建筑结构抗震设计要点分析
建筑工程设计的抗震设计要点分析
建筑工程设计的抗震设计要点分析一、建筑工程的抗震设计理念我国《建筑抗震设计规范》(GB50011-2010)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。
當遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。
建筑物一般不受损坏或不需修理仍可继续使用。
因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。
当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。
但经一般修理或不需修理仍可继续使用。
二、建筑工程中抗震设计的作用1、保证建筑的刚度。
合理地设计和确定建筑物的刚度非常重要。
因此首先要考虑到的是采用大量的钢筋混凝土。
主要是在已有的钢筋混凝土之上使用“钢结构”对其进行进一步加层加固。
加固分为两种情况:a.如果所需要进行加层的建筑工程的体系是钢结构,而国家规定:上部是钢结构、下部是钢筋混凝土两种不同的体系结构是不符合抗震规范的。
b.假设屋盖的部分是采用钢结构,而钢筋混凝土仍然是作为整个建筑工程的抗侧力的主要体系,则必须根据相关的规定进行抗震设计。
2、降低地震对建筑的影响。
被工程界认可的一个办法是在建筑基础与建筑的主体部分之间加设一个隔震层,有的设计师在建筑物的顶端部分加设一个“反摆”。
此反摆的作用是能够在地震时使建筑物的位移方向相反,降低了加速度,降低地震的作用。
根据相关研究分析,如果对“反摆”设置合理,那么对降低地震作用的概率可达65%,也能最大限度地减少建筑物内的物品受损程度。
3、提高建筑工程的抗震力。
出于对建筑工程抗震功能的保证,在建筑工程中要特别注意做到以下几点:a.在建筑工程中要考虑地基的稳定性因素,挑选对抗震有益的地基,防止地基变形影响抗震功能;b.同一建筑工程单元要设计在性质一样的地基上,要把地基最大潜力融入建筑的结构设计,有利于发挥地基的抗震功能;c.建筑工程尽量做到规则、对称,以降低地震作用导致的建筑变形度以及避免地震作用力集中导致建筑扭曲的状况发生;d.建筑的整体结构设计中要多加几道抵抗防线,以提高建筑工程的抗震力,同时建筑工程受力设计要明确,防止存在建筑工程局部薄弱;e.最大程度的减少建筑工程自身重量,从而减小建筑对地基的压力,达到缓解地震冲击作用对建筑体的影响力。
房屋建筑框架结构抗震设计要点
房屋建筑框架结构抗震设计要点摘要:如何从我国的地震环境和社会经济发展的实际情况出发,不断提高建筑结构抗震设计的水平,使之更安全可靠、更合理经济,是结构设计人员的重要任务。
本文阐述了框架结构抗震设计时应注意的问题,探讨了框架结构抗震设计几个要点。
关键词:房屋建筑框架结构抗震设计要点近年来中国房地产的迅猛发展给建筑业的发展带来了很大机遇和挑战,房地产市场的日趋成熟和完善要求建筑功能越来越多样性和复杂性,因此如何在满足建筑功能的同时设计出安全经济合理的结构体系对设计人员是一种不小的挑战,这就需要我们结构设计人员在设计过程中不断的总结和提高。
一、抗震设计应注意的问题中国地震活动频度高、强度大、震源浅、分布广,是一个震灾严重的国家。
据统计,我国绝大部分地区均发生过较强的破坏性地震,给人民的生命和财产造成了非常大的损失,如2008年5月12日发生的汶川地震、2010年4月14日发生的玉树地震都造成了大量房屋倒塌、大量人员伤亡。
因此,抗震设计是结构设计人员的一大课题,把好抗震设计关,提高建筑物的抗震能力才是减轻地震灾害的根本措施。
1、结构的抗震设计还不能完全依赖“计算设计”,更应该重视“概念设计”。
概念设计是一种基于震害经验建立的抗震基本设计原则和思想。
其目标是避免出现会导致结构过早破坏的敏感薄弱部位。
结构抗震设计中特别要注意贯彻“强柱弱梁、强剪弱弯、强节点弱构件”的设计原则,强柱弱梁就是要求柱的抗弯能力高于梁的抗弯能力,强剪弱弯就是防止构件受剪破坏,要求杆件的受剪承载力高于受弯承载力,强节点弱构件就是要防止节点破坏先于构件。
大量的工程设计中我们发现框架梁上部配筋一般比较大,这是因为考虑了梁翼缘作用和梁裂缝宽度验算后增加了较多梁纵向钢筋,从而增大了梁端的承载力,相对减小了柱端承载力,可能会形成“强梁弱柱”,这样做的后果就是地震发生时可能使得塑性铰出现在柱端而未按照预期出现在梁端部,我们的做法是严格控制梁端裂缝验算宽度刚好满足规范要求,不因裂缝宽度过小而使得梁端增加过多的钢筋。
抗震结构设计要点及重要习题及答案
1、【地震烈度】:指某一地区的地面和各类建筑物遭受一次地震影响的强弱程度。
2、【抗震设防烈度】:一个地区作为抗震设防依据的地震烈度,应按国家规定权限审批或颁发的文件(图件)执行。
3、【场地土的液化:】饱和的粉土或砂土,在地震时由于颗粒之间的孔隙水不可压缩而无法排出,使得孔隙水压力增大,土体颗粒的有效垂直压应力减少,颗粒局部或全部处于悬浮状态,土体的抗剪强度接近于零,呈现出液态化的现象。
4、【等效剪切波速:】若计算深度范围内有多层土层,则根据计算深度范围内各土层剪切波速加权平均得到的土层剪切波速即为等效剪切波速。
5、【地基土抗震承载力】:地基土抗震承载力,其中ζa 为地基土的抗震承载力调整系数,f a 为深宽修正后的地基承载力特征值。
6、【场地覆盖层厚度】:我国《建筑抗震设计规范》(GB50011-2001)定义:一般情况下,可取地面到剪切波速大于500m/s 的坚硬土层或岩层顶的距离。
7、【重力荷载代表值:】结构抗震设计时的基本代表值,是结构自重(永久荷载)和有关可变荷载的组合值之和。
