1,∵∠BEK +∠FEK +∠EFK +∠DFK =180°,即2(∠BEK +∠KFD )=180°,∴∠BEK +∠KFD =90°,即∠BEK 1+∠DFK 1=45°,同理得∠K 1=∠BEK 1+∠DFK 1=45°,则∠K =2∠K 1;(3)如图(3),根据(2)中的规律可得:∠K 2=∠K 1=22.5°,∠K 3=∠K 2=11.25°,∠K 4=∠34.解:(1)∵AD平分∠BAC,∴∠BAD=∠2,∵∠1=∠2,∠1=∠3,∴∠BAD=∠3,∴AD∥GE;(2)∵AD∥GE,∴∠2=∠G,∵∠1=∠2=∠3,∴∠3=∠G.5.解:(1)∵AB∥CD,∴∠1=∠DCE=32°,∵CE平分∠ACD,∴∠ACE=∠DCE=32°;(2)∵CF⊥CE,∴∠FCE=90°,∴∠FCH=90°﹣32°=58°,∵∠2=58°,∴∠FCH=∠2,∴CF∥AG.6.(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∵FN平分∠CFE,∴∠CFE=2∠CFN,∵∠AEF=2∠CFN,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=45°,∴∠DFN=∠HFN=180°﹣45°=135°,同理:∠AEM=∠GEM=135°.∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.7.解:(1)证明:∵∠MEB+∠BEF=180°,∠MEB与∠DFN互补∴∠BEF=∠DFN∴AB∥CD∴∠BEF+∠DFE=180°又∵∠BEF与∠EFD的角平分线交于点P∴∠FEP+∠EFP=(∠BEF+∠DFE)=90°∴∠EPF=90°即EG⊥PF∵GH⊥EG∴PF∥GH.(2)∠HPQ的大小不会发生变化,利用如下:∵∠PHK=∠HPK∴∠PKG=2∠HPK∵GH⊥EG∴∠KPG=90°﹣∠PKG=90°﹣2∠HPK∴∠EPK=180°﹣∠KPG=90°+2∠HPK∵PQ平分∠EPK∴∠QPK=∠EPK=45°+∠HPK∴∠HPQ=∠QPK﹣∠HPK=45°∴∠HPQ的大小不会发生变化,其值为45°.8.证明:∵AD⊥BE,BC⊥BE,∴AD∥BC,∴∠ADE=∠C,∵∠A=∠C,∴∠ADE=∠A,∴AB∥CD.9.解:(1)∵AM∥BN,∴∠A+∠ABN=180°,又∵∠A=60°,∴∠ABN=180°﹣∠A=120°.∵BC,BD分别平分∠ABP和∠PBN,∴∠CBP=∠ABP,∠DBP=∠PBN,∴∠CBD=∠CBP+∠DBP=∠ABP+∠PBN=∠ABN=60°,∴∠CBD=∠A.(2)∵BC,BD分别平分∠ABP和∠PBN,∴∠CBP=∠ABP,∠DBP=∠PBN,∴∠CBD=∠CBP+∠DBP=∠ABP+∠PBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠ABN=180°﹣∠A,∴∠CBD=.(3)∠APB=2∠ADB理由如下:∵BD分别平分∠PBN,∴∠PBN=2∠NBD,∵AM∥BN,∴∠PBN=∠APB,∠NBD=∠ADB,∴∠APB=2∠ADB.(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC,BD分别平分∠ABP和∠PBN,∴2∠ABC=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴2∠ABC+∠A=(∠A+∠ABN)=×180°=90°.10.证明:(1)∵∠CDG=∠B,∴DG∥AB,∴∠1=∠BAD,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH∥AD;(2)由(1)得:∠1=∠BAD,EH∥AD,∴∠1=∠H,∴∠BAD=∠H.11.解:(1)根据折叠的性质可得,∠MBR1=∠M′BR1,即,BR1平分∠ABM,故答案为:∠ABM,∵∠ABM=90°,∴∠MBR1=∠M′BR1=∠ABM=45°,在四边形M′BR1N′中,∠M′=∠N′=∠M=∠N=90°,∴∠BR1N′=360°﹣90°﹣90°﹣45°=135°;(2)α=60°;由折叠可得,∠PAB=α=60°,∠ABR1=30°,∠R1AM″=60°,∴∠BAM″=180°﹣60°﹣60°=60°,∴∠ABR1+∠BAM″=30°+60°=90°,∴AM''⊥BR1;(3)①由折叠可得∠R1BR2=×α=,在四边形M′BR2N′中,∠M′=∠N′=∠M=∠N=90°,∴∠BR2N′=360°﹣90°﹣90°﹣=180°﹣;故答案为:180°﹣;②折叠n次可得∠R n BR n+1=××…××α=,在四边形中有内角和可得,∠BR n N'=360°﹣90°﹣90°﹣=180°﹣,故答案为:180°﹣.12.解:(1)证明:∵∠BAC=70°,∠ADE=110°.∴∠BAC+∠ADE=180°.∴DE∥AC,∴∠C=∠BED;(2)如图所示,∵DF∥AE,∴∠AEC=∠DFC,△AEC中,∠EAC=28°,∠C=62°,∴∠DFC=∠AEC=180°﹣62°﹣28°=90°.13.解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=110°,故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠DGA;两直线平行,同旁内角互补.14.解:△BEC是直角三角形.理由:∵AB∥CD(已知),∴∠ABC+∠DCB=180°(两直线平行,同旁内角互补).∵BE平分∠ABC,CE平分∠BCD(已知),∴∠CBE=∠ABC,∠BCE=∠BCD(角平分线的性质).∴∠CBE+∠ECB=(∠ABC+∠DCB)=90°.∵∠CBE+∠ECB+∠BEC=180°(三角形内角和180°),∴∠BEC=90°(等式性质),∴△BEC是直角三角形.15.解:(1)∵∠FCD=50°,∴∠ACD=180°﹣50°=130°,∵CE平分∠ACD,∴∠ECD=∠ECA=∠ACD=65°,∵AB∥CD,∴∠1=∠ECD=65°.(2)如图,∠CAP与∠ACP互余,理由:∵AP平分∠FAB,CE平分∠ACD,∴∠CAP=∠EAP=∠BAC,∠ACP=∠DCE=∠ACD,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAP+∠ACP=(∠BAC+∠ACD)=90°.。

2020-2021学年苏科版数学七年级下册第7章《平面图形的认识(二)》培优练习(二)

2020-2021学年苏科版数学七年级下册第7章《平面图形的认识(二)》培优练习(二)

2020-2021学年七年级下册第7章《平面图形的认识(二)》常考题培优练习(二)1.填写下列空格完成证明:如图,EF∥AD,∠BAC=70°,∠1=∠2,求∠AGD.解:∵EF∥AD,∴∠2=.(理由是:)∵∠1=∠2,∴∠1=∠3.(理由是:)∴∥.(理由是:)∴∠BAC+=180°.(理由是:)∵∠BAC=70°,∴∠AGD=°.2.如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在AB上.(1)试找出∠1、∠2、∠3之间的关系并说出理由;(2)如果点P在A、B两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(3)如果点P在A、B两点外侧运动时,试探究∠1、∠2、∠3之间的关系(点P和A、B不重合)3.如图,将一张上、下两边平行(即AB∥CD)的纸带沿直线MN折叠,EF为折痕.(1)试说明∠1=∠2;(2)已知∠2=40°,求∠BEF的度数.4.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.(1)已知一个“特征三角形”的“特征角”为100°,求这个“特征三角形”的最小内角的度数;(2)是否存在“特征角”为120°的三角形?若存在.请举例说明;若不存在,请说明理由.5.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.6.(1)如图①,△ABC中,点D、E在边BC上,AE平分∠BAC,AD⊥BC,∠C=40°,∠B=60°,求:①∠CAE的度数;②∠DAE的度数.(2)如图②,若把(1)中的条件“AD⊥BC”变成“F为AE延长线上一点,且FD⊥BC”,其他条件不变,求出∠DFE的度数.(3)在△ABC中,AE平分∠BAC,若F为EA延长线上一点,FD⊥BC,且∠C=α,∠B=β(β>α),试猜想∠DFE的度数(用α,β表示),请自己作出对应图形并说明理由.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.8.已知凸四边形ABCD中,∠A=∠C=90°.(1)如图①,若DE平分∠ADC,BF平分∠ABC的邻补角,求证:DE⊥BF;(2)如图②,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE∥BF.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,直接写出∠ABO的度数=.10.(1)如图①,∠DCE=∠ECB=α,∠DAE=∠EAB=β,∠D=30°,∠B=40°①用α或β表示∠CNA,∠MP A,∠CNA=,∠MP A=②求∠E的大小.(2)如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,则∠E与∠B,∠D之间是否存在某种等量关系?若存在,写出结论,说明理由;若不存在,说明理由.参考答案1.解:∵EF=AD,∴∠2=∠3,(理由是:两直线平行,同位角相等)∵∠1=∠2,∴∠1=∠3,(理由是:等量代换)∴DG∥AB(理由是:内错角相等,两直线平行)∴∠BAC+∠AGD=180°(理由是:两直线平行,同旁内角互补)∵∠BAC=70°,∴∠AGD=110°.故答案为:∠3;两直线平行,同位角相等;等量代换;DG;AB;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110.2.解:(1)∠1+∠2=∠3;理由:过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,(两直线平行,内错角相等)∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)同(1)可证:∠1+∠2=∠3;(3)∠1﹣∠2=∠3或∠2﹣∠1=∠3理由:当点P在下侧时,过点P作l1的平行线PQ,∵l1∥l2,∴l1∥l2∥PQ,∴∠2=∠4,∠1=∠3+∠4,(两直线平行,内错角相等)∴∠1﹣∠2=∠3;当点P在上侧时,同理可得:∠2﹣∠1=∠3.3.解:(1)∵AB∥CD,∴∠MEB=∠MFD,∵A′E∥C′F,∴∠MEA′=∠MFC′,∴∠MEA′﹣∠MEB=∠MFC′﹣∠MFD,即∠1=∠2;(2)由折叠知,∠C′FN==70°,∵A′E∥C′F,∴∠A′EN=∠C′FN=70°,∵∠1=∠2,∴∠BEF=70°+40°=110°.4.解:设三角形的三个内角为α、β、γ,(1)∵α=2β,且α+β+γ=180°,∴当α=100°时,β=50°,则γ=30°,∴这个“特征三角形”的最小内角的度数30°;(2)不存在.∵α=2β,且α+β+γ=180°,∴当α=120°时,β=60°,则γ=0°,此时不能构成三角形,∴不存在“特征角”为120°的三角形.5.解:(1)如图(1),连接AD并延长至点F,,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣40°=50°,故答案为:50.②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∴∠DCE=(∠ADB+∠AEB)+∠DAE=45°+40°=85°;③∠BG1C=(∠ABD+∠ACD)+∠A,∵∠BG1C=70°,∴设∠A为x°,∵∠ABD+∠ACD=133°﹣x°∴(133﹣x)+x=70,∴13.3﹣x+x=70,解得x=63,即∠A的度数为63°.6.解:(1)如图(1).∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∵∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,而AE平分∠BAC,∴∠BAE=∠BAC=×80°=40°,∴∠DAE=∠BAE﹣∠BAD=40°﹣30°=10°;(2)如图2中,作AH⊥BC于H.由(1)可知∠HAE=10°,∵AH∥EF,∴∠DFE=∠HAE=10°(3)结论:∠DFE=(∠B﹣∠C).理由如下:如图3中,作AH⊥BC于H,FD⊥BC于D.∵∠HAE=∠EAB﹣∠BAH,∠BAH=90°﹣∠B,∠BAE=(180°﹣∠B﹣∠C),∴∠HAE=90°﹣∠B﹣∠C﹣(90°﹣∠B)=(∠B﹣∠C),∵AH∥FD,∴∠DFE=∠HAE,∴∠DFE=(∠B﹣∠C).7.解:(1)∠AEB的大小不变.如图1,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴△ABE中,∠AEB=180°﹣45°=135°;(2)∠CED的大小不变.如图2,延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠P AB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠P AB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴△CDE中,∠E=180°﹣112.5°=67.5°.8.解:(1)DE⊥BF.延长DE交BF于G,∵∠ABC+∠ADC=180°,∠ABC+∠CBM=180°,∴∠ADC=∠CBM,∵DE平分∠ADC,BF平分∠ABC外角,∴∠CDE=∠ADC,∠EBF=∠CBM,∴∠CDE=∠EBF.∵∠DEC=∠BEG,∴∠EGB=∠C=90°,∴DE⊥BF.(2)DE∥BF,连接BD,∵∠ABC+∠ADC=180°,∴∠NDC+∠MBC=180°,∵BF、DE分别平分∠ABC、∠ADC的外角,∴∠EDC+∠CBF=90°,∴∠EDC+∠CDB+∠CBD+∠FBC=180°,∴DE∥BF.9.解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠P AB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠P AB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°;③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°.∴∠ABO为60°或45°.故答案为:60°或45°.10.解:(1)①∠CNA=∠D+∠DCE=40°+α,∠CP A=∠B+∠BAP=30°+β,故答案为:40°+α,30°+β;②∵∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠EC∴∠D+∠B=2∠E,∴∠E=(∠D+∠B)=35°;(2)设BC交AD于点F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB﹣∠ECB=∠B+∠BAE﹣∠BCD=∠B+∠BAE﹣(∠B+∠BAD+∠D)=(∠B﹣∠D).。

