2013年高考全国数学卷一理科试题及答案

合集下载

2013年高考(新课标I卷)理科数学试卷(word版精编精校含答案详解)供河北、河南、山西、陕西使用

2013年高考(新课标I卷)理科数学试卷(word版精编精校含答案详解)供河北、河南、山西、陕西使用

2013年普通高等学校招生全国统一考试理 科 数 学(新课标I 卷)使用省份:河北、河南、山西、陕西注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.(1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则(A )=B A ∅ (B )R =B A (C )A B ⊆ (D )B A ⊆(2)若复数z 满足()i 34i 43+=-z(A )4- (B )54- (C )4 (D )54 (3)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(A )简单的随机抽样 (B )按性别分层抽样(C )按学段分层抽样 (D )系统抽样(4)已知双曲线C :)0,0(12222>>=-b a by a x 的离心率为25,则C 的渐近线方程为 (A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±=(5)执行右面的程序框图,如果输入的[]31t ,-∈,则输出的s 属于(A )[]43,- (B )[]25,- (C )[]34,- (D )[]52,-(6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π(7)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m(A )3 (B )4 (C )5 (D )6(8)某几何体的三视图如图所示,则该几何体的体积为(A )8π16+(B )8π8+(C )π6116+(D )16π8+(9)设m 为正整数,()m y x 2+展开式的二项式系数的最大值为a ,()12++m y x 展开式的二项式系数的最大值为b ,若b a 713=,则m =(A )5 (B )6 (C )7 (D )8(10)已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E 于A 、B 两点。

2013年高考数学理科全国卷1及答案

2013年高考数学理科全国卷1及答案

盐津二中卓余网2013年普通高等学校招生全国统一考试(1卷)数 学(理科)参考公式:如果事件互斥,那么 球的表面积公式()()()P AB P A P B24SR如果事件相互独立,那么 其中R 表示球的半径()()()P A B P A P B球的体积公式如果事件A 在一次试验中发生的概率是p ,那么343VR 在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k k n k n n P k C p p kn …第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

盐津二中卓余网一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i-=( )A 、1B 、1-C 、iD 、i - 3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于0 4、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( ) ABCD5、函数1(0,1)x y a a a a=->≠的图象可能是( )盐津二中卓余网6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b = 8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2013全国各地高考数学试卷9套附答案

2013全国各地高考数学试卷9套附答案

1.2013年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,_z 是复数z 的共轭复数,若|()>0I x f x =+2=2z zi ,则z = (A )1+i (B )1i - (C )1+i - (D )1-i -【答案】A 【解析】设2bi2a 2)i b (a 2bi)i -a (bi)+a (22z bi.z -a =z .bi,+a =z 22+=++=+⋅⇒=+⋅z i 则i zb a a+=⇒⎩⎨⎧==⇒⎩⎨⎧==+⇒111222b b a 22所以选A(2) 如图所示,程序框图(算法流程图)的输出结果是(A )16 (B )2524 (C )34 (D )1112【答案】D【解析】.1211,1211122366141210=∴=++=+++=s s ,所以选D(3)在下列命题中,不是公理..的是 (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内(D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】A【解析】B,C,D 说法均不需证明,也无法证明,是公理;C 选项可以推导证明,故是定理。

所以选A(4)"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的 (A ) 充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】 当a=0 时,,时,且上单调递增;当,在x ax x f x a x f y x x f )1()(00)0()(||)(+-=><∞+=⇒= .)0()(0所以a .)0()(上单调递增的充分条件,在是上单调递增,在∞+=≤∞+=x f y x f y 0a )0()(≤⇒∞+=上单调递增,在相反,当x f y ,.)0()(0a 上单调递增的必要条件,在是∞+=≤⇒x f y故前者是后者的充分必要条件。

2013年高考数学新课标全国卷Ⅰ试题及答案

2013年高考数学新课标全国卷Ⅰ试题及答案

绝密★启封2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2)错误!未找到引用源。

= ( )(A)-1 - 错误!未找到引用源。

i (B)-1 + 错误!未找到引用源。

i (C)1 + 错误!未找到引用源。

i (D)1 - 错误!未找到引用源。

i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

(4)已知双曲线C:错误!未找到引用源。

= 1(a>0,b>0)的离心率为错误!未找到引用源。

,则C的渐近线方程为()(A)y=±错误!未找到引用源。

x (B)y=±错误!未找到引用源。

x (C)y=±错误!未找到引用源。

x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为错误!未找到引用源。

的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b= (A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。

2013年高考理科数学全国卷1-答案

2013年高考理科数学全国卷1-答案

故选A.故选A.综上可知:[,0]2a ∈-.(步骤4)【提示】由1n n a a +=可知n n n A B C △的边n n B C 为定值1a ,由111112(2)2n n n n b c a b c a +++=+--及1112b c a +=得12n n b c a +=,则在n n n A B C △中边长1n n B C a =为定值,另两边n n n n A C A B 、的长度之和12n n b c a +=为定值,由此可知顶点n A 在以n n B C 、为焦点的椭圆上,根据111()2n n n n b c b c ++=---,得1111()2n n n b c b c -⎛⎫=- ⎪⎝⎭-,可知n →+∞时n n b c →,据此可判断n n n A B C △的边n n B C 的高n h 随着n 的增大而增大,再由三角形面积公式可得到答案.51111得1AB AC ⊥; (Ⅱ)易证OA ,1OA ,OC 两两垂直.以O 为坐标原点,OA u u u r的方向为x 轴的正向,||OA u u u r 为单位长,建立r u u u r【提示】(Ⅰ)设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得1212()()|+|+++4PM PN R r r R r r ==-=||,而||2NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(Ⅱ)设曲线C 上任意一点,()P x y ,由于||2222PM PN R ≤|-|=-,所以2R ≤,当且仅当圆P 的圆心为所以可设l :4)+(y k x =,与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出. 【考点】圆的标准方程及其性质,椭圆的的定义及其几何性质,直线与双曲线的位置关系. 21.【答案】(Ⅰ)4a =2b = 2c = 2d =(Ⅱ)2[1,]e【解析】(Ⅰ)由已知得(0)2f =,(0)2g =,(0)4f '=,(0)4g '=.(步骤1)而+()2f x x a =',((+))+xg x e cx d c '=,故2b =,2d =,4a =,+4d c =.(步骤2)从而4a =,2b =,2c =,2d =.(步骤3)(Ⅱ)由(Ⅰ)知,2()+4+2f x x x =,()21)+(x g x e x =.设函数2()()()2()+142x F x kg x f x ke x x x =-=---,则()2+()2242+1(2())x x F x ke x x x ke '=--=-.由题设可得(0)0F ≥,即1k ≥(步骤4)令()0F x '=得1ln x k =-,22x -=.(步骤5)①若21k e ≤<,则120x <≤-.从而当12(),x x ∈-时,()0F x '<;当1(),+x x ∈∞时,()0F x '>.即()F x 在1()2,x -单调递减,在1(),+x ∞单调递增.故()F x 在[)2,+-∞的最小值为1()F x .(步骤6)而1111211()2+24+0)22(F x x x x x x =--=-≥-.故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤7)②若2k e =,则2222+()()()2x F e x e e x -'=-.从而当2x >-时,)0(F x '>,即F (x )在()2,+-∞单调递增.而()20F -=,故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤8)③若2k e >,则22222+220()()F ke e k e ---=-=-<-.从而当2x ≥-时,()()f kg x x ≤不可能恒成立.综上,k 的取值范围是2[1,]e .(步骤9)【提示】(Ⅰ)对()f x ,()g x 进行求导,已知在交点处有相同的切线及曲线()y f x =和曲线()y g x =都过点(0,2)P ,从而解出a ,b ,c ,d 的值;(Ⅱ)由(Ⅰ)得出()f x ,()g x 的解析式,再求出()F x 及它的导函数,通过对k 的讨论,判断出()F x 的【提示】(Ⅰ)对于曲线1C 利用三角函数的平方关系式22sin cos 1t t +=即可得到圆1C 的普通方程;再利用极坐标与直角坐标的互化公式即可得到1C 的极坐标方程;(Ⅱ)先求出曲线2C 的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标3⎝⎦21||23|2|x x y x +-=---,画出函数y 的图象,数形结合可得结论.。

2013年高考数学(全国卷)理科及答案

2013年高考数学(全国卷)理科及答案

2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l ⊥m,l ⊥n,l β,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A)1+ + +…+(B )1++ +…+(C )1+ + +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是x ≥1, x+y ≤3, y ≥a(x-3). {(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

2013年高考数学全国卷1(完整版试题+答案+解析)

2013年高考数学全国卷1(完整版试题+答案+解析)

2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .15 5.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC AB OC OB OA -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516题图第13第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R∃∈,使得2210x x -+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)第14题图三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值;(Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE∥CD ,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.AB CDEF已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3. (Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若AB AC 2=,求直线l 的斜率k .参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二.填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分 21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f ∴函数)(B f 的取值范围为]23,1( …………………………………………12分18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分 1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分 (Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥AC 又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BGABCDEF G∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面BCDE ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y……………………………………9分 当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分)解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分 222)1(2)()1()(x xb ax x a x f +⋅+-+='12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分 (Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分 ∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222mn n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B2013年高考数学全国卷1(完整版试题+答案+解析)- 11 - / 11 由AB AC 2= 得)22(22212-=-x x , 化简得22221=-x x …………………………………………8分 联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12, 得0821682=-+-k kx x ∴k x 8221=+① …………………………………………10分 联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y 得0821632)2168()41(2222=--+-++k k x k k x k ∴22241821622kk k x +-=+② …………………………………………12分 ∴2222418216)228(222221=++---=-kk k k x x 整理得:0)4121)(2416(2=+--k k k ∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。

2013年全国高考数学试题及答案(大纲卷)

2013年全国高考数学试题及答案(大纲卷)