8、【强柱弱梁:】结构设计时希望梁先于柱发生破坏,塑性铰先发生在梁端,而不是在柱端。
9、【砌体的抗震强度设计值:】VE N V f f ς=,其中f v 为非抗震设计的砌体抗剪强度设计值,ζN 为砌体抗震抗剪强度的正应力影响系数。
10、【剪压比:】剪压比为c 0V/f bh ,是构件截面上平均剪力与混凝土轴心抗压强度设计值的比值,用以反映构件截面上承受名义剪应力的大小。
1、【简述两阶段三水准抗震设计方法。
】答:我国《建筑抗震设计规范》(GB50011-2001)规定:进行抗震设计的建筑,其抗震设防目标是:当遭受低于本地区抗震设防烈度的多遇地震影响时,一般不受损坏或不需修理可继续使用,当遭受相当于本地区抗震设防烈度的地震影响时,可能损坏,经一般修理或不需修理仍可继续使用,当遭受高于本地区抗震设防烈度预估的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。
房屋建筑框架结构抗震设计要点
房屋建筑框架结构抗震设计要点摘要:钢筋混凝土框架结构具有良好抗震性能,结构抗震的本质就是延性,提高延性可增加结构抗震潜力,增强结构抗倒塌能力。
结构主要靠延性来抵抗较大地震作用下非弹性变形。
本文分析了结构延性在抗震设计中的重要性及其作用,影响结构延性的主要因素以及结构延性的抗震设计。
关键词:房屋建筑;框架结构;抗震设计前言地震是一种能对人类的生产和生活带来极大破坏的自然灾害,为了预防地震灾害,减轻地震损失,我国加强了地震预报、工程抗震和地震控制方面研究工作,其中工程抗震是一项有效的措施,其目的是寻求最合理的抗震设计,保证建筑物的安全。
工程中结构抗震的设计是依据抗震设防烈度通过地震作用的取值和抗震措施的采取来实现结构抗震设防目标。
一、框架结构延性的作用对于受弯构件来说,随着荷载增加,首先受拉区混凝土出现裂缝,表现出非弹性变形。
然后受拉钢筋屈服,受压区高度减小,受压区混凝土压碎,构件最终破坏。
从受拉钢筋屈服到压区混凝土压碎,是构件的破坏过程。
在这过程中,构件的承载能力没有多大变化,但其变形的大小却决定了破坏的性质。
当结构设计成为延性结构时,由于塑性变形可以耗散地震能量,结构变形虽然会加大,但结构承受的地震作用不会很快上升,内力也不会再加大,因此具有延性的结构可降低对结构的承载力要求,也可以说,延性结构是用它的变形能力来抵抗罕遇地震作用;反之,如果结构的延性不好,则必须有足够大的承载力来抵抗地震作用。
结构或构件的延性具有以下作用:1、防止脆性破坏脆性破坏是突然的、无明显征兆的破坏,因此破坏的后果较严重。
工程设计中应避免脆性破坏,应按塑性破坏的原则进行设计,使结构或构件具有一定的延性,保证结构或构件在破坏之前有足够的变形能力,防止突然的脆性破坏发生。
2、对脆性构件起稳定作用在实际建筑结构中,延性构件与非延性构件(脆性构件)往往是并存的。
例如框架结构的长柱与短柱。
实验研究说明,在保证延性构件与非延性构件一定比例的条件下,延性构件对脆性构件起稳定作用,使结构有较好的变形能力而不致失效。
混凝土结构抗震设计需要注意哪些要点
混凝土结构抗震设计需要注意哪些要点地震是一种具有强大破坏力的自然灾害,给人类的生命和财产安全带来了巨大的威胁。
在建筑领域,混凝土结构的抗震设计至关重要,它直接关系到建筑物在地震中的稳定性和安全性。
那么,在进行混凝土结构抗震设计时,需要注意哪些要点呢?首先,场地选择是关键的一步。
一个良好的建筑场地能够有效降低地震对建筑物的影响。
应尽量避免在地震断裂带、软弱土层、河岸边缘等不利地段建设。
如果无法避免,就需要采取更加严格的抗震措施来弥补场地的不足。
比如,通过加强基础的设计,提高结构的整体性和稳定性。
结构体系的合理性对于抗震性能有着决定性的作用。
在混凝土结构设计中,宜采用规则、对称的结构形式,避免出现过于复杂和不规则的形状。
因为不规则的结构在地震作用下容易产生应力集中,导致局部破坏甚至整体倒塌。
框架结构、剪力墙结构以及框架剪力墙结构是常见的混凝土结构体系,它们各自有着特点和适用范围。
设计时需要根据建筑物的高度、用途、抗震要求等因素综合考虑,选择最合适的结构体系。
在构件设计方面,柱子、梁和剪力墙等主要构件的尺寸和配筋需要精心计算和设计。
柱子作为竖向承重构件,其截面尺寸和配筋要足够强大,以承受地震时产生的轴力、弯矩和剪力。
梁的设计要保证其具有足够的抗弯和抗剪能力,同时要注意与柱子的连接节点,确保力的传递顺畅。
剪力墙则要具备良好的抗侧移能力,其厚度和配筋应满足抗震要求。
混凝土的强度等级也是一个重要因素。
高强度的混凝土能够提供更好的承载能力和抗震性能,但并不是强度越高越好。
过高的强度可能会导致混凝土的脆性增加,反而不利于抗震。
因此,需要根据具体情况选择合适的混凝土强度等级。
配筋的设计和布置同样不容忽视。
钢筋的数量、直径、间距等都需要严格按照规范进行计算和配置。
在关键部位,如梁柱节点、剪力墙边缘构件等,应适当增加钢筋的配筋量,以提高结构的抗震能力。
同时,要注意钢筋的锚固和连接,确保钢筋在地震作用下能够有效地发挥作用。
高层建筑结构设计与抗震性能分析
高层建筑结构设计与抗震性能分析高层建筑在现代都市中起到了举足轻重的作用,但由于其复杂的结构以及高度,抗震性能成为设计和建造过程中不可忽视的重要因素。
本文将对高层建筑结构设计与抗震性能进行分析,并探讨相关的优化技术。
一、高层建筑结构设计要点高层建筑的结构设计要点包括以下几个方面:1. 基础设计:高层建筑的基础设计应考虑地质条件、土壤承载力以及建筑的荷载等因素。
采用适当的基础形式和深度可以提高建筑的稳定性和抗震性能。
