读者写者问题
实验五 读者-写者问题
实验题目:实验五读者-写者问题完成人:报告日期:一、实验内容简要描述1)创建一个控制台进程,此进程包含n个线程。
用这n个线程来表示n个读者或写者。
每个线程按相应测试数据文件的要求进行读写操作。
用信号量机制分别实现读者优先和写者优先的读者-写者问题。
2)读者-写者问题的读写操作限制(包括读者优先和写者优先):写-写互斥,即不能有两个写者同时进行写操作。
读-写互斥,即不能同时有一个线程在读,而另一个线程在写。
●读-读允许,即可以有一个或多个读者在读。
3)读者优先的附加限制:如果一个读者申请进行读操作时已有另一个读者正在进行读操作,则该读者可直接开始读操作。
4)写者优先的附加限制:如果一个读者申请进行读操作时已有另一写者在等待访问共享资源,则该读者必须等到没有写者处于等待状态后才能开始读操作。
5)运行结果显示要求:要求在每个线程创建、发出读写操作申请、开始读写操作和结束读写操作时分别显示一行提示信息,以确定所有处理都遵守相应的读写操作限制。
二、程序设计1、设计思路将所有读者和所有写者分别存于一个读者等待队列和一个写者等待队列中,每当读允许时,就从读者队列中释放一个或多个读者线程进行读操作;每当写允许时,就从写者队列中释放一个写者进行写操作。
2、主要数据结构1)读者优先读者优先指的是除非有写者在写文件,否则读者不需要等待。
所以可以用一个整型变量read_count记录当前的读者数目,用于确定是否需要释放正在等待的写者线程(当read_count=0时,表明所有的读者读完,需要释放写者等待队列中的一个写者)。
每一个读者开始读文件时,必须修改read_count变量。
因此需要一个互斥对象mutex来实现对全局变量read_count修改时的互斥。
另外,为了实现写-写互斥,需要增加一个临界区对象write。
当写者发出写请求时,必须申请临界区对象的所有权。
通过这种方法,也可以实现读-写互斥,当read_count=l时(即第一个读者到来时),读者线程也必须申请临界区对象的所有权。
进程同步模拟设计——读者和写者问题
附件1:学号:012081034课程设计进程同步模拟设计——读者和题目写者问题学院计算机科学与技术学院专业计算机科学与技术班级计算机科学与技术姓名指导教师2011 年 1 月19 日目录目录 (1)1 设计概述 (4)1.1问题描述: (4)1.1.1规则: (4)1.1.2读者和写者的相互关系: (4)1.2采用信号量机制 (4)1.3 C++语言程序模拟用信号量机制实现生产者和消费者问题 (5)2课程设计目的及功能 (5)2.1 设计目的 (5)2.2 设计功能: (5)3 需求分析,数据结构或模块说明(功能与框图) (5)3.1数据结构 (5)3.2模块说明 (6)3.3开发平台及源程序的主要部分 (6)3.3.1写操作的设计: (6)3.3.2读操作的设计: (7)3.3.3主函数的设计: (9)3.4 功能流程图 (12)4测试用例,运行结果与运行情况分析 (12)4.1测试用例 (12)4.2运行结果 (13)4.3运行情况分析 (14)5自我评价与总结 (15)6 参考文献 (16)课程设计任务书学生姓名:专业班级:计算机科学与技术指导教师:工作单位:计算机科学与技术学院题目: 进程同步模拟设计——读者和写者问题初始条件:1.预备内容:阅读操作系统的进程管理章节内容,对进程的同步和互斥,以及信号量机制度有深入的理解。
2.实践准备:掌握一种计算机高级语言的使用。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.模拟用信号量机制实现读者和写者问题。
2.设计报告内容应说明:⑴课程设计目的与功能;⑵需求分析,数据结构或模块说明(功能与框图);⑶源程序的主要部分;⑷测试用例,运行结果与运行情况分析;⑸自我评价与总结:i)你认为你完成的设计哪些地方做得比较好或比较出色;ii)什么地方做得不太好,以后如何改正;iii)从本设计得到的收获(在编写,调试,执行过程中的经验和教训);iv)完成本题是否有其他的其他方法(如果有,简要说明该方法);v)对实验题的评价和改进意见,请你推荐设计题目。
课程设计读者写者问题
课程设计读者写者问题一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握读者写者问题的基本概念和相关原理;技能目标要求学生能够运用所学知识解决实际问题,如设计并发控制算法;情感态度价值观目标要求学生培养团队合作意识,提高解决复杂问题的信心。
教学目标的具体、可衡量性体现在:学生能够准确地描述读者写者问题的定义和特点;能够运用基本的并发控制算法解决读者写者问题;在团队项目中,能够有效地协作,共同完成任务。
二、教学内容根据课程目标,本课程的教学内容主要包括读者写者问题的基本概念、并发控制算法及其应用。
教学大纲按照以下顺序安排:1.读者写者问题的定义、特点及分类;2.基本并发控制算法:锁、信号量、管程等;3.读者写者问题的解决方案及评价;4.实际应用案例分析。
教材选用《计算机操作系统》一书,章节安排与教学大纲相对应。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性。
主要包括:1.讲授法:讲解基本概念、原理和算法;2.讨论法:分组讨论解决方案,促进学生思考;3.案例分析法:分析实际应用案例,提高学生解决实际问题的能力;4.实验法:动手实现并发控制算法,培养实际操作能力。
四、教学资源教学资源包括教材、参考书、多媒体资料和实验设备。
教材《计算机操作系统》提供理论知识;参考书补充拓展相关内容;多媒体资料生动展示原理和算法;实验设备支持学生动手实践。
教学资源的选择和准备旨在支持教学内容和教学方法的实施,丰富学生的学习体验,提高学习效果。
五、教学评估本课程的评估方式包括平时表现、作业、考试等,以全面反映学生的学习成果。
平时表现主要评估学生在课堂讨论、提问等方面的参与度;作业分为课后练习和实验报告,评估学生对知识的掌握和实际操作能力;考试则评估学生对课程知识的全面理解。
评估方式力求客观、公正,确保学生在各个方面的努力和进步都能得到合理的评价。
评估结果将作为学生课程成绩的重要组成部分,以激发学生的学习积极性。
读者写者问题描述
读者写者问题描述嘿,你问读者写者问题啊?那我给你讲讲哈。
咱就说啊,这读者写者问题呢,就好比一个图书馆。
有很多人想去看书,这就是读者。
还有人想去写书,那就是写者。
有一回啊,我去图书馆。
那里面好多人都在安静地看书呢。
这时候就相当于有很多读者在享受知识。
突然,有个作家模样的人来了,他想找个地方坐下来写书。
这就是写者出现了。
这时候问题就来了。
如果读者和写者同时在图书馆里,会咋样呢?如果读者一直在看书,写者就没办法好好写书,因为他会觉得被打扰了。
反过来,如果写者一直在写书,读者也没办法好好看书,因为他们不知道啥时候能看到新的内容。
就像我在图书馆里,我正看得入迷呢,突然那个作家开始大声地思考他的情节,哎呀,那可把我烦死了。
我就想,你能不能安静点啊,让我好好看书嘛。
这就像读者希望写者不要打扰他们一样。
那怎么办呢?就得有个规则。
比如说,让写者先等读者都看完书走了,他再开始写书。
或者让读者在写者写书的时候,稍微安静一点,不要弄出太大动静。
我记得有一次,我在图书馆里,有个写者特别有礼貌。
他进来的时候,看到很多读者,就悄悄地找了个角落坐下,等大家都看得差不多了,他才开始动笔。
这样大家都能和谐共处了。
读者写者问题就是要找到一个平衡,让读者能愉快地看书,写者也能安心地写书。
不能让一方太强势,影响了另一方。
就像在生活中,我们也会遇到类似的情况。
比如说,一个办公室里,有人在安静地工作,有人在讨论问题。
