七年级上 基本平面图形测试题

合集下载

七年级数学上册第四章基本平面图形单元综合测试题(共4页)

七年级数学上册第四章基本平面图形单元综合测试题(共4页)

第四章根本(gēnběn)平面图形一、填空题1.通过画图判断:假如两条直线都和同一条直线垂直,这两条直线的位置关系是.2.平面上有四个点A,B,C,D,没有三个点在同一直线上,过其中每两点画直线,可以画________条直线.3.时钟的分针每分钟转度,时针每小时转________度.4.如图,点A,B,C,D在同一直线上,以这四个点为端点的线段有______条,假设AC=12,点D是线段AB的中点,点B是线段CD的中点,BD那么AB=________.5.如图,∠BOA=90°,直线CD经过点O,假设∠BOD∶∠AOC=5∶2,那么∠AOC=_______,∠BOD=__________.6.如图,将一张长方形纸对折,使OA与OB重合,∠BOC的度数是__________.7.如图,将一张长方形纸按照如下图的方法对折,两条虚线为折痕,这两条折痕构成的角的度数是__________.二、选择题1.点A,B,P在同一(tóngyī)直线上,以下说法正确的选项是〔〕.(A)假设AB=2PA,那么P是AB的中点 (B)假设AP=PB,那么P是AB的中点(C)假设AB=2PB,那么P是AB的中点 (D)假设AB=2PA=2PB,那么P是AB的中点2.如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,假如MC比NC长2cm,AC比BC长〔〕.(A)1 cm (B)2 cm (C)4 cm (D)6 cm3.平面内的6条直线两两相交,最多有〔〕个交点.(A)12 (B)15 (C)16 (D)204.一个钝角的平分线和这个角的一边形成的角一定是〔〕.(A)锐角 (B)钝角 (C)直角 (D)平角5.如图,圆的四条半径分别是OA,OB,OC,OD,其中点O,A,B在同一条直线上,∠AOB=90°,∠AOC=3∠BOC,那么圆被四条半径分成的四个扇形的面积的比是〔〕(A)1∶2∶2∶3 (B) 3∶2∶2∶3 (C) 4∶2∶2∶3 (D) 1∶2∶2∶1三、解答题1.点A,B,C三点在同一直线上,AB的中点是点E,BC的中点是点F,EF=12,求AC的长度.〔答案可能不止一个哟!〕2.如图,∠AOC=∠DOE=90°,OF平分(píngfēn)∠AOD,OB平分∠COE,∠B OF度数是多少?说明理由.3.如图,点B,D都在线段AC上,D是线段AB的中点,BD=3BC, AC是BC的多少倍?4.如图,点O,A,B在同一直线上,OC平分∠AOD,OE平分∠FOB,∠COF=∠DOE=90°,求∠AOD.三、画图题在图中按要求画图并填空,并标上字母.①画直线AB;②过A点画直线a;③过A点画射线AC,和直线BF交于点C;④画线段(xiànduàn)AB的中点D;⑤连接DC,比拟线段AB和线段DC的长短;⑥画∠ACF的角平分线CE.内容总结(1)⑥画∠ACF的角平分线CE.。

七年级数学上册 第四章 基本平面图形 单元测试卷(北师版 2024年秋)

七年级数学上册 第四章 基本平面图形 单元测试卷(北师版 2024年秋)

七年级数学上册第四章基本平面图形单元测试卷(北师版2024年秋)七年级数学上(BS版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.[新趋势跨学科综合2024杭州西湖区月考]《红楼梦》第57回有这么一句话,“自古道:‘千里姻缘一线牵’,管姻缘的有一位月下老儿,暗里只用一根红线,把这两个人的脚绊住.”请问,这里所说的“线”若是真的,则在数学中指的应是()A.直线B.射线C.线段D.以上都不对2.小明在设计黑板报时,想在黑板上画出一条笔直的参照线,由于尺子不够长,他想出了如下方法:①在一根长度合适的毛线上涂满粉笔末;②由两名同学分别按住毛线两端,并绷紧;③捏起毛线后松开,便可在黑板上弹出一条笔直的参照线.上述方法的数学依据是()A.两点之间,线段最短B.两点确定一条直线C.线段中点的定义D.两点间距离的定义3.如图,点B,D,C在直线l上,点A在直线l外,下列说法正确的是()(第3题)A.直线BD和直线CD表示的是同一条直线B.射线BD和射线CD表示的是同一条射线C.∠A和∠BAD表示的是同一个角D.∠1和∠B表示的是同一个角4.[教材P121观察·思考变式2023河北]淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()(第4题)A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向5.[新考向数学文化2024北京昌平区月考]东汉初年,我国的《周髀算经》里就有“径一周三”的古率,提出了圆的直径与周长之间存在一定的比例关系.如图,将图中的半圆)向右水平拉直(保持M端不动),根据该古率,与拉直后铁丝N端的位置弧形铁丝(M最接近的是()(第5题)A.点A B.点B C.点C D.点D 6.[2024驻马店驿城区期末]如图,点A,B,C在直线l上,下列说法正确的是()(第6题)A.点C在线段AB上B.点A在线段BC的延长线上C.射线BC与射线CB是同一条射线D.AC=BC+AB7.[2024广州越秀区月考]下列说法正确的是()A.钟表现在的时间是10点30分,此时时针与分针所成的夹角是105°B.若经过某个多边形一个顶点的所有对角线,将这个多边形分成八个三角形,则这个多边形是九边形C.若AC=BC,则点C是线段AB的中点D.31.25°=31°15'8.[2024深圳南山区一模]如图①是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图②所示,它是以点O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为()(第8题)A.4.25πm2B.3.25πm2C.3πm2D.2.25πm29.如图,将一个三角尺60°角的顶点与另一个三角尺的直角顶点重合,∠1=27°40',则∠2的度数是()(第9题)A.27°40'B.62°20'C.57°40'D.58°20'10.[2024昆明三中月考]已知线段MN=10cm,P是直线MN上一点,NP=4cm,若E是线段MP的中点,则线段ME的长度为()A.3cm B.6cmC.3cm或7cm D.2cm或8cm二、填空题(每题3分,共24分)11.如图,从学校A到书店B最近的路线是①号路线,其中的道理是.(第11题)12.[2024滁州中学模拟]如图,比较图中∠BOC,∠BOD的大小:因为OB是公共边,OC 在∠BOD的内部,所以∠BOC∠BOD(填“>”“<”或“=”).(第12题)13.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,正h 边形的内角和为360°,则代数式h·(m-k)n=.14.[2024北京十二中期末]如图,D是AB的中点,E是BC的中点,BE=16AC=3cm,则线段DE=.(第14题)15.[教材P127习题T8变式2024西安高新一中期末]小明利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,小明到家时时针和分针夹角的度数是.16.将一张长方形ABCD纸片按如图所示的方式折叠,OE和OF为折痕,点B落在点B'处,点C落在点C'处,若∠BOE=35°,∠COF=30°,则∠B'OC'的度数为.(第16题)17.[情境题生活应用]由三门峡南开往北京丰台的G562次列车,运行途中停靠的车站依次是:洛阳龙门—郑州东—鹤壁东—安阳东—石家庄—保定东—涿州东,那么要为这次列车制作车票种.18.[2024郑州外国语中学月考]如图,∠AOC和∠BOD都是直角.固定∠BOD不动,将∠AOC绕点O旋转,在旋转过程中,下列结论正确的有.(第18题)①如果∠DOC=20°,那么∠AOB=160°;②∠DOC+∠AOB是定值;③若∠DOC变小,则∠AOB变大;④∠AOD=∠BOC.三、解答题(19,22,24题每题12分,其余每题10分,共66分)19.[教材P116习题T2变式2024绵阳涪城区期末]如图,在平面内有三点A,B,C.(1)利用尺规,按下面的要求作图.(要求:不写画法,保留作图痕迹)①作射线BA;②作直线BC;③连接AC,并在线段AC上作一条线段AD,使AD=AB,连接BD.(2)数数看,此时图中线段共有条.20.如图,一、二、三、四这四个扇形的面积之比为1∶3∶5∶1.(1)请分别求出它们圆心角的度数.(2)一、二、四这三个扇形的圆心角的度数之和是多少?21.如图,OM平分∠AOB,ON平分∠COD,∠MON=90°,∠BOC=26°43',求∠AOD 的度数.22.如图,点C,D,E在线段AB上,AD=13DC,E是线段CB的中点,CE=16AB=2,求线段DE的长.23.如图,已知O是直线AB上的一点,∠AOC∶∠BOC=2∶7,射线OM是∠AOC的平分线,射线ON是∠BOC的平分线.(1)∠AOC=,∠BOC=;(2)求∠MON的度数;(3)过点O作射线OD,若∠DON=12∠AOC,求∠COD的度数.24.[新视角动态探究题2024合肥包河区月考]如图,M是线段AB上一点,AB=10cm,点C,D分别从M,B两点同时出发以1cm/s,3cm/s的速度沿直线BA向左运动(C在线段AM上,D在线段BM上).(1)当点C,D运动了1s时,这时图中有条线段;(2)当点C,D运动了2s时,求AC+MD的值;(3)若点C,D运动时,总有MD=3AC,求AM的长.参考答案一、1.C2.B3.A4.D5.A6.D7.D8.D9.C10.C二、11.两点之间,线段最短12.<13.50014.9cm15.165°16.50°17.3618.①②③④点拨:因为∠AOC=∠BOD=90°,∠AOC=∠AOD+∠COD,∠BOD=∠BOC+∠COD,所以∠AOC+∠BOD=∠AOD+∠COD+∠BOC+∠COD=180°,即∠AOD+∠COD+∠BOC=180°-∠COD,即∠AOB=180°-∠COD.当∠DOC=20°时,∠AOB=160°.故①正确;因为∠AOB=180°-∠COD,所以∠DOC+∠AOB=180°是定值.故②正确;因为∠AOB=180°-∠COD,所以若∠DOC变小,则∠AOB变大.故③正确;因为∠AOC=∠BOD=∠AOD+∠COD=∠BOC+∠COD,所以∠AOD=∠BOC.故④正确.三、19.解:(1)如图所示.(2)620.解:(1)因为一、二、三、四这四个扇形的面积之比为1∶3∶5∶1,所以各个扇形的面积分别占整个圆面积的110,310,12,110.所以一、二、三、四这四个扇形的圆心角的度数分别为110×360°=36°,310×360°=108°,12×360°=180°,110×360°=36°.(2)一、二、四这三个扇形的圆心角的度数之和是36°+108°+36°=180°. 21.解:因为OM平分∠AOB,ON平分∠COD,所以∠BOM=12∠AOB,∠CON=12∠COD.因为∠MON=90°,∠BOC=26°43',所以∠CON+∠BOM=∠MON-∠BOC=90°-26°43'=63°17'.所以12∠COD+12∠AOB=∠CON+∠BOM=63°17'.所以∠COD+∠AOB=126°34'.所以∠AOD=∠COD+∠BOC+∠AOB=126°34'+26°43'=153°17'.22.解:因为CE=16AB=2,所以AB=12.因为E是线段CB的中点,所以BC=2CE=4.所以AC=8.因为AD=13DC,所以DC=34AC=6.所以DE=DC+CE=8.23.解:(1)40°;140°(2)因为射线OM是∠AOC的平分线,射线ON是∠BOC的平分线,所以∠COM=12∠AOC=20°,∠CON=12∠BOC=70°.所以∠MON=∠COM+∠CON=20°+70°=90°.(3)易得∠DON=12∠AOC=20°.当射线OD在∠CON的内部时,如图①,则∠COD=∠CON-∠DON=70°-20°=50°;当射线OD在∠BON的内部时,如图②,则∠COD=∠CON+∠DON=70°+20°=90°.综上,∠COD的度数为50°或90°.24.解:(1)10(2)当点C,D运动了2s时,CM=2cm,BD=6cm.又因为AB=10cm,所以AC+MD=AB-CM-BD=10-2-6=2(cm).(3)因为C,D两点的速度分别为1cm/s,3cm/s,所以BD=3CM.又因为MD=3AC,所以BD+MD=3CM+3AC,即BM=3AM.所以AM=14AB=14×10=2.5(cm).。