2. 结构体系:高层建筑的结构体系应选用抗震性能良好的方案,如剪力墙结构、框架-剪力墙结构、框架-筒状墙结构等。
这些结构体系具备较好的抗震性能,能够有效吸收和分散地震作用。
3. 材料选择:高层建筑结构的材料选择对于提高抗震性能至关重要。
采用高强度、高韧性的钢材或混凝土材料,可以提高结构的整体强度和延性,从而提高抗震性能。
二、高层建筑抗震性能分析方法高层建筑的抗震性能可以通过以下几种方法进行分析:1. 静力分析:静力分析是一种简化的抗震性能分析方法,通过计算建筑在地震作用下的静力响应来评估其抗震性能。
该方法适用于低层建筑或对于结构刚度较为均匀的高层建筑。
2. 动力分析:动力分析是一种较为准确的抗震性能分析方法,通过计算建筑在地震作用下的动力响应来评估其抗震性能。
该方法适用于高层建筑或对于结构刚度较为不均匀的情况。
3. 数值模拟:数值模拟是一种基于有限元原理的抗震性能分析方法,通过建立结构的数值模型来模拟地震作用下的动力响应。
该方法能够更加准确地评估结构的抗震性能,并可用于优化结构设计。
三、高层建筑抗震性能的优化技术为了进一步提高高层建筑的抗震性能,可以采用以下优化技术:1. 设计合理的剪力墙布置:剪力墙是高层建筑中一种常用的抗震结构形式,其布置合理与否直接关系到结构的抗震性能。
通过优化剪力墙的位置和布置方式,可以提高结构的整体刚度和延性,增强其抗震性能。
2. 采用抗震支撑系统:抗震支撑系统能够在地震发生时提供额外的支撑和稳定性,对高层建筑的抗震性能具有重要影响。
试论建筑结构设计中抗震性能化设计要点
试论建筑结构设计中抗震性能化设计要点摘要:我国常规建筑的抗震设计是基于承载力和刚度的设计方法,以小震为设计为基础,通过地震力的调整系数和各种抗震构造措施来保证中震和大震的抗震性能来实现“小震不坏,中震可修,大震不倒”的三水准抗震设防目标。
但对于特别重要的建筑或者特别不规则的建筑这类复杂的结构会对结构设计提出更高的要求。
抗震性能化设计可以通过计算及构造等抗震性能化设计手段,提高建筑抗震性能,增强建筑结构的抗震能力。
基于性能的抗震设计方法已经被广泛认可,并逐渐成为抗震设计的一个重要发展趋势。
关键词:抗震性能化设计;建筑工程;结构设计1 抗震性能化设计概述1.1 抗震性能化设计基本概念基于性能的抗震设计理论以结构抗震性能分析为基础,根据设防目标的分类不同划分不同的性能目标及设防等级,根据建设者不同的要求,设计者采用经济合理的抗震性能设计方法。
是一种考虑对抗震设计的深化与细化的“多级抗震设防”的方式。
抗震性能化设计的主要目的是在地震作用下的建筑物破坏程度处于预期范围内,并且在经济成本、使用时间和修复费用达到平衡。
抗震性能化设计的中心工作是确定设防标准、性能水准以及抗震性能目标。
1.2 抗震性能化设计方法当前性能化设计最常用的方法是基于位移的抗震设计方法,重点任务是结构的位移满足抗震性能设计要求,中心工作是控制结构的层间位移。
当结构或者构件进入非线性弹塑性阶段时,结构或者构件的内力增加很小,但是其对应的变形增加很大,因此抗震阶段的主要指标是控制结构的位移。
抗震性能化设计根据抗震性能要求调整放大竖向构件的内力,通过提高结构的变形能力,来提高结构的抗震性能,并适当提高结构的抗震承载力,推迟结构进入弹塑性工作阶段以减少弹塑性变形以更有利于实现抗震性能目标。
2 抗震性能化设计主要内容2.1 结构方案分析结构或者构件设计的第一步是判断其是否需要采用抗震性能化设计方法,并且从建筑物规则性、场地条件、结构类型及高度、抗震设防标准等五方面进行分析判断,选取合理的性能目标。
建筑抗震设计中的规范要求与技术要点
建筑抗震设计中的规范要求与技术要点建筑抗震设计是指在建筑物的设计过程中,通过合理的结构设计、材料选用以及施工方法等多方面的要素,使建筑物具备较好的抗震性能,能够在地震发生时保持结构的安全稳定。
在建筑抗震设计中,规范要求和技术要点是确保设计达到预期效果的关键因素。
本文将介绍建筑抗震设计中的规范要求与技术要点。
一、规范要求1. 国家规范要求国家对于建筑抗震设计有一系列的规范要求,其中最主要的是《建筑抗震设计规范》(GB 50011-2010)。
这一规范详细规定了建筑物的设计、结构计算、材料选用、施工与验收等各个环节的要求和指导。
2. 地震烈度要求不同地区的地震烈度不同,因此在建筑抗震设计中需要根据具体地区的地震烈度要求进行设计。
地震烈度分为I至VIII度,等级越高代表地震烈度越大。
规范要求中规定了各个地震烈度等级下建筑物的抗震设计要求,包括水平抗震设计加速度、结构位移限值等。
3. 结构用途要求不同类型的建筑物在抗震设计中需满足不同的要求,例如住宅、办公楼、工业厂房等。
规范要求中指定了各类建筑物的抗震设防烈度、耐震性能等级等。
4. 抗震设防烈度等级要求根据不同的结构用途和地震烈度等级,规范要求中对建筑物的抗震设防烈度等级进行了划分,如一般设防、中等设防、重设防等级。
5. 结构性能设计要求规范要求中提出了建筑物在地震作用下的结构性能要求,包括极限状态设计、耐震性能设计等。
其中,耐震性能设计是抗震设计的关键内容之一,要求建筑物在地震作用下具有一定的抗震承载能力和变形能力。
二、技术要点1. 结构选型在抗震设计中,结构选型是非常重要的一步。
通常采用的结构类型包括框架结构、剪力墙结构、框筒结构等。
在选择结构类型时,需要考虑地震作用下结构的变形能力、承载力以及施工可行性等因素。
2. 结构布局结构布局是指建筑物各个结构体系在平面布置上的位置和相互关系。
合理的结构布局对于提高结构整体的抗震性能非常重要,通常采用的布局形式包括正交布局、正交叠加布局等。
学校建筑结构抗震设计要点分析