这时候就得互相体谅,不能太吵了,影响别人工作。
总之啊,读者写者问题就是要解决大家在共享资源的时候,如何和谐相处的问题。
嘿嘿,你明白了不?。
操作系统课程之“读者—写者”问题教学探讨
操作系统课程之“读者—写者”问题教学探讨操作系统课程之“读者—写者”问题教学探讨摘要:针对操作系统教学中概念多而繁杂、容易混淆,初学者存在畏难情绪等问题,文章提出采取类比、逐层解剖、层层深入、循序渐进的教学方法,并以操作系统中的进程同步互斥问题中“读者-写者”问题为例,对其概念、算法进行形象启发、分层解剖的阐述,并结合多种教学方法,说明使学生能更深刻地理解进程同步互斥问题的方法。
教学实践表明其效果良好。
关键词:操作系统;分层解剖;读者-写者问题;PV原语;教学实践操作系统是计算机专业的一门核心课程(图1),其在计算机系统中的特殊地位,使得该课程的学习在整个计算机学科教育中显得尤为重要。
作为一门理论性和实践性并重的课程,它具有概念多、算法较抽象的特点,同时又涉及了程序设计语言、软件工程思想、算法设计、计算机系统结构、网络等相关知识。
枯燥的理论讲述往往使学生感到抽象、难懂,进而产生厌学的思想。
尽管近年来一些高校在加强理论教学的同时,引入对操作系统内核的分析,如Linux操作系统,在教学实践方面取得了一点的成效,但是对于初学者和教师而言,在一个学期内课时数不变的情况下,完成教与学的工作显得有点心有余而力不足。
为了在有限的教学时间内,提高教学效率,既让学生深入理解理论知识,又能借助PV操作原语来验证操作系统的算法思想,笔者根据以往教学经验,结合初学者学习的实际情况,以进程同步中“读者-写者”为例,探讨如何由浅入深、循序渐进地开展教学工作。
1 问题描述“读者—写者”问题是现代操作系统中经典的进程同步互斥问题,在以C/S模式为代表的多进(线)程通信系统都可以作为该模型的不同表现形式,有着广泛的应用[1]。
该问题描述如下:一个数据文件或记录可被多个进程所共享,我们将其中只要求读该文件的进程称为读者,即“Reader进程”,其他进程称为写者,即“Writer进程”。
多个Reader 进程和多个Writer进程在某个时间段内对该文件资源进行异步操作,也就是说允许多个进程同时读一个共享对象,但绝不允许一个Writer进程和其他Reader进程或Writer进程同时访问共享对象,因此,所谓“读者—写者问题”就是指必须保证一个Writer进程和其他进程(Writer进程和Reader进程)互斥地访问共享对象的同步问题[2]。
读者于写者问题课程设计
读者于写者问题课程设计一、教学目标本课程的教学目标是帮助学生理解并掌握“读者于写者问题”的相关概念和理论,培养学生对于文本的深入解读和批判性思维能力。
具体分为以下三个部分:知识目标:学生能够准确地掌握读者反应理论和作者意图理论的基本概念,了解不同读者和写者对于文本的影响和作用。
技能目标:学生能够运用所学的理论知识,对于给定的文本进行深入解读和分析,并能够就文本内容进行批判性的思考和讨论。
情感态度价值观目标:通过对于不同读者和写者问题的探讨,培养学生尊重多元观点和包容差异的态度,增强对于文本的理解和欣赏能力。
二、教学内容本课程的教学内容主要包括读者反应理论和作者意图理论两个部分。
具体内容包括:1.读者反应理论:介绍读者反应理论的基本概念和主要观点,分析读者的阅读过程和文本理解的影响因素。
2.作者意图理论:讲解作者意图理论的基本原理和应用方法,探讨作者的意图和文本的意义之间的关系。
3.读者与写者的互动:讨论读者和写者之间的相互作用和平衡,分析读者对于文本的影响和写者的创作意图的实现。
三、教学方法为了达到本课程的教学目标,将采用多种教学方法进行教学,包括:1.讲授法:通过教师的讲解和阐述,系统地传授读者反应理论和作者意图理论的相关知识。
2.讨论法:学生进行小组讨论和全班讨论,鼓励学生提出自己的观点和思考,培养学生的批判性思维能力。
3.案例分析法:通过分析具体的案例和文本,让学生亲身体验和理解读者反应理论和作者意图理论的应用和意义。
四、教学资源为了支持和丰富本课程的教学内容和方法,将利用多种教学资源,包括:1.教材:选用合适的教材,提供全面系统的读者反应理论和作者意图理论的知识框架。
2.参考书:推荐相关的参考书籍,供学生进一步深入学习和研究。
3.多媒体资料:利用多媒体资料,如视频、音频、图片等,增加教学的趣味性和形象性。
4.实验设备:根据需要,安排适当的实验设备,让学生进行实证研究和实践操作。
五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分,以全面客观地评价学生的学习成果。
读者写者问题
3)读读允许,即可以有2个以上的读者同时读
将所有的读者与所有的写者分别放进两个等待队列中,当读允许时就让读者队列释放一个或多个读者,当写允许时,释放第一个写者操作。读者写者问题的定义如下:有一个许多进程共享的数据区,这个数据区可以就是一个文件或者主存的一块空间;有一些只读取这个数据区的进程(Reader)与一些只往数据区写数据的进程(Writer),此外还需要满足以下条件:1)任意多个读进程可以同时读这个文件;2)一次只有一个写进程可以往文件中写;3)如果一个写进程正在进行操作,禁止任何读进程度文件。我们需要分两种情况实现该问题:
一设计概述
所谓读者写者问题,就是指保证一个writer进程必须与其她进程互斥地访问共享对象的同步问题。
读者写者问题可以这样的描述,有一群写者与一群读者,写者在写同一本书,读者也在读这本书,多个读者可以同时读这本书,但就是,只能有一个写者在写书,并且,读者必写者优先,也就就是说,读者与写者同时提出请求时,读者优先。当读者提出请求时需要有一个互斥操作,另外,需要有一个信号量S来当前就是否可操作。
信号量机制就是支持多道程序的并发操作系统设计中解决资源共享时进程间的同步与互斥的重要机制,而读者写者问题则就是这一机制的一个经典范例。
与记录型信号量解决读者—写者问题不同,信号量机制它增加了一个限制,即最多允许RN个读者同时读。为此,又引入了一个信号量L,并赋予初值为RN,通过执行wait(L,1,1)操作,来控制读者的数目,每当有一个读者进入时,就要执行wait(L,1,1)操作,使L的值减1。当有RN个读者进入读后,L便减为0,第RN+1个读者要进入读时,必然会因wait(L,1,1)操作失败而堵塞。对利用信号量来解决读者—写者问题的描述如下:
读者-写者问题解答
2.读者—写者问题读者—写者问题(Readers-Writers problem)也是一个经典的并发程序设计问题,是经常出现的一种同步问题。
计算机系统中的数据(文件、记录)常被多个进程共享,但其中某些进程可能只要求读数据(称为读者Reader);另一些进程则要求修改数据(称为写者Writer)。
就共享数据而言,Reader和Writer是两组并发进程共享一组数据区,要求:(1)允许多个读者同时执行读操作;(2)不允许读者、写者同时操作;(3)不允许多个写者同时操作。
Reader和Writer的同步问题分为读者优先、弱写者优先(公平竞争)和强写者优先三种情况,它们的处理方式不同。
(1)读者优先。
对于读者优先,应满足下列条件:如果新读者到:①无读者、写者,新读者可以读;②有写者等待,但有其它读者正在读,则新读者也可以读;③有写者写,新读者等待。
如果新写者到:①无读者,新写者可以写;②有读者,新写者等待;③有其它写者,新写者等待。