2020—2021学年苏科版七年级数学下册第7章《平面图形的认识(二 )》解答题常考题(二)

2020—2021学年苏科版七年级数学下册第7章《平面图形的认识(二 )》解答题常考题(二)

苏科版七年级数学下册第7章《平面图形的认识(二 )》解答题常考题(二)1.一零件形状如图,按规定∠A应等于75°,∠B和∠C应分别是18°和22°,某质检员量得∠BDC=114°,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.2.如图,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大小;(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.3.完成下列推理结论及推理说明:如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知AB∥CD()∠B=()又∵∠B=∠D(已知)=(等量代换)∴AD∥BE()∠E=∠DFE()4.如图,AB∥CD,∠FGB=154°,FG平分∠EFD,求∠AEF的度数.5.如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB 的度数.6.如图,已知∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=140°,求∠AFG的度数.7.感知:如图①,∠ACD为△ABC的外角,易得∠ACD=∠A+∠B(不需证明);探究:如图②,在四边形ABDC中,试探究∠BDC与∠A、∠B.、∠C之间的关系,并说明理由;应用:如图③,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=度;拓展:如图④,BE平分∠ABD,CE平分∠ACD,若∠BAC=100°,∠BDC=150°,则∠BEC =度.8.如图,已知∠A=90°+x°,∠B=90°﹣x°,∠CED=90°,4∠C﹣∠D=30°,射线EF∥AC.(1)判断射线EF与BD的位置关系,并说明理由;(2)求∠C,∠D的度数.9.如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=34°,∠AEB=80°,求∠CAD的度数.10.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°).(1)如图1,①若∠DCE=40°,求∠ACB的度数;②若∠ACB=150°,直接写出∠DCE的度数是度.(2)由(1)猜想∠ACB与∠DCE满足的数量关系是.(3)若固定△ACD,将△BCE绕点C旋转,①当旋转至BE∥AC(如图2)时,直接写出∠ACE的度数是度.②继续旋转至BC∥DA(如图3)时,求∠ACE的度数.11.如图,已知AB∥CD,直线分别交AB、CD于点E,F,∠EFB=∠B,FH⊥FB.(1)已知∠B=20°,求∠DFH;(2)求证:FH平分∠GFD;(3)若∠CFE:∠B=4:1,则∠GFH的度数.12.如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且AD⊥CE于F,ED平分∠CEB,若∠ADC=40°,∠A﹣∠B=10°,求∠BDE的度数.13.如图,∠ABC=180°﹣∠A,EF∥BD,∠1+∠2=96°,DO⊥AD交EF于点O.求∠BDO 的度数.14.如图,已知:AB∥CD,DB⊥BC,∠1=40°,求∠2的度数.完成下面的证明过程:证明:∵AB∥CD(),∴∠1=∠BCD=40°().∵BD⊥BC,∴∠CBD=.∵∠2+∠CBD+∠BCD=(),∴∠2=.15.已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=60°,求:∠D的度数.参考答案1.解:如图,延长BD与AC相交于点E,∵∠1是△ABE的外角,∠A=75°,∠B=18°,∴∠1=∠B+∠A=75°+18°=93°,同理,∠BDC=∠1+∠C=93°+22°=115°,∵李师傅量得∠BCD=114°,不是115°,∴这个零件不合格.2.(1)解:∵∠C=35°,∠B=2∠C,∴∠B=70°,∴∠BAC=75°,∵AE平分∠BAC,∴∠EAC=37.5°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=55°,∴∠DAE=55°﹣37.5°=17.5°;(2)证明:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°﹣∠B﹣∠C)=(180°﹣3∠C)=90°﹣∠C,∵∠DAE=∠DAC﹣∠EAC,∴∠DAE=∠DAC﹣(90°﹣∠C)=90°﹣∠C﹣90°+∠C=∠C,∴∠FEC=C,∴∠C=2∠FEC.3.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠B=∠DCE(两直线平行,同位角相等),∵∠B=∠D(已知),∴∠DCE=∠D(等量代换),∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为:同旁内角互补,两直线平行,∠DCE,两直线平行,同位角相等;∴∠DCE;∠D;内错角相等,两直线平行;两直线平行,内错角相等.4.解:∵AB∥CD,∠FGB=154°,∴∠GFD=180°﹣∠FGB=180°﹣154°=26°,∵FG平分∠EFD,∴∠EFD=2∠GFD=2×26°=52°,∵AB∥CD,∴∠AEF=∠EFD=52°.5.解:∵BE∥AD,∴∠ABE=∠BAD=20°,∵BE平分∠ABC,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.6.解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=140°,∴∠1=40°,∴∠AFG=90°﹣40°=50°.7.解:探究:连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;且∠BDC=∠BDF+∠CDF及∠BAC=∠BAD+∠CAD;相加可得∠BDC=∠A+∠B+∠C;应用:由探究的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;故答案为:40;拓展:由探究的结论易得∠BDC=∠BAC+∠ABC+∠ACB,易得∠ABC+∠ACB=50°;而∠BEC=(∠ABC+∠ACB)+∠A,代入∠BAC=100°,∠BDC=150°,易得∠BEC=125°故答案为:1258.解:(1)EF∥BD,∵∠A+∠B=(90+x)°+(90﹣x)°=180°,∴AC∥BD,∵EF∥AC,∴EF∥BD;(2)∵AC∥EF∥BD,∴∠CEF=∠C,∠DEF=∠D,∵∠CED=90°,∴∠C+∠D=90°,联立,解得.9.解:∵BE为△ABC的角平分线,∴∠CBE=∠EBA=34°,∵∠AEB=∠CBE+∠C,∴∠C=80°﹣34°=46°,∵AD为△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=44°.10.解:(1)①∵∠DCE=40°,∴∠ACE=∠ACD﹣∠DCE=50°,∴∠ACB=∠ACE+∠ECB=50°+90°=140°;②∵∠ACB=150°,∠ACD=90°,∴∠ACE=150°﹣90°=60°,∴∠DCE=∠ACD﹣∠ACE=90°﹣60°=30°,故答案为:30;(2)∵∠ACB=∠ACD+∠BCE﹣∠DCE=90°+90°﹣∠DCE,故答案为:∠ACB+∠DCE=180°;(3)①∵BE∥AC,∴∠ACE=∠E=45°,故答案为:45°;②∵BC∥DA,∴∠A+∠ACB=180°,又∵∠A=60°,∴∠ACB=180°﹣60°=120°,∵∠BCE=90°,∴∠BCD=∠ACB﹣∠ECB=120°﹣90°=30°.11.解:(1)∵AB∥CD,∠B=20°,∴∠DFB=20°,∵FH⊥FB,∴∠BFH=90°,∴∠DFH=90°﹣∠DFB=70°;(2)证明:∵AB∥CD,∴∠DFB=∠B,∵∠EFB=∠DFB,∵∠DFB+∠DFH=90°,∴∠EFB+∠GFH=90°,∴∠GFH=∠DFH,∴FH平分∠GFD;(3)∵AB∥CD,∴∠CFB+∠B=180°,∵∠EFB=∠B,∠CFE:∠B=4:1,∴∠EFB=30°,∴∠GFH=90°﹣30°=60°.故答案为:60°.12.解:∵AB∥CD,∵∠A﹣∠B=10°,∴∠B=30°,∵AD⊥EF,∴∠AFE=90°,∴∠AEF=50°,∴∠BEC=130°,∵DE平分∠BEC,∴∠BED=∠BEC=65°,∴∠BDE=180°﹣30°﹣65°=85°.13.解:∵∠ABC=180°﹣∠A,即∠ABC+∠A=180°,∴AD∥BC,∴∠1=∠3,又∵EF∥BD,∴∠2=∠3,∴∠1=∠2,又∵∠1+∠2=96°,∴2∠1=96°,∠1=48°,又∵DO⊥AD,∴∠ADO=90°,∴∠BDO=90°﹣∠1=42°.答:∠BDO的度数为42°.14.证明:∵AB∥CD(已知),∴∠1=∠BCD=40°(两直线平行,同位角相等).∵BD⊥BC,∴∠CBD=90°.∵∠2+∠CBD+∠BCD=180°(三角形内角和定理),∴∠2=50°.故答案为:已知,两直线平行,同位角相等,90°,180°,三角形内角和定理,50°.15.解:∵AB∥CD,∴∠A=∠1,∵∠A+∠1=60°,∴∠1=∠A=30°,∴∠ECD=∠1=30°,∵DE⊥AE,∴∠DEC=90°,∴∠D=180°﹣∠DEC﹣∠ECD=60°.。

苏科版七年级数学下册 第七章《平面图形的认识(二)》特优生拓展训练(2 )

苏科版七年级数学下册 第七章《平面图形的认识(二)》特优生拓展训练(2 )