2013年全国高考数学试题答案卷(理科)一、选择题1. 设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( )A .3B .4C .5D .61.B [解析] 1,2,3与4,5分别相加可得5,6,6,7,7,8,根据集合中元素的互异性可得集合M 中有4个元素.2. (1+3i)3=( ) A .-8 B .8 C .-8i D .8i2.A [解析] (1+3i)3=13+3×12(3i)+3×1×(3i)2+(3i)3=1+33i -9-33i =-8.3. 已知向量=(λ+1,1),=(λ+2,2),若(+)(-),则λ=( ) A .-4 B .-3 C .-2 D .-13.B [解析] (+)⊥(-)⇔(+)·(-)=0⇔2=2,所以(λ+1)2+12=(λ+2)2+22,解得λ=-3.4. 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D.⎝⎛⎭⎫12,14.B [解析] 对于f (2x +1),-1<2x +1<0,解得-1<x <-12,即函数f (2x +1)的定义域为⎝⎛⎭⎫-1,-12. 5. 函数f (x )=log 2⎝⎛⎭⎫1+1x (x >0)的反函数f -1(x )=( ) A.12x -1(x >0) B.12x -1(x ≠0) C .2x -1(x ∈) D .2x -1(x >0)5.A [解析] 令y =log 2⎝⎛⎭⎫1+1x ,则y >0,且1+1x =2y ,解得x =12y -1,交换x ,y 得f -1(x )=12x-1(x >0). 6. 已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-310)C .3(1-3-10) D .3(1+3-10)6.C [解析] 由3a n +1+a n =0,得a n ≠0(否则a 2=0)且a n +1a n =-13,所以数列{a n }是公比为-13的等比数列,代入a 2可得a 1=4,故S 10=4×⎣⎡⎦⎤1-⎝⎛⎭⎫-13101+13=3×⎣⎡⎦⎤1-⎝⎛⎭⎫1310=3(1-3-10).7. (1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112 D .1687.D [解析] (1+x )8展开式中x 2的系数是C 28,(1+y )4的展开式中y 2的系数是C 24,根据多项式乘法法则可得(1+x )8(1+y )4展开式中x 2y 2的系数为C 28C 24=28×6=168.8.、 椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是( )A.⎣⎡⎦⎤12,34B.⎣⎡⎦⎤38,34C.⎣⎡⎦⎤12,1D.⎣⎡⎦⎤34,1 8.B [解析] 椭圆的左、右顶点分别为(-2,0),(2,0),设P (x 0,y 0),则kP A 1kP A 2=y 0x 0+2·y 0x 0-2=y 20x 20-4,而x 204+y 203=1,即y 20=34(4-x 20),所以kP A 1kP A 2=-34,所以kP A 1=-34kP A 2∈⎣⎡⎦⎤38,34.9.、 若函数f (x )=x 2+ax +1x 在⎝⎛⎭⎫12,+∞是增函数,则a 的取值范围是( ) A .[-1,0] B .[-1,+∞)C .[0,3]D .[3,+∞)9.D [解析] f ′(x )=2x +a -1x 2≥0在⎝⎛⎭⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝⎛⎭⎫12 ,+∞上恒成立,由于y =1x2-2x 在⎝⎛⎭⎫12,+∞上单调递减,所以y <3,故只要a ≥3. 10. 已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23D.1310.A [解析] 如图,联结AC ,交BD 于点O .由于BO ⊥OC ,BO ⊥CC 1,可得BO ⊥平面OCC 1,从而平面OCC 1⊥平面BDC 1,过点C 作OC 1的垂线交OC 1于点E ,根据面面垂直的性质定理可得CE ⊥平面BDC 1,∠CDE 即为所求的线面角.设AB =2,则OC =2,OC 1=18=3 2,所以CE =CC 1·OC OC 1=4 23 2=43,所以sin ∠CDE =CE CD =23.11.、 已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →·MB =0,则k =( )A.12B.22C. 2 D .211.D [解析] 抛物线的焦点坐标为(2,0),设直线l 的方程为x =ty +2,与抛物线方程联立得y 2-8ty -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-16,y 1+y 2=8t ,x 1+x 2=t (y 1+y 2)+4=8t 2+4,x 1x 2=t 2y 1y 2+2t (y 1+y 2)+4=-16t 2+16t 2+4=4.MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4 =4+16t 2+8+4-16-16t +4=16t 2-16t +4=4(2t -1)2=0,解得t =12,所以k =1t =2.12.、 已知函数f (x )=cos x sin 2x ,下列结论中错误的是( )A .y =f (x )的图像关于点(π,0)中心对称B .y =f (x )的图像关于直线x =π2对称C .f (x )的最大值为32D .f (x )既是奇函数,又是周期函数12.C [解析] 因为对任意x ,f (π-x )+f (π+x )=cos x sin 2x -cos x sin 2x =0,故函数f (x )图像关于点(π,0)中心对称;因为对任意x 恒有f (π-x )=cos x sin 2x =f (x ),故函数f (x )图像关于直线x =π2对称;f (-x )=-f (x ),f (x +2π)=f (x ),故f (x )既是奇函数也是周期函数;对选项C 中,f (x )=2cos 2x sin x =2(1-sin 2x )sin x ,令t =sin x ∈[-1,1],设y =(1-t 2)t =-t 3+t ,y ′=-3t 2+1,可得函数y 的极大值点为t =13,所以y 在[]-1,1上的极大值为-1313+13=2 39,函数的端点值为0,故函数y 在区间[]-1,1的最大值为2 39,函数f (x )的最大值为439,所以选项C 中的结论错误.13. 已知α是第三象限角,sin α=-13,则cot α=________.13.2 2 [解析] cos α=-1-sin 2α=-2 23,所以cot α=cos αsin α=2 2.14.、 6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种.(用数字作答)14.480 [解析] 先排另外四人,方法数是A 44,再在隔出的五个位置安插甲乙,方法数是A 25,根据乘法原理得不同排法共有A 44A 25=24×20=480种.15. 记不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域为D .若直线y =a (x +1)与D 有公共点,则a 的取值范围是________.15.⎣⎡⎦⎤12,4 [解析] 已知不等式组表示的平面区域如图1-2中的三角形ABC 及其内部,直线y =a (x +1)是过点(-1,0)斜率为a 的直线,该直线与区域D 有公共点时,a 的最小值为MA 的斜率,最大值为MB 的斜率,其中点A (1,1),B (0,4),故MA 的斜率等于1-01-(-1)=12,MB 的斜率等于4-00-(-1)=4,故实数a 的取值范围是⎣⎡⎦⎤12,4.16.、 已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.16.16π [解析] 设两圆的公共弦AB 的中点为D ,则KD ⊥DA ,OD ⊥DA ,∠ODK 即为圆O 和和圆K 所在平面所成二面角的平面角,所以∠ODK =60°.由于O 为球心,故OK垂直圆K 所在平面,所以OK ⊥KD .在直角三角形ODK 中,OK OD =sin60°,即OD =32×23=3,设球的半径为r ,则DO =32r ,所以32r =3,所以r =2,所以球的表面积为4πr 2=16π.17.、 等差数列{a n }前n 项和为S n .已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.17.解:设{a n }的公差为d .由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列得S 22=S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0, 此时S n =0,不合题意;若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2.因此{a n }的通项公式为a n =3或a n =2n -1. 18.、 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac . (1)求B ; (2)若sin A sin C =3-14,求C . 18.解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac . 由余弦定理得cos B =a 2+c 2-b 22ac =-12,因此B =120°.(2)由(1)知A +C =60°,所以cos(A -C )=cos A cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C =12+2×3-14 =32, 故A -C =30°或A -C =-30°, 因此C =15°或C =45°. 19.、 如图,四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是等边三角形.(1)证明:PB ⊥CD ;(2)求二面角A -PD -C 的大小.19.解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O . 联结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连FG . 则FG ∥CD ,FG ⊥PD .联结AF ,由△APD 为等边三角形可得AF ⊥PD .所以∠AFG 为二面角A -PD -C 的平面角. 联结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =2 2,EG =12PB =1,故AG =AE 2+EG 2=3,在△AFG 中,FG =12CD =2,AF =3,AG =3.所以cos ∠AFG =FG 2+AF 2-AG 22·FG ·AF =-63.因此二面角A -PD -C 的大小为π-arccos63. 解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE →的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB →|=2,则A (-2,0,0),D (0,-2,0), C (2 2,-2,0),P (0,0,2),PC →=(2 2,-2,-2),PD →=(0,-2,-2), AP →=(2,0,2),AD →=(2,-2,0). 设平面PCD 的法向量为1=(x ,y ,z ),则 1·PC →=(x ,y ,z )·(2 2,-2,-2)=0,1·PD →=(x ,y ,z )·(0,-2,-2)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故1=(0,-1,1). 设平面P AD 的法向量为2=(m ,p ,q ),则 2·AP →=(m ,p ,q )·(2,0,2)=0, 2·AD →=(m ,p ,q )·(2,-2,0)=0,可得m +q =0,m -p =0.取m =1,得p =1,q =-1,故2=(1,1,-1). 于是cos 〈,2〉=n 1·n 2|n 1||n 2|=-63.由于〈,2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C 的大小为π-arccos63. 20.、 甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X 表示前4局中乙当裁判的次数,求X 的数学期望. 20.解:(1)记A 1表示事件“第2局结果为甲胜”, A 2表示事件“第3局甲参加比赛,结果为甲负”, A 表示事件“第4局甲当裁判”. 则A =A 1·A 2.P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.(2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”, B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”, B 3表示事件“第3局乙参加比赛时,结果为乙负”. 则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)P (A 3)=18,P (X =2)=P (B 1·B 3)=P (B 1)P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1-18-14=58,E (X )=0·P (X =0)+1·P (X =1)+2·P (X =2)=98.21.、、 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB |,|BF 2|成等比数列.21.解:(1)由题设知ca =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2. 将y =2代入上式,求得x =±a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.① 由题意可设l 的方程为y =k (x -3),|k |<2 2,代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0. 设A (x 1,y 1),B (x 2,y 2),则 x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=-23.故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199.由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1, 故|AB |=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16. 因而|AF 2|·|BF 2|=|AB |2,所以|AF 2|,|AB |,|BF 2|成等比数列.22. 已知函数f (x )=ln(1+x )-x (1+λx )1+x .(1)若x ≥0时f (x )≤0,求λ的最小值;(2)设数列{a n }的通项a n =1+12+13+…+1n ,证明:a 2n -a n +14n >ln 2.22.解:(1)由已知f (0)=0,f ′(x )=(1-2λ)x -λx 2(1+x )2,f ′(0)=0.若λ<12,则当0<x <2(1-2λ)时,f ′(x )>0,所以f (x )>0.若λ≥12,则当x >0时,f ′(x )<0,所以当x >0时,f (x )<0.综上,λ的最小值是12.(2)令λ=12.由(1)知,当x >0时,f (x )<0,即x (2+x )2+2x>ln (1+x ).取x =1k ,则2k +12k (k +1)>ln k +1k .于是a 2n -a n +14n =∑k =n 2n -1 ⎣⎡⎦⎤12k +12(k +1)=∑k =n2n -12k +12k (k +1)>k =n 2n -1lnk +1k=ln 2n-ln n =ln 2.所以a2n-a n+14n>ln 2.。

2013年高考数学全国卷1(完整试题+答案+解析)

2013年高考数学全国卷1(完整试题+答案+解析)

绝密★启用前2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .155.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是 A .6π B .3π C .4π D .2π(想不到更好的方法时,不妨逐项代入)6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC -=等于()(20OC OB B OA →→→→-=-)A .1B .2C .3D .48.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15(余弦定理) 9.函数xx x f 1lg )(-=的零点所在的区间是(根的存在性定理) A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .2(解题前应多想想几何定理)11.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .85题图第1312.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅,则a 的值为(_此题若画图像,有两种情况。

2013年高考理科数学全国新课标卷1试题与答案word解析版

2013年高考理科数学全国新课标卷1试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ). A .A ∩B = B .A ∪B =R C .B ⊆A D .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n 项和2133n n S a =+,则{an}的通项公式是an =_______.15.(2013课标全国Ⅰ,理15)设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax +b)的图像关于直线x =-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠ABC =90°,ABBC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. 21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y =f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x +a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±.5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上, ∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1.15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=- 则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ), 所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2)上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∴f (-2=[1-(-22][(-22+8(-2)+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2)=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA . (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan α=4,即tan ∠PBA =4. 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-1,0),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,2013 全国新课标卷1理科数学 第11页 则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.x x y ⎧=⎪⎨-+=⎪⎩可取n =1,-1).故cos 〈n ,1AC 〉=11A CA C ⋅n n =5-. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为5. 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以 P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y=k (x +4).由l 与圆M , 解得k =当k y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x1,2=47-±.所以|AB|2118|7x x-=.当k=|AB|=187.综上,|AB|=|AB|=187.21.解:(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2,则F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0得x1=-ln k,x2=-2.①若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F′(x)<0;当x∈(x1,+∞)时,F′(x)>0.即F(x)在(-2,x1)单调递减,在(x1,+∞)单调递增.故F(x)在[-2,+∞)的最小值为F(x1).而F(x1)=2x1+2-21x-4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.2013 全国新课标卷1理科数学第12页2013 全国新课标卷1理科数学 第13页 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。

2013年辽宁高考数学理科试卷(带详解)

2013年辽宁高考数学理科试卷(带详解)