单纯使用信号量不能解决读者与写者问题,必须引入计数器rc 对读进程计数;rc_mutex 是用于对计数器rc 操作的互斥信号量;write表示是否允许写的信号量;于是读者优先的程序设计如下:int rc=0; //用于记录当前的读者数量semaphore rc_mutex=1; //用于对共享变量rc 操作的互斥信号量semaphore write=1; //用于保证读者和写者互斥地访问的信号量void reader() /*读者进程*/do{P(rc_mutex); //开始对rc共享变量进行互斥访问rc ++; //来了一个读进程,读进程数加1if (rc==1) P(write);//如是第一个读进程,判断是否有写进程在临界区,//若有,读进程等待,若无,阻塞写进程V(rc_mutex); //结束对rc共享变量的互斥访问读文件;P(rc_mutex); //开始对rc共享变量的互斥访问r c--; //一个读进程读完,读进程数减1if (rc == 0) V(write);//最后一个离开临界区的读进程需要判断是否有写进程//需要进入临界区,若有,唤醒一个写进程进临界区V(rc_mutex); //结束对rc共享变量的互斥访问} while(1)void writer() /*写者进程*/do{P(write); //无读进程,进入写进程;若有读进程,写进程等待写文件;V(write); //写进程完成;判断是否有读进程需要进入临界区,//若有,唤醒一个读进程进临界区} while(1)读者优先的设计思想是读进程只要看到有其它读进程正在读,就可以继续进行读;写进程必须等待所有读进程都不读时才能写,即使写进程可能比一些读进程更早提出申请。
操作系统读者写者问题报告
操作系统读者写者问题报告
读者写者问题是一种典型的操作系统同步问题,其描述如下:有多个读者和写者同时访问共享资源,读者可以同时访问共享资源,但写者必须独占式的访问共享资源,即任何时刻只能有一个写者访问共享资源,且在写者访问共享资源的期间,任何读者都不得访问共享资源。
此外,读者在访问共享资源时不会修改共享资源,而写者则会对共享资源进行修改。
如何实现读者写者问题呢?简单来说,可以使用信号量机制来解决这个问题。
具体来说,可以使用两个信号量RdMutex和WrMutex,RdMutex用于锁定读者,在读者访问共享资源时,需要申请RdMutex信号量,如果有写者在访问共享资源,则RdMutex会阻止读者访问共享资源;而当最后一个读者结束访问共享资源时,需要释放RdMutex信号量,以便让其他等待的读者访问共享资源。
类似地,WrMutex用于锁定写者,在写者访问共享资源时,需要申请WrMutex信号量,如果有其他读者或者写者在访问共享资源,则WrMutex会阻止写者访问共享
资源;而当写者访问共享资源结束时,需要释放WrMutex信号量,以便让其他等待的写者访问共享资源。
除了信号量机制之外,还可以使用其他同步机制来解决读者写者问题,比如互斥量、条件变量等。
同时,操作系统还可以采用优化策略,比如写优先、读写优先等,来提高读写效率。
总之,读者写者问题是操作系统同步问题中的一个经典问题,其实现方式需要考虑多方面的因素,包括并发访问、同步机制、优化策略等,需要经过深入思考和有效实践才能得到较好的解决方案。
在linux下实现读者写者问题源代码
在linux下实现读者写者问题源代码读者写者问题是计算机科学中的一个经典同步问题,用于描述多个读者和写者对共享资源的访问。
在这个问题中,多个读者可以同时读取共享资源,但是写者在写入共享资源时必须独占访问。
在Linux下,我们可以使用线程和互斥锁来实现读者写者问题。
下面是一个简单的源代码示例:```c#include <stdio.h>#include <stdlib.h>#include <pthread.h>#define READERS_COUNT 5#define WRITERS_COUNT 2pthread_mutex_t mutex;pthread_cond_t cond_reader, cond_writer;int readers = 0;int writers = 0;void *reader(void *arg) {int id = *(int *)arg;while (1) {pthread_mutex_lock(&mutex);while (writers > 0) {pthread_cond_wait(&cond_reader, &mutex); }readers++;pthread_mutex_unlock(&mutex);// 读取共享资源printf("Reader %d is reading\n", id);pthread_mutex_lock(&mutex);readers--;if (readers == 0) {pthread_cond_signal(&cond_writer);}pthread_mutex_unlock(&mutex);}pthread_exit(NULL);}void *writer(void *arg) {int id = *(int *)arg;while (1) {pthread_mutex_lock(&mutex);while (readers > 0 || writers > 0) {pthread_cond_wait(&cond_writer, &mutex); }writers++;pthread_mutex_unlock(&mutex);// 写入共享资源printf("Writer %d is writing\n", id);pthread_mutex_lock(&mutex);writers--;pthread_cond_signal(&cond_writer);pthread_cond_broadcast(&cond_reader);pthread_mutex_unlock(&mutex);}pthread_exit(NULL);}int main() {pthread_t readers[READERS_COUNT];pthread_t writers[WRITERS_COUNT];int reader_ids[READERS_COUNT];int writer_ids[WRITERS_COUNT];pthread_mutex_init(&mutex, NULL);pthread_cond_init(&cond_reader, NULL);pthread_cond_init(&cond_writer, NULL);// 创建读者线程for (int i = 0; i < READERS_COUNT; i++) {reader_ids[i] = i + 1;pthread_create(&readers[i], NULL, reader, &reader_ids[i]); }// 创建写者线程for (int i = 0; i < WRITERS_COUNT; i++) {writer_ids[i] = i + 1;pthread_create(&writers[i], NULL, writer, &writer_ids[i]); }// 等待线程结束for (int i = 0; i < READERS_COUNT; i++) {pthread_join(readers[i], NULL);}for (int i = 0; i < WRITERS_COUNT; i++) {pthread_join(writers[i], NULL);}pthread_mutex_destroy(&mutex);pthread_cond_destroy(&cond_reader);pthread_cond_destroy(&cond_writer);return 0;}```在这个源代码中,我们使用了互斥锁(`pthread_mutex_t`)和条件变量(`pthread_cond_t`)来实现读者写者问题的同步。
读者写者问题
项目读者写者问题1.设计原理(1)临界资源临界资源指的是一次只允许一个进程使用的独占资源。