北师大版七年级上册数学第四章基本平面图形测试题(全章)

北师大版七年级上册数学第四章基本平面图形测试题(全章)
A.5 cmB.1 cmC.5或1 cmD.无法确定
7.12点15分,时针与分针所夹的小于平角的角为()
A.90°B.67.5°C.82.5°D.60°
8.如图所示,从点O出发的5条射线,可以组成的角的个数是().
A.4B.6C.8D.10
9.如图,下列说法中正确的是:
A.OA的方向是北偏东30°
B.OB的方向是北偏西25°
(3)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,且过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,请直接写出点P的坐标.
22.如图,四边形ABCD中,AC⊥BD垂足为点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD,连接NF.
(2)连接CD,并将其反向延长至E,使得DE=2CD;
(3)在平面内找到一点F,使F到A、B、C、D四点距离最短.
24.如图,C为线段AB的中点,D在线段CB上,且DA=6,DB=4.求:
(1)求AB的长;
(2)求CD的长.
25.如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.
20.从1,2,3,4四个数中随机选取两个不同的数,分别记为a,c,请用树状图或列表法求:“关于x的一元二次方程ax2+4x+c=0有实数根的概率.
21.如图,一次函数y=x﹣3的图象与反比例函数y= (k≠0)的图象交于点A与点B(a,﹣4).
(1)求反比例函数的表达式;
(2)一次函数y=x﹣3的图象与x轴交于点M,连接OB,求△OBM的面积;
14.三角形的两边长分别为3和6,第三边的长是方程 -6x+8=0的解,则此三角形的第三边长是_____

(好题)初中数学七年级数学上册第四单元《基本平面图形》测试(有答案解析)(2)

(好题)初中数学七年级数学上册第四单元《基本平面图形》测试(有答案解析)(2)