七下第七章《平面图形的认识(二)》特优生拓展训练(2)姓名:___________班级:___________考号:___________一、选择题1.下列第一行所示的四个图形,每个图形均是由四种简单的图形a、b、c、d(圆、直线、三角形、长方形)中的两种组成.例如由a、b组成的图形记作a⊙b,那么由此可知,下列第二行的图中可以记作a⊙d的是()A. B. C. D.2.如图所示,在△ABC中,∠C=90°,D,E是AC上的两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A. BE是△ABD的中线B. BD是△BCE的角平分线C. ∠1=∠2=∠3D. BC是△ABE的高3.设a,b,c均为正整数,且a≥b≥c,满足a+b+c=15,则以a,b,c为边长的三角形有()A. 5个B. 7个C. 10个D. 12个4.已知线段AC=3,BC=2,则线段AB的长度()A. 一定是5B. 一定是1C. 一定是5或1D. 以上都不对5.一个正多边形它的一个外角等于与它不相邻的内角的1,则这个多边形是()4A. 正十二边形B. 正十边形C. 正八边形D. 正六边形6.如图,直线AB//CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°7.同一平面内不重合的三条直线,其交点的个数可能为()A. 0个或1个B. 1个或2个C. 2个或3个D. 0个或1个或2个或3个8.三角形的两边分别为3和5,则三角形周长y的范围是()A. 2<y<8B. 10<y<18C. 10<y<16D. 无法确定9.如图,图1是AD//BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为()A. 1200B. 1080C. 1260D. 114010.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2,…,以此类推,第n次平移将长方形A n−1B n−1C n−1D n−1沿A n−1B n−1的方向向右平移5个单,得到长方形A n B n∁n D n(n>2),则AB n长为()A. 5n+6B. 5n+1C. 5n+4D. 5n+3二、填空题11.如图,∠A=32°,则∠B+∠C+∠D+∠E=°.12.如图,直线AB//CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是_________.13.一个人从点O出发,每前进1m就向右转a°,照这样走下去,如果它恰好能回到点O,且所走的路线最短,则a的值为__________.14.已知两个完全相同的直角三角形纸片△ABC、△DEF,如图放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图中的△DEF绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为______ s.15.如图,∠CAB为锐角,AB=m,点P在射线AC上,点B到射线AC的距离a,BP=x,若△ABP的形状、大小是唯一确定的,则x的取值范围是___________.16.已知∠A与∠B的两边分别平行,其中∠A是∠B的3倍少36°,则∠B的度数为________.三、解答题17.阅读下列材料:已知:如图1,直线AB//CD,点E是AB、CD之间的一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D.小冰是这样做的:证明:过点E作EF//AB,则有∠BEF=∠B.∵AB//CD,∴EF//CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.图1即∠BED=∠B+∠D.请利用材料中的结论,完成下面的问题:已知:直线AB//CD,直线MN分别与AB、CD交于点E、F.(1)如图2,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;(2)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2.求证:∠FG1E+∠G2=180°.18.如图,AB//CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系(3)、(4)中任选一个加以说明。

苏科版七年级下册数学第7章 平面图形的认识(二) 含答案

苏科版七年级下册数学第7章 平面图形的认识(二) 含答案

苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C 落在ΔABC外的点处,若∠1=20°,则∠2的度数为( )A.80°B.90°C.100°D.110°2、下面四个图形中,线段BE是△ABC的高的图是()A. B. C. D.3、如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70°B.80°C.65°D.60°4、如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠BED的度数是()A.70°B.68°C.60°D.72°5、三角形的两边长分别是5和8,则第三边长不可能是()A.3B.5C.7D.96、如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°7、下列说法正确的是()A.两条直线被第三条直线所截,内错角相等B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.若a⊥b,b⊥c,则a⊥cD.不相等的角不是对顶角8、已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是()A. <x<5B.0<x<2.5C.0<x<5D.0<x<109、如图所示,AB∥CD,∠DEF=120°,则∠B的度数为()A.120°B.60°C.150°D.30°10、如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是()A.20米B.15米C.10米D.5米11、如图,AD∥BC,BD平分∠ABC,若∠ABD=35°,则∠A的度数是().A.70 °B.110 °C.155 °D.35 °12、如图,下列推理正确的是()A.因为∠BAD+∠ABC=180°,所以AB∥CDB.因为∠1=∠3,所以AD∥BCC.因为∠2=∠4,所以AD∥BCD.因为∠BAD+∠ADC=180°,所以AD∥BC13、等腰三角形的一个外角是100°,它的顶角的是()A.80°B.20°C.20°或80°D.100°14、如图,已知:∠1=∠2,那么下列结论正确的是()A.∠C=∠DB.AD∥BCC.AB∥CDD.∠3=∠415、具备下列条件的四个三角形中,不是直角三角形的是()A.∠A ∠B ∠CB.∠A-∠B 90°C.∠A+∠B ∠C D.∠A 90°-∠B二、填空题(共10题,共计30分)16、一个多边形从一个顶点出发可引3条对角线,这个多边形的内角和等于________.17、如图,直线a∥b,一个含有30°角的直角三角板放置在如图所示的位置,若∠1=24°,则∠2= ________.18、如图,直线1与11, 12相交,形成∠1,∠2,…,∠8,请填上你认为适合的一个条件:________使得11∥12.19、如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为________.20、已知等腰三角形的两边长是5和12,则它的周长是________;21、已知正方形的边长为2,分别是边,上的两个动点,且满足,连接,,则的最小值为________.22、如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是________ 度.23、一个人从A点出发向北偏东60°的方向走向B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于________.24、如图,将周长为9的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为________.25、如图,AB∥CD,AD∥BE,试说明:∠ABE=∠D.解:∵AB∥CD (已知)∴∠ABE=________(两直线平行,内错角相等)∵AD∥BE (已知)∴∠D=________∴∠ABE=∠D (等量代换)三、解答题(共5题,共计25分)26、如图,∠MON=90°,点A,B分别在射线OM、ON上移动,BE是∠ABN的平分线,BE的反向延长线与∠OAB平分线相交于点C,试问:∠ACB的大小是否发生变化?如果保持不变,请给出证明;如果随点A、B移动发生变化,请求出变化范围.27、如图,已知,,是的平分线,,求的度数.28、已知:如图,AB∥EF,BC∥ED,AB,DE交于点G.求证:∠B=∠E.29、如图所示,四边形中,,平分,平分,若与不重合,则与有何位置关系?试说明理由.30、将下面的解答过程补充完整:如图,点在上,点在上,,.试说明:∥.解:∵(已知)()∴(等量代换)∴_▲_∥__▲__()∴()∵(已知)∴()∴∥()参考答案一、单选题(共15题,共计45分)1、C2、A3、A4、A5、A6、C7、D8、A9、B10、D11、B12、B13、C14、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

七下平面图形的认识(二)整章教案 知识点+例题+练习 含答案 (全面)

七下平面图形的认识(二)整章教案 知识点+例题+练习 含答案 (全面)