学校建筑结构抗震设计要点分析一、结构体系设计:学校建筑结构设计的第一个要点是结构体系设计。
结构体系是建筑物承受地震力的主要组成部分,合理的结构体系能够提高建筑的抗震能力。
一般常用的结构体系有框架结构、剪力墙结构、桁架结构等。
在选择结构体系时,需要根据地震区划、建筑的功能和尺度等因素进行综合分析,以确保结构的稳定和安全。
二、材料的选择:材料的选择是学校建筑结构抗震设计的另一个重要要点。
材料的性能直接关系到建筑物的抗震能力。
在抗震设计中,应选择具有较好抗震性能的材料,如具有较高强度、韧性和延性的混凝土、钢材等。
同时,还需要确保施工质量,杜绝使用劣质材料,以保证结构的安全性。
三、构造连接的设计:学校建筑结构抗震设计中还要注意构造连接的设计。
构造连接是指建筑结构各构件之间的连接方式。
合理的构造连接能够提高建筑物的整体抗震性能,并减少结构的塌陷和倒塌的可能性。
在设计时,需要考虑连接的强度、刚度和延性等因素,并选择合适的连接方式,如焊接、螺栓连接等。
四、层间位移控制:层间位移控制是学校建筑结构抗震设计的重要内容之一、在地震发生时,建筑物会产生位移,若位移过大,会导致结构的损坏甚至倒塌。
因此,在抗震设计中,需要通过合理的设计和布置剪力墙、加劲柱等构件,来控制建筑物的位移,减少地震力对结构的影响。
五、荷载计算与承载能力评估:学校建筑结构抗震设计中还必须进行荷载计算和承载能力评估。
荷载计算是指对建筑物所承受的各种荷载进行准确计算,包括静荷载和动荷载。
在进行荷载计算时,需要考虑建筑物的使用功能和设计寿命等因素。
承载能力评估是指对建筑物的结构进行力学分析,评估其承载能力。
通过合理的荷载计算和承载能力评估,能够有效地提高建筑物的抗震能力。
六、施工质量控制:最后一个要点是施工质量控制。
学校建筑结构抗震设计的效果与施工质量密切相关。
在施工过程中,需要加强对材料、施工工艺和施工人员的监管,确保施工质量符合设计要求。
同时,还需要进行质量检测和验收,及时发现和解决问题,以确保建筑物的安全性。
现代建筑结构抗震设计及加固处理措施
现代建筑结构抗震设计及加固处理措施摘要:随着人们对抗震安全和建筑物稳定性的要求日益增加,现代建筑结构的抗震设计和加固处理变得愈发重要。
通过采用合适的设计方法和加固措施,可以有效提高建筑物的抗震能力,减小地震对建筑物的破坏。
关键词:现代建筑结构;抗震设计;加固处理引言现代建筑结构的抗震设计与加固处理是确保建筑物在地震中具有足够抗震能力和结构稳定性的重要环节。
本文介绍了现代建筑结构设计和加固处理的方法与措施,包括钢材加固、混凝土加固、碳纤维布加固、预应力加固、隔震加固和抗震支撑加固等。
1. 现代建筑结构抗震设计原理1.1 地震动力学基础地震动力学是研究地震力对建筑物的作用及其响应的学科。
在现代建筑结构抗震设计中,必须考虑地震力的特点和建筑物的动力响应。
地震力包括地震加速度、地震速度和地震位移等参数,通过地震波响应分析来确定地震力的作用。
1.2 设计哲学与准则现代建筑结构抗震设计的哲学是在地震发生时,使建筑物能够保持弹性反应或在一定程度上的塑性变形,以降低地震力对结构的作用。
设计准则是基于地震破坏机理和建筑物性能的要求制定的可行性规定,如最大位移限制、风险分级、结构韧性和耐震性能等。
1.3 抗震设计参数抗震设计参数是用于控制结构的抗震性能的关键参数。
常见的抗震设计参数包括设计地震加速度、结构设计震级、控制层间位移差、地震分组和隔震设备设置等。
通过合理选取和设置这些参数,可以确保建筑物的抗震性能满足设计要求。
2. 现代建筑结构抗震设计要点2.1 钢结构设计在钢结构抗震设计中,要注意以下要点:合理选择材料,选择高强度钢材以提高结构强度和延性。
设计适当的连接方式和节点设计,确保连接的刚度和强度。
采用适当的防屈曲和抗滑倾力措施,确保结构在地震作用下能够保持稳定。
2.2 混凝土结构设计在混凝土结构抗震设计中,选取适当的混凝土等级和配筋率,保证结构的强度和延性。
合理布置和设计梁、柱和板等结构构件,增加结构的稳定性。
建筑结构抗震知识要点
建筑结构抗震设计知识要点1、地震震级和烈度的含义各是什么?震级和烈度有什么联系?地震震级是表示地震本身大小的一种度量。
地震烈度是指某一区域的地表和各类建筑物遭受某一次地震影响的强弱程度。
一次地震表示大小的震级只有一个,但由于同一次地震对不同地点的影响不同,随着距离震中的远近会出现多种不同的烈度。
2、何谓土的液化?如何进行土层液化判别?饱和沙土或粉土的颗粒在强烈的地震下土的颗粒结构趋于密实,如土本身的渗透系数较小,则孔隙水在短时间内排泄不走而受到挤压,孔隙水压力急剧上升。
当孔隙水压力增加到与剪切面上的法向压应力接近或相等时,砂土或粉土受到的有效压应力下降乃至消失,这时砂土颗粒局部或全部处于悬浮状态,土体丧失抗剪强度,形成犹如“液体”的现象,称为场地土的液化。
采用两步判别法来判别可液化土层,即初步判别和标准贯入试验判别。
凡经过初步判别定位不液化或不考虑液化影响的场地土,就可不进行标准贯入试验判别。
3、哪些建筑可不进行天然地基的抗震承载力验算?下列建筑可不进行天然地基及基础抗震承载力验算:1本规范规定可不进行上部结构抗震验算的建筑。
2 地基主要受力层范围内不存在软弱粘性土层的下列建筑:1)一般的单层厂房和单层空旷房屋; 2) 砌体房屋;3)不超过8层且高度在24m以下的一般民用框架房屋;4)基础荷载与3)项相当的多层框架厂房。
4、建筑结构的抗震计算方法有哪些?各自的应用范围如何?1)高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法。