一、选择题1.如图,棋盘上有黑、白两色棋子若干,如果在一条至少有两颗棋子的直线(包括图中没有画出的直线)上只有颜色相同的棋子,我们就称“同棋共线”.图中“同棋共线”的线共有( )A .12条B .10条C .8条D .3条2.已知点A ,B ,C 在同一条直线上,线段10AB =,线段8BC =,点M 是线段AB 的中点.则MC 等于( )A .3B .13C .3或者13D .2或者18 3.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ = 4.两条长度分别为20cm 和24cm 的线段有一端点重合,且在一条直线上,则此两条线段的中点之间的距离为( )A .2cmB .22cmC .2cm 或22cmD .4cm 或20cm 5.如图,直线,AB CD 交于点O ,已知EO AB ⊥于点,O OF 平分BOC ∠,若35DOE EOF ︒∠=∠+,则AOD ∠的度数是( )A .71°B .72°C .73°D .74°6.将一副直角三角尺按如图所小的不同方式摆放,则图中α∠与β∠互余的是( )A .B .C .D .7.下列说法:①把弯曲的河道改直,能够缩短航程,这是由于两点之间线段最短;②若线段AC BC =,则点C 是线段AB 的中点;③射线OB 与射线OC 是同一条射线;④连结两点的线段叫做这两点的距离;⑤将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.其中说法正确的有( )A .1个B .2个C .3个D .4个8.如图,两条直线相交,有一个交点.三条直线相交,最多有三个交点,四条直线相交,最多有六个交点,当有10条直线相交时,最多有多少个交点( )A .60B .50C .45D .40 9.下列说法中,正确的是( ) A .射线是直线的一半B .线段AB 是点A 与点B 的距离C .两点之间所有连线中,线段最短D .角的大小与角的两边所画的长短有关 10.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉她,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种形状的地砖是( )A .B .C .D . 11.如果α∠与β∠的两边分别平行,α∠比β∠的3倍少40︒,则α∠的度数为( ) A .35︒ B .125︒ C .20︒或125︒ D .35︒或125︒ 12.按语句“连接PQ 并延长线段PQ”画图正确的是( )A .B .C .D .二、填空题13.如图,已知156,48AOD DON ∠=︒∠=︒,射线,,OB OM ON 在AOD ∠内部,OM 平分,AOB ON ∠平分BOD ∠.(1)求MON ∠的度数;(2)若射线OC 在AOD ∠内部,23NOC ∠=︒,求COM ∠的度数.14.已知:90AOB ∠=︒,做射线OC ,OD 是AOC ∠的角平分线,OE 是BOC ∠的角平分线.(1)如图①,当70BOC ∠=︒时,求DOE ∠的度数;①(2)如图②,若射线OC 在AOB ∠内部绕O 点旋转,当BOC a ∠=时,求DOE ∠的度数;②(3)若射线OC 在AOB ∠外绕O 点旋转且AOC ∠为钝角时,求DOE ∠的度数.15.如图,已知C,D两点将线段AB分成三部分,且这三部分的长度之比为2:3:4,点M为线段AB的中点,BD=8cm,求线段DM的长.A B C是同一平面内三个点,借助直尺、刻度尺、量角器完成(以16.读句画图如图,点,,答题卡上印刷的图形为准):(1)画图:①画射线AB;②画直线BC;=.③连接AC并延长到点D,使得CD CA∠约为_________°(精确到1︒).(2)测量:ABC17.如图,点,C D在线段AB上,点M是线段AC的中点,点N是线段DB的中点,若==,求线段AB的长.MN CD8,318.根据下列要求画图(不写作法,保留作图痕迹)(1)连接线段OB;(2)画射线AO,射线AB;=,画直线OC.(3)用圆规在射线AB上截取AC,使得AC OB19.如图,OB,OC是AOD内部的两条射线,OM平分AOB,ON平分COD,BOC=40,(1)若20AOM ∠=︒,求AOC ∠的度数;(2)若118AOD ∠=︒,求MON ∠的度数.20.如图,已知OE 是AOC ∠的角平分线,OD 是BOC ∠的角平分线.(1)若70AOE ∠=︒,20COD ∠=︒,求AOB ∠的度数;(2)若45DOE ∠=︒,且180AOC BOC ∠+∠=︒,求COD ∠的度数.三、解答题21.如图,OE 是∠COA 的平分线,∠AOE =40°,∠AOB =∠COD =18°.(1)求∠BOC 的度数;(2)比较∠AOC 和∠BOD 的大小,并说明理由.22.如图,平面上有三个点A 、B 、C ,根据下列要求画图.(1)画直线AB 、AC ;(2)作射线BC ;(3)在线段AB 上取点E 、在线段AC 上取点F ,连接EF ,并延长EF .23.如图,点A O B 、、在同一条直线上,COD ∠为直角,将COD ∠绕点О在直线AB 上方旋转(AOC ∠大于0︒,且小于或等于90),射线OE 是BOC ∠的平分线.(1)当30AOC ∠=︒时,求DOE ∠的度数﹔(2)若OC 恰好将AOE ∠分成了1:2的两个角,求此时DOE ∠的度数.24.如图,已知60cm AB =,点C 为线段AB 的中点,点D 是线段AB 上的点,且AD 与DB 的长度之比2:1.(1)求BD 的长.(2)求CD 的长.25.读句画图如图,点,,A B C 是同一平面内三个点,借助直尺、刻度尺、量角器完成(以答题卡上印刷的图形为准):(1)画图:①画射线AB ;②画直线BC ;③连接AC 并延长到点D ,使得CD CA =.(2)测量:ABC ∠约为_________°(精确到1︒).26.如图,已如A ,B 两点.(1)画线段AB ;(2)延长线段AB 到点C ,使BC AB =;(3)反向延长线段AB 到点D ,使DA AB =;(4)点A ,B 分别是哪条线段的中点?若3cm AB =,请求出线段CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】把问题转化两白棋子共线和两黑棋子共线两种情形求解即可.【详解】结合图形,从横行、纵行、斜行三个方面进行分析;一条直线上至少有两颗棋子并且颜色相同,如下,共有10条:故选B.【点睛】本题考查了新定义问题,准确理解新定义的内涵,并灵活运用分类的思想是解题的关键.2.C解析:C【分析】由于点C的位置不能确定,故应分点C在线段AB外和点C在线段AB之间两种情况进行解答.【详解】解:当A、B、C的位置如图1所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC=BM+BC=5+8=13;当A、B、C的位置如图2所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC= BC-BM =8-5=3.综上所述,线段MC的长为3或13.故选:C【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解.3.A解析:A【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:①当动点P、Q在点O左侧运动时,②当动点P、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t秒,由题意可知: AP=3t, BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),∵OQ= BO- BQ=2-t,∴PQ= 2OQ ;②当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),∵OQ=BQ- BO=t-2,∴PQ= 2OQ,综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的2倍,即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用. 4.C解析:C【分析】设较长的线段为AB,较短的线段为BC,根据中点定义求出BM、BN的长度,然后分①BC 不在AB上时,MN=BM+BN,②BC在AB上时,MN=BM−BN,分别代入数据进行计算即可得解.【详解】解:如图,设较长的线段为AB=24cm,较短的线段为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM−BN=12−10=2cm,综上所述,两条线段的中点间的距离是2cm或22cm;故选:C.【点睛】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.5.D解析:D【分析】根据垂直的定义得∠AOE=∠BOE=90°,由角平分线的定义和对顶角的性质可得∠AOD=∠BOC=2∠COF.把∠DOE=∠AOD+90°,∠EOF=90°-∠BOF=90°-∠COF代入∠DOE=3∠EOF+5°可求出∠COF,进而可求出∠AOD的值.【详解】⊥,解:∵EO AB∴∠AOE=∠BOE=90°.∠,∵OF平分BOC∴∠AOD=∠BOC=2∠COF.∵∠DOE=∠AOD+90°,∠EOF=90°-∠BOF=90°-∠COF,35∠=∠+,DOE EOF︒∴∠AOD+90°=3(90°-∠COF)+5°,∴2∠COF+90°=270°-3∠COF+5°,∴∠COF=37°,∴∠AOD=2×37°=74°.故选D.【点睛】本题考查了角的和差,以及角平分线的定义,正确识图是解答本题的关键.6.A解析:A【分析】根据直角三角板中各个角的度数、互余、互补的定义逐项判断即可得.【详解】A 、90180αβ∠+∠+︒=︒,90αβ∴∠+∠=︒,即α∠与β∠互余,此项符合题意;B 、90β∠=︒,α∠为锐角,90αβ∴∠+∠>︒,则α∠与β∠不可能互余,此项不符题意; C 、18045135αβ∠=∠=︒-︒=︒,270αβ∴∠+∠=︒,则α∠与β∠不可能互余,此项不符题意; D 、904545,903060αβ∠=︒-︒=︒∠=︒-︒=︒, 4560105αβ∴∠+∠=︒+︒=︒,则α∠与β∠不可能互余,此项不符题意; 故选:A .【点睛】本题考查了余角、补角、角的运算,熟练掌握角的运算是解题关键. 7.B解析:B【分析】根据线段的性质及两点间距离的定义对各说法进行逐一分析即可.【详解】解:①符合两点之间线段最短,故本说法正确;②当ABC 不共线时,点C 不是线段AB 的中点,故本说法错误; ③射线OB 与射线OC 可能是两条不同的射线,故本说法错误; ④连接两点的线段的长度叫做这两点的距离,故本说法错误; ⑤符合两点确定一条直线,故本说法正确.故选:B .【点睛】本题考查的是线段的性质,熟知“两点之间线段最短”是解答此题的关键. 8.C解析:C【分析】根据交点个数的变化规律:n 条直线相交,最多有1+2+3+…+(n ﹣1)= (1)2n n -个交点,然后计算求解即可.【详解】解:两条直线相交,最多一个交点,三条直线相交,最多有三个交点,1+2=3=3(31)2-, 四条直线相交,最多有六个交点,1+2+3=6=4(41)2-, ……∴n 条直线相交,最多有1+2+3+…+(n ﹣1)=(1)2n n -个交点, 故10条直线相交,最多有1+2+3+ (9)10(101)2-=5×9=45个交点, 故选:C .【点睛】 本题考查了图形的变化规律探究,在相交线的基础上,着重培养学生的观察,猜想归纳的能力,掌握从特殊到一般的方法,找出变化规律是解答的关键.9.C解析:C【分析】依据射线、直线、线段、角的概念,以及两点之间的连线,线段最短,即可进行判断;【详解】A .射线的长度无法度量,故不是直线的一半,故本选项错误;B .线段AB 的长度是点A 与点B 的距离,故本选项错误;C .两点之间所有连线中,线段最短,故本选项正确;D .角的大小与角的两边所画的长短无关,故本选项错误;故选:C .【点睛】本意主要考查了射线、直线、线段以及角的概念,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短;10.B解析:B【分析】正八边形的一个内角为135°,从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】正八边形的每个内角为()821808-⨯︒=135°, A 、正八边形、正三角形内角分别为135°、60°,显然不能构成360°的周角,故不能铺满; B 、正方形、八边形内角分别为90°、135°,由于135×2+90=360,故能铺满;C 、正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;D 、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.故选:B .【点睛】本题主要考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.11.C解析:C【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40°,可得出答案.【详解】设∠β为x,则∠α为3x−40°,若两角互补,则x+3x−40°=180°,解得x=55°,∠α=125°;若两角相等,则x=3x−40°,解得x=20°,∠α=20°.故选:C.【点睛】本题考查角有关的运算,关键在于根据两角的两边分别平行打开此题的突破口.12.A解析:A【分析】根据线段的延长线的定义逐个判断即可.【详解】解:A、图形和语言符合,故本选项正确;B、不是表示线段PQ的延长线,故本选项错误;C、不是表示线段PQ的延长线,故本选项错误;D、不是表示线段PQ的延长线,故本选项错误;故选:A.【点睛】本题考查了对直线、射线、线段的应用,主要考查学生的观察图形的能力和理解能力.二、填空题13.(1)∠MON=78°;(2)∠COM=101°或55°【分析】(1)由题意易得由∠BOD+∠AOB=∠AOD进而问题可求解;(2)由题意可分当射线OC在∠MON 的外部时和当射线OC在∠MON的内部解析:(1)∠MON=78°;(2)∠COM=101°或55°【分析】(1)由题意易得11,22BON BOD BOM AOB∠=∠∠=∠,由∠BOD+∠AOB=∠AOD,进而问题可求解;(2)由题意可分当射线OC在∠MON的外部时和当射线OC在∠MON的内部时,然后分类求解即可.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴11,22BON BOD BOM AOB ∠=∠∠=∠, ∵∠AOD=∠BOD+∠AOB=156°, ∴()111567822MON BON BOM BOD AOB ∠=∠+∠=∠+∠=⨯︒=︒; (2)由题意得:①当射线OC 在∠MON 的外部时,如图所示:由(1)得∠MON=78°,∵∠CON=23°,∴∠COM=∠CON+∠MON=101°;②当射线OC 在∠MON 的内部时,如图所示:∴∠COM=∠MON-∠NOC=55°;综上所述:∠COM=101°或55°.【点睛】本题主要考查角平分线的定义及角的和差关系,熟练掌握角平分线的定义及角的和差关系是解题的关键.14.(1)45°;(2)45°;(3)45°或135°【分析】(1)由∠BOC 的度数求出∠AOC 的度数利用角平分线定义求出∠COD 与∠COE 的度数相加即可求出∠DOE 的度数;(2)∠DOE 度数不变理由为解析:(1)45°;(2)45°;(3)45°或135°【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE =∠COD +∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】解:(1)∵90AOB ∠=︒,70BOC ∠=︒∴9020AOC BOC ∠=︒-∠=︒,∵OD 、OE 分别平分AOC ∠和BOC ∠, ∴1102COD AOC ∠=∠=︒,1352COE BOC ∠=∠=︒, ∴45DOE COD COE ∠=∠+∠=︒;(2)DOE ∠的大小不变,理由是:∵90AOB ∠=︒,BOC α∠=∴90AOD α∠=︒-又∵OE ,OD 分别是BOC ∠与AOC ∠的平分线∴12EOC α∠=,()1902COD α∠=︒- ∴DOE EOC COD ∠=∠+∠()11904522αα=+︒-=︒. (3)DOE ∠的大小发生变化情况为,如图3,则DOE ∠为45°;如图4,则DOE ∠为135°,分两种情况:如图3所示,∵OD 、OE 分别平分AOC ∠和BOC ∠,∴12COD AOC ∠=∠,12COE BOC ∠=∠, ∴()1452DOE COD COE AOC BOC ∠=∠-∠=∠-∠=︒; 如图4所示,∵OE ,OD 分别是BOC ∠与AOC ∠的平分线∴EOC BOE ∠=∠,COD AOD ∠=∠又∵90AOB ∠=︒∴270AOD DOC COE EOB ∠+∠+∠+∠=︒∴22270DOC COE ∠+∠=︒∴135DOC COE ∠+∠=︒∴135DOE ∠=︒.【点睛】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键.容易出错的地方是解(3)小题漏掉其中的一种情况.15.【分析】根据按比例分配的意义线段中点的意义及线段的和差运算解答【详解】解:由图可知:AC:CD:DB=2:3:4∴∵BD=8cm ∴cm ∵点M 为线段AB 的中点∴BM=18cm ∴DM=BM-BD=9-8解析:=1cm DM【分析】根据按比例分配的意义、线段中点的意义及线段的和差运算解答.【详解】解:由图可知:AC:CD:DB=2:3:4, ∴49DB AB =, ∵BD=8cm , ∴98184AB =⨯=cm , ∵点M 为线段AB 的中点,∴BM=18192⨯=cm , ∴DM=BM-BD=9-8=1cm .【点睛】本题考查线段的应用,熟练掌握按比例分配的意义、线段中点的意义及线段的和差运算是解题关键.16.(1)①见解析;②见解析;③见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得【详解】解:(1)如图所示:①射线AB 即为所求;②直线BC 即为所求;③线段CD=CA解析:(1)①见解析;②见解析;③见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示: ①射线AB 即为所求;②直线BC 即为所求;③线段CD=CA 即为所求(2)ABC ∠约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量. 17.13【分析】根据已知条件得出再求出=10根据求出AB 的长即可;【详解】解:点是的中点点是的中点【点睛】本题考查了两点之间的距离的应用主要考查学生的观察图形的能力和计算能力解析:13【分析】根据已知条件得出2,2==AC MC BD DN ,再求出22+=+AC BD MC DN =10,根据AB AC BD CD =++求出A B 的长即可;【详解】解: 8,3MN CD ==835,MC DN ∴+=-=点M 是AC 的中点,点N 是BD 的中点2,2,AC MC BD DN ∴==22,AC BD MC DN ∴+=+()2MC DN =+25=⨯10=.AB AC BD CD ∴=++103=+13=【点睛】本题考查了两点之间的距离的应用,主要考查学生的观察图形的能力和计算能力. 18.(1)见解析;(2)见解析;(3)见解析【分析】(1)连接OB 即可;(2)连接AOAB 并延长;(3)先用圆规在射线上截取AC=OB 再画直线OC【详解】解:(1)如图所示线段即为所求;(2)如图所示射解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)连接OB 即可;(2)连接AO 、AB 并延长;(3)先用圆规在射线AB 上截取AC=OB ,再画直线OC .【详解】解:(1)如图所示,线段OB 即为所求;(2)如图所示,射线AO 、射线AB 即为所求;(3)如图所示,直线OC 即为所求.【点睛】本题考查了画线段、射线、和直线,解题关键是遵循题意画图,注意直线、射线、线段的区别.19.(1)∠AOC=80°;(2)∠MON=79°【分析】(1)根据角平分线的定义可得相加可得∠MON 的度数;(2)先求得根据角平分线的定义可得相加可得∠MON 的度数【详解】(1)∵平分∴∴;(2)∵∵解析:(1)∠AOC=80°;(2)∠MON=79°.【分析】(1)根据角平分线的定义可得40AOB ∠=︒,相加可得∠MON 的度数;(2)先求得78COD AOB ∠+∠=︒,根据角平分线的定义可得39CON BOM ∠+∠=︒,相加可得∠MON 的度数.【详解】(1)∵20AOM ∠=︒,OM 平分AOB ∠,∴240AOB AOM ∠=∠=︒,∴404080AOC AOB BOC ∠=∠+∠=︒+︒=︒;(2)∵1184078COD AOB AOD BOC ∠+∠=∠-∠=︒-︒=︒,∵OM 平分AOB ∠,ON 平分COD ∠, ∴11()783922CON BOM COD AOB ∠+∠=∠+∠=⨯︒=︒, ∴()403979MON BOC CON BOM ∠=∠+∠+∠=︒+︒=︒. 【点睛】本题是有关角的计算,考查了角平分线的定义及角的和差倍分,注意利用数形结合的思想.20.(1)100°;(2)225°【分析】(1)由角平分线的定义可知∠BOC=2∠COD ∠AOC=2∠AOE 根据∠AOB=∠AOC-∠BOC 易得结果;(2)由角平分线定义设∠COD=∠BOD=x 得∠BO解析:(1)100°;(2)22.5°【分析】(1)由角平分线的定义可知∠BOC=2∠COD ,∠AOC=2∠AOE ,根据∠AOB=∠AOC-∠BOC 易得结果;(2)由角平分线定义,设∠COD=∠BOD=x .得∠BOE=45°−x ,∠COE=45°+x .∠AOE=∠COE=45°+x 再根据题意∠AOC+∠BOC=180°,列方程,求出x ,即可得.【详解】解:(1)因为OD 是BOC ∠的角平分线,20COD ∠=︒,所以240BOC COD ∠=∠=︒.因为OE 是AOC ∠的角平分线,所以2140AOC AOE ∠=∠=︒.所以14040100AOB AOC BOC ∠=∠-∠=-︒=︒.(2)因为OD 是BOC ∠的角平分线,所以设COD BOD x ∠=∠=.因为45DOE ∠=︒,所以45BOE x ∠=︒-,45COE x ∠=︒+.因为OE 是AOC ∠的角平分线,所以45AOE COE x ∠=∠=︒+因为180AOC BOC ∠+∠=︒,所以()2452180x x ︒++=︒,所以22.5x =︒,即22.5COD ∠=︒.【点睛】本题考查了角平分线知识,关键是根据题意,由角平分线得定义得出角之间的等量关系,从而根据等量关系求出角的度数.三、解答题21.(1)62°;(2)∠AOC =∠BOD ,理由见解析【分析】(1)根据角平分线定义求出∠AOC ,根据∠BOC =∠AOC ﹣∠AOB 代入求出即可;(2)∠AOC =∠BOD ,理由是根据∠BOD =∠BOC +∠COD 求出∠BOD =80°,即可得出答案.【详解】解:(1)∵OE 是∠COA 的平分线,∠AOE =40°,∴∠AOC =2∠AOE =80°,∵∠AOB =18°,∴∠BOC =∠AOC ﹣∠AOB =62°;(2)∠AOC =∠BOD ,理由如下:∵∠BOC =62°,∠COD =18°,∴∠BOD =∠BOC +∠COD =80°,∵∠AOC =80°,∴∠AOC =∠BOD .【点睛】本题考查了角平分线定义和角的有关计算,主要考查学生能根据图形求出有关角的度,题目比较典型,是一道比较好的题目.22.见解析【分析】(1)画直线AB 、AC 注意两端延伸;(2)以B 点为端点,向点C 方向延伸;(3)根据几何语言画出对应的几何图形即可.【详解】解:(1)直线AB 、AC 为所作;(2)射线BC 为所作;(3)EF 为所作.【点睛】本题考查了直线、线段、射线的画法,解决此类题目的关键是熟悉基本几何图形的性质,能区别直线、线段、射线.23.(1)15DOE ∠=;(2)18DOE ∠=或45【分析】(1)利用平角的定义求得∠BOC=150︒,利用角平分线的性质求得∠COE=75︒,再利用余角的性质即可求得∠DOE=15︒;(1)分:①∠AOC :∠COE=1:2;②∠AOC :∠COE=2:1两种情况讨论,利用平角的定义和角平分线的性质求解即可.【详解】解:(1)∵30180AOC AOB ∠=︒∠=︒,,∴150BOC AOB AOC ∠=∠-∠=︒,∵射线OE 是BOC ∠的平分线,∴75COE BOE ∠=∠=,∵90COD ∠=,∴907515DOE COD COE ∠=∠-∠=︒-︒=;(1)∵OC 恰好将AOE ∠分成了1:2的两个角,∴有两种情况:①∠AOC :∠COE=1:2;②∠AOC :∠COE=2:1; ①如答图1,当∠AOC :∠COE=1:2时,设∠AOC=x ,∠COE=2x ,则2BOE COE x ∠=∠=,∵180AOB ∠=︒,∴22180x x x ++=︒,解得,36x =︒,∴272EOC x ∠==︒,∴907218DOE COD COE ∠=∠-∠=︒-︒=︒;②如答图2,当∠AOC :∠COE=2:1时,设∠AOC=2x ,∠COE=x ,则BOE COE x ∠=∠=,∵180AOB ∠=︒∴2180x x x ++=︒,解得,45x =︒,∴45EOC x ∠==︒,∴904545DOE COD COE ∠=∠-∠=︒-︒=︒;综上所述18DOE ∠=或45.【点睛】本题考查了角的计算,角平分线的定义,正确的识别图形并且运用好有关性质准确计算角的和差倍分是解题的关键.24.(1)20cm ;(2)10cm【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC ,再由CD=BC-BD ,可得出答案.【详解】解:(1)∵60cm AB =,AD 与DB 的长度之比2:1, ∴16020cm 3BD =⨯= (2)∵60cm AB =,点C 为线段AB 的中点, ∴130cm 2BC AB ==, ∴CD BC BD =- 3020=-10cm =【点睛】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.25.(1)①见解析;②见解析;③见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示: ①射线AB 即为所求;②直线BC 即为所求;③线段CD=CA 即为所求(2)ABC ∠约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量. 26.(1)见解析;(2)见解析;(3)见解析;(4)点A 是线段BD 的中点,点B 是线段AC 的中点;CD=9cm .【分析】(1)(2)(3)根据线段的定义和几何语言画出对应的几何图形;(4)根据线段的中点的定义可判断点A 是线段BD 的中点;点B 是线段AC 的中点;然后利用CD=3AB 求解.【详解】解:(1)如图,线段AB 为所作;(2)如图,点C 为所作;(3)如图,点D 为所作;(4)点A 是线段BD 的中点;点B 是线段AC 的中点;所以339CD DA AB BC =++=⨯=(cm ).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.。