临界资源包含软件和硬件,硬件临界资源有打印机、磁带机,软件临界资源有消息缓冲队列、变量、数组、缓冲区等。
(2)临界区临界区指包含了访问临界资源的程序。
为保证临界资源的正确使用,可以把临界资源的访问过程分为:进入区、临界区、退出区、剩余区。
进入区。
为了进入临界区使用临界资源,在进入区需要检查是否可以进入临界区;如果可以进入临界区,则应设置正在访问临界区的标志,以阻止其他进程同时进入临界区。
临界区。
进程中访问临界资源的代码段。
退出区。
将正在访问临界区的标志清除。
剩余区。
代码中的其余部分。
(3)互斥在操作系统中,当一个进程进入临界区使用临界资源时,另一个进程必须等待,当占用临界资源的进程退出临界区后,才允许另一个进程访问此临界资源,将进程间的这种相互制约关系称为进程互斥。
(4)同步一个进程相对于另一个进程的运行速度通常是不确定的,但可能在某些时刻点上,几个进程间需要相互协作协调运行。
进程同步是指多个相互协作的进程在某些时刻可能需要相互等待或相互交换信息,这种相互制约关系称为进程同步。
(5)读者写者问题读者写者问题是指多个进程对一个共享资源即数据集进行读写操作的问题,其中一些进程只要求读数据集的内容,而另一些进程则要求修改或写数据集的内容。
将只要求读数据的进程称为读进程,将要求修改或写数据集的进程称为写进程。
多个读进程可以同时读此数据集,不需要互斥也不会产生任何问题,但是一个写进程不能与其他进程(读进程或写进程)同时访问此数据集,它们之间必须互斥,否则数据集的完整性和正确性将遭到破坏。
(6)相关API说明① CreateThread的用法功能:创建一个线程。
格式:HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes,SIZE_T dwStackSize,LPTHREAD_START_ROUTINE lpStartAddress,LPVOID lpParameter,DWORD dwCreationFlags,LPDWORD lpThreadId);参数说明:lpThreadAttributes是线程的属性。
读者写者问题写者优先参考答案完整版
读者写者问题写者优先参考答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】【写者优先】在读者、写者问题中,如果总有读者进程进行读操作,会造成写者进程永远都不能进行写操作(读者优先),即所谓的写者饿死现象。
给出读者、写者问题的另一个解决方案:即保证当有一个写者进程想写时,不允许读者进程再进入,直到写者写完为止,即写者优先。
让我们先回顾读者写者问题[1]:一个数据对象若被多个并发进程所共享,且其中一些进程只要求读该数据对象的内容,而另一些进程则要求写操作,对此,我们把只想读的进程称为“读者”,而把要求写的进程称为“写者”。
在读者、写者问题中,任何时刻要求“写者”最多只允许有一个执行,而“读者”则允许有多个同时执行。
因为多个“读者”的行为互不干扰,他们只是读数据,而不会改变数据对象的内容,而“写者”则不同,他们要改变数据对象的内容,如果他们同时操作,则数据对象的内容将会变得不可知。
所以对共享资源的读写操作的限制条件是:允许任意多的读进程同时读;一次只允许一个写进程进行写操作;如果有一个写进程正在进行写操作,禁止任何读进程进行读操作。
为了解决该问题,我们只需解决“写者与写者”和“写者与第一个读者”的互斥问题即可,为此我们引入一个互斥信号量Wmutex,为了记录谁是第一个读者,我们用一个共享整型变量Rcount 作一个计数器。
而在解决问题的过程中,由于我们使用了共享变量Rcount,该变量又是一个临界资源,对于它的访问仍需要互斥进行,所以需要一个互斥信号量Rmutex,算法如下:}}现在回到【写者优先】优先问题【写者优先】在读者、写者问题中,如果总有读者进程进行读操作,会造成写者进程永远都不能进行写操作(读者优先),即所谓的写者饿死现象。
给出读者、写者问题的另一个解决方案:即保证当有一个写者进程想写时,不允许读者进程再进入,直到写者写完为止,即写者优先。
经典同步问题读者-写者问题
经典同步问题读者-写者问题读者-写者问题在读者-写者问题中,只对共享数据进⾏读取的进程为读者进程,修改共享数据的进程称为写者进程。
多个读者可同时读取共享数据⽽不会导致出现错误,但是任何时刻多个写者进程不能同时修改数据,写者进程和读者进程也不能同时访问共享数据。
读者-写者问题的解决策略有不同的倾向。
读者优先需要⽤到的共享变量:semaphore rw_mutex = 1; // 读者与写者互斥访问共享数据的互斥信号量semaphore mutex = 1; // 多个读者进程互斥修改当前读者进程数量的信号量int read_count = 0; // 系统当前读者进程数量写者进程结构do {wait(rw_mutex);.../* 修改共享数据 */...signal(rw_mutex);}while(true);读者进程结构do {wait(mutex); // 获取修改读者进程数量的互斥信号量,该操作在请求rw_mutex之前,防⽌出现死锁read_count++;if(read_count == 1) // 判断当前是否为第⼀个读者进程wait(rw_mutex); // 如果是就需要请求访问共享数据的互斥信号量signal(mutex); // read_count修改后释放信号量.../* 读取数据 */...wait(mutex); // 获取修改读者进程数量的互斥信号量read_count--;if(read_count == 0) // 判断当前进程是否为最后⼀个读者进程signal(rw_mutex); // 如果是则释放共享数据的互斥信号量,以允许写者进程操作共享数据signal(mutex);}while(true);读者优先有可能导致写者进程产⽣饥饿现象,当系统中不断出现读者进程时,写者进程始终⽆法进⼊临界区。
写者优先需要⽤到的共享变量:semaphore rw_mutex = 1; // 读者与写者互斥访问共享数据的互斥信号量semaphore r_mutex = 1; // 互斥修改当前读取⽂件的进程数semaphore w_mutex = 1; // 互斥修改当前修改⽂件的进程数semaphore enter_mutex = 1; // 获取申请访问⽂件的权限int read_count = 0; // 系统当前读者进程数量int write_count = 0; // 系统当前写者进程数量写者进程结构do {wait(w_mutex); // 新的写者进程进⼊,获取修改写者进程数量的权限write_count++;if(write_count == 1) // 判断当前是否为第⼀个写者进程wait(enter_mutex); // 阻断后续到达的读者进程signal(w_mutex);wait(rw_mutex); // 获取访问⽂件的权限,⽂件可能被其它写者进程占⽤,或者等待最后⼀个读者进程释放.../* 修改数据 */...wait(rw_mutex);wait(w_mutex);write_count--;if(write_count == 0) // 当所有写者进程都放弃使⽤⽂件时,运⾏读者进程申请访问⽂件signal(enter_mutex);signal(mutex);}while(true);读者进程结构do {wait(enter_mutex); // 获取申请访问⽂件的权限wait(r_mutex);read_count++;if(read_count == 1) // 判断当前是否为第⼀个读者进程wait(rw_mutex); // 占⽤⽂件signal(r_mutex);signal(enter_mutex);.../* 读取数据 */...wait(r_mutex);read_count--;if(read_count == 0)signal(rw_mutex);signal(r_mutex);}while(true);写者优先有可能导致读者进程产⽣饥饿现象,当系统中不断出现写者进程时,读者进程始终⽆法进⼊临界区。