2013年普通高等学校招生全国统一考试(卷)数 学(理)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合 题目要求的. 1.复数的1i 1z =-模为 ( ) A.12B.22C.2D.2【测量目标】复数代数形式的四则运算.【考查方式】直接给出复数,利用2i 1=-对复数进行化简,然后再求模.【难易程度】容易 【参考答案】B【试题解析】111112i,i i 12222z z ==--∴=--=-. 2.已知集合{}4|0log 1A x x =<<,{}|2B x x =,则 A B = ( )A .()01,B .(]02,C .()1,2D .(]12, 【测量目标】集合的基本运算.【考查方式】考查了对数不等式及交集运算. 【难易程度】容易 【参考答案】D 【试题解析】{}{}4|0log 1|14A x x x x =<<=<<,{}|2B x x =,{}{}{}14212A B x x x x x x ∴=<<=<.3.已知点()1,3A ,()4,1B -,则与向量AB 同方向的单位向量为 ( )A.3455⎛⎫ ⎪⎝⎭,-B.4355⎛⎫ ⎪⎝⎭,-C.3455⎛⎫- ⎪⎝⎭,D.4355⎛⎫- ⎪⎝⎭,【测量目标】向量的基本概念.【考查方式】给出两点坐标及方向,求同方向的单位向量. 【难易程度】容易 【参考答案】A【试题解析】()3,4AB =-,则与其同方向的单位向量34(,)55ABAB==-e . 4.下面是关于公差0d >的等差数列()n a 的四个命题:1p :数列{}n a 是递增数列; 2p :数列{}n na 是递增数列;3p :数列n a n ⎧⎫⎨⎬⎩⎭是递增数列; 4p :数列{}3n a nd +是递增数列;其中的真命题为 ( )A.12,p pB.34,p pC.23,p pD.14,p p【测量目标】等差数列的性质.【考查方式】给出d >0的等差数列,求数列的增减性. 【难易程度】中等 【参考答案】D【试题解析】根据等差数列的性质判定.0d >,∴1n n a a +>,∴1p 是真命题, (步骤1)1n n +>,但是n a 的符号不知道,∴2p 是假命题. (步骤2)同理3p 是假命题.13(1)340n n a n d a nd d +++--=>,∴4p 是真命题. (步骤3)5.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[)[)20,40,40,60, [)[)60,80,80,100,若低于60分的人数是15人,则该班的学生人数是 ( ) A.45 B.50 C.55 D.60第5题图【测量目标】频率分布直方图.【考查方式】给出频率分布直方图及某一频数,求总体频数. 【难易程度】容易 【参考答案】B【试题解析】根据频率分布直方图的特点可知,低于60分的频率是00050012003...+⨯=(),所以该班的学生人数是15500.3=. 6.在ABC △上,角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且,a b >则B ∠= ( )A .π6B .π3C .2π3D .5π6【测量目标】正弦定理,两角和的正弦,诱导公式.【考查方式】给出三角形各边长及角和边长的公式,求角. 【难易程度】中等 【参考答案】A【试题解析】根据正弦定理与和角公式求解.由正弦定理可得sin sin cos A B C +1sin sin cos sin 2C B A B =, (步骤1)又sin 0B ≠,∴ sin cos A C +1sin cos 2C A =,∴1sin sin 2(A C )B +==.(步骤2)a b >,∴π6B ∠=. (步骤3) 7.使得()3nx n x x +⎛+∈ ⎪⎝⎭N 的展开式中含有常数项的最小的n 为 ( )A .4B .5C .6D .7【测量目标】二项式定理.【考查方式】考查了二项展开式的通项公式. 【难易程度】中等 【参考答案】B【试题解析】根据二项展开式的通项公式求解.()521=C 3C 3rn r n rr r n r r nn T x x x x ---+= ⎪⎝⎭,当1r T +是 常数项时,502n r -=,当2r =,5n =时成立. 8.执行如图所示的程序框图,若输入10n =,则输出的S = ( )A .511B .1011C .3655D .7255第8题图【测量目标】循环结构的程序框图.【考查方式】给出输入值10n =,求输出值S . 【难易程度】中等 【参考答案】A 【试题解析】13S =,410i =<, 21123415S ∴=+=-,610i =<,(步骤1)22135617S ∴=+=-, 8<10i =,23147819S ∴=+=-,1010i ==,2415910111S ∴=+=-,1210i =>,输出S . (步骤2)9.已知点()()()30,0,0,,,.O A b B a a 若OAB △为直角三角形,则必有 ( )A .3b a =B .31b a a=+ C .()3310b ab a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a-+--= 【测量目标】直线的倾斜角与斜率.【考查方式】给出三点坐标,由三角形l 的边的性质,求出,a b 之间的关系.【难易程度】中等 【参考答案】C【试题解析】根据直角三角形的直角的位置求解.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;(步骤1)若π2A ∠=,则30b a =≠,若π2B ∠=,根据斜率关系可知 321a b a a -=-,3()1a a b ∴-=-,即310b a a--=.以上两种情况皆有可能,故只有C 满足条件.(步骤2)10.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A.2 B ..132D .【测量目标】立体几何的综合问题.【考查方式】给出三条棱长及两棱垂直关系,求三棱柱外接球的半径. 【难易程度】较难 【参考答案】C【试题解析】根据球的接三棱柱的性质求解.直三棱柱中13412AB ,AC ,AA ,===AB AC ⊥,∴5BC =,且BC 为过底面ABC 是截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面11BCC B ,矩形11BCC B 的对角线长即为球直径,∴213R =,即132R =.11.已知函数()()2222f x x a x a =-++,()()22228g x x a x a =-+--+.设1()H x ()(){}max ,f x g x =,()()(){}2min ,H x f x g x =,{}max ,p q 表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 的最小值为A ,()2H x 的最小值为B ,则A B -=( )A.2216a a --B.2216a a +- C.16- D.16【测量目标】二次函数的图象与性质.【考查方式】给出两函数解析式,设出较大值、较小值、最大值、最小值,求最值. 【难易程度】较难 【参考答案】C【试题解析】根据二次函数图象的特征解决.由()()f x g x =,得2()4x a -= , (步骤1)∴当2x a =-和2x a =+时,两函数值相等.()f x 图象为开口向上的抛物线,()g x 图象为开口向下的抛物线,两图象在2x a =-和2x a =+处相交,则1()H x =()(2),()(22),()(2),f x x ag x a x a f x x a -⎧⎪-<<+⎨⎪+⎩2()(2),()()(22),()(2),g x x a H x f x a x a g x x a -⎧⎪=-<<+⎨⎪+⎩ (步骤2)∴1min ()(2)44A H x f a a ==+=--,2max ()(2)412B H x g a a ==-=-+,∴16.A B -=-(步骤3)12.设函数()f x 满足()()2e 2x xf x xf x x '+=,()2e 28f =,则0x >时,()f x ( )A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值【测量目标】利用导数求函数的极值.【考查方式】通过构造函数,将问题转化,考查转化能力.通过导数判断函数单调性,考查知识的 灵活应用能力. 【难易程度】较难 【参考答案】D【试题解析】由题意知2'33e 2()e 2()()x x f x x f x f x x x x-=-=.(步骤1) 令2()e 2()x g x x f x =-,则()222e 2()e 2()4()e 2()2()e e 1x xxxx g x x f x xf x x f x xf x x x ⎛⎫'''=--=-+=-=- ⎪⎝⎭.(步骤2)由()0g x '=得2x =,当2x =时,222mine ()e 2208g x =-⨯⨯=,即()0g x ,则当0x >时,3()()0g x f x x'=,(步骤3) 故()f x 在()0,+∞上单调递增,既无极大值也无极小值.(步骤4) 二、填空题:本大题共4小题,每小题5分.13.某几何体的三视图如图所示,则该几何体的体积是 .第13题图【测量目标】由三视图求几何体的体积.【考查方式】给出三视图,求体积. 【难易程度】容易 【参考答案】16π16-【试题分析】由三视图可知该几何体是一个圆柱部挖去一个正四棱柱,圆柱底面圆半径为2,高为 4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为16π16.- 14.已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S = .【测量目标】等比数列及其性质,等比数列的前n 项和.【考查方式】给出方程,已知等比数列为递增数列,先求等比数列中两项值,即方程的两根,再由数 列为递增数列求出数列的前n 项和. 【难易程度】中等 【参考答案】63 【试题分析】13,a a 是方程2540x x -+=的两个根,且数列{}n a 是递增的等比数列,∴131,4,2,a a q ===661263.12S -==-15.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F 椭圆C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos 5AB AF ABF ==∠=,则C 的离心率e = . 【测量目标】余弦定理,椭圆的简单几何性质.【考查方式】画图表示椭圆及直线位置,通过数量关系确定三角形形状以及椭圆系数,考查数形结合的能力.【难易程度】中等 【参考答案】57【试题解析】根据椭圆的定义及性质和余弦定理求解.设椭圆的右焦点为1F ,直线过原点,16AF BF ∴==,BO AO =.(步骤1)在ABF △中,设BF x =,由余弦定理得24361002105x x =+-⨯⨯,(步骤2) 解得8x =,即8BF =.90BFA ∴∠=,ABF ∴△是直角三角形,(步骤3)26814a ∴=+=,即7a =.(步骤4)又在Rt ABF △中,BO AO =,152OF AB ∴==,即5c =,(步骤5) 57e ∴=.(步骤6) 16.为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组 的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的 最大值为 .【测量目标】用样本数字特征估计总体数字特征.【考查方式】给出样本平均数、样本方差样本组数,求样本数据中的最大值. 【难易程度】较难 【参考答案】10【试题解析】设5个班级中参加的人数分别为12345,,,,,x x x x x 则由题意知2222212345123457,(7)(7)(7)(7)(7)20,5x x x x x x x x x x ++++=-+-+-+-+-=五个整数的平方和为20,则必为0119920++++=,由73x -=可得10x =或4x =,由71x -=可得8x =或6x =,由上可知参加的人数分别为4,6,7,8,10,故样本数据中的最大值为10.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)设向量)()π,sin ,cos ,sin ,0,.2x x x x x ⎡⎤==∈⎢⎥⎣⎦a b(I )若=a b 求x 的值; (Ⅱ)设函数()f x =a b ,求()f x 的最大值.【测量目标】平面向量的基本概念、向量的数量积运算、两角和与差的正弦和三角函数的最值. 【考查方式】给出两向量坐标,两向量模的关系,函数与向量的关系,求x 的值,函数的最大值. 【难易程度】容易 【试题解析】(Ⅰ)2222222(3sin )sin 4sin ,cos sin 1,x x x x x =+==+=a b ,=a b∴24sin 1.x = (步骤1)又x ∈π0,2⎡⎤⎢⎥⎣⎦,∴1sin ,2x =∴π6x =. (步骤2)(Ⅱ)()3sin f x x ==a b 2311π1cos sin sin 2cos 2sin(2),2262x x x x x +=-+=-+ ∴当π3x =∈π0,2⎡⎤⎢⎥⎣⎦时,πsin(2)6x -取最大值1. (步骤3) ∴()f x 的最大值为32. (步骤4)18.(本小题满分12分)如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I )求证:平面PAC ⊥平面PBC ;(II )若2AB AC PA ===,1,1,求证:二面角C PB A --的余弦值.第18题图【测量目标】面面垂直的判定,二面角,空间直角坐标系和空间向量及其运算.【考查方式】面面垂直的判定及二面角的平面角的确定考查定理的灵活应用能力,空间直角坐标系的建立考查空间想象能力及运算求解能力. 【难易程度】中等【试题解析】(Ⅰ)由AB 是圆的直径,得AC BC ⊥,(步骤1) 由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA BC ⊥,又PA AC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,BC ∴⊥平面PAC BC ⊂平面PBC ∴平面PBC ⊥平面PAC .(步骤2)(Ⅱ)解法一:如图(1),以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴,y 轴,z 轴建立空间直角坐标系. 在Rt ABC △中,2AB =,1AC =,3BC ∴=又1PA =,()0,1,0A ∴,)3,0,0B,()0,1,1P .(步骤3)故()3,0,0CB =,()0,1,1CP =.