(完整word版)七年级基本平面图形练习题(附答案)

(完整word版)七年级基本平面图形练习题(附答案)

七年级基本平面图形一 •选择题(共9小题)1. ( 2005?可源)由河源到广州的某一次列车,运行途中停靠的车站依次是:河源-惠州- 东莞-广州,那么要为这次列车制作的火车票有( )A . 3 种B . 4 种C . 6 种D . 12 种2.( 2003?台州)经过 A 、B 、C 三点的任意两点,可以画出的直线数为( )A . 1 或 2B . 1 或 3C . 2 或 3D . 1 或 2 或 33. ( 2003?黄 冈)C 区有10人.三个区在一条直线上,位置如图所示.公司的接送打算在此间只设一个停靠 点,要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在()5. 如图,在数轴上有 A 、B 、C 、D 、E 五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE , 若A 、E 两点表示的数的分别为-13和12,那么,该数轴上上述五个点所表示的整数中, 离线段AE 的中点最近的整数是( )6.在同一面内,不重合的三条直线的公共点数个数可能有( )A . 0个、1个或2个 B . 0个、2个或3个7. 如图所示,甲、乙、丙、丁、戊五名同学有以下说法: 甲说:直线BC 不过点A ”;乙说:点A 在直线CD 外”;丙说:D 在射线CB 的反向延长线上”;丁说:A , B , C , D 两两连接,有5条线段”; 戊说:射线AD 与射线CD 不相交”. 其中说明正确的有( )A 区B . B 区C . C 区D . 不确定(2002?太原)已知, P 是线段AB 上一点,且塑二2,则PB 5军等于(PB)7B . 5C . 2D .52~7\占区4. A .*------- *---- < ----------------------------------------B €■A . - 2B . - 1C . 0某公司员工分别住在 A 、B 、C 三个住宅区,A 区有30人,B 区有15人, CE C . 0个、1 D . 1个或3个& (2012?孝感)已知/ a是锐角,/ a与/ B互补,/ a与/ 丫互余,则/ 叶/ 丫的值等于()A . 45°B . 60°C . 90°D . 180°9. (2008?西宁)如果/ a和/ B互补,且/ a>Z 3,则下列表示/ B的余角的式子中:①90 -Z 3;②/a- 90°③丄(/ a+Z 3);④丄(/ a-Z 3)正确的有()[3 2A . 4个B . 3个C . 2个D . 1个二、解答题23.如图1,已知数轴上有三点A、B、C, AB=2AC,点C对应的数是200 .(1 )若BC=300 ,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A 点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为-800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,上QC- AM的值是否发生变化?若不变,求其值;若不变,请说明理由.24 .如图,已知数轴上点A表示的数为6, B是数轴上一点,且AB=10 .动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t> 0)秒.(1 [① 写出数轴上点B表示的数 ______________ ,点P表示的数______________ (用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q 从点A 出发,以每秒1个单位长度的速度沿数轴向左匀速运动; 动点R 从点B出发,以每秒 二个单位长度的速度沿数轴向左匀速运动,若P 、Q 、R 三动点同时出发,当点P 遇到点R 时,立即返回向点 Q 运动,遇到点 Q 后则停止运动.那么点 P 从开始运动到 停止运动,行驶的路程是多少个单位长度?A二J* > 625. 画线段 MN=3cm ,在线段 MN 上取一点Q ,使MQ=NQ ,延长线段 MN 至点A ,使 AN=^MN ;延长线段NM 至点B ,使BN=3BM ,根据所画图形计算: (1) 线段BM 的长度; (2) 线段AN 的长度;(3) 试说明Q 是哪些线段的中点?图中共有多少条线段?它们分别是?26. 如图(1),已知A 、B 位于直线 MN 的两侧,请在直线 MN 上找一点P ,使PA+PB 最 小,并说明依据.如图(2),动点0在直线MN 上运动,连接 A0,分别画/ AOM 、/ AON 的角平分线 OC 、 0D ,请问/ COD 的度数是否发生变化?若不变,求出/COD 的度数;若变化,说明理由.£9-2XA/■80 N⑵27. 如图 ①,已知线段 AB=12cm ,点C 为AB 上的一个动点,点 D 、E 分别是AC 和BC 的中点. (1) __________________________________________ 若点C 恰好是AB 中点,贝U DE= ______________________________________________ cm ; (2 )若 AC=4cm ,求 DE 的长;(3) 试利用 字母代替数”的方法,说明不论 AC 取何值(不超过12cm ), DE 的长不变;(4) 知识迁移:如图 ②,已知/ AOB=120 °过角的内部任一点 C 画射线0C ,若0D 、 0E 分别平分/ AOC 和/ BOC ,试说明/ DOE=60。

七年级上册数学单元测试卷-第四章 基本平面图形-北师大版(含答案)

七年级上册数学单元测试卷-第四章 基本平面图形-北师大版(含答案)

七年级上册数学单元测试卷-第四章基本平面图形-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,如果射线OA表示在阳光下你的身影的方向,那么你的身影的方向是( )A.北偏东60°B.南偏西60°C.北偏东30°D.南偏西30°2、小明根据下列语句,分别画出了图形(a)、(b)、(c)、(d)并将图形的标号填在了相应的“语句”后面的横线上,其中正确的是()①直线l经过点A、B、C三点,并且点C在点A与B之间②点C在线段AB的反向延长线③点P是直线a外一点,过点P的直线b与直线a相交于点Q④直线l、m、n相交于点DA.①、②、③、④B.①、②、④C.①、③、④D.②、③3、如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°4、如果、、三点共线,线段,,那么、两点间的距离是()A.1B.11C.5.5D.11或15、对于直线AB,线段CD,射线EF,在下列各图中能相交的是()A. B. C. D.6、如图,点D,E,F分别为△ABC各边的中点,下列说法正确的是( )A.DE=DFB.EF= ABC.S△ABD =S△ACDD.AD平分∠BAC7、下列命题中,正确的是()A.圆只有一条对称轴B.圆的对称轴不止一条,但只有有限条C.圆有无数条对称轴,每条直径都是它的对称轴&nbsp;D.圆有无数条对称轴,每条直径所在的直线都是它的对称轴8、钟表在4点10分时,它的时针和分针所形成的锐角度数是()A.75°B.65°C.85°D.90°9、下列说法中正确的是()A.若|a|=﹣a,则 a 一定是负数B.单项式 x 3y 2z 的系数为 1,次数是6 C.若 AP=BP,则点 P 是线段 AB 的中点 D.若∠AOC= ∠AOB,则射线 OC 是∠AOB 的平分线10、下列说法:①两点之间,直线最短;②若AC=BC,且A,B,C三点共线,则点C是线段AB的中点;③经过一点有且只有一条直线与已知直线垂直;④经过一点有且只有一条直线与已知直线平行.其中正确的说法有()A.1个B.2个C.3个D.4个11、如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10 +5D.3512、如图,一枚半径为r的硬币沿着直线滚动一圈,圆心经过的距离是()A.4πrB.2πrC.πrD.2r13、当分针指向12,时针这时恰好与分针成120°的角,此时是()A.9点钟B.8点钟C.4点钟D.8点钟或4点钟14、下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧15、如图,点C是AB的中点,点D是BC的中点,现给出下列等式:①CD=AC-DB,②CD= AB,③CD=AD-BC,④BD=2AD-AB.其中正确的等式编号是()A. B. C. D.二、填空题(共10题,共计30分)16、一列火车在A、B两站间往返行驶,之间还有4个车站,至多共有________种不同的价格的车票.17、如图,AB=24,点C为AB的中点,点D在线段AC上,且AD:DC=1:2,则DB的长度为________.18、如图,将一副直角三角板如图放置,若,则________度.19、[知识背景]:三角形是数学中常见的基本图形,它的三个角之和为180°.等腰三角形是一种特殊的三角形,如果一个三角形有两边相等,那么这个三角形是等腰三角形,相等的两边所对的角也相等.如图1,在三角形ABC中,如果AB=AC,那么∠B=∠C.同样,如果∠B=∠C,则AB=AC,即这个三角形也是等腰三角形.[知识应用]:如图2,在三角形ABC中,∠ACB=90°,∠ABC=30°,将三角形ABC绕点C 逆时针旋转α(0°<α<60°)度(即∠ECB=α度),得到对应的三角形DEC,CE交AB于点H,连接BE,若三角形BEH为等腰三角形,则α=________°.20、如果一个多边形从一个顶点出发的对角线将这个多边形分成7个三角形,则这个多边形共有________ 条对角线.21、在灯塔处观测到轮船位于北偏西的方向,同时轮船在南偏东的方向,那么的大小为________.22、,,________23、如图:若CD=4cm,BD=7cm,B是AC的中点,则AC的长为________.24、如图,点A、B、C是直线l上的三个点,图中共有线段条数是________25、如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM(________)∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=________∠AMN,∠FNM=________∠DNM (角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF(________)由此我们可以得出一个结论:两条平行线被第三条直线所截,一对________角的平分线互相________.三、解答题(共5题,共计25分)26、计算:(1)13°29’+78°37‘(2)62°5’-21°39‘ (3)22°16′×5 (4)42°15′÷527、如图所示,军舰A在军舰B的正东方向上,且同时发现了一艘敌舰,其中A舰发现它在北偏东15°的方向上,B舰发现它在东北方向上,(1)试画出这艘敌舰的位置(用字母C表示).(2)求∠BCA=?28、如图,已知∠AOD和∠BOC都是直角,∠AOC=38°,OE平分∠BOD,求∠COE的度数。