教学主题平面图形的认识(二)教学目标掌握平行的判定和性质、图形的平移、三角形、多边形对的内角和与外角和重要知识点1.平行的判定和性质2.图形的平移3.三角形、多边形对的内角和与外角和易错点平行的判定和性质图形的平移三角形、多边形对的内角和与外角和教学过程平行线及其判定【要点梳理】要点一、平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.要点二、平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点三、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行线的定义及表示例1.下列叙述正确的是()A.两条直线不相交就平行B.在同一平面内,不相交的两条线叫做平行线C.在同一平面内,不相交的两条直线叫做平行线D.在同一平面内,不相交的两条线段叫做平行线【答案】C举一反三:【变式】下列说法错误的是()A.无数条直线可交于一点B.直线的垂线有无数条,但过一点与垂直的直线只有一条C.直线的平行线有无数条,但过直线外一点的平行线只有一条D.互为邻补角的两个角一个是钝角,一个是锐角【答案】D类型二、平行公理及推论例2.下列说法中正确的有()①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥d,所以a∥d;④经过直线外一点有且只有一条直线与已知直线平行.A.1个 B 2个C.3个D.4个【答案】 A举一反三:【变式】直线a∥b,b∥c,则直线a与c的位置关系是.【答案】平行类型三、两直线平行的判定例3.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【答案】C举一反三:【变式1】如图,下列条件中,不能判断直线1l ∥2l 的是( ).A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=1800【答案】B【变式2】已知,如图,BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,求证:AB//CD .【答案】∵ ∠1=∠2∴ 2∠1=2∠2 ,即∠ABC =∠BCD∴ AB//CD (内错角相等,两直线平行)例4.如图所示,由(1)∠1=∠3,(2)∠BAD =∠DCB ,可以判定哪两条直线平行.解:(1)由∠1=∠3,可判定AD ∥BC (内错角相等,两直线平行);(2)由∠BAD =∠DCB ,∠1=∠3得:∠2=∠BAD -∠1=∠DCB -∠3=∠4(等式性质),即∠2=∠4可以判定AB ∥CD (内错角相等,两直线平行).例5.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?【答案与解析】解:这两条直线平行.理由如下:如图:∵ b⊥a, c⊥a∴∠1=∠2=90°∴b∥c (同位角相等,两直线平行) .举一反三:【变式】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图:∵EF⊥EG,GM⊥EG (已知),∴∠FEQ=∠MGE=90°(垂直的定义).又∵∠1=∠2(已知),∴∠FEQ -∠1=∠MGE -∠2 (等式性质),即∠3=∠4.∴AB∥CD (同位角相等,两直线平行).【巩固练习】一、选择题1.下列关于作图的语句正确的是().A.画直线AB=10厘米.B.画射线OB=10厘米.C.已知A,B,C三点,过这三点画一条直线.D.过直线AB外一点画一条直线和直线AB平行.2.有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行(2)平面内,过一点能且只能作一条直线与已知直线垂直(3)直线外一点与直线上各点连接的所有线段中,垂线段最短(4)平行于同一条直线的两条直线平行.其中正确的个数是()A.1个B.2个C.3个D.4个3.若直线a∥b,b∥c,则a∥c的依据是().A.平行的性质B.等量代换C.平行于同一直线的两条直线平行.D.以上都不对4.下列说法中不正确的是().A.同位角相等,两直线平行.B.内错角相等,两直线平行.C.同旁内角相等,两直线平行.D.在同一平面内,垂直于同一条直线的两直线平行.5.如图所示,给出了过直线l外一点P作已知直线l的平行线的方法,其依据是().A.同位角相等,两直线平行. B.内错角相等,两直线平行.C.同旁内角互补,两直线平行. D.以上都不对.6.如图所示,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.其中能判定AB∥CD的序号是( ).A.1 B.2 C.3 D.4二、填空题7.两条射线或线段平行,是指 .8.如图所示,直线a,b被c所截,∠1=30°,∠2:∠3=1:5,则直线a与b的位置关系是________.9.如图,直线a和b被直线c所截,∠1=110°,当∠2=________时,有直线a∥b成立.10.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a与b平行,则∠1的度数必须是.11.小军在一张纸上画一条直线,再画这条直线的平行线,然后依次画前一条直线的平行线,当他画到第十条直线时,第十条直线与第一条直线的位置关系是________.12.已知直线a、b都过点M,且直线a∥l,b∥l,那么直线a、b是同一条直线,根据是________.三、解答题13.读下列语句,用直尺和三角尺画出图形.(1)点P是直线AB外的一点,直线CD经过点P,且CD与AB平行;(2)直线AB与CD相交于点O,点P是AB、CD外的一点,直线EF经过点P,且EF∥AB,与直线CD 相交于点E.14.已知如图,∠ABC=∠ADC,BF、DE分别是∠ABC、∠ADC的角平分线,∠1=∠2,那么CD与AB平行吗?写出推理过程.15.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【答案与解析】一、选择题1.【答案】D2.【答案】D.【解析】(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)平面内,过一点能且只能作一条直线与已知直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线平行,正确;正确的有4个,故选:D.3.【答案】C【解析】这是平行线的传递性,其实质是平行公理的推论.4. 【答案】C【解析】同旁内角互补,两直线平行.5. 【答案】A【解析】这种作法的依据是:同位角相等,两直线平行.6. 【答案】C【解析】∠1=∠2,但∠1、∠2不是截AB、CD所得的内错角,所以不能判定AB∥CD.二、填空题7. 【答案】射线或线段所在的直线平行;8.【答案】平行;【解析】由已知可得:∠2=30°,所以∠1=∠2,可得:a∥b.9.【答案】70°;10.【答案】80°.【解析】因为a与b平行,所以∠1=∠3,又∠2=100°,所以∠3=80°,∴∠1=80°.11.【答案】平行;【解析】平行公理的推论12.【答案】过直线外一点有且只有一条直线与这条直线平行;【解析】这是平行公理的具体内容.三、解答题13.【解析】解:14.【解析】解:CD∥AB.理由如下:∵BF、DE分别是∠ABC、∠ADC的角平分线,要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点三、图形的平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或在同一条直线上)且相等;(2)平移后,对应角相等;(3)平移后,各组对应点的连线平行(或在同一条直线上)且相等;(4)平移后,新图形与原图形是一对全等图形.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质例1.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°【答案】B .举一反三:【变式】如图,已知1234//,//l l l l ,且∠1=48°,则∠2= ,∠3= ,∠4= .【答案】48°,132°,48°类型二、两平行线间的距离例2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则()A.S1>S2B.S1=S2C.S1<S2D.不确定【答案】B举一反三:【变式】如图,在五边形ABCDE中,AB∥DE,若△ABE的面积为5,则△ABD的面积为()A.4 B.5 C.10 D.无法判断【答案】B.类型三、图形的平移例3.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.解:如图所示,例4.如图所示,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为________.【答案】30°举一反三:【变式】如图所示,三角形FDE经过怎样的平移可以得到三角形ABC()A.沿EC的方向移动DB长B.沿BD的方向移动BD长C.沿EC的方向移动CD长D.沿BD的方向移动DC长【答案】A类型四、平行的性质与判定综合应用例5.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°【答案】C举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行【巩固练习】一、选择题1.下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是().A.①B.②和③C.④D.①和④2.(2015•枣庄)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°3.下列图形中,由AB∥CD,能得到∠1=∠2的是().4.如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是().A.70°B.80°C.100°D.110°5.(南通)如图所示,已知AD与BC相交于点O,CD∥OE∥AB.如果∠B=40°,∠D=30°,则∠AOC 的大小为().A.60°B.70°C.80°D.120°6.(山东德州)如图所示,直线l1//l2,∠1=40°,∠2=75°,则∠3等于().A.55°B.30°C.65°D.70°7.如图所示的图形中的小三角形可以由△ABC平移得到的有().A.3个B.4个C.5个D.6个二、填空题8.如图,已知AB∥CD,S△ACD=6cm2,则S△BCD=6cm2.9. 如图所示,△ABC经过平移得到△A′B′C′,图中△_________与△_________大小形状不变,线段AB 与A′B′的位置关系是________,线段CC′与BB′的位置关系是________.10. (浙江湖州)如图所示,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2=______度.11.如图,在四边形ABCD中,若∠A+∠B=180°,则∠C+∠D=_______.12.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=________.13.如图所示,AB∥CD,且∠BAP=60°-a,∠APC=45°+a,∠PCD=30°-a,则a=________.三、解答题14.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.15. 如图,a∥b∥c,∠1=60°,∠2=36°,AP平分∠BAC,求∠PAQ的度数.16. 如图,将四边形ABCD平移到四边形EFGH的位置,根据平移后对应点所连的线段平行且相等,写出图中平行的线段和相等的线段.【答案与解析】一、选择题∴∠2=∠3(两直线平行,同位角相等);∵∠1=∠2(已知),∴∠1=∠3(等量代换);∴DG∥AB(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°,∴∠AGD=110°.15.【解析】解:∵a∥b∥c,∴∠BAQ=∠1=60°,∠CAQ=∠2=36°,∠BAC=60°+36°=96°,又AP平分∠BAC,∠BAP=12×96°=48°,∴∠PAQ=∠BAQ-∠BAP=60°-48°=12°.16.【解析】解:平行的线段:AE∥BG∥DH,相等的线段:AE=BF=OG=DH.认识三角形【要点梳理】要点一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点二、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点三、三角形的分类1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形.②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形要点四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段三角形的高三角形的中线三角形的角平分线名称文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过点A作AD⊥BC于点D.取BC边的中点D,连接AD.作∠BAC的平分线AD,交BC于点D.标示图形符号语言1.AD是△ABC的高.2.AD是△ABC中BC边上的高.3.AD⊥BC于点D.4.∠ADC=90°,∠ADB=90°.(或∠ADC=∠ADB=90°)1.AD是△ABC的中线.2.AD是△ABC中BC边上的中线.3.BD=DC=12BC4.点D是BC边的中点.1.AD是△ABC的角平分线.2.AD平分∠BAC,交BC于点D.3.∠1=∠2=12∠BAC.推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=12BC.因为AD平分∠BAC,所以∠1=∠2=12∠BAC.用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一个三角形有三条角平分线,它们交于三角形内一一点.点.要点五、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.【典型例题】类型一、三角形的定义及表示例1.如图,图中共有三角形()A.4个B.5个C.6个D.8个【答案】D.举一反三:【变式】如图,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系例2. (四川南充)三根木条的长度如图所示,能组成三角形的是()【答案】D举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能;(2)不能;(3)能.例3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c << 举一反三:【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可) 【答案】5,注:答案不唯一,填写大于4,小于12的数都对. 类型三、三角形中重要线段例4. 小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C 举一反三:【变式】如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .【答案】A .例5.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【答案与解析】 答:AC 的长为5cm . 举一反三:【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S =△,则S 阴影为________.【答案】1类型四、三角形的稳定性例6.如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?解:三角形的稳定性.【巩固练习】一、选择题1.如图,以BC为边的三角形有()个.A.3个B.4个C.5个D.6个2.如图所示的图形中,三角形的个数共有().A.1个B.2个C.3个D.4个3.已知三角形两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为第三边的是().A.13 cm B.6 cm C.5 cm D.4 cm4.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是().A.5m B.15m C.20m D.28m5.三角形的角平分线、中线和高都是().A.直线B.线段C.射线D.以上答案都不对6.下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部7.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是().A.S1>S2B.S1<S2C.S1=S2D.以上三种情况都有可能8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是().A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、填空题9.不一定在三角形内部的线段是(填“角的平分线”或“高线”或“中线”).10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________cm.11. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.12. 如图,AD是△ABC的角平分线,则∠______=∠______=12∠_______;BE是△ABC的中线,则________=_______=12________;CF是△ABC的高,则∠________=∠________=90°,CF________AB.13.如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.如果知道三角形的一边之长和这边上的高,三角形________确定.(填“能”或“不能”)三、解答题15.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.16.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.17.如图所示,已知AD,AE分别是ΔABC的中线、高,且AB=5cm,AC=3cm,则ΔABD与ΔACD的周长之差为多少,ΔABD与ΔACD的面积有什么关系.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题(2)当-1<a <0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a =0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k ,3k ,5k ,则2k+3k =5k 不满足三角形三边关系.所以不能围成三角形. 16.【解析】解:AD 、AF 分别是△ABC ,△ABE 的角平分线.BE 、DE 分别是△ABC ,△ADC 的中线,AG 是△ABC ,△ABD ,△ACD ,△ABG ,△ACG ,△ADG 的高.17.【解析】解: (1)ΔABD 与ΔACD 的周长之差=(AB +BD +AD)-(AD +CD +AC),而BD =CD.所以上式=AB -AC =5-3=2.(2)S ΔABD =21BD ·AE ,S ΔACD =21CD ·AE 。

苏科版初中数学七年级下册第七章《平面图形的认识(二)》专题训练试题(含答案)

苏科版初中数学七年级下册第七章《平面图形的认识(二)》专题训练试题(含答案)