读者写者问题
读者写者也是一个非常著名的同步问题。
读者写者问题描述非常简单,有一个写者很多读者,多个读者可以同时读文件,但写者在写文件时不允许有读者在读文件,同样有读者在读文件时写者也不去能写文件。
上面是读者写者问题示意图,类似于生产者消费者问题的分析过程,首先来找找哪些是属于“等待”情况。
第一.写者要等到没有读者时才能去写文件。
第二.所有读者要等待写者完成写文件后才能去读文件。
找完“等待”情况后,再看看有没有要互斥访问的资源。
由于只有一个写者而读者们是可以共享的读文件,所以按题目要求并没有需要互斥访问的资源。
类似于上一篇中美观的彩色输出,我们对生产者输出代码进行了颜色设置。
因此在这里要加个互斥访问,不然很有可能在写者线程将控制台颜色设置还原之前,读者线程就已经有输出了。
所以要对输出语句作个互斥访问处理,修改后的读者及写者的输出函数如下所示://读者线程输出函数void ReaderPrintf(char *pszFormat, ...){va_list pArgList;va_start(pArgList, pszFormat);EnterCriticalSection(&g_cs);vfprintf(stdout, pszFormat, pArgList);LeaveCriticalSection(&g_cs);va_end(pArgList);}//写者线程输出函数void WriterPrintf(char *pszStr){EnterCriticalSection(&g_cs);SetConsoleColor(FOREGROUND_GREEN);printf(" %s\n", pszStr);SetConsoleColor(FOREGROUND_RED | FOREGROUND_GREEN | FOREGROUND_BLUE);LeaveCriticalSection(&g_cs);}解决了互斥输出问题,接下来再考虑如何实现同步问题。
读者和写者问题
学号:课程设计课程名称操作系统学院计算机科学与技术学院专业软件工程专业班级姓名指导教师2014——2015学年第1学期目录目录 ....................................................................................................................................... 错误!未定义书签。
1 设计概述 (3)1.1问题描述: (3)1.2问题解读及规则制定 (3)2课程设计目的及功能 (3)2.1 设计目的 (3)2.2 设计功能 (3)3模块介绍 (3)3.1函数原型 (3)3.2 PV操作代码 (4)4测试用例,运行结果与运行情况分析 (6)4.1测试用例 (6)4.2运行结果 (7)4.3运行情况分析 (9)5自我评价与总结 (9)6 参考文献 (10)7 附录:(完整代码) (10)实现读者写者(Reader-Writer Problem)问题1 设计概述1.1问题描述:通过研究Linux的线程机制和信号量实现读者写者(Reader-Writer)问题并发控制。
1.2问题解读及规则制定一个数据文件或记录可被多个进程所共享,我们将其中只要求读该文件的进程称为读者,其他进程称为写者.多个读者和多个写者进程在某个时间段内对该文件资源进行异步操作,也就是说允许多个进程同时读一个共享对象,但不允许一个写进程和其他读进程或写进程同时访问共享对象,因此,所谓"读者--写者问题"就是指必须保证一个写进程和其他进程(写进程或者读进程)互斥地访问共享对象的同步问题.两者的读写操作限制规则如下:(1)写--写互斥,即不允许多个写着同时对文件进行写操作(2)读--写互斥,即不允许读者和写者同时对文件分别进行读写操作(3)读—读允许,即允许多个读者同时对文件进行读操作2课程设计目的及功能2.1 设计目的通过实验模拟读者和写者之间的关系,了解并掌握他们之间的关系及其原理。
读者写者问题实验报告
读者写者问题实验报告1.实验目的:掌握读者写者问题的基本概念和操作实现方法。
2.实验原理:(1)读者写者问题:1.读者优先:若读者进程正在读文件,写者进程需等待。
2.写者优先:若写者进程正在写文件,读者进程需等待。
3.公平竞争:读写者进程均有机会访问文件。
(2)进程同步:1.信号量:能够同步进程的执行,性能较好。
2.互斥量:能够同步进程的执行,提供了更细粒度的控制。
3.条件变量:让进程能够进行相互之间的协作。
3.实验内容:(1)依照读者写者问题的操作实现方法,采用信号量机制,编写读者进程和写者进程。
(2)测试不同读者写者优先级下程序的执行情况。
4.实验步骤:(1)设计程序架构:1.使用信号量实现读者写者访问文件的同步操作;2.设计Readers和Writers两个类分别实现读者和写者进程的操作。
(2)实现程序:1.编写读者进程,在进程对文件进行读操作之前使用信号量P操作,读取完成后使用信号量V操作;2.编写写者进程,在进程对文件进行写操作之前使用信号量P操作,写入完成后使用信号量V操作;3.设计信号量的初始值,以实现不同读者写者优先级下程序的执行情况。
(3)测试程序:在有多个读者进程和多个写者进程的情况下,测试不同读者写者优先级下程序的执行情况。
5.实验结果:(1)读者优先:读者优先的情况下,不管读者进程和写者进程的数量如何设置,读者总是有后进先出的机会访问文件。
(2)写者优先:写者优先的情况下,不管读者进程和写者进程的数量如何设置,写者总是有先进先出的机会访问文件。
(3)公平竞争:公平竞争的情况下,读者或写者进程均有机会访问文件。
6.实验结论:(1)在实现读者写者问题的过程中,需要采用进程同步技术来确保进程之间的正确协作。
(2)信号量提供了一种较为有效的进程同步机制,能够满足读者写者问题的操作需求。
(3)采用不同的优先级设置,可以使读者写者进程之间实现不同的访问策略,进而实现不同的访问效果。
操作系统——读者写者问题
操作系统——读者写者问题⼀、问题描述要求:1、允许多个读者可以同时对⽂件执⾏读操作。
2、只允许⼀个写者往⽂件中写信息。
3、任⼀写者在完成写操作之前不允许其他读者或写者⼯作。
4、写者执⾏写操作前,应让已有的读者和写者全部退出。
⼆、问题分析读者写者问题最核⼼的问题是如何处理多个读者可以同时对⽂件的读操作。
三、如何实现semaphore rw = 1; //实现对⽂件的互斥访问int count = 0;semaphore mutex = 1;//实现对count变量的互斥访问int i = 0;writer(){while(1){P(rw); //写之前“加锁”写⽂件V(rw); //写之后“解锁”}}reader (){while(1){P(mutex); //各读进程互斥访问countif(count==0) //第⼀个读进程负责“加锁”{P(rw);}count++; //访问⽂件的进程数+1V(mutex);读⽂件P(mutex); //各读进程互斥访问countcount--; //访问⽂件的进程数-1if(count==0) //最后⼀个读进程负责“解锁”{V(rw);}V(mutex);}}只要有源源不断的读进程存在,写进程就要⼀直阻塞等待,可能会造成“饿死”,在上述的算法中,读进程是优先的,那么应该怎么样来改造呢?新加⼊⼀个锁变量w,⽤于实现“写优先”!这⾥我们来分析⼀下读者1->写者1->读者2这种情况。