2)除1款外的建筑结构,宜采用振型分解反应谱法。
3)特别不规则的建筑、甲类建筑和表3.16所列高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算;当取三组加速度时程曲线输入时,计算结果宜取时程法的包络值和振型分解反应谱法的较大值;当取七组及七组以土的时程曲线时,计算结果可取时程法的平均值和振型分解反应谱法的较大值。
建筑结构设计中抗震设计要点
建筑结构设计中抗震设计要点摘要:随着近年来地震的不断发生,人们愈加重视建筑物的结构安全性。
地质灾害的发生具有不可控性与突发性的特点,目前对于地震发生的预测性很低,因此,为了保护人民的生命安全以及经济财产,结构设计时应格外注重抗震设计。
科学的抗震结构设计能够有效的减小地震发生时产生的能量冲击对建筑物的损害。
为了推动我国建筑行业的稳健发展,保障人民生命财产安全,从设计层面如何有效提升结构抗震性能,尤其是建筑在地震作用影响下的预防倒塌性能,成为我们应主力探讨的重要课题。
关键词:结构设计;抗震设计;强柱弱梁前言:我国属于地震多发国家,地震的发生为人们带来巨大的灾难,对城市的发展造成阻碍。
随着我国经济实力与科技水平的不断提升,虽然不能阻止与有效预测地震的发生,但可以通过不断发展新科技、不断提高建筑技术来减小地震灾害,有效的降低地震带来的损失。
结构抗震设计能够从建筑物的最初出发,充分考虑地震作用,通过采取一系列措施,使建筑物具备抵御地震灾害的能力,其可以延长结构整体的使用寿命,提供一定的安全储备,因此有着非常重要的现实意义。
1结构抗震设计原则1.1结构的规则性和均匀性(1)沿建筑物竖向,建筑造型和结构布置应比较均匀,避免刚度、承载能力和传力途径的突变,从而限制结构整体在竖向某一位置出现敏感的薄弱部位,这些薄弱位置会产生过大的应力集中或者变形,影响结构整体安全性,降低结构抗震性能,导致结构在地震过程中过早的坍塌。
(2)建筑平面应比较规则。
平面内结构布置比较均匀,使地震对建筑物的能量冲击能够以比较短和直接的途径传递并使质量分布与结构刚度分布协调,减小质量与刚度之间的偏心。
1.2 结构简化原则结合前人设计经验及力学模型可知,在结构整体抗震设计过程中,建筑物结构形式越简单,传力越清晰明了,同时设计过程中的力学计算模型愈接近结构实际受力情况,结构的计算模型、内力和位移分析以及限制薄弱部位出现都易于把握,其计算结果的可靠性和准确性也更容易保证。
简析房屋建筑结构的抗震设计要点
简析房屋建筑结构的抗震设计要点抗震设计是指在建筑物设计的过程中,考虑到地震的影响,采取相应的设计措施,使得建筑物在发生地震时能够尽量减少损失,保障人们生命财产安全。
而房屋建筑结构是抗震设计的核心,它的抗震性能决定了整个建筑物的抗震性能,下面我们将简析房屋建筑结构的抗震设计要点。
1. 建筑结构的稳定性建筑结构的稳定性是抗震设计的基础,稳定性好的结构,能更好地抵御地震的冲击。
建筑物的稳定主要体现在两个方面:一是整个建筑物具有较强的受力能力,在地震时能够坚固稳定地承受地震的作用力;二是结构本身强度高,能够承受地震所产生的大量内力。
因此在抗震设计中,需要特别注意建筑结构的受力情况,合理布置建筑物的支撑点,增加结构的刚度,避免出现负载密度集中的情况,以确保整个建筑物在地震时能够稳定地承受力量。
2. 建筑结构的抗震性能建筑结构的抗震性能是指建筑物在地震中的承载能力和变形能力,即结构在地震中能够承受地震作用力的能力以及变形损伤后仍能保持较小的破坏范围。
建筑结构的抗震性能是抗震设计最核心的部分,它直接决定了建筑物在地震中的安全性能。
为了保证建筑物的抗震性能,抗震设计考虑采用较为安全的设计标准和方法,合理制定构造形式、材料型号、地震作用分析方法等,提高结构的刚度、强度和韧性,适当控制结构的横向变形、竖向振动等,并采取一些有效的抗震措施。
3. 建筑结构安全预警机制在房屋建筑结构的抗震设计中,还要考虑安全预警机制的设置,建立有效的地震安全预警系统,可以通过消息推送、GIS展示等方式,让居民第一时间得知地震信息,提高自救和抗震应对能力,从而尽量减轻地震对建筑结构的影响,保障人民的生命财产安全。
4. 建筑维护管理房屋建筑结构抗震设计之后,也需要不断的进行维护和管理,检验建筑物的抗震性能,在可能存在危险的条件下及时进行修补和加固。
建筑物在长年累月的使用中,可能会受到自然、人为、环境等多样的影响,因而会出现不同程度的病害,包括裂缝、变形等问题,建筑维护管理的好坏直接影响建筑物的抗震性能。
建筑结构抗震设计原则及设计要点分析
建筑结构抗震设计原则及设计要点分析摘要:众所周知,我国幅员辽阔,很多地区都处于地震带上,地震带来的损伤与影响非常严重,因此建筑工程在建设设计的过程中都融入了抗震结构理念。
经汶川、玉树等地震考验后,我国建筑工程抗震结构设计要求逐步高。
建筑工程抗震设计变得更加专业与复杂,因此必须对设计特点进行详细分析考量,才能够达到较高的设计质量。
然而从当下实际情况上来说,我国建筑抗震结构设计还有很多需要完善的内容与方面,这严重影响了建筑工程的抗震能力及水平。
此状况必须要得到改进才能更好的提升建筑工程抗震能力。
关键词:建筑结构抗震;设计原则;设计要点分析引言随着施工高度的不断提高,建筑面临着新的挑战。
其中,消防安全、抗震性能和抗风能力是目前需要优先考虑的问题之一。
许多地区位于地震带和地震影响最为严重的地区。
因此,长期以来,提高建筑结构的地震活动性一直是一个非常有价值的问题。
特别是在新时代,由于施工的复杂性和结构的复杂性不断增加,对抗震性能的要求也越来越高。
因此,高层结构的抗震设计显得尤为重要,它必须减少地震对建筑物的影响,确保人员和财产的安全。