(七年级)初一基本平面图形专项练习试题_附答案_北师大,人教版等通用版本

(七年级)初一基本平面图形专项练习试题_附答案_北师大,人教版等通用版本

初一基本平面图形一、单选题1.如图,在直角坐标系xOy 中,点P 的坐标为(4,3),PQ ⊥x 轴于Q ,M ,N 分别为OQ ,OP 上的动点,则QN +MN 的最小值为( )A .7225B .245C .125D .9625 2.已知,点C 在直线 AB 上, AC =a , BC =b ,且 a ≠b ,点 M 是线段 AB 的中点,则线段 MC 的长为( )A .2a b +B .2a b -C .2a b +或2a b -D .+2a b 或||2a b - 3.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD 、BC 的中点,下列结论:①若AD=BM ,则AB=3BD ;②若AC=BD ,则AM=BN ;③AC-BD=2(MC-DN );④2MN=AB-CD .其中正确的结论是( )A .①②③B .③④C .①②④D .①②③④ 4.把 8.32°用度、分、秒表示正确的是( )A .8°3′2″B .8°30′20″C .8°18′12″D .8°19′12″ 5.经过平面上的四个点,可以画出来的直线条数为( )A .1B .4C .6D .前三项都有可能6.如图,点M 在线段AN 的延长线上,且线段MN=20,第一次操作:分别取线段AM 和AN 的中点11M N ,;第二次操作:分别取线段1AM 和1AN 的中点22,M N ;第三次操作:分别取线段2AM 和2AN 的中点33,M N ;……连续这样操作10次,则每次的两个中点所形成的所有线段之和11221010M N M N M N +++=L ( )A .910202-B .910202+C .1010202-D .1010202+ 7.已知线段AC 和BC 在同一直线上,AC =8cm ,BC =3cm ,则线段AC 的中点和BC 中点之间的距离是( )A .5.5cmB .2.5cmC .4cmD .5.5cm 或2.5cm8.如图,将一副三角板的直角顶点重合摆放在在桌面上,下列各组角一定能互补的是( )A .∠BCD 和∠ACFB .∠ACD 和∠ACFC .∠ACB 和∠DCBD .∠BCF 和∠ACF9.如图,在公路 MN 两侧分别有 A 1, A 2......A 7,七个工厂,各工厂与公路 MN(图中粗线)之间有小公路连接.现在需要在公路 MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( ).①车站的位置设在 C 点好于 B 点;②车站的位置设在 B 点与 C 点之问公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③ 10.如图,某公司有三个住宅区,A ,B ,C 各区分别住有职工10人,15人,45人,且这三个区在一条大道上(A ,B ,C 三点共线),已知AB =150m ,BC =90m .为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .点AB .点BC .点A ,B 之间D .点C 11.观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是( )A.40个B.45个C.50个D.55个二、填空题12.已知点A,B,C都在直线l上,点P是线段AC的中点.设AB a=,PB b,则线段BC的长为________(用含a,b的代数式表示)13.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,则AC=_____.14.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+2|+(b﹣1)2=0,A、B 之间的距离记作|AB|,定义:|AB|=|a﹣b|.①线段AB的长|AB|=3;②设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,x=0.5;③若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时|PM|+|PN|的值不变;④在③的条件下,|PN|﹣|PM|的值不变.以上①②③④结论中正确的是_______(填上所有正确结论的序号)15.已知∠AOB=90°,射线OC在∠AOB内部,且∠AOC=20°,∠COD=50°,射线OE、OF分别平分∠BOC、∠COD,则∠EOF的度数是_____.16.把一根绳子对折成一条线段AB,在线段AB取一点P,使AP=13PB,从P处把绳子剪断,若剪断后的三段..绳子中最长的一段为30cm,则绳子的原长为______cm.17.钟表4点30分时,时针与分针所成的角的度数是___________ 。

(好题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(答案解析)

(好题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(答案解析)