第⼀个读者1在进⾏到读⽂件操作的时候,有⼀个写者1操作,由于第⼀个读者1执⾏了V(w),所以写者1不会阻塞在P(w),但由于第⼀个读者1执⾏了P(rw)但没有执⾏V(rw),写者1将会被阻塞在P(rw)上,这时候再有⼀个读者2,由于前⾯的写者1进程执⾏了P(w)但没有执⾏V(w),所以读者2将会被阻塞在P(w)上,这样写者1和读者2都将阻塞,只有当读者1结束时执⾏V(rw),此时写者1才能够继续执⾏直到执⾏V(w),读者2也将能够执⾏下去。
读者写者问题
一设计概述所谓读者写者问题,是指保证一个writer进程必须与其他进程互斥地访问共享对象的同步问题。
读者写者问题可以这样的描述,有一群写者和一群读者,写者在写同一本书,读者也在读这本书,多个读者可以同时读这本书,但是,只能有一个写者在写书,并且,读者必写者优先,也就是说,读者和写者同时提出请求时,读者优先。
当读者提出请求时需要有一个互斥操作,另外,需要有一个信号量S来当前是否可操作。
信号量机制是支持多道程序的并发操作系统设计中解决资源共享时进程间的同步与互斥的重要机制,而读者写者问题则是这一机制的一个经典范例。
与记录型信号量解决读者—写者问题不同,信号量机制它增加了一个限制,即最多允许RN个读者同时读。
为此,又引入了一个信号量L,并赋予初值为RN,通过执行wait(L,1,1)操作,来控制读者的数目,每当有一个读者进入时,就要执行wait(L,1,1)操作,使L的值减1。
当有RN个读者进入读后,L便减为0,第RN+1 个读者要进入读时,必然会因wait(L,1,1)操作失败而堵塞。
对利用信号量来解决读者—写者问题的描述如下:Var RN integer;L,mx:semaphore: =RN,1;BeginParbeginReader :beginRepeatSwait(L,1,1);Swait(mx,1,0);.Perform reader operation;Ssignal(L,1);Until false;EndWriter :beginRepeatSwait(mx ,1,1,l,RN,0);Perform writer operation;Ssignal(mx,1);Until false;EndParendEnd其中,Swait(mx,1,0)语句起着开关作用,只要无Writer进程进入些,mx=1,reader进程就都可以进入读。
但是要一旦有Writer进程进入写时,其MX=0,则任何reader进程就都无法进入读。
读者写者问题-写者优先参考答案
读者写者问题-写者优先参考答案【写者优先】在读者、写者问题中,如果总有读者进程进行读操作,会造成写者进程永远都不能进行写操作(读者优先),即所谓的写者饿死现象。
给出读者、写者问题的另一个解决方案:即保证当有一个写者进程想写时,不允许读者进程再进入,直到写者写完为止,即写者优先。
让我们先回顾读者写者问题[1]:一个数据对象若被多个并发进程所共享,且其中一些进程只要求读该数据对象的内容,而另一些进程则要求写操作,对此,我们把只想读的进程称为“读者”,而把要求写的进程称为“写者”。
在读者、写者问题中,任何时刻要求“写者”最多只允许有一个执行,而“读者”则允许有多个同时执行。
因为多个“读者”的行为互不干扰,他们只是读数据,而不会改变数据对象的内容,而“写者”则不同,他们要改变数据对象的内容,如果他们同时操作,则数据对象的内容将会变得不可知。
所以对共享资源的读写操作的限制条件是:⏹允许任意多的读进程同时读;⏹一次只允许一个写进程进行写操作;如果有一个写进程正在进行写操作,禁止⋯⋯;P(Rmutex);Rcount = Rcount - 1;if (Rcount == 0) V(wmutex);V(Rmutex);}}void writer() /*写者进程*/{while (true){P(Wmutex);⋯⋯;write; /* 执行写操作 */⋯⋯;P(Wmutex);}}现在回到【写者优先】优先问题【写者优先】在读者、写者问题中,如果总有读者进程进行读操作,会造成写者进程永远都不能进行写操作(读者优先),即所谓的写者饿死现象。
给出读者、写者问题的另一个解决方案:即保证当有一个写者进程想写时,不允许读者进程再进入,直到写者写完为止,即写者优先。
【解题思路】在上面的读者写者问题基础上,做以下修改:⏹增加授权标志authFlag,当写者到来,发现有读者在读,则取消授权,然后等待缓冲区;⏹增加“等待授权计数器waitAuthCount”,写者离开时,如果waitAuthCount大于0,则迭代唤醒等待授权的读者;⏹读者到来,首先看授权标志,如果有授权标志,则继续,否则等待授权,即写者取消授权后,新来的读者不能申请缓冲区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. ..一设计概述所谓读者写者问题,是指保证一个writer进程必须与其他进程互斥地访问共享对象的同步问题。
读者写者问题可以这样的描述,有一群写者和一群读者,写者在写同一本书,读者也在读这本书,多个读者可以同时读这本书,但是,只能有一个写者在写书,并且,读者必写者优先,也就是说,读者和写者同时提出请求时,读者优先。
当读者提出请求时需要有一个互斥操作,另外,需要有一个信号量S来当前是否可操作。
信号量机制是支持多道程序的并发操作系统设计中解决资源共享时进程间的同步与互斥的重要机制,而读者写者问题则是这一机制的一个经典范例。
与记录型信号量解决读者—写者问题不同,信号量机制它增加了一个限制,即最多允许RN个读者同时读。
为此,又引入了一个信号量L,并赋予初值为RN,通过执行wait(L,1,1)操作,来控制读者的数目,每当有一个读者进入时,就要执行wait(L,1,1)操作,使L的值减1。
当有RN个读者进入读后,L便减为0,第RN+1 个读者要进入读时,必然会因wait(L,1,1)操作失败而堵塞。
对利用信号量来解决读者—写者问题的描述如下:Var RN integer;L,mx:semaphore: =RN,1;BeginParbeginReader :beginRepeatSwait(L,1,1);Swait(mx,1,0);.Perform reader operation;Ssignal(L,1);Until false;EndWriter :beginRepeatSwait(mx ,1,1,l,RN,0);Perform writer operation;Ssignal(mx,1);Until false;EndParendEnd其中,Swait(mx,1,0)语句起着开关作用,只要无Writer进程进入些,mx=1,reader进程就都可以进入读。
但是要一旦有Writer进程进入写时,其MX=0,则任何reader进程就都无法进入读。
Swait(mx ,1,1,l,RN,0)语句表示仅当既无Write 进程在写(mx=1),又无reader进程在读(L=RN)时,writer进程才能进入临界区写。
本设计方案就是通过利用记录型信号量对读者写者问题的解决过程进行模拟演示,形象地阐述记录型信号量机制的工作原理。
二设计目的与内容一实验目的l. 用信号量来实现读者写者问题。
2. 理解和运用信号量、PV原语、进程间的同步互斥关系等基本知识。
二、二实验内容读者写者问题的定义如下:有一个许多进程共享的数据区,这个数据区可以是一个文件或者主存的一块空间;有一些只读取这个数据区的进程(Reader)和一些只往数据区写数据的进程(Writer),此外还需要满足以下条件:(1)任意多个读进程可以同时读这个文件;(2)一次只有一个写进程可以往文件中写;(3)如果一个写进程正在进行操作,禁止任何读进程度文件。