此外,抗震设计还应该兼顾建筑的美观性、安全性和实用性,以减少损失和风险。
1建筑结构抗震设计原则抗震设计的整体性原则是指在抗震设计过程中,将建筑结构作为一个整体进行考虑和设计,以确保其整体的稳定性和抗震性能。
(1)将整个建筑结构作为一个系统来考虑,而不是把它看作是由独立部件组成的集合。
这意味着在抗震设计中,需要综合考虑建筑结构的各个部分之间的相互作用和协同工作,而不是单独对每个部分进行设计。
通过在整体考虑的基础上进行设计,可以提高建筑结构的整体刚度和强度,从而增强其抵抗地震力的能力。
(2)抗震设计中注重结构的韧性和能量耗散能力。
地震作用通常会引起结构内部的应力和变形集中,如果结构不能承受这些应力和变形而发生破坏,将导致建筑整体倒塌。
为了增强结构的韧性,可以采用一些措施,如提高材料的延性和减震器的安装等。
建筑结构设计中的隔震减震措施浅析
建筑结构设计中的隔震减震措施浅析摘要:随着我国建筑业和科学技术的迅速发展,建筑结构的设计越来越受到人们的关注,特别是抗震、减震技术等。
在施工活动中采取科学、合理的防震措施,可以使建筑结构的设计质量得到持续提高,而且在某种程度上也能起到应有的效果。
在保证工程结构设计符合工程实际要求的前提下,其安全性、稳定性都会得到提升,保护人民的生命财产安全。
通过改变传统住宅结构抗震设计方式,提高其抗震性能,在一定程度上降低地震的危险性,避免地震造成严重的经济损失,以保证结构的质量,促进建筑的可持续发展。
本文就从建筑结构中抗震设计中的要点入手,针对建筑结构设计中的隔震减震措施进行一定的分析。
关键词:建筑结构设计;隔震减震;措施一、引言地震是一种常见的自然现象,当地壳迅速释放出能量时,会引起地震,造成建筑物等物体的变形和崩塌。
地震对建筑物的破坏是不可忽略的,因此,在进行建筑物的抗震设计时,应注意做好隔震、减震工作,尽量减少地震对建筑物的冲击,保证建筑物的安全。
隔震与耗能减震设计适用于对建筑物的抗震安全、使用性能有特殊要求的建筑物,采用橡胶隔震支座构成的隔震层,在主体构件上安装减震装置等,以尽量降低地震波对建筑物的影响,防止出现建筑物变形、倒塌等问题。
二、高层建筑结构中抗震设计的要点(一)水平刚度的控制在发生地震时,高层混凝土结构更易受横向力的作用而发生侧向位移,甚至发生倒塌。
在高层建筑的抗震设计中,结构的横向刚度是设计中的一个关键问题。
高层混凝土建筑的楼盖应将地震的力量传导到墙体上,使其承受倾覆的力矩,并在其内部形成轴力,使其与水平力弯矩成比例,避免出现侧倾、倒塌等现象。
(二)结构控制采用框架的形式对结构进行控制,使得设计中的具体参数和结构参数能够应用到现场,让结构的控制条件能够与设计时的目标数据相符合,从而能够有效地控制施工过程中的材料和工艺。
在进行结构控制时,应考虑到要进行的最大抗震级别,加强结构的隔震和缓冲作用,减少地震发生时造成的经济损失和人员,并根据区域内的震情情况,适当提高建筑的某些性能,以保证工程的安全。
高层建筑结构抗震设计分析
高层建筑结构抗震设计分析摘要:近年来,高层建筑在我国越来越普及,其结构抗震设计原则主要是基于“小震不损、中震可修、大震不倒”三大设防标准。
建筑结构的抗震设计主要通过两个设计阶段来实现结构的抗震目标。
建筑抗震设防的第一阶段主要是验算结构的承载力。
用地震动参数计算建筑结构地震作用的弹性特征值及其地震效应,用分项系数分析建筑结构截面的承载力,以满足小震的抗震要求。
地震下可修复的建筑结构的设防要求主要是根据建筑结构的设防措施来实现的。
本文论述了高层建筑结构抗震设计的要点。
关键词:高层建筑结构;抗震设计引言随着时代的发展,高层建筑受到许多大中城市的追捧,成为城市综合实力的象征。
然而,在地震灾害面前,高层建筑结构需要承受更大的地震作用,一旦倒塌,将面临不可估量的损失。
因此,在设计中要加强结构的抗震设计,充分考虑工程选址、结构体系和材料应用,尽可能提高高层建筑结构的整体抗震性能。
1高层建筑结构抗震设计问题1.1工程选址问题高层建筑需要很强的承载力和延性作为支撑,对地质条件要求很高。
根据相关研究,地震灾害中,地面错动、软土沉降、土壤液化和边坡失稳都是导致建筑结构破坏的重要因素。
因此,工程选址成为抗震设计的首要内容,设计烈度必须根据基本烈度和场地烈度来确定。
如遇不良地质条件或有特殊意义的建筑,可在基本烈度的基础上适度提高设计条件,综合勘察场地的地形、地质条件、水文条件等方面,为建筑结构抗震设计提供准确的数据支持。
1.2抗震设计问题在高层建筑结构设计中,抗震设计作为一项难度大、重要性高的关键工作,也需要引起设计人员的重视,这方面的问题不容忽视。
一旦建筑结构的抗震设计不合理,不仅会增加建筑结构变形的风险,还会导致地震作用下的严重破坏,影响建筑结构的安全。
通过具体分析高层建筑结构抗震设计中存在的问题,一是设计人员不能准确把握抗震设计要求,抗震等级和具体参数选择不合理,会导致后续抗震设计工作的错误指导,造成高层建筑结构整体稳定性不足。
高层建筑结构的抗震设计分析
高层建筑结构的抗震设计分析摘要:我国处于地震多发区,高层建筑结构的抗震仍然是建筑物安全考虑的重要问题。
进行高层建筑结构抗震设计的过程当中应该充分考虑当地的地质情况,有针对性的进行相应的设计,尽可能的降低地震造成的损坏。
本文介绍了高层建筑的抗震设计要求,分析了高层建筑结构的抗震设计要点。
关键词:高层;建筑结构;抗震设计要点中图分类号:[tu208.3] 文献标识码:a 文章编号:我国高层建筑数量不断的增加,一方面提高了有限的土地的使用效率,促进了我国建筑行业的发展,另一方面给建筑结构抗震设计工作带来极大的挑战。