设平面BCP 的法向量为()1111,,x y z =n ,则110,0,CB CP ⎧•=⎪⎨•=⎪⎩n n 11130,0,x y z ⎧=⎪∴⎨+=⎪⎩不妨令11y =,则()10,1,1=-n .(步骤4)()0,0,1AP =,()3,1,0AB =-,设平面ABP 的法向量为()2222,,x y z =n ,则220,0,AP AB ⎧=⎪⎨=⎪⎩n n 2220,30,z x y =⎧⎪∴⎨-=⎪⎩(步骤5) 不妨令21x =,则()21,3,0=n . 于是1236cos ,422==n n . 由图(1)知二面角C —PB —A 为锐角,故二面角C —PB —A 的余弦值为64.(步骤6)第18题图(1)解法二:如图(2),过C 作CM AB ⊥于M ,PA ⊥平面ABC ,CM ⊂平面ABC ,PA CM ∴⊥.又PA AB A =,且PA ⊂平面PAB ,AB ⊂平面PAB ,CM ∴⊥平面PAB . 过M 作MN PB ⊥于N ,连接NC ,由三垂线定理得CN PB ⊥ CNM ∴∠为二面角C —PB —A 的平面角.(步骤3) 在Rt ABC △中,由2AB =,1AC =,得3BC =,32CM =,32BM =. 在Rt PAB △中,由2AB =,1PA =,得5PB =.Rt BNM △∽Rt BAP △,3215MN∴=,35MN ∴=.(步骤4) ∴在Rt CNM △中,30CN =,6cos CNM ∴∠=,∴二面角C —PB —A 的余弦值为6.(步骤5)第18题图(2)19.(本小题满分12分)现有10道题,其中6道甲类题,4道乙类题,同学从中任取3道题解答.(I )求同学至少取到1道乙类题的概率;(II )已知所取的3道题中有2道甲类题,1道乙类题.设同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示同学答对题的个数,求X 的分布列和数学期望.【测量目标】古典概型,互斥事件与对立事件的概率,离散型随机变量的分布列及期望.【考查方式】至少类问题反面求解考查转化化归能力,分布列及数学期望的求解考查运算求解能力. 【难易程度】中等【试题解析】 (1)设事件A =“同学所取的3道题至少有1道乙类题”,则有A = “同学所取的3道题都是甲类题”.()36310C 1C 6P A ==,()()516P A P A ∴=-=.(步骤1)(2)X 所有的可能取值为0,1,2,3.(步骤2)()020232140=C 555125P X ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭;(步骤3) ()11021022321324281C +C 555555125P X ⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(步骤4) ()2112122321324572C +C 555555125P X ⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(步骤5) ()222324363C 555125P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.(步骤6) X ∴的分布列为:X 0 12 3P4125 28125 5712536125(步骤7)()428573601232125125125125E X ∴⨯⨯⨯⨯==+++.(步骤8)20.(本小题满分12分)如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O ),012x =-,切线MA的斜率为12-.(I )求p 的值;(II )当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为第20题图【测量目标】导数的几何意义,圆锥曲线的轨迹方程.【考查方式】给出两抛物线方程,利用导数的几何意义及坐标中点与直线的关系求解;利用椭圆与直 线的位置关系及待定系数法求解. 【难易程度】中等 【试题解析】(Ⅰ)抛物线21:4C x y =上任意一点(,)x y 的切线斜率为'2xy =,且切线MA 的斜率为12-,∴A 点坐标为(1-,14), (步骤1) ∴切线MA 的方程为11(1)24y x =-++. (步骤2).点M (01)y 在切线MA 及抛物线2C 上,∴0113(2244y -=--+=-①20(1322y p p-=-=-② (步骤3)由①②得2p =. (步骤4)(Ⅱ)设22121212(,),(,),(,),,44x x N x y A x B x x x ≠N 为线段AB 中点∴122x x x +=,③22128x x y +=.④ (步骤5) ∴切线MA,MB 的方程为2111()24x x y x x =-+,⑤2222()24x x y x x =-+.⑥ (步骤6)由⑤⑥得MA,MB 的交点M (00,)x y 的坐标为121200,.24x x x xx y +== (步骤7)点M (00,)x y 在2C 上,即200,4x y =-∴221212.6x x x x +=-⑦ (步骤8) 由③④⑦得24,0.3x y x =≠ (步骤9)当12x x =时,A,B 重合于原点O,AB 中点N 为O ,坐标满足24.3x y =∴AB 中点N 的轨迹方程为24.3x y = (步骤10)21.(本小题满分12分)已知函数()()21e xf x x -=+,()312cos 2x g x ax x x =+++.当[]0,1x ∈时, (I )求证:()111x f x x-+ ;(II )若()()f x g x 恒成立,数a 取值围.【测量目标】利用导数求函数的单调区间,不等式恒成立问题.【考查方式】第一问不等式的证明利用构造函数法,通过导数证明,考查简单的转化化归能力;第二问的两种解法都对转化化归能力进一步升级考查,解法一利用第一问的结论进行转化,解法二通过构造函数,两次利用导数转化. 【难易程度】较难【试题解析】(Ⅰ)证明:要证[]0,1x ∈时,()21e 1xx x -+-,只需证明()()1e 1e x x x x -+-.(步骤1) 记()()(1)e 1e xx h x x x -=--+,则()()e e x x h x x -'=-,(步骤2) 当()0,1x ∈时,()0h x '>,因此()h x 在[]0,1上是增函数,(步骤3) 故()()00h x h =.所以()[]10,1f x x x ∈-,.(步骤4) 要证[]0,1x ∈时,21(1)e 1xx x-++,只需证明e1x x +.(步骤5)记()e 1x K x x =--,则()e 1x K x '=-,(步骤6)当()0,1x ∈时,()0K x '>,因此()K x 在[]0,1上是增函数,(步骤7) 故()()00K x K =.所以()11f x x+,[]0,1x ∈.(步骤8) 综上,()111xf x x-+,[]0,1x ∈.(步骤9) (Ⅱ)解法一:()()32(1)e 12cos 2xx f x g x x ax x x -⎛⎫-=-+++ ⎪⎝⎭+3112cos 2x x ax x x -----2(12cos )2x x a x =-+++.(步骤10)设()22cos 2x G x x =+,则()2sin G x x x '=-.(步骤11) 记()2sin H x x x =-,则()12cos H x x '=-,(步骤12)当()0,1x ∈时,()0H x '<,于是()G x '在[]0,1上是减函数,(步骤13)从而当()0,1x ∈时,()()00G x G ''<=,故()G x 在[]0,1上是减函数.(步骤14) 于是()()02G x G =,从而()13a G x a +++.(步骤15)所以,当3a-时,()()f x g x 在[]0,1上恒成立.(步骤16) 下面证明当3a >-时,()()f x g x 在[]0,1上不恒成立.()()3112cos 12x f x g x ax x x x -----+ 32cos 12x x ax x x x -=---+ 212cos 12x x a x x ⎛⎫=-+++ ⎪+⎝⎭,(步骤17)记()2112cos ()121x I x a x a G x x x =+++=++++, 则()21()(1)I x G x x -''=++,(步骤18) 当()0,1x ∈时,()0I x '<,故()I x 在[]0,1上是减函数,(步骤19)于是()I x 在[]0,1上的值域为[12cos 13]a a ++,+.(步骤20)因为当3a >-时,3>0a +,()00,1x ∴∃∈,使得()00I x >,(步骤21) 此时()()00f x g x <,即()()f x g x 在[]0,1上不恒成立.(步骤22) 综上,实数a 的取值围是(],3-∞-.(步骤23) 解法二:先证当[]0,1x ∈时,22111cos 124x xx --.(步骤10)记()21cos 12F x x x =-+,则()sin F x x x '=-+.(步骤11)记()sin G x x x =-+,则()cos 1G x x '=-+,(步骤12) 当()0,1x ∈时,()0G x '>,于是()G x 在[]0,1上是增函数,(步骤13)因此当()0,1x ∈时,()()00G x G >=,从而()F x 在[]0,1上是增函数.(步骤14)因此()()00F x F =,所以当[]0,1x ∈时,211cos 2x x -.(步骤15)同理可证,当[]0,1x ∈时,21cos 14x x -.(步骤16)综上,当[]0,1x ∈时,22111cos 124x x x --.(步骤17)当[]0,1x ∈时,()()()321e 12cos 2xx f x g x x ax x x -⎛⎫-=+-+++ ⎪⎝⎭321(1)12124x x ax x x ⎛⎫------ ⎪⎝⎭()3a x =-+.(步骤18)所以当3a-时,()()f x g x 在[]0,1上恒成立.(步骤19) 下面证明当3a >-时,()()f x g x 在[]0,1上不恒成立.()()()321e 12cos 2xx f x g x x ax x x -⎛⎫-=+-+++ ⎪⎝⎭3211121122x ax x x x ⎛⎫----- ⎪+⎝⎭ 23(3)12x x a x x =+-++ 32(3)23x x a ⎡⎤-+⎢⎥⎣⎦,(步骤20) ()00,1x ∴∃∈ (例如0x 取33a +和12中的较小值)满足()()00f x g x <.(步骤21) 即()()f x g x 在[]0,1上不恒成立.(步骤22)综上,实数a 的取值围是(],3-∞-.(步骤23)请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 为半圆O 的直径,直线CD 与半圆O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 与F ,连接,AE BE .证明:(I )FEB CEB ∠=∠; (II )2.EF AD BC =⋅第22题图【测量目标】几何证明选讲.【考查方式】给出点、线、面之间的各种关系,根据圆中直线的垂直等角关系证明;根据圆中三角形 的全等和线段间的关系求解. 【难易程度】容易【试题解析】(Ⅰ)直线CD 与⊙O 相切,∴.CEB EAB ∠=∠ (步骤1)AB 为⊙O 的直径,∴AE EB ⊥,∴π2EAB EBF ∠+∠=; (步骤2) 又EF AB ⊥,∴π2FEB EBF ∠+∠=. (步骤3) ∴FEB EAB ∠=∠.∴.FEB CEB ∠=∠ (步骤4)(Ⅱ)BC CE ⊥,EF AB ⊥,,FEB CEB BE ∠=∠是公共边, ∴Rt BCE △≌Rt BFE △,∴BC BF =. (步骤5)类似可证Rt ADE △≌Rt AFE △,得AD AF =. (步骤6)又在Rt AEB △中,EF AB ⊥,∴2EF AF BF =,∴2EF AD BC =. (步骤7)23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为π4sin ,cos 2 2.4ρθρθ⎛⎫=-= ⎪⎝⎭(I )求1C 与2C 交点的极坐标;(II )设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为3312x t a b y t ⎧=+⎪⎨=+⎪⎩(t ∈R 为参数),求,a b 的值.【测量目标】极坐标与参数方程.【考查方式】给出各直线的极坐标方程或参数方程,联立1C 与2C 方程求交点;由参数方程的性质求 解.【难易程度】容易【试题解析】(Ⅰ)圆1C 的直角坐标方程为2224x y +-=(),直线2C 的直角坐标方程为40x y -+=. 解222440x y x y ⎧+-=⎨+-=⎩(),,得1104x y =⎧⎨=⎩,,2222x y =⎧⎨=⎩, (步骤1) ∴1C 与2C 交点的极坐标为ππ42224⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,. (步骤2) 注:极坐标系下点的表示不是唯一的.(Ⅱ)由(Ⅰ)可得,P 点与Q 点的直角坐标分别为()()0213,,,.∴直线PQ 的直角坐标方程为20x y -+=, (步骤3)由参数方程可得b aby x 22=-+1. (步骤4)∴12122b ab ⎧=⎪⎪⎨⎪-+=⎪⎩,,解得12a b =-⎧⎨=⎩,. (步骤5)24.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,其中1a >. (I )当=2a 时,求不等式()fx 4x a --的解集;(II )已知关于x 的不等式(2)2()f x a f x +-2的解集为{1xx}2,求a 的值.【测量目标】绝对值不等式的解法,含参不等式的解法.【考查方式】给出函数方程,求不等式的解集.再给出不等式的解集,求未知数a 的值. 【难易程度】中等【试题解析】(1)当2a =时,2624224264x x fx x x x x .-+⎧⎪+-=<<⎨⎪-⎩,,(),,, (步骤1) 当2x时,由4f x x -()4-得264x -+,解得1x ; (步骤2) 当24x <<时,44f x x --()无解; (步骤3) 当4x时,由44f x x --()得264x -,解得5x. (步骤4)∴44f x x --() 的解集为{1x x或}5x. (步骤5)(2)记22h x f x a f x =+-()()(),则204202a x h x x a x a a x a.-⎧⎪=-<<⎨⎪⎩,,(),,, (步骤6)由2h x (),解得1122a a x-+. (步骤7) 又2h x ()的解集为{}12x x ,∴112122a a -⎧=⎪⎪⎨+⎪=⎪⎩,, ∴3a =. (步骤8)。