我们需要分两种情况实现该问题:读优先:要求指一个读者试图进行读操作时,如果这时正有其他读者在进行操作,他可直接开始读操作,而不需要等待。
写优先:一个读者试图进行读操作时,如果有其他写者在等待进行写操作或正在进行写操作,他要等待该写者完成写操作后才开始读操作。
三设计分析在Windows 7 环境下,创建一个包含n 个线程的控制台进程。
用这n 个线程来表示n个读者或写者。
每个线程按相应测试数据文件的要求,进行读写操作。
请用信号量机制分别实现读者优先和写者优先的读者-写者问题。
读者-写者问题的读写操作限制:读者-写者的读写限制(包括读者优先和写者优先)1)写-写互斥,即不能有两个写者同时进行写操作2)读-写互斥,即不能同时有一个读者在读,同时却有一个写者在写3)读读允许,即可以有2个以上的读者同时读将所有的读者和所有的写者分别放进两个等待队列中,当读允许时就让读者队列释放一个或多个读者,当写允许时,释放第一个写者操作。
读者写者问题的定义如下:有一个许多进程共享的数据区,这个数据区可以是一个文件或者主存的一块空间;有一些只读取这个数据区的进程(Reader)和一些只往数据区写数据的进程(Writer),此外还需要满足以下条件:1)任意多个读进程可以同时读这个文件;2) 一次只有一个写进程可以往文件中写;3)如果一个写进程正在进行操作,禁止任何读进程度文件。
我们需要分两种情况实现该问题:读优先:要求指一个读者试图进行读操作时,如果这时正有其他读者在进行操作,他可直接开始读操作,而不需要等待。
写优先:一个读者试图进行读操作时,如果有其他写者在等待进行写操作或正在进行写操作,他要等待该写者完成写操作后才开始读操作。
四程序实现程序由两部分组成:1。
读者-写者模块:包括系统调用接口,读者-写者活动描述主程序。
系统接口主要功能是通过管道向父进程发送系统调用命令,并读取父进程送来的返回值。
读者-写者活动程序根据临界资源的共享,互斥原则编制,具体见源程序。
2。
主控模块:主控模块实现系统初始化系统调用命令接收与解释执行,系统调用功能的实现(包括信号量机制),及读者-写者活动过程记录与显示。
初始化系统环境建立通信管道启动读者-写者进程接收系统调用命令解释执行系统初始化模块管道建立模块进程启动模块命令解释模块Wait()Signal()Wakeup()Block()五程序调试测试数据文件格式:测试数据文件包括n 行测试数据,分别描述创建的n 个线程是读者还是写者,以及读写操作的开始时间和持续时间。
每行测试数据包括四个字段,各字段间用空格分隔。
第一字段为一个正整数,表示线程序号。
第二字段表示相应线程角色,R 表示读者是,W 表示写者。
第三字段为一个正数,表示读写操作的开始时间。
线程创建后,延时相应时间(单位为秒)后发出对共享资源的读写申请。
第四字段为一个正数,表示读写操作的持续时间。
当线程读写申请成功后,开始对共享资源的读写操作,该操作持续相应时间后结束,并释放共享资源。
六结果分析和讨论在读者写者同时在队列中等待申请资时,读者优先调用资源。
而且如果一个读者申请进行读操作时已有另一读者正在进行读操作,则该读者可直接开始读操作,即读读允许。
进程1是R操作,在时间3时进入队列,运行时间是5,在它进入时没有进程占用资源,它既占用资源;知道它释放资源,等候的进程有3,4,5;进程2是W操作,在时间16时进入队列,运行时间是5,在它进入时进程4占用资源,它等待资源,当4释放时占用资源;进程3是R操作,在时间5时进入队列,运行时间是2,在它进入时进程1占用资源,它等待资源,当进程1释放资源后,由于读者优先,进程3,5同时调运资源;进程4是R操作,在时间6时进入队列,运行时间是5,在它进入时进程1占用资源,它等待资源,当进程1释放资源后,由于读者优先,进程3,5占用资源,它依然等待,直到进程3,5都结束;进程5是W操作,在时间4时进入队列,运行时间是3, 在它进入时进程1占用资源,它等待资源,当进程1释放资源后,由于读者优先,进程3,5同时调运资源;七心得体会这一次课程设计,让我体会很深刻。
读者-写者问题经典的线程同步问题的一个模型。
经过读者写者问题的编写,我对同步机构应用有了深入的了解。
懂得了运用信号量实现进程间的互斥。
实现了不让共享资源同时修改。
用信号量上的原语操作使临界段问题的解决比较简单明了了。
读者写者问题的编写,花的时间很多,也学到很多东西。
了解支持多道程序的并发操作系统设计中解决资源共享时进程间的同步与互斥的信号量机制。
几天的试验,虽然难度有点大,但只要自己花时间去学习,还是会攻克困难的。
总之,每一次课程设计不仅是我们学习的好机会,而且是我们锻炼实际动手能力的平台,虽然有难度的东西总会让人很抵触,比如在课设过程中有很多郁闷的时候,一个小小的错误一不小心就花去了自己一上午的时间,所以在这个过程中能够磨练人的意志与耐心,最后感谢老师的指导与监督。
八源代码#include <windows.h>#include <ctype.h>#include <stdio.h>#include <string.h>#include <stdlib.h>#include <malloc.h>#define MAX_PERSON 100#define READER 0 //读者#define WRITER 1 //写者#define END -1#define R READER#define W WRITERtypedef struct _Person{HANDLE m_hThread;//定义处理线程的句柄int m_nType;//进程类型(读写)int m_nStartTime;//开始时间int m_nWorkTime;//运行时间int m_nID;//进程号}Person;Person g_Persons[MAX_PERSON];int g_NumPerson = 0;long g_CurrentTime= 0;//基本时间片数int g_PersonLists[] = {//进程队列1, R, 3, 5, 2, W, 4, 5, 3, R, 5, 2,4, R, 6, 5, 5, W, 5.1, 3, END,};int g_NumOfReading = 0;int g_NumOfWriteRequest = 0;//申请写进程的个数HANDLE g_hReadSemaphore;//读者信号HANDLE g_hWriteSemaphore;//写者信号bool finished = false; //所有的读完成//bool wfinished = false; //所有的写完成void CreatePersonList(int *pPersonList);bool CreateReader(int StartTime,int WorkTime,int ID); bool CreateWriter(int StartTime,int WorkTime,int ID);DWORD WINAPI ReaderProc(LPVOID lpParam);DWORD WINAPI WriterProc(LPVOID lpParam);int main(){g_hReadSemaphore = CreateSemaphore(NULL,1,100,NULL); //创建信号灯,当前可用的资源数为1,最大为100g_hWriteSemaphore = CreateSemaphore(NULL,1,100,NULL); //创建信号灯,当前可用的资源数为1,最大为100CreatePersonList(g_PersonLists); // Create All the reader and writersprintf("Created all the reader and writer\n...