一、选择题1.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点,若13AB cm =,5BC cm =,则BD 的长为( )A .7cmB .8cmC .9cmD .10cm 2.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为( )A .10B .12C .16D .18 3.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm4.如图,已知110AOB ∠=︒,60BOC ∠=︒,OD 平分COA ∠,则AOD ∠度数为( )A .25︒B .20︒C .85︒D .305.如图,90,50,AOB COD OE ∠=︒∠=平分,AOC OF ∠平分∠BOD ,则EOF ∠的大小为( )A .110B .105C .100D .95 6.下列说法中,错误的是( )A .两点之间直线最短B .两点确定一条直线C .一个锐角的补角一定比它的余角大90°D .等角的补角相等 7.如图,下列各个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )A .B .C .D .8.已知点C 在线段AB 上,点D 在线段AB 的延长线上,若5AC =,3BC =,14BD AB =,则CD 的长为( ) A .2 B .5C .7D .5或1 9.已知点A ,B ,C 在同一条直线上,线段5AC =,2BC =,则线段AB 的长度为( ) A .7 B .3 C .7或3 D .不能确定 10.如图,OA 是北偏东30方向的一条射线,OB 是北偏西50︒方向的一条射线,那么AOB ∠的大小为( )A .70︒B .80︒C .100︒D .110︒11.已知30AOB ∠=︒,自AOB ∠顶点O 引射线OC ,若:4:3AOC AOB ∠∠=,那么BOC ∠的度数是( )A .10°B .40°C .70°D .10°或70° 12.如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较二、填空题13.如图,点C 为线段AB 上一点,点D 为BC 的中点,且AB=12,AC=4CD .(1)求AC 的长;(2)若点E 在直线AB 上,且AE=3,求DE 的长.14.如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,∠FOC =90°,∠1=38°.求∠2和∠3的度数.15.如图1所示,将一副三角尺的直角顶点重合在点O 处.(1)①指出∠AOD 和∠BOC 的数量关系.②∠AOC 和∠BOD 在数量上有何关系?说明理由;(2)若将等腰直角三角尺绕点O 旋转到如图2的位置.①∠AOD 和∠BOC 相等吗?说明理由;②指出∠AOC 和∠BOD 的数量关系.16.(初步探究)(1)如图1,已知线段12cm AB =,点C 和点D 为线段AB 上的两个动点,且3cm CD =,点M 、N 分别是AC 和BD 的中点,求MN 的长是多少?(类比探究)如图2,已知,直角COD ∠与平角AOB ∠如图摆放在一起,且OM 和ON 分别是AOC ∠,BOD ∠的角平分线,则MON ∠的度数为多少?(知识迁移)(3)当AOB α∠=,COD β∠=时,如图3摆放在一起,且OM 和ON 分别是AOC ∠,BOD ∠的角平分线,则MON ∠的度数为多少?(α和β均为小于平角的角)17.已知3AOB BOC ∠=∠,OD 、OE 分别为AOB ∠和BOC ∠的平分线.(1)如图1,当OC 在AOB ∠的内部时,若20BOC ∠=︒,求DOE ∠的度数. (2)如图2,当OC 在AOB ∠的外部时,若22DOE ∠=︒,求AOC ∠的度数. (3)若DOE n ∠=︒,求AOC ∠的度数.18.如图,平面上有A 、B 、C 、D 、F 五个点,请根据下列语句画出图形:(1)直线BC 与射线AD 相交于点M ;(2)连接AB ,并延长线段AB 至点E ,使点B 为AE 中点;(3)在直线BC 上找一点P ,使点P 到A 、F 两点的距离之和最小,作图的依据是: .19.已知:如图,O 是直线AB 上一点,90MON ∠=︒,作射线OC .(1)如图,若ON 平分BOC ∠,60BON ∠=︒,则COM ∠=______°(直接写出答案);(2)如图,若OC 平分AOM ∠,BON ∠比COM ∠大36°,求COM ∠的度数;(3)如图,若OC 平分AON ∠,当2BON COM ∠=∠时,能否求出COM ∠的度数?若可以,求出度数;若不可以,请说明理由.20.如图,不在同一条直线上的四个点A ,B ,C ,D ,请按下列要求画图.(不写画法)(1)连接AC ,BD 相交于点O ;(2)连接CB ,DA ,延长线段CB 交DA 延长线交于点P ;(3)连接BA ,并延长,在射线BA 上用圆规截取线段BE BD =.三、解答题21.如图,点C 为线段AB 上一点,点D 为BC 的中点,且AB=12,AC=4CD .(1)求AC 的长;(2)若点E 在直线AB 上,且AE=3,求DE 的长.22.如图所示,OB 平分AOC ∠,OD 平分COE ∠.(1)若18AOB ∠=︒,35∠=︒DOE ,求AOE ∠的度数;(2)若110AOE ∠=︒,:1:4BOC BOE ∠∠=,求COD ∠的度数.23.如图所示,线段AB =16cm ,E 为线段AB 的中点,点C 为线段EB 上一点,且EC =3cm ,点D 为线段AC 的中点,求线段DE 的长度.24.已知线段AC 和线段BC 在同一直线上,若12cm AC =,8cm BC =,线段AC 的中点为M ,线段BC 的中点为N ,试求M 、N 两点之间的距离.25.计算(1)58°32′36″+36.22°(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷526.如图,已知O 是直线AC 上一点,OC 平分BOD ∠,160AOB ∠=︒,OE AC ⊥,求DOE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据CB =5cm ,AB =13cm 求出A C 的长,再根据D 是AC 的中点即可得出DC 的长,即可求出BD .解:∵CB=5cm,AB=13cm,∴AC=AB-CB=13-5=8cm∵D是AC的中点,∴AC=2CD=8cm.∴CD=4 cm∴DB=CB+CD=5+4=9cm,故选:C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.2.B解析:B【分析】由已知条件可知,EC+FD=EF-CD=8-4=4,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=EF-CD=8-4=4,∵E是AC的中点,F是BD的中点,∴AE=EC,BF=DF∴AE+FB=EC+FD=4,∴AB=AE+FB+EF=4+8=12.故选:B.【点睛】本题考查的是线段上两点间的距离,解答此题时利用中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.B解析:B【分析】利用线段和的定义和线段中点的意义计算即可.【详解】∵AB=AC+BC,且AB=10,BC=4,∴AC=6,∵D是线段AC的中点,∴AD=DC=1AC=3,2∴BD=BC+CD=4+3=7,故选B.本题考查了线段和的意义和线段中点的意义,熟练掌握两个概念并灵活运用进行线段的计算是解题的关键.4.A解析:A【分析】先求出∠AOC=50°,再根据角平分线的定义求出∠AOD 即可.【详解】解:∵110AOB ∠=︒,60BOC ∠=︒,∴∠AOC=∠AOB-∠BOC=110°-60°=50°,∵OD 平分COA ∠,∴∠AOD=12∠AOC=12×50°=25° 故选:A .【点睛】主要考查了角平分线的定义和角的运算,要会结合图形找到其中的等量关系. 5.A解析:A【分析】由OE 平分AOC ∠,OF 平分BOD ∠可知12COE AOC ∠=∠,12DOF BOD ∠=∠.即可求出1122EOF AOC BOD COD ∠=∠+∠-∠,又由360AOC BOD AOB COD ∠+∠=︒-∠+∠,即可求出EOF ∠的大小.【详解】EOF EOD COD COF ∠=∠+∠+∠,()()COE COD COD DOF COD =∠-∠+∠+∠-∠,COE DOF COD =∠+∠-∠.∵OE 平分AOC ∠,OF 平分BOD ∠. ∴12COE AOC ∠=∠,12DOF BOD ∠=∠. ∴1122EOF AOC BOD COD ∠=∠+∠-∠, ∵360AOC BOD AOB COD ∠+∠=︒-∠+∠, ∴1(360)2EOF AOB COD COD ∠=︒-∠+∠-∠,即1(3609050)501102EOF ∠=︒-︒+︒-︒=︒. 故选:A .本题考查角平分线的性质.根据题意结合角平分线的性质找出角的等量关系是解答本题的关键.6.A解析:A【分析】根据基本平面图的性质判断即可;【详解】A两点之间线段最短,故错误;B两点确定一条直线,故正确;C一个锐角的补角一定比它的余角大90°,故正确;D等角的补角相等,故正确;故答案选A.【点睛】本题主要考查了基本平面图形的性质应用,准确分析判断是解题的关键.7.B解析:B【分析】根据角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】解:A. 不能用∠O表示,选项A不符合题意;B. 能用∠1,∠AOB,∠O,选项B符合题意;C 不能用∠O表示,选项C不符合题意;D. 不能用∠O表示,选项D不符合题意.故选:B.【点睛】本题考查了角的表示方法,解决本题的关键是掌握表示角的方法.8.B解析:B【分析】根据线段的和差关系可求AB,再根据14BD AB=,可求BD,再根据线段的和差关系可求CD的长.【详解】解:如图,∵点C在线段AB上,AC=5,BC=3,∴AB=AC+BC=5+3=8,∴14BD AB ==2,∵点D 在线段AB 的延长线上,∴CD=BC+BD=3+2=5.故选B【点睛】本题考查了线段的和差,根据题意,画出正确图形,是解题关键. 9.C解析:C【分析】分类讨论,点B 在线段AC 上或在线段AC 外,即可得到结果.【详解】解:①如图所示:∵5AC =,2BC =,∴527AB AC BC =+=+=;②如图所示:∵5AC =,2BC =,∴523AB AC BC =-=-=.故选:C .【点睛】 本题考查线段的和差问题,解题的关键是进行分类讨论,画出图象,求出线段的和或差. 10.B解析:B【分析】根据方向角可得∠1的度数,从而可得∠AOB 的值.【详解】解:如图,∵OB是北偏西50 方向的一条射线,∴∠1=50°∴∠AOB=∠1+30°=50°+30°=80°故选:B.【点睛】本题考查了方向角,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.11.D解析:D【分析】分为两种情况:①OC和OB在OA的两侧时,②OC和OB在OA的同侧时,分别进行求解即可.【详解】∵∠AOB=30°,∠AOC:∠AOB=4:3,∴∠AOC=40°,分为两种情况:当OC和OB在OA的两侧时,如图1∠BOC=∠AOB+∠AOC=30°+40°=70°②OC和OB在OA的同侧时,如图2∠BOC=∠AOC-∠AOB=40°-30°=10°故选:D.【点睛】考查了角的计算,解题关键是分两种情况:OC、OB在OA的两侧时和OC、OB在OA的同侧时.12.B解析:B【解析】∵∠AOB=∠COD,∴∠AOB-∠BOD=∠COD-∠BOD ,∴∠1=∠2;故选B .【点睛】考查了角的大小比较,培养了学生的推理能力.二、填空题13.(1)8;(2)7或13【分析】(1)根据D 是BC 的中点得BC=2BD 再根据AC+BC=AB 求出CD 的长进而可求得AC 的长;(2)分①当点在线段上;②当点在线段的延长线上两种情况求解即可【详解】解:解析:(1)8;(2)7或13.【分析】(1)根据D 是BC 的中点得BC=2BD ,再根据AC+BC=AB 求出CD 的长,进而可求得AC 的长;(2)分①当点E 在线段AB 上;②当点E 在线段BA 的延长线上两种情况求解即可.【详解】解:(1)∵点D 为BC 的中点,∴22BC CD BD ==∵AB AC BC =+,4AC CD =,∴4212CD CD +=,∴2CD =∴4428AC CD ==⨯=(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点E 在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=所以BE 的长为7或13.【点睛】本题考查线段的中点、线段的和差计算、两点间的距离,分类讨论是解答的关键. 14.∠2=64°∠3=52°【分析】利用平角互补和角平分线的定义进行计算即可【详解】解:∵AB 为直线∴∠3+∠FOC+∠1=180°∵∠FOC=90°∠1=38°∴∠3=180°-90°-38°=52° 解析:∠2=64°,∠3=52°.【分析】利用平角、互补和角平分线的定义进行计算即可.【详解】解:∵AB 为直线,∴∠3+∠FOC +∠1=180°.∵∠FOC =90°,∠1=38°,∴∠3=180°-90°-38°=52°.∵∠3与∠AOD 互补,∴∠AOD =180°-∠3=128°.∵OE 平分∠AOD ,∴∠2=12∠AOD =64°. 【点睛】本题考查了角的计算,掌握平角、补角及角平分线的定义,并利用数形结合的思想是解答此题的关键.15.(1)①;②;(2)①相等理由见解析;②【分析】(1)①由再同时加上也相等即可证明;②由即可证明;(2)①由再同时减去也相等即可证明;②由即可证明【详解】解:(1)①∵∴即;②∵∴;(2)①理由:∵ 解析:(1)①AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒;(2)①相等,理由见解析;②180AOC BOD ∠+∠=︒【分析】(1)①由90AOB COD ∠=∠=︒,再同时加上BOD ∠也相等,即可证明AOD BOC ∠=∠;②由360AOB COD BOD AOC ∠+∠+∠+∠=︒,即可证明180BOD AOC ∠+∠=︒; (2)①由90AOB COD ∠=∠=︒,再同时减去BOD ∠也相等,即可证明AOD BOC ∠=∠;②由AOC AOB COD BOD ∠=∠+∠-∠,即可证明180AOC BOD ∠+∠=︒.【详解】解:(1)①AOD BOC ∠=∠,∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠+∠=∠+∠,即AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒,∵90AOB COD ∠=∠=︒,360AOB COD BOD AOC ∠+∠+∠+∠=︒,∴3609090180BOD AOC ∠+∠=︒-︒-︒=︒;(2)①AOD BOC ∠=∠,理由:∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠-∠=∠-∠,即AOD BOC ∠=∠;②180AOC BOD ∠+∠=︒,∵90AOB COD ∠=∠=︒,AOC AOB COD BOD ∠=∠+∠-∠,∴180AOC BOD ∠=︒-∠,即180AOC BOD ∠+∠=︒.【点睛】本题考查角度关系求解,解题的关键是掌握三角板的角度.16.(1)(2)(3)【分析】(1)根据线段的中点及线段的和与差即可得出答案;(2)根据角的平分线及角的和与差即可得出答案;(3)根据角的平分线及角的和与差即可得出答案【详解】解:(1)点分别是和的中点 解析:(1)7.5cm (2)135︒ (3)2αβ+【分析】(1)根据线段的中点及线段的和与差即可得出答案;(2)根据角的平分线及角的和与差即可得出答案;(3)根据角的平分线及角的和与差即可得出答案.【详解】解:(1)点M 、N 分别是AC 和BD 的中点, 11,22AM AC BN BD ∴==, 12cm AB =,3cm CD =,1239AC BD ∴+=-=cm ,()1937.522MN CD MC DN CD AC BD cm ∴=++=++=+=; (2)OM 和ON 分别是AOC ∠,BOD ∠的角平分线,,AOM MOC BON NOD ∴∠=∠∠=∠,11,22MOC AOC DON BOD ∴∠=∠∠=∠, 90180COD AOB ∠=︒∠=︒,,AOC COD BOD AOB ∠+∠+∠=∠,90AOC BOD ∴∠+∠=︒,45MOC NOD ∴∠+∠=︒,9045135MON MOC COD DON ∴∠=∠+∠+∠=︒+︒=︒;(3)∵OM 是AOC ∠的角平分线, ∴12MOC AOC ∠=∠, ∵ON 是BOD ∠的角平分线, ∴12NOD BOD ∠=∠, ∵AOB α∠=,COD β∠=,∴MON MOC COD NOD ∠=∠+∠-∠12AOC BOC BOD NOD =∠+∠+∠-∠ 1122AOC BOC BOD =∠+∠+∠ 11112222AOC BOC BOC BOD =∠+∠+∠+∠ 1()2AOB COD =∠+∠2αβ+=.【点睛】本题考查了线段的中点及线段的和与差以及角的平分线及角的和与差,根据图形找到线段与角的关系是解题的关键.17.(1);(2);(3)或【分析】(1)由得根据角平分线定义得出∠BOD-∠BOE 即可得出答案;(2)根据角平分线定义设即可得出;(3)根据角平分线定义设分OC 在的内部和OC 在的外部两种情况求解即可得解析:(1)20DOE ∠=︒;(2)44AOC ∠=︒;(3)2AOC n ∠=︒或(3602)n -︒【分析】(1)由3AOB BOC ∠=∠得60AOB ∠=︒,根据角平分线定义得出1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠,∠BOD-∠BOE ,即可得出答案; (2)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,=2AOB x ∠,2BOC y ∠=,即可得出222AOC x y DOE =+=∠∠;(3)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,分OC 在AOB ∠的内部和OC 在AOB ∠的外部两种情况求解,即可得出答案.【详解】解:(1)∵3AOB BOC ∠=∠,∴20360AOB ∠=︒⨯=︒,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线, ∴1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠, ∴301020DOE BOD BOE =-=︒-︒=︒∠∠∠;(2)由题意得:设=AOD BOD x =∠∠;BOE COE y ==∠∠,∵22DOE ∠=︒,∴=22DOE x y +=︒∠,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线,∴=2AOB x ∠,2BOC y ∠=,∴22244AOC x y DOE =+==︒∠∠;(3)设DOA DOB x ∠=∠=,EOB EOC y ∠=∠=①当OC 在AOB ∠的外部时,DOE x y n ∠=+=︒∴当090n <≤时,2222AOC x y DOE n ∠=+=∠=︒,当90120n <≤时,360(22)3602(3602)AOC x y DOE n ∠=-+=-∠=-︒.②当OC 在AOB ∠的内部时,DOE x y n ∠=-=︒,2222AOC x y DOE n ∴∠=-=∠=︒,综上,2AOC n ∠=︒或()3602n -︒.【点睛】本题考查了角的有关计算和角平分线定义,熟记角的特点与角平分线的定义是解决此题的关键.18.(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)根据直线射线的定义画出图形即可;(2)根据线段的延长线的定义以及中点的定义画出图形即可;(3)连接AF 交直线BC 于点P 点P 即为所求解析:(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)根据直线,射线的定义画出图形即可;(2)根据线段的延长线的定义以及中点的定义画出图形即可;(3)连接AF 交直线BC 于点P ,点P 即为所求.【详解】解:(1)如图,直线BC ,射线AD 即为所求作.(2)如图,线段BE 即为所求作.(3)如图,点P 即为所求作.理由:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了作图-复杂作图,两点之间线段最短,直线,射线,线段的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(1)30;(2)18°;(3)不能求出的度数理由见解析【分析】(1)根据若平分可得到∠CON=60°然后计算∠COM 即可;(2)可设然后得到再利用角平分线性质得到然后利用平角定义列方程即可;(3)解析:(1)30;(2)18°;(3)不能求出COM ∠的度数,理由见解析【分析】(1)根据若ON 平分BOC ∠,60BON ∠=︒可得到∠CON =60°,然后计算∠COM 即可; (2)可设COM x ∠=︒,然后得到(36)BON x ∠=+︒,再利用角平分线性质得到AOC x ∠=︒,然后利用平角定义列方程即可;(3)思路和(2)相同,设出∠COM ,然后根据题意列出方程判断即可.【详解】解:(1)∵ON 平分BOC ∠∴BON CON ∠=∠=60°∵∠MON =90°∴∠COM =∠MON -∠CON =30°故答案为:30;(2)设COM x ∠=︒,则(36)BON x ∠=+︒,∵OC 平分AOM ∠,∴AOC x ∠=︒,∴ 9036180x x x ++++=,∴18x =,即18COM ∠=︒;(3)不能求出COM ∠的度数,理由如下:设COM x ∠=︒,2BON x ∠=︒,∵OC 平分AON ∠,∴21802AON CON x ∠=∠=︒-︒,∴90CON x ∠=︒-︒,∵90MON ∠=︒,∴9090x x +-=,方程恒成立,故不论COM ∠等于多少度,只能得出BON ∠始终COM ∠的2倍,所以求不出COM ∠的度数.【点睛】本题主要考查角的简单计算和角平分线的简单性质,解题的关键是能够梳理角关系,利用直角和平角是解题的关键.20.(1)见解析;(2)见解析;(3)见解析【分析】(1)分别连结AC 和BD 并把ACBD 的交点标记为O 即可;(2)连接CB 和DA 并分别延长并把它们延长线的交点标记为P 即可;(3)以B 为端点作一条射线经过解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)分别连结A 、C 和B 、D ,并把AC 、BD 的交点标记为O 即可;(2)连接CB 和DA 并分别延长,并把它们延长线的交点标记为P 即可;(3)以B 为端点,作一条射线经过A ,然后以B 为圆心、BD 长为半径画弧交射线BA 于点E 即可.【详解】解:(1)如图,AC ,BD 相交于点O .(2)如图,CB ,DA 相交于点P .(3)如答图,BE 为所求.【点睛】本题考查与线段有关的尺规作图,熟练掌握用尺规作线段及其延长线以及在射线上截取线段等于已知线段的方法和步骤是解题关键.三、解答题21.(1)8;(2)7或13.【分析】(1)根据D 是BC 的中点得BC=2BD ,再根据AC+BC=AB 求出CD 的长,进而可求得AC 的长;(2)分①当点E 在线段AB 上;②当点E 在线段BA 的延长线上两种情况求解即可.【详解】解:(1)∵点D 为BC 的中点,∴22BC CD BD ==∵AB AC BC =+,4AC CD =,∴4212CD CD +=,∴2CD =∴4428AC CD ==⨯=(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点E 在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=所以BE 的长为7或13.【点睛】本题考查线段的中点、线段的和差计算、两点间的距离,分类讨论是解答的关键. 22.(1)106AOE ∠=︒;(2)33COD ∠=︒【分析】(1)据角平分线的定义求得∠AOC 和∠COE 的度数,再相加可得∠AOE 的度数; (2)据角平分线的定义和:1:4BOC BOE ∠∠=得到:2:3AOC COE ∠∠=,再由110AOE ∠=︒求得COE ∠的度数,最后由OD 平分COE ∠求得COD ∠的度数.【详解】解(1)如图∵OB 平分AOC ∠,18AOB ∠=︒∴236AOC AOB ∠=∠=︒∵OD 平分COE ∠,35∠=︒DOE∴270COE DOE ∠=∠=︒∴106AOE AOC COE ∠=∠+∠=︒;(2)如图∵:1:4BOC BOE ∠∠=∴:1:3BOC COE ∠∠=∵OB 平分AOC ∠∴2AOC BOC ∠=∠∴:2:3AOC COE ∠∠=又110AOE ∠=︒ ∴3311066235COE AOE ∠=⨯∠=⨯︒=︒+ ∵OD 平分COE ∠ ∴11663322COD COE ∠=∠=⨯︒=︒. 【点睛】此题考查角平分线的定义和角的有关运算,理解角平分线的定义和结合图形能进行角的加减是关键.23.5cm【分析】根据线段中点的定义求出AE 的长,进而求出AC 的长,再根据中点的定义求出CD 的长,然后利用线段的和差可得答案.【详解】解:∵E 为线段AB 的中点,AB =16cm ,∴AE =12AB =8(cm ), ∵EC =3cm ,∴AC =AE+EC =11(cm ),∵点D 为线段AC 的中点,∴CD =12AC =5.5(cm ), ∴DE =CD ﹣EC =5.5﹣3=2.5(cm ).【点睛】本题考查的是两点间的距离,掌握线段中点的定义、线段的有关计算是解题的关键. 24.10cm 或2cm【分析】分两种情况解答:当点B 位于AC 的延长线上,当点B 位于AC 之间,根据线段中点把线段分成相等的两部分,以及线段的和差关系即可解答【详解】解:∵点M 是线段AC 的中点,∴12MC AC =,同理12NC BC =. (1)当点B 位于AC 外,如图1所示,1122MN MC NC AC BC =+=+ ()()()1112810cm 22AC BC =+=+=.(2)当点B 位于AC 之间,如图2所示,1122MN MC NC AC BC =-=- ()()()111282cm 22AC BC =-=⨯-=. 综上,M 、N 两点间的距离为10cm 或2cm .【点睛】本题考查了线段中点的定义,解题关键是分情况确定点B 的位置,进行解答. 25.(1) 94°45′48″;(2)17【分析】(1)根据度分秒的加法,相同的单位相加,满60时向上以单位进1,可得答案; (2)原式先计算乘方,再计算乘除,最后进行加减运算即可.【详解】解:(1)58°32′36″+36.22°=58°32′36″+36°13′12″=94°45′48″;(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷5=-9×(-2)+16÷(-8)÷10-4÷5=18-0.2-0.8=17.【点睛】本题考查了度分秒的换算,度分秒的加减,同一单位向加减,度分秒的乘法,从小单位算起,满60时向上以单位进1.同时还考查了含有乘方的有理数的混合运算.26.70︒.【分析】根据平角的定义,求∠BOC ,后利用角的平分线,垂直的定义计算即可.【详解】解:∵160AOB ∠=︒,∴18016020BOC AOC AOB ∠=∠-∠=︒-︒=︒,∵OC 平分BOD ∠,∴20COD BOC ∠=∠=︒,∵OE AC ⊥,∴90COE ∠=︒,∴902070DOE COE COD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平角的定义,角的平分线,垂直的定义,熟练掌握互补的定义,角的平分线的性质是解题的关键.。