我国是一个地震多发国家,很多城市都位于地震带上,因此在高层建筑结构设计过程当中一定要做好相应的结构设计工作,从而减少地震带来的破坏和损失。
一、高层建筑的抗震设计要求1、结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能(1)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱锚固”的原则。
(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。
(3)承受竖向荷载的主要构件不宜作为主要耗能构件。
2、尽可能设置多道抗震防线(1)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。
例如框架—剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。
(2)强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。
抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和消耗大量的地震能量,提高结构抗震性能,避免大震时倒塌。
(3)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。
(4)在抗震设计中某一部分结构设计过强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。
建筑工程结构抗震设计要点分析 李 生
建筑工程结构抗震设计要点分析李生摘要:社会经济的迅速发展以及人们生活水平的提高,使得人们对建筑结构工程设计的要求也随之不断提高。
如何在现有建筑结构设计理念的基础上,促进建筑结构质量的稳步提高,是目前建筑结构设计人员必须予以充分重视的问题。
本文主要分析了建筑工程结构抗震设计要点。
关键词:建筑工程;结构;抗震设计;要点1 建筑工程结构抗震设计的内涵建筑结构设计过程中抗震设计即在建筑工程结构设计的时候充分考虑地震可能带来的损失,针对当地的地震发生概率以及最高等级设计房屋建筑的结构,选择设计合理的抗压能力。
建筑结构中的抗震设计主要是以目前已经趋于成熟的建筑结构抗震理论与房屋设计标准为基本理念,吸取相关地震灾害中的建筑物破损情况的教训并且结合设计师在长期从事设计工作中已经积累的经验与前辈设计师的经验进行房屋结构设计。
建筑结构设计过程中抗震设计的目标包含两层: 第一层是满足相应部门的要求,即委托方与投资方会对建筑结构抗震性能有一定的要求,因此建筑结构设计师应该努力使建筑的外形、结构、质量以及样式满足其要求的参数;第二层目标即抗震设计的深层、本质目标。
建筑结构设计是为了提高建筑质量,为消费者提供更好的建筑作品,因此建筑结构设计过程中抗震设计的深层目标也是为了提高建筑物的整体性能,提高其安全性与稳定性。
为了达到这一目标,建筑设计师在具体设计时要根据建筑工程所在地的地质情况具体问题具体分析,不仅关注静态的地质情况,也要将地震运动导致的地质变动情况充分考虑在内,最大程度上提高房屋建筑在极端情况下的正常使用程度,延长其使用寿命。
2 抗震设计的关键要素2.1 选择合适的施工地址建筑结构设计的基础是选择合适的施工地址,施工地址的地层情况、土壤含量、自然环境因素以及周围人为环境因素都可能会影响整个建筑工程结构设计的合理性和效用性,因此在建筑结构抗震水平设计中,最关键的要素就是合适的施工地质。
截至目前,我国已经出台了相应的法律条文——《中华人民共和国减灾抗震法》,该条文要求各地在进行建筑工程建设的时候要根据当地情况进行严格的安全等级评估,分析其发生地震灾害的可能性以及地震灾害可能的等级指标,有的放矢地进行防护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑结构抗震设计要点分析
[摘要]合理设计底部框架抗震墙砖房可以提高抗震能力。
[关键词]建筑框架抗震设计
中图分类号:tu323.5文献标识码:a文章编号:1009-914x(2013)21-0149-01
一、抗震设计要求
底部框架抗震墙砖房具有上刚下柔,上重下轻的特点,房屋的震害程度与房屋的平面布置和上下墙体的相对位置,以及上下层的层间侧移刚度比等密切相关。
1、“强柱弱梁”原则
底部框架抗震墙砖房框架设计遵循的一个基本原则就是:“强柱弱梁”、“强节点弱构件”原则。
目的是使框架结构在强烈地震作用下,塑性铰先出现在梁端,后出现在柱端。
如果框架的任一柱端先出现塑性铰,可能会引起同一层其它柱端相继出现塑性铰,房屋因此而倒塌。
但是底层框架梁因为要承担竖向荷载引起的较大弯矩,截面较大,因而在截面抗弯强度的计算上满足“强柱弱梁”的要求很困难,所以在构造上特别是箍筋的配置上应尽量实现“强柱弱梁”的设计原则。
2、结构平面设计讲究均匀性、整体性
建筑平面布置应简洁、规则、对称,并尽可能减少上部砖房单元形式。
上部砖房纵横墙均匀对称布置,沿平面内宜对齐,同一轴线的窗间墙宽度宜均匀。
楼梯间不设置在房屋的尽端和转角处,烟道、
风道等不宜削弱墙体。
下部框架抗震墙结构,则要求柱网对应上部砖房布设,尽可能使较多墙体落于柱网上。
尽可能的将抗震墙对称分散布置,使纵横向抗震墙相连,纵向抗震墙应布置在外纵轴线,增强抗倾覆能力,避免出现低矮抗震墙(高宽比小于1),使层间刚度比使得结构的刚度中心与质量中心重合,减少地震作用下结构产生的扭转效应。
3、结构立面的均匀性、连续性
底部框架抗震墙砖房结构的显著特点就是“上重下轻”。