第七章《平面图形的认识(二)》专题训练试题专题一 平行线的性质与判定1.如图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( ) A.AD ∥BC B.∠B =∠C C.∠2+∠B =180° D.AB ∥CD2.如图,直线a 、b 与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°.其中能判断a ∥b 的是( )A.①②③④B.①③④C.①③D.②④3.如图,∠1=82º,∠2=98º,∠3=80º,则∠4=___度.4.如图,已知l ∥m ,则∠x =___,∠y =___.5.已知:如图,CD ⊥AB ,EF ⊥AB ,垂足分别是D 、F ,∠BEF =∠CDG .试说明∠B +∠BDG =180°的理由.专题二 图形的平移1.下列运动属于平移的是( )A.空中放飞的风筝B.飞机在跑道上滑行到停止的运动C.篮球运动员投出并进入篮筐的过程D.乒乓球比赛中的高抛发球后,乒乓球的运动方式2.如图所示,右边的两个图形中,经过平移能得到左边的图形的是( )3.已知梯形ABCD ,AD ∥BC ,BC =6,AD =3,AB =4,CD =2,AB 平移后到DE 处,12DCBA 876c b a 54321D CB A则ΔCDE 的周长是___.4.如果△ABC 经过平移后得到△DEF ,若∠A =41°,∠C =32°,EF =3cm ,则∠E =__,BC =__cm.5.已知:如图,是两个重叠的直角三角形,将其中的一个直角三角形沿着BC 方向平移BE 的长得到此图形,若其中AB =8,BE =5,DH =3.求四边形DHCF 的面积.专题三 与三角形有关的计算1.一个三角形的两个内角分别是55°和65°,这个三角形的外角不可能是( )A.115°B.120°C.125°D.130°2.若三角形三边的长分别为整数,周长为13,且一边长为4,则这个三角形的最大边长为( )A.7B.6C.5D.43.如图所示,在锐角△ABC 中,BE 分别是AB ,AC 边上的高,且CD ,BE 交于一点P ,若∠A =50°,则∠BPC 的度数是___.4.明明家有一块三角形ABC 空地,他要在这块空地上种植草皮来美化环境,已知这种草皮每平方米售价230元,AC =12m ,AC 边上的高BD =15m ,则购买这种草皮至少需要___元.5.(1)如图1,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A =30°,则∠ABC +∠ACB =______,∠XBC +∠XCB =______.(2)如图,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ•仍然分别经过B 、C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小.图 2图1专题四 与多边形有关的计算1.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.A.五边形B.六边形C.七边形D.八边形2.如果多边形的内角和是外角和的k 倍,那么这个多边形的边数是( )A.kB.2k +1C.2k +2D.2k -23.现提供下列几个角的度数:①270°;②540°;③630°;④1800°;⑤2430°.其中是某一个多边形内角和的有___.4.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…照这样走下去,他第一次回到出发地A 点时,一共走了___米.5.有两个多边形,如果它们都是各边相等,各内角相等的多边形,且这两个多边形的边数之比为1∶2,内角之比是3∶4,则这两个多边形的边数各是多少?专题五 综合创新应用1.在正方形ABCD 所在的平面内找点P ,使△P AB ,△PBC ,△PCD ,△P AD 均为等腰三角形,这样的点P 有( )A.1个B.4个C.5个D.9个2.如图,△ABC 内有三个点D 、E 、F ,现分别以A 、B 、C 、D 、E 、F 这六个点为顶点构建三角形,使得任意点不落在另一个三角形内部,那么这些三角形的所有内角之和为( )A.360°B.900°C.1260°D.1440°3.如果等腰三角形周长为20,则腰长x 的取值范围是___,底边长y 的取值范围是___.4.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干个图案.则第4个图案中有白色地面砖___块;第n 个图案中有白色地面砖___块.5.小明在进行多边形内角和计算时,求得一多边形的内角和为1125°.重新检查时,发现少加了一个内角.问这个内角是多少度?小明求的是几边形的内角和?6.如图所示是一个广场地面的一部分,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖拼成,从里往外共12层(不包括中央的正六边形地砖),每一层30° 30° 30° A (7)B F AC ED 第1个 第2个 第3个的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米,则第12层的外边界所围成的多边形的周长是多少?专题一:1,B ;2,B.3,80º;4,125°、72°.5,∵CD ⊥AB ,EF ⊥AB ,∴∠BFE =90°,∠BDC =90°,∴CD ∥EF (同位角相等,两直线平行),∴∠BEF =∠BCD (两直线平行,同位角相等),又因为∠BEF =∠CDG ,∴∠BCD =∠CDG ,∴BC ∥DG (内错角相等,两直线平行),∴∠B +∠BDG =180°(两直线平行,同旁内角互补).专题二:1,B ;2,C.3,9;4,117°,3.5,要求四边形DHCF 的面积,依题意,本来两个直角三角形是重合的,即两个直角三角形的面积相等,再由平移的知识可以知道四边形DHCF 的面积等于直角梯形ABEH 的面积,而此时DE =AB ,所以EH =8-3=5,所以直角梯形ABEH 的面积=12(EH +AB )×BE =12(5+8)×5=32.5.所以四边形DHCF 的面积是13.5平方单位.专题三:1,C ;2,C.3,②④;4,120.5,设其中一个多边形的边数为n ,则另一个多边形的边数为2n ,于是,根据题意,得()2180n n -⨯o∶()221802n n -⨯o=3∶4,解得n =5.所以2n =10.即这两个多边形的边数分别是5和10.专题四:1,D ;2,B.3,130°;4,41400.5,(1)150°;90°.(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°,∵∠X=•90°,∴∠XBC+∠XCB =90°,∴∠ABX+∠ACX =(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.点拨:此题注意运用整体法计算.专题五:1,D.提示:形内有5个,形外有4个;2,D. 提示:图形共有8个三角形.3,5<x<10、0<y<10.提示:依题意,得x+x>20-x-x,且x-x<20-x-x,即x >5,且x<10,所以5<x<10.同理0<y<10;4,4n+2.提示:第1个图案需要白色地面砖6=4×1+2,第2个图案需要白色地面砖10=4×2+2,第3个图案需要白色地面砖14=4×3+2,第4个图案需要白色地面砖18=4×4+2,…第n个图案需要白色地面砖10=4×n +2=4n+2.5,设这个内角的度数为x,这个多边形为n边形.则根据题意,得1125°+x=(n-2)·180°.由于1 125°+x是180°的倍数,而1 125°=180°×6+45°,所以x+45°=180°,解得x=135°,进而解得n=9.所以这个内角的度数为135°,这个多边形为九边形.6,36米. 提示:第一层即正六边形有6×1=6个边长,第二层有6×2=12个边长,第三层6×3=18个边长,…第12层有6×12=72个边长,而一个边长是0.5米,所以第12层的外边界所围成的多边形的周长是36米.。

完整版苏科版七年级下册数学第7章 平面图形的认识(二) 含答案

完整版苏科版七年级下册数学第7章 平面图形的认识(二) 含答案

苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=52°,则∠2的度数为()A.92°B.98°C.102°D.108°2、等腰三角形底边长为,一腰上的中线把其分为周长之差为的两部分,则腰长为()A. B. C. 或 D.不确定3、如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°4、已知等腰三角形一个外角等于120°,则它的顶角是()A.60°B.20°C.60°或20°D.不能确定5、如图,已知AB∥CO,那么∠1,∠2,∠3之间的关系是()A.∠1+∠2=∠3B.∠1+∠3=∠2C.∠1+∠2+∠3=180°D.∠1+∠2﹣∠3=180°6、三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是()A.8B.10C.8或10D.不能确定7、九边形的内角和为()A.1260°B.1440°C.1620°D.1800°8、如右图,在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD : ∠DBA =3:1,则∠A为().A.18°B.20°C.22.5°D.30°9、已知三角形的两边长分别为5和7,则第三边长不可能是()A.1B.3C.5D.710、正十二边形的一个内角的度数为()A.30°B.150°C.360°D.1800°11、下列四个图案是小明家在瓷砖厂选购的四种地砖图案,其中既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是()A. B. C. D.12、701班小明同学想利用木条为七年级数学组制作一个三角形的工具,那么下列哪组数据的三根木条的长度能符合他的要求()A. 4,2,2B.3,6,6C.2,3,6D.7,13,613、已知非等腰三角形的两边长分别是2 cm和9 cm,如果第三边的长为整数,那么第三边的长为()A.8 cm或10 cmB.8 cm或9 cmC.8 cmD.10 cm14、下列各组长度的线段,能构成三角形的一组是( )A.1cm,3cm,2cmB.3.5cm,7.1cm,3.6cmC.6cm,1cm,6cm D.4cm,10cm,4cm15、如图,AB∥DE,∠E=65°,则∠B+∠C=( )A.135°B.115°C.36°D.65°二、填空题(共10题,共计30分)16、如图,AB∥CD ,以点A为圆心,小于AC长为半径作圆弧,分别交AB ,AC于E , F两点,再分别以E , F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD于点M .若∠ACD=114°,则∠MAB的度数为________°.17、如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=30°,∠BCA=100°,则∠DAE的度数为________.18、如图,在△ABC 中,∠A=60°,D 是 AB 上一点,E 是 AC 上一点,BE、CD 相交于 O,且∠BOD=55°,∠ACD=30°,则∠ABE 的度数是________.19、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C 是y轴上的一个动点,当∣BC-AC∣最大时,点C的坐标是________.20、已知如图,BC=3,∠ABC和∠ACB的平分线相交于点O,OE∥AB,OF∥AC,则三角形OEF的周长为________.21、完成以下证明,并在括号内填写理由.已知:如图所示,∠1=∠2,∠A=∠3.求证:∠ABC+∠4+∠D=180°.证明:∵∠1=∠2∴________∥________(________)∴∠A=∠4(________)∠ABC+∠BCE=180°(________)即∠ABC+∠ACB+∠4=180°∵∠A=∠3∴∠3=________∴________∥________∴∠ACB=∠D(________)∴∠ABC+∠4+∠D=180°.22、已知:如图,在△ABC 中,AB=AC,DE垂直平分AB ,交边AB于点 D ,交边AC于点 E,BF垂直平分 CE ,交 AC于点F ,则∠A ________度.23、如图所示,如果把图中任一条线段沿方格线平移1格称为“1步”,那么要通过平移使图中的四条线段首尾相接组成一个四边形,最少需要________ 步.24、已知:△ABC中,∠A+∠B= ∠C,则∠C =________.25、如图1,MA1∥NA2,则∠A1+∠A2=________ 度.如图2,MA1∥NA3,则∠A1+∠A2+∠A3=________ 度.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=________ 度.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=________&nbsp;度.从上述结论中你发现了什么规律?如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=________ 度.三、解答题(共5题,共计25分)26、化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.27、已知命题:“如图,点B、F、C、E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并加以证明.28、小明在学习三角形内角和定理时,由于病假缺课,只知道三角形内角和为180度,却不知道原理。

苏科版七年级下册数学第7章 平面图形的认识(二) 含答案

苏科版七年级下册数学第7章 平面图形的认识(二) 含答案

苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2的度数为()A. B. C. D.2、如图,在四边形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分别是AD、CD 的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2B.C.D.33、已知在ΔABC中,AB=AC,周长为24,AC边上的中线BD把ΔABC分成周长为9和15的两个部分,则ΔABC各边的长分别为()A.10、10、4B.6、6、12C.5、9、10D.10、10、4或6、6、124、给出下列说法:①两条直线被第三条直线所截,同位角相等;②平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;③相等的两个角是对顶角;④从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有()A.0个B.1个C.2个D.3个5、如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A.3种B.6种C.8种D.12种6、如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4B. :C. :D. :7、已知等腰三角形的两条边长分别为2和3,则它的周长为 ( )A.7B.8C.5D.7或88、如图,一副三角板叠在一起,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,AC与DE交于点M,如果,则的度数为()A.80B.85C.90D.959、如图,点A是反比例函数y= (x>0)图象上任意一点,AB⊥y轴于点B,点C是x轴上的一个动点,则△ABC的面积为( )A.1B.2C.4D.无法确定10、如图所示,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD ⊥AC于点D,则BD的长为()A.3B.2C.4D.1.511、如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥CD,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对12、如图,在△ABC中,AB=AC,∠B=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC,其中正确有( )A.②③B.②③④C.①②③D.①②③④13、不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线14、如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同 C.左、右两个几何体的俯视图不相同 D.左、右两个几何体的三视图不相同15、已知:如图,AB,BC,AC是⊙O的三条弦,∠OBC=50°,则∠A=( )A.25°B.40°C.80°D.100°二、填空题(共10题,共计30分)16、完成下面的证明.已知:如图,∠1+∠2=180°,∠3+∠4=180°.求证:AB∥EF.证明:∵∠1+∠2=180°,∴AB∥________(________).∵∠3+∠4=180°,∴________∥________.∴AB∥EF(________).17、如图,在△ABC中,AB=AC,DE∥BC,∠1=65°,则∠2=________°18、如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠A=50°,则∠1+∠2=________°19、已知如图所示,∠MON=40°,P为∠MON内一点,A为OM上一点,B为ON 上一点,则当△PAB的周长取最小值时,∠APB的度数为________.20、如图,若,BF平分,DF平分,,则________.21、如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2等于________度.22、如图,已知∠B=∠1,CD是△ABC的角平分线,求证:∠5=2∠4.请在下面横线上填出推理的依据:证明:∵∠B=∠1,(已知)∴DE∥BC.(________)∴∠2=∠3.(________)∵CD是△ABC的角平分线,(________)∴∠3=∠4.(________)∴∠4=∠2.(________)∵∠5=∠2+∠4,(________)∴∠5=2∠4.(________)23、如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是________度.24、如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=________°.25、如图,分别切⊙于点,若,点为⊙上任一动点,则的大小为________°.三、解答题(共5题,共计25分)26、化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.27、如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.28、如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.29、已知AD⊥BC,BE=CE,∠ABC=2∠C,BF为∠B的平分线.求证:AB=2DE.30、如图,已知AB∥CD,∠AED+∠C=180°。