2013全国高考1卷理科数学试题及答案解析

2013全国高考1卷理科数学试题及答案解析
得: ,直线
切点
直线
坐标原点到 距离的比值为 。
(21)【解析】(1)
例:瓶子里的水渐渐升高了。令 得:
得:
六、看图写话
在 上单调递增
红火——红红火火许多——许许多多来往——来来往往
9、区分以下形近字或音近字:得: 的解析式为
三、词语。且单调递增区间为 ,单调递减区间为
金黄的秋天大大的公园绿色的小伞(2) 得
(8)等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 两点, ,则 的
实轴长为
(A) (B) (C)4(D)8
(9)已知 ,函数 在 单调递减,则 的取值范围
(A) (B) (C) (D)
(10)已知函数 ,则 的图像大致为
(11)已知三棱锥 的所有顶点都在球 的球面上, 是边长为 的正三角形, 为 的直径,且 ,则此棱锥的体积为
(1)【解析】选
, , , 共10个
(2)【解析】选
甲地由 名教师和 名学生: 种
(3)【解析】选
, , 的共轭复数为 , 的虚部为
(4)【解析】选
是底角为 的等腰三角形
(5)【解析】选
, 或
(6)【解析】选
(7)【解析】选
该几何体是三棱锥,底面是俯视图,高为
此几何体的体积为
(8)【解析】选
设 交 的准线 于
(14)设 满足约束条件 则 的取值范围为__________.
(15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件正常工作,则部件正常工作。设三个电子元件的使用寿命(单位:小时)均服从正态分布 ,且各个元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为_________________.

2013年高考全国Ⅰ理科数学试题及答案(word解析版)

2013年高考全国Ⅰ理科数学试题及答案(word解析版)

2013年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2013年全国Ⅰ,理1,5分】已知集合{}{2|20,|A x x x B x x =->=<,则( ) (A )A B =∅ (B )A B =R (C )B A ⊆ (D )A B ⊆ 【答案】B【解析】∵2()0x x ->,∴0x <或2x >.由图象可以看出A B =R ,故选B . (2)【2013年全国Ⅰ,理2,5分】若复数z 满足(34i)|43i |z -=+,则z 的虚部为( )(A )4- (B )45- (C )4 (D )45【答案】D【解析】∵(34i)|43i |z -=+,∴55(34i)34i 34i (34i)(34i)55z +===+--+.故z 的虚部为45,故选D . (3)【2013年全国Ⅰ,理3,5分】为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )(A )简单随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样 【答案】C【解析】因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样,故选C .(4)【2013年全国Ⅰ,理4,5分】已知双曲线C :()2222=10,0x y a b a b->>C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =± (D )y x =±【答案】C【解析】∵c e a ==,∴22222254c a b e a a +===.∴224a b =,1=2b a ±. ∴渐近线方程为12b y x x a =±±,故选C .(5)【2013年全国Ⅰ,理5,5分】执行下面的程序框图,如果输入的[]1,3t ∈-,则输出的s 属于( ) (A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]- 【答案】D【解析】若[)1,1t ∈-,则执行3s t =,故[)3,3s ∈-.若[]1,3t ∈,则执行24s t t =-,其对称轴为2t =.故当2t =时,s 取得最大值4.当1t =或3时,s 取得最小值3,则[]3,4s ∈. 综上可知,输出的[]3,4s ∈-,故选D .(6)【2013年全国Ⅰ,理6,5分】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm , 将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚 度,则球的体积为( )(A )35003cm π (B )38663cm π (C )313723cm π(D )320483cm π【答案】B【解析】设球半径为R ,由题可知R ,2R -,正方体棱长一半可构成直角三角形,即OBA ∆为直角三角形,如图,2BC =,4BA =,2OB R =-,OA R =,由()22224R R =-+,得5R =,所以球的体积为34500533ππ=(cm 3),故选B .(7)【2013年全国Ⅰ,理7,5分】设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )(A )3(B )4 (C )5 (D )6【答案】C 【解析】∵12m S -=-,0m S =,13m S +=,∴()1022m m m a S S -=-=--=,11303m m m a S S ++=-=-=.∴1321m m d a a +=-=-=.∵()11102m m m S ma -=+⨯=,∴112m a -=-. 又∵1113m a a m +=+⨯=,∴132m m --+=.∴5m =,故选C . (8)【2013年全国Ⅰ,理8,5分】某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ 【答案】A【解析】由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径2r =,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为24422816r ππ⨯⨯+⨯⨯=+,故选A .(9)【2013年全国Ⅰ,理9,5分】设m 为正整数,()2m x y +展开式的二项式系数的最大值为a , ()21m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )(A )5 (B )6 (C )7 (D )8 【答案】B【解析】由题意可知,2m m a C =,21mm b C +=,又∵137a b =,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得6m =,故选B .(10)【2013年全国Ⅰ,理10,5分】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( ) (A )2214536x y +=(B )2213627x y += (C )2212718x y += (D )221189x y +=【答案】D【解析】设11()A x y ,,22()B x y ,,∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①-②,得 1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为()1,1-,∴122y y +=-,122x x +=,而1212011=312AB y y k x x --(-)==--, ∴221=2b a .又∵229a b -=,∴218a =,29b =.∴椭圆E 的方程为22=1189x y +,故选D . (11)【2013年全国Ⅰ,理11,5分】已知函数()()220ln 10x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若()f x a x ≥|,则a 的取值范围是( ) (A )(],0-∞ (B )(],1-∞ (C )[2,1]- (D )[2,0]-【答案】D【解析】由()y f x =的图象知:①当0x >时,y ax =只有0a ≤时,才能满足()f x ax ≥,可排除B ,C .②当0x ≤时,()2222y f x x x x x ==-+=-.故由()f x ax ≥得 22x x ax -≥.当0x =时,不等式为00≥成立.当0x <时,不等式等价于2x a -≤.∵22x -<-,∴2a ≥-.综上可知:[]2,0a ∈-,故选D .(12)【2013年全国Ⅰ,理12,5分】设n n n A B C ∆的三边长分别为n a ,n b ,n c ,n n n A B C ∆的面积为n S ,1,2,3.n =⋯,若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )(A ){}n S 为递减数列 (B ){}n S 为递增数列(C ){}21n S -为递增数列,{}2n S 为递减数列 (D ){}21n S -为递减数列,{}2n S 为递增数列 【答案】B第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2013年全国Ⅰ,理13,5分】已知两个单位向量a ,b 的夹角为60°,()1t t =+-c a b .若·0=b c ,则t = . 【答案】2【解析】∵()1t t =+-c a b ,∴()2··1t t =+-bc ab b .又∵1==a b ,且a 与b 夹角为60°,⊥b c , ∴()0 601t cos t =︒+-a b ,1012t t =+-.∴2t =.(14)【2013年全国Ⅰ,理14,5分】若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a = .【答案】()12n --【解析】∵2133n n S a =+,① ∴当2n ≥时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-,即12n n aa -=-.∵1112133a S a ==+,∴11a =.∴{}n a 是以1为首项,-2为公比的等比数列,()12n n a -=-.(15)【2013年全国Ⅰ,理15,5分】设当x θ=时,函数()2f x sinx cosx =-取得最大值,则cos θ= .【答案】 【解析】()s 2x f x sinx cosx x ⎫⎪==⎭-,令cos α=,sin α=,则()()f x x α=+,当22()x k k ππα=+-∈Z 时,()sin x α+有最大值1,()f x,即22()k k πθπα=+-∈Z ,所以cos θ=πcos =cos 2π+cos sin 22k πθααα⎛⎫⎛⎫-=-=== ⎪ ⎪⎝⎭⎝⎭(16)【2013年全国Ⅰ,理16,5分】若函数()()()221f x x x ax b =-++的图像关于直线2x =-对称,则()f x 的最大值为 .【答案】16【解析】∵函数()f x 的图像关于直线2x =-对称,∴()f x 满足()()04f f =-,()()13f f -=-,即151640893b a b a b =-(-+)⎧⎨=-(-+)⎩,得815a b =⎧⎨=⎩∴()432814815f x x x x x =---++.由()324242880f x x x x '=---+=,得12x =-22x =-,32x =-.易知,()f x在(,2-∞-上为增函数,在()22--上为减函数,在(2,2--上为增函数,在()2-+-∞上为减函数.∴(((((222122821588806416f ⎡⎤⎡⎤-=---+-+=---=-=⎢⎥⎢⎥⎣⎦⎣⎦.()()()()()22212282153416915f ⎡⎤⎡-=---+⨯⎤==-⎣⎦⎣⎦-+--+(((((222122821588806416f ⎡⎤⎡⎤-=---++-++=-++=-=⎢⎥⎢⎥⎣⎦⎣⎦.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅰ,理17,12分】如图,在ABC ∆中,90ABC ∠=︒,AB =,1BC =,P为ABC ∆内一点,90BPC ∠=︒.(1)若12PB =,求PA ;(2)若150APB ∠=︒,求tan PBA ∠.解:(1)由已知得60PBC ∠=︒,30PBA ∴∠=︒.在PBA ∆中,由余弦定理得211732cos 30424PA =+-︒=.故PA =(2)设PBA α∠=,由已知得sin PB α=.在PBA ∆sin sin(30)αα=︒-,4sin αα=.所以tan α,即tan PBA ∠= (18)【2013年全国Ⅰ,理18,12分】如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=︒. (1)证明:1AB A C ⊥;(2)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.解:(1)取AB 的中点O ,连结OC ,1OA ,1A B .因为CA CB =,所以OC AB ⊥.由于1AB AA =,160BAA ∠=︒,故1AA B ∆为等边三角形,所以1OA AB ⊥.因为1OC OA O = ,所以AB ⊥平面1OA C . 又1A C 平面1OA C ,故1AB A C ⊥.(2)由(1)知OC AB ⊥,1OA AB ⊥.又平面ABC ⊥平面11AA B B ,交线为AB ,所以OC ⊥平面11AA B B ,故OA ,1OA ,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,OA为单位长,建立如图所示的空间直角坐标系O xyz -.由题设知()1,0,0A,1()0A ,(0,0C ,()1,0,0B -.则(1,03BC =,11()BB AA =-=,(10,A C = .设()n x y z =,,是平面11BB C C 的法向量,则100BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0x x ⎧=⎪⎨-=⎪⎩可取1)n =-.故111cos ,n AC n AC n AC ⋅==⋅ .所以1A C 与平面11BB C C. (19)【2013年全国Ⅰ,理19,12分】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件1A ,第一次取出的4件产品全是优质品为事件2A ,第二次取出的4件产品都是优质品为事件1B ,第二次取出的1件产品是优质品为事件2B ,这批产品通过检验为事件A ,依题意有()()1122A A B A B = ,且11A B 与22A B 互斥,所以 ()()()()()()()112211122241113||161616264P A P A B P A B P A P B A P A P B A ==⨯++⨯==+.(2)X 可能的取值为400,500,800,并且()41114001161616P X ==--=,()500116P X ==,()80140P X ==. 所以X 的分布列为()111400+500+800506.2516164E X =⨯⨯⨯=. (20)【2013年全国Ⅰ,理20,12分】已知圆()2211M x y ++=:,圆()2219N x y -+=:,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB . 解:由已知得圆M 的圆心为()1,0M -,半径11r =;圆N 的圆心为()1,0N ,半径23r =.设圆P 的圆心为(),P xy ,半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以()()12124PM PN R r r R r r +=++-=+=.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为()22=1243x y x +≠-.(2)对于曲线C 上任意一点()P x y ,,由于222PM PN R -=-≤,所以2R ≤,当且仅当圆P 的圆心为()2,0时,2R =.所以当圆P 的半径最长时,其方程为()2224x y -+=.若l 的倾斜角为90︒,则l 与y 轴重 合,可得AB =l 的倾斜角不为90︒,由1r R ≠知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得()4,0Q -,所以可设()4l y k x =+:.由l 与圆M ,解得k =. 当k =时,将y =+22=13x y +,并整理得27880x x +-=,解得1,2x =. 2118|7AB x x =-=.当k =时,由图形对称性可知187AB =.综上,AB =187AB =. (21)【2013年全国Ⅰ,理21,12分】设函数()2f x x ax b =++,()()x g x e cx d =+.若曲线()y f x =和曲线()y g x =都过点()0,2P ,且在点P 处有相同的切线42y x =+.(1)求a ,b ,c ,d 的值;(2)若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:(1)由已知得()02f =,()02g =,()04f '=,()04g '=.而()2f x x a '=+,()()x g x e cx d c '=++, 故2b =,2d =,4a =,4d c +=.从而4a =,2b =,2c =,2d =. (2)由(1)知,()242f x x x =++,()()21x g x e x =+.设函数()()()()22142x F x kg x f x ke x x x =-=+---,()()()()2224221x x F x ke x x x ke '=+--=+-.()00F ≥ ,即1k ≥.令()0F x '=得1ln x k =-,22x =-. ①若21k e ≤<,则120x -<≤.从而当12()x x ∈-,时,()0F x '<;当1()x x ∈+∞,时,()0F x '>. 即()F x 在1(2)x -,单调递减,在1()x +∞,单调递增.故()F x 在[)2-+∞,的最小值为()1F x . 而()()11111224220F x x x x x =+---=-+≥.故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ②若2k e =,则()()()2222x F x e x e e -'=+-.∴当2x >-时,()0F x '>,即()F x 在()2-+∞,单调递增. 而()20F -=,故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ③若2k e >,则()()22222220F k eek e ---=-+=--<.从而当2x ≥-时,()()f x kg x ≤不可能恒成立.综上,k 的取值范围是2[1]e ,. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2013年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,直线AB为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆 于点D . (1)证明:DB DC =;(2)设圆的半径为1,BC =CE 交AB 于点F ,求BCF ∆外接圆的半径. 解:(1)连结DE ,交BC 于点G .由弦切角定理得,ABE BCE ∠=∠.而ABE CBE ∠=∠,故CBE BCE ∠=∠,BE CE =.又因为DB BE ⊥,所以DE 为直径,90DCE ∠=︒,DB DC =.(2)由(1)知,CDE BDE ∠=∠,DB DC =,故DG 是BC的中垂线,所以BG =设DE 的中点为O ,连结BO ,则60BOG ∠=︒.从而30ABE BCE CBE ∠=∠=∠=︒,所以CF BF ⊥,故Rt BCF ∆.(23)【2013年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤<).解:(1)将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程()()224525x y -+-=,即221810160C x y x y +--+=:.将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得28cos 10sin 160ρρθρθ--+=. 所以1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=.由222281016020x y x y x y y ⎧+--+=⎨+-=⎩,解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩, 所以1C 与2C交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭.(24)【2013年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)已知函数()212f x x x a =-++,()3g x x =+.(1)当2a =-时,求不等式()()f x g x <的解集;(2)设1a >-,且当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围.解:(1)当2a =-时,()()f x g x <化为212230x x x -+---<.设函数21223y x x x =-+---,则y =15,212,1236,1x x y x x x x ⎧-<⎪⎪⎪=--≤≤⎨⎪->⎪⎪⎩,其图像如图所示.从图像可知,当且仅当()0,2x ∈时,0y <.所以原不等式的解集是{}2|0x x <<.(2)当1,22x a ⎡⎫-⎪⎢⎣⎭∈时,()1f x a =+.不等式()()f x g x ≤化为13a x +≤+.所以2x a ≥-,对1,22x a ⎡⎫-⎪⎢⎣⎭∈都成立.故22a a -≥-,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。