\n");g_CurrentTime = 0;while(true){g_CurrentTime++;Sleep(300); // 300 msprintf("CurrentTime = %d\n",g_CurrentTime);if(finished) return 0;} // return 0;}void CreatePersonList(int *pPersonLists){int i=0;int *pList = pPersonLists;bool Ret;while(pList[0] != END){switch(pList[1]){case R:Ret = CreateReader(pList[2],pList[3],pList[0]);//351,w452,523,654break; case W:Ret = CreateWriter(pList[2],pList[3],pList[0]);break;}if(!Ret)printf("Create Person %d is wrong\n",pList[0]);pList += 4; // move to next person list}}DWORD WINAPI ReaderProc(LPVOID lpParam)//读过程{Person *pPerson = (Person*)lpParam;// wait for the start timewhile(g_CurrentTime != pPerson->m_nStartTime){ }printf("Reader %d is Requesting ...\n",pPerson->m_nID);printf("\n\n************************************************\n");// wait for the write requestWaitForSingleObject(g_hReadSemaphore,INFINITE); if(g_NumOfReading ==0) {WaitForSingleObject(g_hWriteSemaphore,INFINITE); }g_NumOfReading++;ReleaseSemaphore(g_hReadSemaphore,1,NULL);pPerson->m_nStartTime = g_CurrentTime;printf("Reader %d is Reading the Shared Buffer...\n",pPerson->m_nID);printf("\n\n************************************************\n");while(g_CurrentTime <= pPerson->m_nStartTime + pPerson->m_nWorkTime) {}printf("Reader %d is Exit...\n",pPerson->m_nID);printf("\n\n************************************************\n"); WaitForSingleObject(g_hReadSemaphore,INFINITE);g_NumOfReading--;if(g_NumOfReading == 0){ReleaseSemaphore(g_hWriteSemaphore,1,NULL);//此时没有读者,可以写}ReleaseSemaphore(g_hReadSemaphore,1,NULL);if(pPerson->m_nID == 4) finished = true; //所有的读写完成ExitThread(0);return 0;}DWORD WINAPI WriterProc(LPVOID lpParam){Person *pPerson = (Person*)lpParam;// wait for the start timewhile(g_CurrentTime != pPerson->m_nStartTime){}printf("Writer %d is Requesting ...\n",pPerson->m_nID);printf("\n\n************************************************\n"); WaitForSingleObject(g_hWriteSemaphore,INFINITE);// modify the writer's real start timepPerson->m_nStartTime = g_CurrentTime;printf("Writer %d is Writting the Shared Buffer...\n",pPerson->m_nID);while(g_CurrentTime <= pPerson->m_nStartTime + pPerson->m_nWorkTime) {}printf("Writer %d is Exit...\n",pPerson->m_nID);printf("\n\n************************************************\n"); //g_NumOfWriteRequest--;ReleaseSemaphore(g_hWriteSemaphore,1,NULL);if(pPerson->m_nID == 4) finished = true;//所有的读写完成ExitThread(0);return 0;}bool CreateReader(int StartTime,int WorkTime,int ID){DWORD dwThreadID;if(g_NumPerson >= MAX_PERSON)return false;Person *pPerson = &g_Persons[g_NumPerson];pPerson->m_nID = ID;pPerson->m_nStartTime = StartTime;pPerson->m_nWorkTime = WorkTime;pPerson->m_nType = READER;g_NumPerson++;// Create an New ThreadpPerson->m_hThread=CreateThread(NULL,0,ReaderProc,(LPVOID)pPerson,0,&dwThreadID); if(pPerson->m_hThread == NULL)return false;return true;}bool CreateWriter(int StartTime,int WorkTime,int ID){DWORD dwThreadID;if(g_NumPerson >= MAX_PERSON)return false;Person *pPerson = &g_Persons[g_NumPerson];pPerson->m_nID = ID;pPerson->m_nStartTime = StartTime;pPerson->m_nWorkTime = WorkTime;pPerson->m_nType = WRITER;g_NumPerson++;// Create an New ThreadpPerson->m_hThread=CreateThread(NULL,0,WriterProc,(LPVOID)pPerson,0,&dwThreadID); if(pPerson->m_hThread == NULL)return false;return true;}。