为尽可能降低结构重心,应严格控制房屋层数和总高,根据《建筑抗震设计规范》(gn50011-2001),底部结构层高不应超过4.5m。
上部砖房各层建筑功能保持一致,墙体竖向应对称连续。
对于出屋面的楼梯间,水箱间由于刚度突变,地震时容易引起鞭稍效应,所以要尽可能地降低层高。
只有建筑设计做到竖向规则连续才能保证竖向强度和刚度的均匀性,避免上部砖房出现薄弱层,减少应力集中和变形集中。
二、抗震墙砖房的抗震设计
1、底层框架抗震墙的设计
目前,底层框架抗震墙砖房的底层设计归纳起来存在以下三方面的问题:
底层为大商场等有大空间使用要求时,底层抗震墙(一般为砖墙)设置得很少,其底层的侧移刚度比纵横墙较多的第二层小得多。
这种结构由于其地震倾覆力矩主要由钢筋砼框架柱承担,使得底层钢
筋砼框架柱的承载能力大为降低,底层成为较薄弱的楼层;在强烈地震作用下底层成为弹塑性变形和破坏集中的楼层,危及整个房屋的安全。
要解决以上问题,首先,建筑平面布置时,应考虑在适当部位布置一些墙体。
其次,采用钢筋砼抗震墙来代替砖抗震墙,一片相同厚度、高度和长度砼墙的抗侧刚度是砖墙的好几倍,既可减少墙面数又能保证底层的侧移刚度。
建筑一面临街,且纵向临街面一般不布置抗震墙,使得抗震墙数量过少,底层平面布置不对称,导致在地震时产生扭转效应而加重房屋的破坏。
解决这个问题,应在沿街侧外纵墙上布置一定数量的钢筋砼抗震墙,另一侧外纵墙上布置刚度相当的砖抗震墙,使底层的刚度中心与形心基本重合。
底层沿纵向分成几个较大空间,一些设计方案把分隔横墙设计成为带构造柱、圈梁的砖墙,使得底层的横向与纵向均不能形成完整的框架抗震墙体系。
在地震作用下这些分隔墙因侧移刚度大而先开裂,又因其承载能力和变形能力较钢筋永框架差而破坏严重,并且过早的退出工作,产生弹塑性内力重分布,导致底层框架抗震墙部分破坏严重。
因此,结构布置时必须将底层布置成纵横向框架抗震墙体系,避免以上问题的产生。
2、过渡层的设计
抗震墙砖房的二层称为过渡层。
此层担负着传递上部的地震剪力和上部各层地震力对底层楼盖的倾覆力矩引起楼层转角对第二层层间位移的增大,因而此层受力复杂,也显得非常重要。
对于底部
框架抗震墙砖房,当底层按抗震规范要求设置一定数量的抗震墙后,房屋底部的侧向刚度和水平承载力有较大提高;此时如果忽略过渡层墙体的侧向刚度和水平承载力的降低,可能使房屋的过渡层成为薄弱层;由于过渡层砖砌体的变形能力较底层相对较差,因而将降低这种房屋的抗震性能。
为避免上述情况发生,应加强过渡层墙体的抗震构造措施。
二层构造柱配筋较上部同一位置构造柱配筋加大一级,二层构造柱下端箍筋适当加密,构造柱纵向钢筋锚入底层框架柱、梁内40d;除按抗震规范设置构造柱外,应根据房屋层数、设防烈度适当增设构造柱,尤其是在底层有抗震墙的位置,以改善整个结构传递水平力的性能;另在房屋四周外墙,在纵横墙交接处均宜设构造柱,以增加上部砌体结构与底部钢筋砼框架抗震墙结构的连接和整体性,避免由于房屋上部及底部材质不同,结构的自振频率不完全一致,在地震作用下因上、下部连接不强而在二层楼面处形成脱接。
三、建筑结构抗震设计要点
1、注重概念设计
选择对抗震有利的建筑场地,简化建筑体型,讲究规则对称,质量和刚度变化均匀,抗震结构体系合理、明确等是确保抗震设计合理的基本设计内容。
同时抗震设计应满足“小震”不坏“,中震”可修和“大震”不倒的设防目标。
《建筑抗震设计规范》
(gbj50011-2001)的第7.1.8条规定,底部应沿纵横两方向均匀对称布置框架-抗震墙体系,并重点强调底部抗震墙应是双向、对
称布置并纵横抗震墙相连。
由于底部框架墙结构中的剪力墙属低矮墙,其抗剪刚度相对较大,如果布置的墙肢较长、平面形式复杂,很容易出现局部刚度过大,受力过于集中的现象,甚至经常出现只布置极少的剪力墙就满足上下层抗侧刚度比限值的情况。
如果不作处理,则会造成建筑的刚度中心对质量中心的偏心距较大,地震力作用下会对结构产生扭转效应。
底部框墙结构的柱网不宜过大,一般控制在7.5m左右,并且框架梁上悬墙数目不应超过一道。
首先从使用功能上,底框结构大多为商住楼,该跨度对应上部可分割为两开间,无论上部为住宅楼,还是办公楼,开间尺寸都必须以满足砌体结构所能实现的功能。
2、严格控制侧移刚度比
现行抗震规范对底层框架砖房第二层与底层的侧移刚度比不仅
会影响地震作用下的层间弹性位移,而且对层间极限剪力系数分布、薄弱楼层的位置和薄弱楼层的弹塑性变形集中都有很大影响。
因此应严格的限制侧移刚度比,设计中并对此作控制性验算。
这是因为该比值分析结果表明,当>2时,在强烈地震作用下会造成薄弱的底层弹塑性变形集中,弹性位移增大,会加速底层的破坏;但当<1.2,特别是<1.0时,由于底层纵横向抗震墙设计过多,底层过强,又会使薄弱楼层转移到上部抵抗变形能力相对较差的砖房层,这也是不利的。
所以,规范gbj50011-2001规定,6度、7度时不应大于2.5,8度时不应大于2.0,且均不应小于1.0,实际设计时控制在1.5左右为宜。
3、结构体系要合理
底部框架砖房的底层或底部两层均应设置纵横向的双向框架体系,因为底部的地震剪力按各抗侧力构件的刚度分配,在这些结构混用的体系中,砖墙较框架的抗侧力刚度大得多,在地震作用下,砖墙先开裂破坏,而砖墙的变形能力较框架要差得多,这样会形成砖墙构件先退出工作,导致加重半框架或部分框架的破坏。
四,小结
底部框架抗震墙砖房上部和底部抗震性能差异较大,由于其结构形式特殊,设计不合理讲导致地震时的严重破坏。
设计房屋的平面规则对称、控制底层和过度层的刚度比,合理布置底部框架抗震墙砖房的结构体系等,能使底部框架抗震墙砖房具有较大的抗震能力和良好的抗震性能。