2013年高考理科数学全国卷1(含详细答案)

2013年高考理科数学全国卷1(含详细答案)

数学试卷 第1页(共48页)数学试卷 第2页(共48页)数学试卷 第3页(共48页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合20{}|2A x x x =->,{|55}B x x <<=-,则( )A .AB =R B .A B =∅C .B A ⊆D .A B ⊆ 2.若复数z 满足(34i)|43i|z -=+,则z 的虚部为( )A .4-B .45-C .4D .453.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为5,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±5.执行如图的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球 面恰好接触水面时测得水深为6cm ,如果不计容器的 厚度,则球的体积为( )A .3866πcm 3 B .3500πcm 3 C .31372πcm 3D .32048πcm 37.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=,则m =( )A .3B .4C .5D .68.某几何体的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+9.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m =( )A .5B .6C .7D .810.已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 11.已知函数22,0,()ln(1),0.x x x f x x x ⎧-+=⎨+>⎩≤若|()|f x ax ≥,则a 的取值范围是 ( )A .(,1]-∞B .(,0]-∞C .[2,1]-D .[2,0]-12.设n n n A B C △的三边长分别为n a ,n b ,n c ,n n n A B C △的面积为n S ,1,2,3,n =.若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )A .{}n S 为递增数列B .{}n S 为递减数列C .21{}n S -为递增数列,2{}n S 为递减数列D .21{}n S -为递减数列,2{}n S 为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b .若0=b c ,则t =________.14.若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a =________. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________.16.设函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在ABC △中,90ABC ∠=,3AB =,1BC =,P 为ABC △内一点,90BPC ∠=.(Ⅰ)若12PB =,求PA ; (Ⅱ)若150APB ∠=,求tan PBA ∠.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共48页)数学试卷 第5页(共48页) 数学试卷 第6页(共48页)18.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果3n =,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果4n =,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.20.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .21.(本小题满分12分)设函数2()f x x ax b =++,()e ()xg x cx d =+.若曲线()y f x =和曲线()y g x =都过点(0,2)P ,且在点P 处有相同的切线42y x =+.(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若2x -≥时,()()f x kg x ≤,求k 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF △外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程; (Ⅱ)求1C 与2C 交点的极坐标(0,02π)ρθ≥≤<.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a ->,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围.=|2A B x{A B=R,故选【提示】根据一元二次不等式的解法,求出集合,再根据的定义求出A B和A B.【考点】并集及其运算,一元二次不等式的解法【答案】D4i)34=+,故z的虚部等于i553/ 16故选A.=,解得1)1245 / 16故选A .(2)(2+1)7!!!(+1)!m m m m m m =⨯,即13,再利用组合数的计算公式,解方程综上可知:[,0]2a∈-.(步骤4)67 / 16【提示】由1n n a a +=可知n n n A B C △的边n n B C 为定值1a ,由111112(2)2n n n n b c a b c a +++=+--及1112b c a +=得12n n b c a +=,则在n n n A B C △中边长1n n B C a =为定值,另两边n n n n A C A B 、的长度之和12n n b c a +=为定值,由此可知顶点n A 在以n n B C 、为焦点的椭圆上,根据111()2n n n n b c b c ++=---,得1111()2n n n b c b c -⎛⎫=- ⎪⎝⎭-,可知n →+∞时n n b c →,据此可判断n n n A B C △的边n n B C 的高n h 随着n 的增大而增大,再由三角形面积公式可得到答案. 【答案】2t =【解析】∵(1)c ta t b =-+,∴2(+1)||b t b ab t =-.(步骤又∵||||1a b ==,且a 与b 夹角为60,b c ⊥,∴0|cos6|||0+t a b =︒2【提示】由于0b c =,对式子(1)c ta t b =-+两边与b 作数量积可得|cos6|||0+a b ︒【考点】平面向量的数量积.85)(22,--+)(25,-+5)单调递增,在5)2-+单调递增,在9 / 161OCOA O =,所以1OAC 平面两两相互垂直.为坐标原点,OA的方向为|OA|为单位长,建立如图所示的空间直角坐标系则(1,0,BC=,11(1,BB AA==-,(0,3,AC=-设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩即可取,1(3,n=-10cos,5||||n ACn ACn AC=-〈〉=BB1C1C所成角的正弦值为51111得1AB AC⊥;(Ⅱ)易证OA,1OA,OC两两垂直.以O为坐标原点,OA的方向为x轴的正向,||OA为单位长,建立坐标系,可得BC,1BB,AC的坐标,设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩,可解得,1(3,n=-,n AC〈〉,即为所求正弦值.1011 / 1622)()A B ,411161616⨯+1【提示】(Ⅰ)设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得1212()()|+|+++4PM PN R r r R r r ==-=||,而||2NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(Ⅱ)设曲线C 上任意一点,()P x y ,由于||2222PM PN R ≤|-|=-,所以2R ≤,当且仅当圆P 的圆心为所以可设l :4)+(y k x =,与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【考点】圆的标准方程及其性质,椭圆的的定义及其几何性质,直线与双曲线的位置关系.21.【答案】(Ⅰ)4a =2b =2c =2d =(Ⅱ)2[1,]e【解析】(Ⅰ)由已知得(0)2f =,(0)2g =,(0)4f '=,(0)4g '=.(步骤1)而+()2f x x a =',((+))+x g x e cx d c '=,故2b =,2d =,4a =,+4d c =.(步骤2)从而4a =,2b =,2c =,2d =.(步骤3)13 / 16(Ⅱ)由(Ⅰ)知,2()+4+2f x x x =,()21)+(x g x e x =.设函数2()()()2()+142x F x kg x f x ke x x x =-=---,则()2+()2242+1(2())x x F x ke x x x ke '=--=-.由题设可得(0)0F ≥,即1k ≥(步骤4)令()0F x '=得1ln x k =-,22x -=.(步骤5)①若21k e ≤<,则120x <≤-.从而当12(),x x ∈-时,()0F x '<;当1(),+x x ∈∞时,()0F x '>.即()F x 在1()2,x -单调递减,在1(),+x ∞单调递增.故()F x 在[)2,+-∞的最小值为1()F x .(步骤6)而1111211()2+24+0)22(F x x x x x x =--=-≥-.故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤7)②若2k e =,则2222+()()()2x F e x e e x -'=-.从而当2x >-时,)0(F x '>,即F (x )在()2,+-∞单调递增.而()20F -=,故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤8)③若2k e >,则22222+220()()F ke e k e ---=-=-<-.从而当2x ≥-时,()()f kg x x ≤不可能恒成立.综上,k 的取值范围是2[1,]e .(步骤9)【提示】(Ⅰ)对()f x ,()g x 进行求导,已知在交点处有相同的切线及曲线()y f x =和曲线()y g x =都过点(0,2)P ,从而解出a ,b ,c ,d 的值;(Ⅱ)由(Ⅰ)得出()f x ,()g x 的解析式,再求出()F x 及它的导函数,通过对k 的讨论,判断出()F x 的90,由勾股定理可得,故DG 60.30,所以CF ⊥BF ,故60.从而30.得到15 / 16【提示】(Ⅰ)对于曲线1C 利用三角函数的平方关系式22sin cos 1t t +=即可得到圆1C 的普通方程;再利用极坐标与直角坐标的互化公式即可得到1C 的极坐标方程;(Ⅱ)先求出曲线2C 的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标3⎝⎦21||23|2|x x y x +-=---,画出函数y 的图象,数形结合可得结论.。