北师大版七年级上册数学第四章基本平面图形单元测试(含答案)

北师大版七年级上册数学第四章基本平面图形单元测试(含答案)

七年级上册数学第四章单元测试一、选择题(每题3分,共30分)1.如图,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段(第1题)(第4题)2.已知三点A,B,C.画直线AB,画射线AC,连接BC.按照上述语句画图正确的是()3.下列有关画图的表述中,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MNC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN4.如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD 的长为()A.6 B.4 C.2 D.55.如图,∠AOB是平角,∠AOC=40°,∠BOD=26°,OM,ON分别是∠AOC,∠BOD的平分线,则∠MON等于()A.66°B.114°C.170°D.147°(第5题)(第6题)(第8题)6.如图是某住宅小区的平面图,点B是小区“菜鸟驿站”的位置,其余各点为居民楼,图中各条线为小区内的小路,从居民楼点A到“菜鸟驿站”点B的最短路径是()A.A-C-G-E-B B.A-C-E-BC.A-D-G-E-B D.A-F-E-B7.当时钟指向下午4:30时,时针和分针的夹角是()A.30°B.45°C.60°D.75°8.如图,OC是∠AOB的平分线,OD是∠COB的平分线,则下列各式正确的是()A.∠COD=12∠AOC B.∠AOD=23∠AOBC.∠BOD=13∠AOB D.∠BOC=23∠AOB9.如图,将一张长方形纸片ABCD沿对角线BD折叠,点C落在点E处,BE 交AD于点F,再将三角形DEF沿DF折叠,点E落在点G处,若DG刚好平分∠ADB,那么∠ADB的度数是()(第9题)A.18°B.20°C.36°D.45°10.已知点C在线段AB上,则共有三条线段:AB,AC和BC.若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”. 若AB =15,点C是线段AB的“巧点”,则AC的长为()A.5 B.7.5C.5或10 D.5或7.5或10二、填空题(每题3分,共15分)11.74°19′30″=________°.12.如图,甲从点A出发向北偏东62°方向走到点B,乙从点A出发向南偏西18°方向走到点C,则∠BAC的度数是__________.(第12题)(第13题)13.如图,小李同学在参加“几何小能手”社团活动时,制作了一副与众不同的三角尺,用它们可以画出一些特殊的角度.在①9°;②18°;③55°;④117°中,能用这副三角尺画出的角度是________(填序号).14.已知线段MN=12,点P在直线MN上,PM=3,点Q为MN的中点,则线段PQ的长为______________.15.已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,则此多边形的边数为________.三、解答题(第16题10分,第17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.在如图所示的“金鱼”中,含有哪些可以用图中字母表示的线段、射线和直线?试着写出来.(第16题)17. 如图,已知线段a、b(a>b),用尺规作图法作一条线段,使其等于2a-b (不写作法,保留作图痕迹).(第17题)18.如图,已知∠AOB=130°,过∠AOB的内部任意一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,求∠DOE的大小.(第18题)19.如图,把一个圆分成四个扇形,请分别求出这四个扇形的圆心角的度数.若该圆的半径为2 cm,请分别求出它们的面积.(第19题)20.已知一条直线上有A,B,C,共3个点,那么这条直线上总共有多少条线段?小亮的思路是这样的:以A为端点的线段有AB,AC,共2条,同样以B为端点,以C为端点的线段也各有2条,这样共有3×2=6(条),但AB和BA是同一条线段,即每一条线段重复一次,所以一共有3×22=3(条)线段.那么,如果一条直线上有6个点,则这条直线上共有________条线段.如果在一条直线上有n个点,那么这条直线上共有________条线段.(1)请你帮小亮计算,并填空;(2)你能用上面的思路来解决“10名同学参加班上组织的乒乓球比赛,比赛采用单循环制(即每两名同学之间都要进行一场比赛),那么一共要进行多少场比赛”这个问题吗?21.阅读材料并回答问题:数学课上,老师给出了如下问题:如图①,∠AOB=90°,OC平分∠AOB.若∠COD=65°,请你补全图形,并求∠BOD的度数.同学一:以下是我的解答过程(部分空缺).解:如图②.因为∠AOB=90°,OC平分∠AOB,所以∠BOC=∠AOC=________.因为∠COD=65°,所以∠BOD=∠BOC+________=________.同学二:“符合题目要求的图形还有一种情况.”请你完成以下问题:(1)将同学一的解答过程空缺部分补充完整,能正确求出图②中∠BOD的度数.(2)判断同学二的说法是否正确,若不正确,请说明理由;若正确,请你在图①中画出另一种情况对应的图形,并求∠BOD的度数.(第21题)22.如图,P是线段AB上一点,AB=12 cm,M,N两点分别从P,B出发以1 cm/s、3 cm/s的速度同时沿直线AB向左运动(M在线段AP上,N在线段BP上),运动时间为t s.(1)当M,N运动1s时,且PN=3AM,求AP的长;(2)若M、N运动到任一时刻时,总有PN=3AM,AP的长度是否变化?若不变,请求出AP的长;若变化,请说明理由;(3)在(2)的条件下,Q是直线AB上一点,且AQ=PQ+BQ,求PQ的长.(第22题)23.阅读材料:如图①,将一副三角尺的直角顶点C叠放在一起,若∠DCE=35°,则∠ACB =________;若∠ACB=150°,则∠DCE=________.由此你能得到什么结论?解:因为∠ACD=90°,∠DCE=35°,所以∠ACE=90°-35°=55°,因为∠BCE=90°,所以∠ACB=∠ACE+∠BCE=55°+90°=145°;因为∠BCE=90°,∠ACB=150°,所以∠ACE=150°-90°=60°,因为∠ACD=90°,所以∠DCE=∠ACD-∠ACE=90°-60°=30°,所以能得到结论∠ACB+∠DCE =180°.故答案为:145°;30°∠ACB+∠DCE=180°.解决问题:(1)当图①变为图②时,∠ACB与∠DCE之间的数量关系还存在吗?为什么?(2)如图③,若将两个同样的三角尺的60°角的顶点A重合在一起,请你猜想∠BAD与∠CAE有何关系,请说明理由;(3)如图④,如果把任意两个锐角∠AOB,∠COD的顶点O重合在一起,设∠AOB=α,∠COD=β(α,β都是锐角),请你直接写出∠AOD与∠BOC的关系.(第23题)答案一、1.B 2.A 3.C 4.C5.D6.D7.B8.A9.C10.D二、11.74.32512. 136°13. ①②④14.3或915.6三、16.解:线段:线段AB、线段AC、线段BD、线段BE、线段CD、线段CF、线段DE、线段DF、线段EF.射线:射线AB、射线AC、射线BA、射线CA.直线:直线AB、直线AC.17.解:如图所示,线段OC即为所求.(第17题)18.解:因为OD,OE分别平分∠AOC和∠BOC,所以∠DOC=12∠AOC, ∠COE=12∠BOC,所以∠DOE=∠DOC+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB.又因为∠AOB=130°,所以∠DOE=12×130°=65°.19.解:扇形AOB的圆心角为360°×35%=126°.扇形BOC的圆心角为360°×10%=36°.扇形COD的圆心角为360°×25%=90°.扇形AOD的圆心角为360°×30%=108°.圆的面积为π×22=4π(cm2).所以扇形AOB的面积为4π×35%=1.4π(cm2).扇形BOC的面积为4π×10%=0.4π(cm2).扇形COD的面积为4π×25%=π(cm2).扇形AOD的面积为4π×30%=1.2π(cm2).20.解:(1)15;n(n-1)2.(2)把10名同学看成直线上的10个点,每两名同学之间的一场比赛看成一条线段,直线上10个点所构成的线段条数就等于比赛的场数,因此一共要进行10×(10-1)2=45(场)比赛.21.解:(1)45°;∠COD;110°.(第21题)(2)正确.如图.因为∠AOB=90°,OC平分∠AOB,所以∠BOC=∠AOC=45°.因为∠COD=65°,所以∠BOD=∠COD-∠BOC=20°.22.解:(1)当M,N运动1 s时,PM=1 cm,BN=3 cm.因为AB=12 cm,所以AM+PN=12-1-3=8(cm).因为PN=3AM,所以4AM=8 cm,所以AM=2 cm.所以AP=AM+PM=3 cm.(2)AP的长度不会变化.根据题意可知PM=t cm,BN=3t cm.因为AB=12 cm,所以AM+PN=(12-4t)cm.因为PN=3AM,所以4AM=(12-4t)cm,所以AM=(3-t)cm.所以AP=AM+PM=3-t+t= 3 cm.(3)由已知条件可知,点Q在线段BA的延长线上或在线段AP上时不符合题意,所以当点Q在线段PB上时,由(2)可知AP=3 cm,则BP=9 cm.所以AQ=PQ+BQ=BP=9 cm.因为AQ=AP+PQ,所以PQ=AQ-AP=6 cm.当点Q在线段AB的延长线上时,AQ=AB+BQ.因为AQ=PQ+BQ,所以PQ=AB=12 cm.综上所述,PQ=6 cm或12 cm.23.解:(1)存在.理由:因为∠ACD=90°,∠BCE=90°,所以∠ACD+∠BCE=180°.所以∠ACB+∠DCE=360°-(∠ACD+∠BCE)=360°-180°=180°. (2)∠BAD-∠CAE=120°.理由:因为∠CAD=60°,∠BAE=60°,所以∠BAD-∠CAE=∠CAD+∠CAE+∠BAE-∠CAE=∠CAD+∠BAE =60°+60°=120°.(3)∠AOD+∠BOC=α+β.11。