《第7章平面图形的认识二》复习巩固优生提升训练(附答案)2021年暑假七年级数学苏科版下册

《第7章平面图形的认识二》复习巩固优生提升训练(附答案)2021年暑假七年级数学苏科版下册

苏科版七年级数学下册《第7章平面图形的认识二》2021年暑假复习巩固优生提升训练(附答案)1.若两条直线被第三条直线所截,有一对同位角相等,则其中一对同旁内角的角平分线()A.互相垂直B.互相平行C.相交或平行D.不相等2.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.都有可能3.如图,把一张长方形纸条ABCD沿着EF进行折叠,点A、B分别落到点A′、B′处,已知∠ADB=20°,且A′B′∥BD,则∠EFC的度数为()A.20°B.55°C.65°D.70°4.如图,要得到DG∥BC,则需要条件()A.CD⊥AB,EF⊥AB B.∠1=∠2C.∠1=∠2,∠4+∠5=180°D.CD⊥AB,EF⊥AB,∠1=∠25.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于点G,若∠BDC =140°,∠BGC=110°,则∠A的度数为()A.50°B.55°C.70°D.80°6.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10B.11C.12D.以上都有可能7.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°8.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30°B.45°C.55°D.60°9.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为()A.∠1+∠2﹣∠3B.∠1+∠3﹣∠2C.180°+∠3﹣∠1﹣∠2D.∠2+∠3﹣∠1﹣180°10.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()度.A.450B.540C.630D.72011.如图,∠ACD的平分线与∠ABD的平分线交于点E.∠A,∠CEB和∠D之间的数量关系是.12.如图,已知AB∥CD,则∠A、∠C、∠P的关系为.13.如图,△ABC的外角平分线CP和内角平分线BP相交于点P,若∠BPC=80°,则∠CAP=.14.在△ABC中,∠B=20°,AD为BC边上的高,∠DAC=30°,AE平分∠BAC交BC 于点E,则∠DAE等于度.15.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A'B'C',连接A'C,则线段A'C的长为.16.如图,Rt△ABC中,AB=2cm,BC=4cm,将三角形ABC沿BC方向平移2cm得到三角形A'B'C',A'B'与AC交于点D,A'D=1cm,则图中四边形DCC′A′的面积为.17.如图,如果AB∥CD,则角α=130°,γ=20°,则β=.18.已知∠A与∠B两边分别平行,且∠A比∠B的3倍少20°,则∠A的大小是.19.如图,已知AM∥CN,点B为平面内一点,AB⊥BC于B,过点B作BD⊥AM于点D,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC的度数为.20.AD是△ABC的高,∠ABC=40°,∠ACD=60°,BE,CF分别平分∠ABC和∠ACB,则∠BEC=度.21.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE、CF的交点,则∠ABE=,∠BHC=.22.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?23.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.24.如图1,在三角形ABC中,点E、点F分别为线段AB、AC上任意两点,EG交BC于G,交AC的延长线于H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图2,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.25.已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.26.(1)根据下列叙述填依据:已知:如图①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度数.解:因为∠B+∠BFE=180°,所以AB∥EF().又因为AB∥CD,所以CD∥EF().所以∠CDF+∠DFE=180°().所以∠B+∠BFD+∠D=∠B+∠BFE+∠DFE+∠D=360°.(2)根据以上解答进行探索:如图②,AB∥EF,那么∠BDF与∠B,∠F有何数量关系?并说明理由.(3)如图③④,AB∥EF,你能探索出图③、图④两个图形中,∠BDF与∠B,∠F的数量关系吗?请直接写出结果.27.如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∥BC;(2)若FP⊥AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.28.已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.参考答案1.解:如图,∵∠APE=∠CQE,∴AB∥CD,∴∠BPQ+∠DQP=180°,∵PM平分∠BPQ,QN平分∠DQP,∴∠BPQ=2∠MPQ,∠DQP=2∠NQP,∴∠MPQ+∠NQP=90°,∴∠POQ=90°,即PM⊥QN,故选:A.2.解:∵∠A=∠B=∠C,∴可以假设∠A=x°,则∠B=(2x)°,∠C=(3x)°,由题意:6x=180,解得x=30,∴∠A=30°,∠B=60°,∠C=90°,∴△ABC是直角三角形,故选:B.3.解:如图,∵A′B′∥BD,∴∠A'=∠BGE=90°,∴∠DGE=90°,又∵∠ADB=20°,∴∠DEG=70°,由折叠可得,∠AEF=∠GEF,∴∠AEF=(180°﹣70°)=55°,∵AE∥CF,∴∠EFC=∠AEF=55°,故选:B.4.解:A、∵CD⊥AB,EF⊥AB,∴∠BEF=∠BDC=90°,∴EF∥DC,故条件不充分,错误;B、∠1与∠2不是DG与BC形成的内错角,故推不出DG∥BC,故错误;C、∠1与∠2不是DG与BC形成的内错角,∠4与∠5不是DG与BC形成的同旁内角,故推不出DG∥BC,故错误;D、当DG∥BC时,则∠1=∠3,当EF∥DC时,∠2=∠3,要使EF∥DC,则需CD⊥AB,EF⊥AB,所以要使DG∥BC,则需要CD⊥AB,EF⊥AB,同时∠1=∠2.故选:D.5.解:连接BC.∵∠BDC=140°,∴∠DBC+∠DCB=180°﹣140°=40°,∵∠BGC=110°,∴∠GBC+∠GCB=180°﹣110°=70°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠GBD+∠GCD=∠ABD+∠ACD=30°,∴∠ABC+∠ACB=100°,∴∠A=180°﹣100°=80°.故选:D.6.解:∵内角和是1620°的多边形是边形,又∵多边形截去一个角有三种情况.一种是从两个角的顶点截取,这样就少了一条边,即原多边形为12边形;另一种是从两个边的任意位置截,那样就多了一条边,即原多边形为10边形;还有一种就是从一个边的任意位置和一个角顶点截,那样原多边形边数不变,还是11边形.综上原来多边形的边数可能为10、11、12边形,故选:D.7.解:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD﹣∠ABD=60°.设AC与BP相交于O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°﹣(∠ACD﹣∠ABD)=20°.故选:B.8.解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°.故选:B.9.解:过点E作EG∥AB,过点F作FH∥CD,∵AB∥CD,∴AB∥CD∥EG∥FH,∴∠1=∠AEG,∴∠GEF=∠2﹣∠1,∵EG∥FH,∴∠EFH=180°﹣∠GEF=180°﹣(∠2﹣∠1)=180°﹣∠2+∠1,∴∠CFH=∠3﹣∠EFH=∠3﹣(180°﹣∠2+∠1)=∠3+∠2﹣∠1﹣180°,∵FH∥CD,∴∠4=∠3+∠2﹣∠1﹣180°,故选:D.10.解:如图∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=∠1+∠2+∠8+∠9+∠5+∠6+∠7,=五边形的内角和=540°,故选:B.11.解:如图,延长AC交BD于M.设∠ABE=∠EBD=x,∠ACE=∠ECD=y.∵∠AMD=∠A+∠ABD=∠A+2x,∠ECD=∠CEB+∠EBD+∠D=∠CEB+x+∠D,∴∠ACD=2∠ECD=2∠CEB+2x+2∠D,∵∠ACD=∠AMD+∠D,∴∠AMD=2∠CEB+2x+2∠D﹣∠D=2∠CEB+2x+∠D∴∠A+2x=2∠CEB+2x+∠D,∴∠A=2∠CEB+∠D,故答案为:∠A=2∠CEB+∠D.12.解:如右图所示,作PE∥CD,∵PE∥CD,∴∠C+∠CPE=180°,又∵AB∥CD,∴PE∥AB,∴∠A=∠APE,∴∠A+∠C﹣∠P=180°,故答案为:∠A+∠C﹣∠P=180°.13.解:延长BA,作PN⊥BD于点N,PF⊥BA于点F,PM⊥AC于点M,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=80°,∴∠ABP=∠PBC=(x﹣80)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣80°)﹣(x°﹣80°)=160°,∴∠CAF=20°,在Rt△PF A和Rt△PMA中,,∴Rt△PF A≌Rt△PMA(HL),∴∠F AP=∠P AC=10°.故答案为10°.14.解:有两种情况:①当∠BAC是钝角时,如图:∵AD为BC边上的高,∴∠ADC=90°,∵∠DAC=30°,∴∠ACB=60°,∵∠ABC=20°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°,∵AE平分∠BAC,∴∠CAE=BAC=50°,∴∠DAE=∠CAE﹣∠CAD=50°﹣30°=20°;②当∠BAC是锐角时,如图:∵AD为BC边上的高,∴∠ADC=90°,∵∠DAC=30°,∴∠ACD=60°,∴∠ACB=180°﹣60°=120°,∵∠ABC=20°,∴∠BAC=180°﹣∠ABC﹣∠ACB=40°,∵AE平分∠BAC,∴∠CAE=BAC=20°,∴∠DAE=∠CAE+∠CAD=20°+30°=50°;故答案为:20或50.15.解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴A'C=A'B'=4,故答案为:4.16.解:根据平移的性质知,AB=A′B′,△ABC≌△A′B′C′,则S△ABC=S△A′B′C′.∵将三角形ABC沿BC方向平移2cm得到三角形A'B'C',∴BB′=2cm.∵AB=2cm,BC=4cm,A'D=1cm,∴B′C=2cm,DB′=1cm.∴S四边形DCC′A′=S△ABC﹣S△B′CD=﹣=3(cm2).故答案是:3cm2.17.解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠AEF=180°,∠D=∠FED,∴∠AEF=180°﹣130°=50°,∠FED=20°,∴∠AED=∠AEF+∠FED=50°+20°=70°.即β=70°.故答案为:70°.18.解:因为∠A与的∠B两边分别平行,所以∠A与∠B相等或互补,因为∠A比∠B的3倍少20°,所以∠A=3∠B﹣20°,①当∠A=∠B时,∠A=3∠A﹣20°,解得∠A=10°;②当∠A+∠B=180°时,∠A=3(180°﹣∠A)﹣20°,解得∠A=130°.所以∠A的大小是10°或130°.故答案为:10°或130°.19.解:过点B作BG∥DM,如图:∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.20.解:如图,当高在△ABC内部时,∵∠ABC=40°,∠ACD=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣40°﹣60°=80°,∵BE平分∠ABC,∴∠ABE=∠ABC=20°,∴∠BEC=∠ABE+∠BAE=100°,如图,当高AD在△ABC外部时,∵∠ACD=∠ABC+∠BAC,∴∠ABC=20°,∴∠BEC=∠ABE+∠BAC=20°+20°=40°,综上所述,∠BEC的值为100°或40°.故答案为100或40.21.解:∵∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,∴∠A=180°﹣66°﹣54°=60°,∴∠ABE=90°﹣60°=30°,∴∠FHE=360°﹣60°﹣90°﹣90°=120°,∴∠BHC=120°,故答案为:30°;120°22.解:(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.23.解:(1)EF和AB的关系为平行关系.理由如下:∵CD∥AB,∠DCB=70°,∴∠DCB=∠ABC=70°,∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=50°,∵∠EFB=130°,∴∠ABF+∠EFB=50°+130°=180°,∴EF∥AB;(2)∵EF∥AB,CD∥AB,∴EF∥CD,∵∠CEF=70°,∴∠ECD=110°,∵∠DCB=70°,∴∠ACB=∠ECD﹣∠DCB,∴∠ACB=40°.24.证明:(1)∵∠1+∠AFE=180°,∠1+∠CFE=180°,∴∠AFE=∠CFE,∴BC∥EF;(2)∵∠BEG=∠EDF,∴DF∥EH,∴∠DFE=∠FEH,又∵BC∥EF,∴∠FEH=∠2,又∵∠2=∠3,∴∠DFE=∠3,∴DF平分∠AFE.25.解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°.26.解:(1)因为∠B+∠BFE=180°,所以AB∥EF(同旁内角互补,两直线平行),因为AB∥CD(已知),所以CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也平行),所以∠CDF+∠DFE=180°(两直线平行,同旁内角互补),所以∠B+∠BFD+∠D=∠B+∠BFE+∠EFD+∠D=360°;(2)过点D作AB的平行线DC,因为AB∥EF,所以∠B=∠BDC,因为AB∥EF,所以CD∥EF,所以∠F=∠FDC,所以∠BDF=∠B+∠F(3)过点D作AB的平行线DC,根据平行线的性质可以证明图③∠BDF+∠B=∠F;图④∠BDF+∠B=∠F.27.(1)证明:∵∠E=∠EMA,∠BQM=∠BMQ,∠EMA=∠BMQ,∴∠E=∠BQM,∴EF∥BC;(2)证明:∵FP⊥AC,∴∠PGC=90°,∵EF∥BC,∴∠EAC+∠C=180°,∵∠2+∠C=90°,∴∠BAC=∠PGC=90°,∴AB∥FP,∴∠1=∠B;(3)解:∵∠3+∠4=180°,∠4=∠MNF,∴∠3+∠MNF=180°,∴AB∥FP,∴∠F+∠BAF=180°,∵∠BAF=3∠F﹣20°,∴∠F+3∠F﹣20°=180°,解得∠F=50°,∵AB∥FP,EF∥BC,∴∠B=∠1,∠1=∠F,∴∠B=∠F=50°.28.(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)证明:如图2,过点M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GH是∠BGM的平分线,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,过点H作HT∥GN,则∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七下第七章《平面图形的认识(二)》特优生拓展训练(2)姓名:___________班级:___________考号:___________一、选择题1.下列第一行所示的四个图形,每个图形均是由四种简单的图形a、b、c、d(圆、直线、三角形、长方形)中的两种组成.例如由a、b组成的图形记作a⊙b,那么由此可知,下列第二行的图中可以记作a⊙d的是()A. B. C. D.2.如图所示,在△ABC中,∠C=90°,D,E是AC上的两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A. BE是△ABD的中线B. BD是△BCE的角平分线C. ∠1=∠2=∠3D. BC是△ABE的高3.设a,b,c均为正整数,且a≥b≥c,满足a+b+c=15,则以a,b,c为边长的三角形有()A. 5个B. 7个C. 10个D. 12个4.已知线段AC=3,BC=2,则线段AB的长度()A. 一定是5B. 一定是1C. 一定是5或1D. 以上都不对5.一个正多边形它的一个外角等于与它不相邻的内角的1,则这个多边形是()4A. 正十二边形B. 正十边形C. 正八边形D. 正六边形6.如图,直线AB//CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°7.同一平面内不重合的三条直线,其交点的个数可能为()A. 0个或1个B. 1个或2个C. 2个或3个D. 0个或1个或2个或3个8.三角形的两边分别为3和5,则三角形周长y的范围是()A. 2<y<8B. 10<y<18C. 10<y<16D. 无法确定9.如图,图1是AD//BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为()A. 1200B. 1080C. 1260D. 114010.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2,…,以此类推,第n次平移将长方形A n−1B n−1C n−1D n−1沿A n−1B n−1的方向向右平移5个单,得到长方形A n B n∁n D n(n>2),则AB n长为()A. 5n+6B. 5n+1C. 5n+4D. 5n+3二、填空题11.如图,∠A=32°,则∠B+∠C+∠D+∠E=°.12.如图,直线AB//CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是_________.13.一个人从点O出发,每前进1m就向右转a°,照这样走下去,如果它恰好能回到点O,且所走的路线最短,则a的值为__________.14.已知两个完全相同的直角三角形纸片△ABC、△DEF,如图放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图中的△DEF绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为______ s.15.如图,∠CAB为锐角,AB=m,点P在射线AC上,点B到射线AC的距离a,BP=x,若△ABP的形状、大小是唯一确定的,则x的取值范围是___________.16.已知∠A与∠B的两边分别平行,其中∠A是∠B的3倍少36°,则∠B的度数为________.三、解答题17.阅读下列材料:已知:如图1,直线AB//CD,点E是AB、CD之间的一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D.小冰是这样做的:证明:过点E作EF//AB,则有∠BEF=∠B.∵AB//CD,∴EF//CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.图1即∠BED=∠B+∠D.请利用材料中的结论,完成下面的问题:已知:直线AB//CD,直线MN分别与AB、CD交于点E、F.(1)如图2,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;(2)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2.求证:∠FG1E+∠G2=180°.18.如图,AB//CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系(3)、(4)中任选一个加以说明。