2013年全国高考理科数学试题及答案-全国卷

2013年全国高考理科数学试题及答案-全国卷

2013年普通高等学校招生全国统一考试数学(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为(A )3 (B )4 (C )5 (D )6 2.()31+3i=(A )8- (B )8 (C )8i - (D )8i 3.已知向量()()1,1,2,2m n λλ=+=+,若()()m n m n +⊥-,则=λ(A )4- (B )3- (C )2- (D )-1 4.已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭5.函数()()21=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210xx -> 6.已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 (A )()10613---(B )()101139-- (C )()10313-- (D )()1031+3- 7. ()()8411+x y +的展开式中22x y 的系数是(A )56 (B )84 (C )112 (D )1688.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是(A )1324⎡⎤⎢⎥⎣⎦, (B )3384⎡⎤⎢⎥⎣⎦, (C )112⎡⎤⎢⎥⎣⎦,(D )314⎡⎤⎢⎥⎣⎦, 9.若函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭是增函数,则a 的取值范围是 (A )[-1,0] (B )[1,)-+∞ (C )[0,3] (D )[3,)+∞10.已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于(A )23(B)33(C)23(D)1311.已知抛物线2:8C y x=与点()2,2M-,过C的焦点且斜率为k的直线与C交于,A B两点,若0MA MB=,则k=(A)12(B)22(C)2(D)212.已知函数()=cos sin2f x x x,下列结论中错误的是(A)()y f x=的图像关于(),0π中心对称(B)()y f x=的图像关于直线2xπ=对称(C)()f x的最大值为32(D)()f x既奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.已知α是第三象限角,1sin3a=-,则cot a= .14.6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)15.记不等式组0,34,34,xx yx y≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D,若直线()1y a x=+与D公共点,则a的取值范围是 .16.已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,32OK=,且圆O与圆K所在的平面所成的一个二面角为60,则球O的表面积等于 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)等差数列{}n a的前n项和为n S,已知232=S a,且124,,S S S成等比数列,求{}n a的通项式。

2013全国高考1卷理科数学试题与答案解析

2013全国高考1卷理科数学试题与答案解析

WORD 格式整理2012 年普通高等学校招生全国统一考试理科数学 第 I 卷一、选择题: 本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

( 1)已知集合 A {1,2,3,4,5} , B {( x, y) |x A, yA, x y A} ,则 B 中所含元素的个数为 ( A ) 3 ( B )6 (C ) 8 (D ) 10( 2)将 2 名教师, 4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1 名教师和2 名学生组成,不同的安排方案共有 ( A ) 12 种 ( B ) 10 种 ( C ) 9种 (D ) 8 种( 3)下面是关于复数 z 2 的四个命题 1ip 1 : | z | 2 p 2 : z 22i p 3 : z 的共轭复数为 1 i p 4 : z 的虚部为1其中真命题为(A ) p 2 , p 3( B ) p 1 ,p 2( C ) p 2 ,p 4 ( D ) p 3 , p 4( 4)设 F 1, F 2 是椭圆 E : x2 y 21(a b 0) 的左、右焦点, P 为a 2b 23aF PF 是底角为 30 的等腰三角形,则直线 x 上的一点,2 2 1E 的离心率为(A) 1 2 3 4 (B) 3 (C) (D) 2 4 5( 5)已知 { a n } 为等比数列, a 4a 7 2 , a 5 a 6 8 ,则 a 1 a10(A) 7 (B) 5 (C) 5 (D) 7( 6)如果执行右边的程序图,输入正整数N ( N 2) 和实数 a 1 , a 2 ,..., a N 输入A, B , 则(A) A B 为 a 1 , a 2 ,..., a N 的和( B )AB为 a ,a ,..., a 的算式平均数 2 1 2 N( C ) A 和 B 分别是 a 1 , a 2 ,..., a N 中最大的数和最小的数专业技术参考资料WORD 格式整理( D ) A 和 B 分别是 a 1 , a 2 ,..., a N 中最小的数和最大的数( 7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( A ) 6 (B)9 ( C ) 12 ( D ) 18( 8)等轴双曲线 C 的中心在原点,焦点在 x 轴上, C 与抛物线 y 216x 的准线交于 A, B 两点,| AB | 4 3 ,则 C 的实轴长为( A ) 2 ( B ) 2 2 ( C ) 4 ( D ) 8( 9)已知 0 ,函数 f (x) sin( x ) 在 , 单调递减,则 的取值范围4 2(A) [ 1 ,5 ](B) [ 1 , 3] (C) (0, 1 ](D) (0, 2]2 4 2 4 2( 10)已知函数 f ( x) 1 ,则 y f ( x) 的图像大致为1) ln(x x( 11)已知三棱锥 S ABC 的所有顶点都在球 O 的球面上,ABC 是边长为 1 SC 为 O的正三角形, 的直径,且 SC 2 ,则此棱锥的体积为(A)2(B)3 (C)2(D)2 6 63 2( 12)设点 P 在曲线 y 1 e x上,点 Q 在曲线 yln(2 x) 上,则 | PQ |的最小值为2(A) 1 ln 2 (B)2(1 ln2) (C) 1 ln 2 (D)2(1 ln 2) 专业技术参考资料WORD 格式整理第Ⅱ卷本卷包括必考题和选考题两部分。

2013年高考(新课标I卷)理科数学试卷(word版精编精校含答案详解)供河北、河南、山西、陕西使用

2013年高考(新课标I卷)理科数学试卷(word版精编精校含答案详解)供河北、河南、山西、陕西使用

2013年普通高等学校招生全国统一考试理 科 数 学(新课标I 卷)使用省份:河北、河南、山西、陕西注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.(1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则(A )=B A ∅ (B )R =B A (C )A B ⊆ (D )B A ⊆(2)若复数z 满足()i 34i 43+=-z(A )4- (B )54- (C )4 (D )54 (3)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(A )简单的随机抽样 (B )按性别分层抽样(C )按学段分层抽样 (D )系统抽样(4)已知双曲线C :)0,0(12222>>=-b a by a x 的离心率为25,则C 的渐近线方程为 (A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±=(5)执行右面的程序框图,如果输入的[]31t ,-∈,则输出的s 属于(A )[]43,- (B )[]25,- (C )[]34,- (D )[]52,-(6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π(7)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m(A )3 (B )4 (C )5 (D )6(8)某几何体的三视图如图所示,则该几何体的体积为(A )8π16+(B )8π8+(C )π6116+(D )16π8+(9)设m 为正整数,()m y x 2+展开式的二项式系数的最大值为a ,()12++m y x 展开式的二项式系数的最大值为b ,若b a 713=,则m =(A )5 (B )6 (C )7 (D )8(10)已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E 于A 、B 两点。

2013年新课标1卷理科数学高考真题及答案

2013年新课标1卷理科数学高考真题及答案
【解析】由 图像关于直线 =-2对称,则
0= = ,
0= = ,解得 =8, =15,
∴ = ,
∴ = =
=
当 ∈(-∞, )∪(-2, )时, >0,
当 ∈( ,-2)∪( ,+∞)时, <0,
∴ 在(-∞, )单调递增,在( ,-2)单调递减,在(-2, )单调递增,在( ,+∞)单调递减,故当 = 和 = 时取极大值, = =16.
(20)(本小题满分12分)
已知圆 : ,圆 : ,动圆 与 外切并且与圆 内切,圆心 的轨迹为曲线C.
(Ⅰ)求C的方程;
(Ⅱ) 是与圆 ,圆 都相切的一条直线, 与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
【命题意图】
【解析】由已知得圆 的圆心为 (-1,0),半径 =1,圆 的圆心为 (1,0),半径 =3.
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束,将本试题和答题卡一并交回。
第Ⅰ卷
一、选择题共12小题。每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1、已知集合A={x|x2-2x>0},B={x|-<x<},则()
A、A∩B=B、A∪B=RC、B⊆AD、A⊆B
(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值。
【命题意图】本题主要考查空间线面、线线垂直的判定与性质及线面角的计算,考查空间想象能力、逻辑推论证能力,是容易题.
【解析】(Ⅰ)取AB中点E,连结CE, , ,
∵AB= , = ,∴ 是正三角形,
【解析】由题知 = = = ,故z的虚部为 ,故选D.