19.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图①,灯A的光束自AM顺时针旋转至AN便立即回转,灯B的光束自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a0/秒,灯B转动的速度是b0/秒,且a、b满足|a−3b|+(a+b−4)2=0.假定主道路是平行的(即PQ//MN),且∠BAN=45°.(1)求a、b的值.(2)若灯B的光束先转动20秒,灯A的光束才开始转动,在灯B的光束到达BQ之前,灯A转动几秒,两灯的光束互相平行?(3)如图②,两灯同时转动,在灯A的光束到达AN之前,若射出的光束交于点C,过点C作CD丄AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.20.已知HD//GE,点A、C分别在直线上.(1)如图1,请直接写出∠BCE、∠ABC、∠BAD三个角满足的数量关系______.(2)如图2,分别作∠BAH与∠BCG的角平分线,交于点F,探索∠B与∠F的数量关系并予以证明.(3)在图3中完成作图并填空:分别作∠ABC与∠BCE的角平分线,交于点M,过点B作BN//CM,设∠BAD=m°,请直接写出∠NBM的度数(用含m的式子表示)______.21.△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF//OD;②若∠F=40°,求∠BAC的度数.22.如图所示为一张长方形纸片.(1)如图甲所示,将长方形纸片任意剪两刀,得到的∠4+∠E+∠C等于多少度⋅(2)如图乙所示,将长方形纸片任意剪三刀,得到的∠A+∠E+∠F+∠C等于多少度⋅(3)照以上剪法,剪出5个角,其和是多少度⋅剪出n个角呢⋅请找出其中的规律.23.已知E、D分别在∠AOB的边OA、OB上,C为平面内一点,DE、DF分别是∠CDO、∠CDB的平分线.(1)如图1,若点C在OA上,且FD//AO,求证:DE⊥AO;(2)如图2,若点C在∠AOB的内部,且∠DEO=∠DEC,请猜想∠DCE、∠AEC、∠CDB之间的数量关系,并证明;(3)若点C在∠AOB的外部,且∠DEO=∠DEC,请根据图3、图4分别写出∠DCE、∠AEC、∠CDB之间的数量关系(不需证明).24.小红和小明在研究一个数学问题:已知AB//CD,AB和CD都不经过点E,探索∠E与∠A,∠C的数量关系.(一)发现:在图1中,小红和小明都发现:∠AEC=∠A+∠C;小红是这样证明的:如图7过点E作EQ//AB.∴∠AEQ=∠A(______)∵EQ//AB,AB//CD.∴EQ//CD(______)∴∠CEQ=∠C∴∠AEQ+∠CEQ=∠A+∠C即∠AEC=∠A+∠C.小明是这样证明的:如图7过点E作EQ//AB//CD.∴∠AEQ=∠A,∠CEQ=∠C∴∠AEQ+∠CEQ=∠A+∠C即∠AEC=∠A+∠C请在上面证明过程的横线上,填写依据:两人的证明过程中,完全正确的是______.(二)尝试:(1)在图2中,若∠A=110°,∠C=130°,则∠E的度数为______;(2)在图3中,若∠A=20°,∠C=50°,则∠E的度数为______.(三)探索:装置图4中,探索∠E与∠A,∠C的数量关系,并说明理由.(四)猜想:(1)如图5,∠B、∠D、∠E、∠F、∠G之间有什么关系?(直接写出结论)(2)如图6,你可以得到什么结论?(直接写出结论)答案和解析1.A解:结合已知图形,先判断a,b,c,d所代表的图形,再判断记作a⊙d的图形即可.根据题意,知a代表长方形,d代表直线,所以记作a⊙d的图形是长方形和直线的组合,2.C解:A.BE是△ABD的中线,正确,不符合题意;B.BD是△EBC的角平分线,正确,不符合题意;C.∵BD是△EBC的角平分线,∴∠2=∠3,∵BE是中线,∴∠1≠∠2,∴∠1=∠2=∠3不正确,符合题意;D.BC是△ABE的高,正确,不符合题意.3.B解:a+b+c=15,根据三角形三边关系定理可知a<b+c,即a+a<b+c+a,2a<15,a<15.2而a为最大边,故a≥5,从而5≤a<15,2而p为自然数,故a=5,6,7.若a=5,则b=c=5.若a=6,当b=6时,c=3;当b=5时,c=4.若a=7,当b=7时,c=1;当b=6时,c=2;当b=5时,c=3;当b=4时,c=4.综上所述,以a,b,c为三边长的三角形共有7个.4.D解:当A、B、C三点不在同一直线上时(如图),根据三角形的三边关系可得3−2<AB<3+2,即1<AB<5;当A、B、C三点在同一直线上时,AB=2+3=5或AB=3−2=1.5.B,解:因为一个正多边形它的一个外角等于与它不相邻的内角的14所以它的每一个外角=180÷5=36°,所以它的边数=360÷36=10.6.B解:过E作EF//AB,∵AB//CD,∴AB//CD//EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°−44°=46°,∴∠1=180°−∠BAE=180°−46°=134°,7.D解:分三条直线互相平行、有两条平行和三条直线都不平行三种情况讨论.因为三条直线位置不明确,所以分情况讨论:①三条直线互相平行,有0个交点;②一条直线与两平行线相交,有2个交点;③三条直线都不平行,有1个或3个交点;所以交点的个数可能为0个或1个或2个或3个.8.C解:根据三角形的三边关系,得三角形的第三边>2,而<8.则三角形的周长>10,而<16.9.D解:设∠EFB=x°,由题意得x+x+x−18=180,解得x=66°,∵AD//BC,∴∠AEF=180°−∠EFB=114°,10.A解:每次平移5个单位,n次平移5n个单位,即BN的长为5n,加上AB的长即为AB n的长,AB n=5n+AB=5n+6.11.212解:如图,∵∠A=32°,∴∠2+∠1=148°,∵∠1=∠3=180°−(∠B+∠C),∠2=∠4=180°−(∠D+∠E),∴∠B+∠C+∠D+∠E=360°−∠3−∠4=360°−(∠2+∠1)=360°−148°=212°,12.40°解:延长GH交直线CD于R,过G作GQ//AB,如图:∵CD//AB,∴AB//CD//GQ,∴∠FGQ=∠EFA=30°,∠QGH=∠GRD,∵∠FGH=90°,∴∠GRD=∠QGH=90°−30°=60°,∵∠CNP=50°,∴∠RNM=180°−50°=130°,∵∠HMN=30°,∴∠MHR=360°−130°−60°−30°=140°,∴∠GHM=180°−140°=40°.13.120解:根据题意,人所走过的路线是正多边形,∴边数n=360°÷a°,走过的路程最短,则n最小,a最大,n最小是3,a°最大是120°.14.3或6或15解:①当DE//AB时,如图1中,设DF交AB于H.∵DE//AB,∴∠AHF=∠D=60°,∵∠AHF=∠B+∠HFB,∠B=30°,∴∠HFB=30°,=3s.∴旋转时间t=3010②当DE//BC时,如图2中,易知∠DFB=∠D=60°,=6s.∴旋转时间t=6010③当DE//AC时,如图3中,易知∠DFB=150°,=15s.∴旋转时间t=15010综上所述,旋转时间为3s或6s或15s时,△ABC恰有一边与DE平行.15.x=a或x≥m解:作BD⊥AC,则BD=a,已知AB=m,BD=a,BD⊥AC,可唯一确定△ABD(HL),当a<x<m时,点M可在点D的两边,不能唯一确定△ABM,当x=a时,点M与点D重合,唯一确定是直角三角形,当x≥m时,因为点M在射线AC上,所以点M只能在点D的右边或与点A重合,因为点M与点A重合时不能构成三角形,所以能唯一确定△ABM,所以若△ABM的形状、大小是唯一确定的,则x的取值范围是x=a或x≥m.16.18°或54°解:∵∠A与∠B的两边分别平行,∴∠A与∠B相等或互补.分两种情况:①当∠A+∠B=180°时,∠A=3∠B−36°,解得:∠A=126°,∠B=54°,②当∠A=∠B,∠A=3∠B−36°,解得:∠B=18°.所以∠B=18°或54°.17.解:(1)如图2所示,猜想:∠EGF=90°;证明:由材料中的结论得∠EGF=∠BEG+∠GFD,∵EG、FG分别平分∠BEF和∠EFD,∴∠BEF=2∠BEG,∠EFD=2∠GFD,∵BE//CF,∴∠BEF+∠EFD=180°,∴2∠BEG+2∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;(2)证明:如图3,过点G1作G1H//AB,∵AB//CD,∴G1H//CD,由结论可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,∴∠3=∠G2FD,∵FG2平分∠EFD,∴∠4=∠G2FD,∵∠1=∠2,∴∠G2=∠2+∠4,∵∠EG1F=∠BEG1+∠G1FD,∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,∵AB//CD,∴∠BEF+∠EFD=180°,∴∠EG1F+∠G2=180°.18.