2013年高考理科数学全国大纲卷试题与答案word解析版

2013年高考理科数学全国大纲卷试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013大纲全国,理1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ).A .3B .4C .5D .6 2.(2013大纲全国,理2)3=( ).A .-8B .8C .-8iD .8i3.(2013大纲全国,理3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-14.(2013大纲全国,理4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫-- ⎪⎝⎭ C .(-1,0) D .1,12⎛⎫ ⎪⎝⎭ 5.(2013大纲全国,理5)函数f (x )=21log 1x ⎛⎫+⎪⎝⎭(x >0)的反函数f -1(x )=( ). A .121x -(x >0) B .121x-(x≠0) C .2x -1(x ∈R) D .2x -1(x >0)6.(2013大纲全国,理6)已知数列{a n }满足3a n +1+a n =0,a 2=43-,则{a n }的前10项和等于( ).A .-6(1-3-10)B .19(1-310) C .3(1-3-10) D .3(1+3-10)7.(2013大纲全国,理7)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ).A .56B .84C .112D .1688.(2013大纲全国,理8)椭圆C :22=143x y+的左、右顶点分别为A 1,A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( ).A .13,24⎡⎤⎢⎥⎣⎦ B .33,84⎡⎤⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦ 9.(2013大纲全国,理9)若函数f (x )=x 2+ax +1x 在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ). A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)10.(2013大纲全国,理10)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ).A .23 B.3 C.3 D .1311.(2013大纲全国,理11)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若0MA MB ⋅=,则k =( ).A .12 B. CD .212.(2013大纲全国,理12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ).A .y =f(x)的图像关于点(π,0)中心对称B .y =f(x)的图像关于直线π=2x 对称C .f(x)的最大值为 D .f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,理13)已知α是第三象限角,sin α=13-,则cot α=__________.14.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种.(用数字作答)15.(2013大纲全国,理15)记不等式组0,34,34xx yx y≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是__________.16.(2013大纲全国,理16)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,OK=32,且圆O与圆K所在的平面所成的一个二面角为60°,则球O的表面积等于__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,理17)(本小题满分10分)等差数列{a n}的前n项和为S n.已知S3=22a,且S1,S2,S4成等比数列,求{a n}的通项公式.18.(2013大纲全国,理18)(本小题满分12分)设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.(1)求B;(2)若sin A sin CC.19.(2013大纲全国,理19)(本小题满分12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A-PD-C的大小.20.(2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的数学期望.21.(2013大纲全国,理21)(本小题满分12分)已知双曲线C:2222=1x yb(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C.(1)求a,b;(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.22.(2013大纲全国,理22)(本小题满分12分)已知函数f(x)=1ln(1+)1x xxxλ(+)-+.(1)若x≥0时,f(x)≤0,求λ的最小值;(2)设数列{a n}的通项111=1+23nan+++,证明:a2n-a n+14n>ln 2.2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B解析:由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素.故选B. 2. 答案:A解析:323=13=8-.故选A. 3. 答案:B解析:由(m +n )⊥(m -n )⇒|m |2-|n |2=0⇒(λ+1)2+1-[(λ+2)2+4]=0⇒λ=-3.故选B. 4. 答案:B解析:由题意知-1<2x +1<0,则-1<x <12-.故选B. 5. 答案:A解析:由题意知11+x=2y⇒x =121y -(y >0),因此f -1(x )=121x-(x >0).故选A. 6. 答案:C解析:∵3a n +1+a n =0,∴a n +1=13n a -.∴数列{a n }是以13-为公比的等比数列.∵a 2=43-,∴a 1=4. ∴S 10=101413113⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C.7. 答案:D解析:因为(1+x )8的展开式中x 2的系数为28C ,(1+y )4的展开式中y 2的系数为24C ,所以x 2y 2的系数为2284C C 168=.故选D.8. 答案:B解析:设P 点坐标为(x 0,y 0),则2200=143x y +, 2002PA y k x =-,1002PA y k x =+,于是122200222003334244PA PA x y k k x x -⋅===---. 故12314PA PA k k =-.∵2PA k ∈[-2,-1], ∴133,84PA k ⎡⎤∈⎢⎥⎣⎦.故选B.解析:由条件知f ′(x )=2x +a -21x ≥0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,2⎛⎫+∞ ⎪⎝⎭上恒成立.∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a ≥3.故选D. 10. 答案:A解析:如下图,连结AC 交BD 于点O ,连结C 1O ,过C 作CH ⊥C 1O 于点H .∵11BD ACBD AA AC AA A ⊥⎫⎪⊥⎬⎪=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11=CH BD CH C O BD C O O ⊥⎫⎪⊥⎬⎪⎭CH ⊥平面C 1BD , ∴∠HDC 为CD 与平面BDC 1所成的角. 设AA 1=2AB =2,则==22AC OC,1C O =由等面积法,得C 1O ²CH =OC ²CC 1,即222CH ⋅=, ∴2=3CH . ∴sin ∠HDC =223==13HC DC .故选A.11. 答案:D解析:由题意知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x2-4(k 2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2242k k(+),x 1x 2=4.① 由112222y k x y k x =(-)⎧⎨=(-)⎩121221212124,[24].y y k x x k y y k x x x x +=(+)-⎧⎨=-(+)+⎩①② ∵0MA MB ⋅=,∴(x 1+2,y 1-2)²(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0,即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D.解析:由题意知f (x )=2cos 2x ²sin x =2(1-sin 2x )sin x . 令t =sin x ,t ∈[-1,1],则g (t )=2(1-t 2)t =2t -2t 3.令g ′(t )=2-6t 2=0,得=t ±. 当t =±1时,函数值为0;当3t =-时,函数值为9-;当3t =时,函数值为9.∴g (t )max =9,即f (x )的最大值为9.故选C.二、填空题:本大题共4小题,每小题5分.13.答案:解析:由题意知cos α=3==-.故cot α=cos sin αα14.答案:480解析:先排除甲、乙外的4人,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480⋅=(种). 15.答案:1,42⎡⎤⎢⎥⎣⎦解析:作出题中不等式组表示的可行域如图中阴影部分所示.∵直线y =a (x +1)过定点C (-1,0),由图并结合题意可知12BC k =,k AC =4,∴要使直线y =a (x +1)与平面区域D 有公共点, 则12≤a ≤4. 16.答案:16π解析:如下图,设MN 为两圆的公共弦,E 为MN 的中点,则OE ⊥MN ,KE ⊥MN ,结合题意可知∠OEK =60°.又MN =R ,∴△OMN 为正三角形.∴OE R .又OK ⊥EK ,∴32=OE R . ∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:设{a n }的公差为d .由S 3=22a 得3a 2=22a ,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得22S =S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d ,故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意;若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1. 18.解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-,因此B =120°.(2)由(1)知A +C =60°, 所以cos(A -C )=cos A cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sinC =1+22=, 故A -C =30°或A -C =-30°,因此C =15°或C =45°. 19.(1)证明:取BC 的中点E ,连结DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点, 所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连结FG , 则FG ∥CD ,FG ⊥PD .连结AF ,由△APD 为等边三角形可得AF ⊥PD . 所以∠AFG 为二面角A -PD -C 的平面角. 连结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =EG =12PB =1,故AG =3.在△AFG 中,FG =12CD =AF =AG =3,所以cos ∠AFG =2222FG AF AG FG AF +-=⨯⨯因此二面角A -PD -C 的大小为π-解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB|=2,则A(0,0),D (0,0),C(0),P (0,0. PC =(,PD=(0,. AP =,0,AD =,0).设平面PCD 的法向量为n 1=(x ,y ,z ),则n 1²PC=(x ,y ,z)²(,=0,n 1²PD=(x ,y ,z)²(0,=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故n 1=(0,-1,1).设平面PAD 的法向量为n 2=(m ,p ,q ),则n 2²AP =(m ,p ,q,0=0,n 2²AD=(m ,p ,q0)=0,可得m +q =0,m -p =0.取m =1,得p =1,q =-1,故n 2=(1,1,-1). 于是cos 〈n 1,n 2〉=1212||||=·n n n n .由于〈n 1,n 2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C的大小为πarccos 3-20.解:(1)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”. 则A =A 1²A 2.P (A )=P (A 1²A 2)=P (A 1)P (A 2)=14. (2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B 3表示事件“第3局乙参加比赛时,结果为乙负”.则P (X =0)=P (B 1²B 2²A 3)=P (B 1)P (B 2)²P (A 3)=18,P (X =2)=P (1B ²B 3)=P (1B )P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1151848--=,EX =0²P (X =0)+1²P (X =1)+2²P (X =2)=98.21.(1)解:由题设知c a=3,即222a b a +=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2. 将y =2代入上式,求得x =由题设知,=a 2=1. 所以a =1,b=(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k (x -3),k (k 2-8)x 2-6k 2x +9k 2+8=0.设A (x 1,y 1),B (x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=2268k k -,x 1²x 2=22988k k +-.于是|AF 1|=-(3x 1+1),|BF1|3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=23 -.故226283kk=--,解得k2=45,从而x1²x2=199-.由于|AF2|=1-3x1,|BF2|3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|²|BF2|=3(x1+x2)-9x1x2-1=16. 因而|AF2|²|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.22.(1)解:由已知f(0)=0,f′(x)=22121x xxλλ(-)-(+),f′(0)=0.若12λ<,则当0<x<2(1-2λ)时,f′(x)>0,所以f(x)>0.若12λ≥,则当x>0时,f′(x)<0,所以当x>0时,f(x)<0.综上,λ的最小值是12.(2)证明:令12λ=.由(1)知,当x>0时,f(x)<0,即2ln(1) 22x xxx(+)>++.取1xk=,则211>ln21k kk k k++(+).于是212111422(1)nn nk na an k k-=⎡⎤-+=+⎢⎥+⎣⎦∑=2121211ln21n nk n k nk kk k k --==++>(+)∑∑=ln 2n-ln n=ln 2.所以21ln24n na an-+>.2013 全国大纲卷理科数学第11页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校招生全国统一考试【全国卷一】
数 学【理工类】
参考公式:
如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =
如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式
如果事件A 在一次试验中发生的概率是p ,那么 343
V R p =
在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k k
n k n n P k C p p k n -=-=…
第一部分 【选择题 共60分】
注意事项:
1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上.
2、本部分共12小题,每小题5分,共60分.
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的.
1、
7(1)x +的展开式中2x 的系数是【 】
A 、
42 B 、35 C 、28 D 、21
2、复数
2
(1)2i i
-=【 】 A 、
1 B 、1- C 、i D 、i -
3、函数
29
,3()3
ln(2),3x x f x x x x ⎧-<⎪
=-⎨⎪-≥⎩
在3x =处的极限是【 】 A 、不存在 B 、等于6 C 、等于3 D 、等于0
4、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=【 】
A
B
C
D
5、函数
1
(0,1)x y a a a a
=->≠的图象可能是【 】
6、下列命题正确的是【 】
A 、若两条直线和同一个平面所成的角相等,则这两条直线平行
B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D 、若两个平面都垂直于第三个平面,则这两个平面平行
7、设
a 、
b 都是非零向量,下列四个条件中,使
||||
a b
a b =
成立的充分条件是【 】 A 、
a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =
8、已知抛物线关于
x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y .若点M
到该抛物线焦点的距离为
3,则||OM =【

A 、
B 、
C 、4
D 、9、某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗
A 原料1千克、
B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12
千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是【 】 A 、1800元 B 、2400元 C 、2800元 D 、3100元
10、如图,半径为
R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45
角的平面与半球面相交,所得交线上到平面
α的距离最大的点为B ,该交线上的一点P 满足60
BOP ∠=,

A 、P 两点间的球面距离为【

A 、
arccos
4R B 、4R π
C 、arccos 3
R D 、3R π
11、方程
22ay b x c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有【 】
A 、60条
B 、62条
C 、71条
D 、80条
12、设函数
()2cos f x x x =-,{}n a 是公差为
8
π
的等差数列,
125()()()5f a f a f a π++⋅⋅⋅+=,则2
313[()]f a a a -=【 】
A 、
0 B 、
2116π C 、21
8
π D 、21316π
第二部分 【非选择题 共90分】
注意事项:
【1】必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚.答在试题卷上无效. 【2】本部分共10个小题,共90分.
二、填空题【本大题共4个小题,每小题4分,共16分.把答案填在答题纸的相应位置上.】 13、设全集
{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则()
()U U A B =痧___________.
14、如图,在正方体
1111ABCD A BC D -中,
M 、N 分别是
CD 、1CC 的中点,则异面直线1A M 与DN
所成角的大小是____________.
15、椭圆
22
143
x y +=的左焦点为F ,直线
x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB
∆的面积是____________.

1x a =,1[
][
]()2
n n
n a
x x x n N *++=∈,现有下列命题:
16、记
[]x 为不超过实数x 的最大整数,例如,[2]2=,[1.5]1=,[0.3]1-=-.设a 为正整数,数列{}n x 满
①当
5a =时,数列{}n x 的前3项依次为5,3,2;
②对数列
{}n x 都存在正整数k ,当n k ≥时总有n k x x =;
③当
1n ≥
时,1n x ;
④对某个正整数
k ,若1k k x x +≥
,则n x =.
其中的真命题有____________.【写出所有真命题的编号】
三、解答题【本大题共6个小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.】 17、(本小题满分12分)
某居民小区有两个相互独立的安全防范系统【简称系统】
A 和
B ,系统A 和B 在任意时刻发生故障的概率分别为
1
10
和p . 【Ⅰ】若在任意时刻至少有一个系统不发生故障的概率为
49
50
,求p 的值; 【Ⅱ】设系统
A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ
.
18、(本小题满分12分)
函数
2
()6cos 3(0)2
x
f x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.
N
A 1
【Ⅰ】求
ω的值及函数()f x 的值域;
【Ⅱ】若
0()f x =
,且
0102
(,)33
x ∈-
,求0(1)f x +的值. 19、(本小题满分12分)
如图,在三棱锥
P ABC -中,90
APB ∠=,
60
PAB ∠=,
AB BC CA ==,平面PAB ⊥平面ABC .
【Ⅰ】求直线PC 与平面ABC 所成角的大小; 【Ⅱ】求二面角B AP C --的大小.
20、(本小题满分12分) 已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整

n 都成立.
【Ⅰ】求
1a ,2a 的值; 【Ⅱ】设
10a >,数列1
10{lg
}n
a a 的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.
21、(本小题满分12分)
如图,动点
M
到两定点
(1,0)A -、(2,0)B 构成MAB ∆,且2MBA MAB ∠=∠,设动点M
的轨迹为
C .
【Ⅰ】求轨迹
C 的方程;
||||PQ PR <,求
||
||
PR PQ 的取值范围.
【Ⅱ】设直线
2y x m =-+与y
轴交于点P
,与轨迹C
相交于点
Q R
、,且
22、(本小题满分14分)
已知a 为正实数,n 为自然数,抛物线2
2
n
a y x =-+

x 轴正半轴相交于点A ,设
()f n 为该抛物线在点A 处的切线在y 轴上的截距.
【Ⅰ】用a 和n 表示()f n ;
【Ⅱ】求对所有
n 都有
3
3()1()11
f n n f n n -≥
++成立的a 的最小值; 【Ⅲ】当
01a <<时,比较1
1
()(2)n k f k f k =-∑
与27(1)()4(0)(1)
f f n f f -
-的大小,并说明理由.。

相关文档
最新文档