解:(1)∠BAP+∠APC+∠PCD=360°;(2)∠APC=∠BAP+∠PCD;(3)∠BAP=∠APC+∠PCD;(4)∠PCD=∠APC+∠PAB.如(4),设PC交AB于E.(如图)∵AB//CD,∴∠BEP=∠PCD,∵∠PAE+∠APE+∠PEA=180°,∠PEB+∠PEA=180°,∴∠PAE+∠APE=∠PEB,∴∠PAB+∠APC=∠PCD.解:图1:可作PE//AB.(如图)因为AB//CD,所以PE//AB//CD,所以∠BAP=∠APE,∠EPC=∠PCD,所以∠APE+∠EPC=∠BAP+∠PCD,即∠APC=∠PAB+∠PCD.∠APC+∠PAB+∠PCD=360°,图2,过点P作PE//AB,∵AB//CD,∴AB//PE//CD,∴∠A+∠1=180°,∠2+∠B=180°,∴∠A+∠1+∠2+∠C=360°,∴∠APC+∠PAB+∠PCD=360°;图3:∠APC=∠PAB−∠PCD,延长BA交PC于E,∵AB//BC,∴∠PEA=∠C,∵∠PAE+∠APE+∠PEA=180°,∠BAP+∠PAE=180°,∴∠PAB=∠APE+∠PEA,∴∠BAP=∠APC+∠PCD;图4见答案.19.解:(1)∵a、b满足|a−3b|+(a+b−4)2=0∴{a−3b=0a+b−4=0,解得{a=3 b=1(2)设灯A转动t秒,灯A的光束、灯B的光束分别与PQ、MN交于点C、D.当灯B的光束到达BQ时,则(t+20)⋅1=180,解得t=160.∵灯B的光束未到达BQ,∴∠PBD=(t+20)°,0<t<160.∴灯A的光束转动了3t0,且00<3t0<4800∵480゜÷180゜=2……120゜,∴灯A的光束会有两次转向AN的过程.∴分三种情况:①在灯A的光束第一次转向AN的过程中,即0<t≤180030=60如图①,此时∠MAC=3t゜,∵两灯的光束互相平行,即AC//BD,∴∠PBD=∠PCA,∴∠MAC=∠PBD∴3t=t+20,解得t=10,符合题意;②在灯A的光束第一次到达AN后,返回AM的过程中,即180030=60<t≤1800×230=120如图②,此时∠NAC=(3t—180)°,∵PQ//MN,∴∠NAC+∠PCA=180°,∵两灯的光束互相平行,即AC//BD,∴∠PCA=∠PBD.∴∠NAC+∠PBD=180°∴3t−180+t+20=180,解得t=85,符合题意;③在灯A的光束回到AM后又继续向AN转动,且灯B的光束到达BQ之前的过程中,即1800×230=120<t<480030=160如图③,此时∠MAC=(3t—360)°,∵PQ//MN,∠MAC=∠PCA,∵两灯的光束互相平行,即AC//BD,∴∠PBD=∠PCA,∴∠MAC=∠PBD.∴3t—360=t+20,解得,t=190,190>160,不合题意,舍去,综上所述,当灯A转动10秒或85秒时,两灯的光束互相平行;(3)不发生变化设灯A的光束转动的时间为t秒,∵∠CAN=180°−t⋅3°∴∠BAC=45°−(180°−t⋅3°)=t⋅3°−135°又∵PQ//MN,∴易得∠BCA=∠CBD+∠CAN=t⋅1∘+180∘−t⋅3∘=180∘−t⋅2∘.∵CD⊥AC,∴∠ACD=90°.∴∠BCD=90°−∠BCA=90°—(180°—t⋅2°)=t⋅2°−90°.∴∠BAC:∠BCD=(t⋅3°—135°):(t⋅2゜—90°)=3(t−45):2(t−45)=3:2.∴∠BAC与∠BCD的数量关系为2∠BAC=3∠BCD.20.∠BAD=∠BCE+∠ABC.12m解:(1)如图1中,结论:∠BAD=∠BCE+∠ABC.∵∠DAB=∠1+∠ABC,∴∠BAD=∠BCE+∠ABC.故答案为:∠BAD=∠BCE+∠ABC.(2)如图2中,结论:∠B=2∠F.理由:设∠B=x,∠F=y,∠BAF=∠FAH=n,∠FCB=∠FCG=m,∵DH//EG,∴∠1=∠GCF=m=n+y,又∵x+n=y+m,∴x+n=y+n+y,∴x=2y,即∠B=2∠F.(3)设∠MCE=∠MCB=x,∠MBA=∠MBC=y.∵DH//EG,∴∠1=∠BCE=2x,∴∠BAD=∠1+∠ABC,即m=2x+2y,∵BN//CM,∴∠CBN=∠BCM=x,∴∠MBN=x+y=12m.21.解:(1)∠AOC=∠ODC,理由:∵三个内角的平分线交于点O,∴∠OAC+∠OCA=12(∠BAC+∠BCA)=12(180°−∠ABC),∵∠OBC=12∠ABC,∴∠AOC=180°−(∠OAC+∠OCA)=90°+12∠ABC=90°+∠OBC,∵OD⊥OB,∴∠BOD=90°,∴∠ODC=90°+∠OBD,∴∠AOC=∠ODC;(2)①∵BF平分∠ABE,∴∠EBF=12∠ABE=12(180°−∠ABC)=90°−∠DBO,∵∠ODB=90°−∠OBD,∴∠FBE=∠ODB,∴BF//OD;②∵BF平分∠ABE,∴∠FBE=12∠ABE=12(∠BAC+∠ACB),∵三个内角的平分线交于点O,∴∠FCB=12∠ACB,∵∠F=∠FBE−∠BCF=12(∠BAC+∠ACB)−12∠ACB=12∠BAC,∵∠F=40°,∴∠BAC=2∠F=80°.22.解:(1)过E作EF//AB(如图甲).∵原四边形是长方形,∴AB//CD,又∵EF//AB,∴CD//EF(平行于同一条直线的两条直线互相平行).∵EF//AB,∴∠A+∠1=180°(两直线平行,同旁内角互补).∵CD//EF,∴∠2+∠C=180°(两直线平行,同旁内角互补).∴∠A+∠1+∠2+∠C=360°,又∵∠1+∠2=∠AEC,∴∠A+∠AEC+∠C=360°.(2)过点E、F分别作AB的平行线(如图乙),用上面的方法可得∠A+∠E+∠F+∠C=3×180°=540°.(3)剪出5个角,共剪四刀,其和为720°,即(5−1)×180°=720°;由此可得一般规律:剪出n个角,这n个角的和是(n−1)×180°.23.解:(1)如图1,∵DE、DF分别是∠CDO、∠CDB的平分线,∴∠CDF=12∠CDB,∠CDE=12∠CDO,∴∠EDF=12(∠CDB+∠CDO)=90°,又∵DF//AO,∴∠AED=90°,∴DE⊥AO;(2)如图2,连接OC,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△COD的外角,∠AEC是△COE的外角,∴∠CDB=∠COD+∠OCD,∠AEC=∠EOC+∠ECO,∴∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)图3中,∠CDB=∠AEC+2∠DCE;图4中,∠AEC=∠CDB+2∠DCE.理由:如图3,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△ODG的外角,∴∠CDB=∠DOG+∠DGO,∵∠DGO是△CEG的外角,∴∠DGO=∠AEC+∠C,∴∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠AEC是△OEH的外角,∴∠AEC=∠DOE+∠OHE,∵∠OHE是△CDH的外角,∴∠OHE=∠CDB+∠C,∴∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.24.(一)两直线平行,内错角相等;平行于同一直线的两直线平行;小红的证法;(二)(1)120°;(2)30°;(三)∠E=∠A−∠C.理由:延长EA,交CD于点F.∵AB//CD,∴∠EFD=∠EAB∵∠EFD=∠C+∠E∴∠EAB=∠C+∠E∴∠E=∠EAB−∠C.(四)(1)可通过过点E、F、G分别做AB的平行线,得到结论.∠E+∠G=∠B+∠F+∠D.(2)同上道理一样,可得到结论:∠E1+∠E2+⋯+∠E n=∠F1+∠F2+⋯∠F n−1+∠B+∠D.解:(一)∵小明的辅助线做不出来,所以两人的证明过程中,小红的完全正确;故答案为:两直线平行,内错角相等;平行于同一直线的两直线平行;小红的证法.(二)(1)过点E作EF//AB,∵AB//CD,∴EF//CD.∵EF//AB,∴∠A+∠AEF=180°,∵∠A=110°,∴∠AEF=70°.∵EF//CD,∴∠C+∠CEF=180°,∵∠C=130°,∴∠CEF=50°.∴∠AEC=∠AEF+∠CEF=70°+50°=120°.(2)∵AB//CD,∴∠EOB=∠C=50°∵∠EOB=∠A+∠E,∵∠E=∠EOB−∠A=50°−20°=30°.故答案为:120°,30°.。

相关文档
最新文档