北师大版七年级上册数学《基本平面图形》各个章节整理试题以及答案

北师大版七年级上册数学《基本平面图形》各个章节整理试题以及答案

七年级上册《基本平面图形》中直线、射线、线段和比较线段的长短测试试题一、选择题。

1、已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A、11cmB、5cmC、11cm或5cmD、8cm或11cm2、在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设天线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有().A、①②B、①③C、②④D、③④3、如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于().A、3cmB、6cmC、11cmD、14cm4、手电筒射出去的光线,给我们的形象是( )A、直线B、射线C、线段D、折线5、下列各直线的表示法中,正确的是( )A、直线AB、直线ABC、直线abD、直线Ab6、如图,A、B在直线l上,下列说法错误的是()A、线段AB和线段BA同一条线段B、直线AB和直线BA同一条直线C、射线AB和射线BA同一条射线D、图中以点A为端点的射线有两条。

AB,AC=CB,AB=2AC,AC+CB=AB,能说明C 7、如果点C在线段AB上,则下列各式中:AC=12是线段AB中点的有( )A、1个B、2个C、3个D、4个8、如图,AB=CD,则AC与BD的大小关系是( )A、AC>BDB、AC<BDC、AC=BDD、不能确定9、如果线段AB=5cm,线段BC=4cm,那么A、C两点之间的距离是()A、9cmB、1cmC、1cm或9cmD、以上答案都不对10、同一平面内互不重合的三条直线的公共点的个数是( )A、可能是0个,1个,2个B、可能是0个,2个,3个C、可能是0个,1个,2个或3个D、可能是1个可3个11、下列说法中,正确的有()A、过两点有且只有一条直线B、连接两点的线段叫做两点的距离C、两点之间,直线最短D、AB=BC,则点B是AC的中点12、如图,CB=4cm,DB=7cm,D为AC的中点,则AB的长为( )A、7cmB、8cmC、9cmD、10cm13、下列说法正确的有( )①连接两点之间的线段叫两点间的距离;②木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;③若AB=2CB,则点C是AB的中点;④直线AB的长为2cm.A、0个B、1个C、2个D、3个14、如图,以O为端点的射线有()条。

2022-2023学年北师大版七年级上册数学第4章 基本平面图形 单元测试卷含答案

2022-2023学年北师大版七年级上册数学第4章 基本平面图形   单元测试卷含答案

2022-2023学年七年级上册数学第4章基本平面图形单元测试卷一.选择题(共12小题,满分36分)1.如图,B是线段AC的中点,P是BC上一点,若PA=m,PC=n,则线段PB的长是()A.m﹣n B.C.2m﹣3n D.2.如图,AC>BD,比较线段AB与线段CD的大小()A.AB=CD B.AB>CD C.AB<CD D.无法比较3.如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则下列结论中正确的个数有()①∠AOE=∠EOC②∠EOC=∠COB③∠AOD=∠AOE④∠DOB=2∠AODA.1个B.2个C.3个D.4个4.如图,已知A、B、C三点,过点A可画直线BC的平行线的条数是()A.0条B.1条C.2条D.无数条5.如图,用尺规作∠AOB的平分线可以按如下步骤进行:①以点O为圆心,线段m为半径画弧,交OA于点M,交OB于点N;②分别以点M,N为圆心,线段n为半径画弧,两弧在∠AOB的内部相交于点C;③画射线OC.射线OC即为所求.以下关于线段m,n的长说法正确的是()A.m>0,n>0B.m>0,n<MN C.m>0,n>MN D.以上都不对6.如图,在正方形网格中有∠α和∠β,则∠α和∠β的大小关系是()A.∠α>∠βB.∠α<∠βC.∠α=∠βD.无法确定7.在平面内与点P的距离为1cm的点的个数为()A.无数个B.3个C.2个D.1个8.如图各图中所给的射线、直线能相交的是()A.B.C.D.9.下列换算中,错误的是()A.47.28°=47°16′48″B.83.5°=83°50′C.16°5′24″=16.09°D.0.25°=900″10.在学习“平行四边形”一章时,小王的书上有一图因不小心被滴上了墨水,如图所示,看不清所印的字,请问被墨迹遮盖了的文字应是()A.等边三角形B.四边形C.多边形D.正方形11.现实生活中有人乱穿马路,却不愿从天桥或斑马线通过.请用数学知识解释这一现象,其原因为()A.两点确定一条直线B.过一点有无数条直线C.两点之间,线段最短D.两点之间线段的长度,叫做这两点之间的距高12.如图,Rt△ABC中,∠C=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是()A.B.C.D.二.填空题(共12小题,满分36分)13.木工师傅用刨子可将木板刨平,如图,经过刨平的木板上的两个点,而且只能弹出一条墨线,其数学原理为.14.如图,将一张宽度相等的纸条折叠,折叠后的一边与原边的夹角是140°,则∠α的度数是.15.一个n边形过一个顶点有5条对角线,则n=.16.若平面内有4个点,过其中任意两点画射线,最多可以画条.17.如图,在Rt△ABC中,∠ACB=90°,根据尺规作图的痕迹判断以下结论正确的是.①∠DBC=∠BDC②AE=BE③④∠BAE=∠ACD18.若∠1=30.45°,∠2=30°28',则∠1 ∠2(用“>”“=”“<”填空).19.已知点B在直线AC上,AB=6cm,BC=10cm,P、Q分别是AB、BC中点,则线段PQ=cm.20.小亮研究钟面角(时针与分针组成的角),2:15的钟面角为度.21.一个人从A地出发沿北偏东50°的方向走到B地,再从B地出发沿南偏西30°方向走到C地,那么∠ABC=.22.运动场上的环形跑道的跑道宽都是相同的,若一条跑道的两个边缘所在的环形周长的差等于π米,则跑道的宽度为米.23.只能使用和这两种工具去作几何图形的方法称为尺规作图.24.如图,正方形ABCD的边长为6,四条弧分别以相应顶点为圆心、正方形ABCD边长为半径,则图中阴影部分的面积为(结果保留π).三.解答题(共7小题,满分78分)25.请按要求完成下列问题.如图:A、B、C、D四点在同一直线上,若AB=CD.(1)比较线段的大小:AC BD(填“>”、“=”或“<”);(2)若,且AC=12cm,则AD的长.26.如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库O,并且要求O到A与O到B的距离之和最短,请你在m上确定仓库应修建的O点位置,同时说明你选择该点的理由.27.如图,O为直线AB上一点,∠AOC=48°,OE平分∠AOC,∠DOE=90°(1)求∠BOE的度数.(2)试判断OD是否平分∠BOC?试说明理由.28.请仔细观察图形和表格,并回答下列问题:45678……n 多边形的顶点数/个12345……①从一个顶点出发的对角线的条数/条2591420……②多边形对角线的总条数/条(1)观察探究:请自己观察图形和表格,并用含的代数式将上面的表格填写完整.(2)实际应用:数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?29.如图,点A是∠OBC的边BO上一点,请完成以下问题.(1)以A为顶点,射线AO为一边在∠OBC的内部用尺规再作一个角∠OAD,使其等于∠ABC;(2)判断AD与BC的位置关系,并说出理由.30.如图,一扇形纸扇完全打开后,AB和AC的夹角为120°,AB长为30cm,贴纸部分的宽BD为18cm,求纸扇上贴纸部分的面积.31.如图,数轴上点A,B分别表示数﹣6,12,C为AB中点.(1)求点C表示的数.(2)若点P为线段AB上一点,PC=2,求点P表示的数.(3)若点D为线段AB上一点,在线段AB上有两个动点M,N,分别同时从点A,D 出发,沿数轴正方向运动,点M的速度为4个单位每秒,点N的速度为3个单位每秒,当MN=1,NC=2时,求点D表示的数.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:∵B是线段AC的中点,∴BC=AC=(m+n),∴PB=BC﹣PC=(m+n)﹣n=(m﹣n).故选:B.2.解:∵AB=AC+BC,CD=BD+BC,AC>BD,∴AB>CD.故选:B.3.解:∵OE是∠AOC的平分线,OC恰好平分∠EOB,∴∠AOE=∠COE,∠COE=∠BOC,∴∠AOE=∠COE=∠BOC,∵∠AOE+∠COE+∠BOC=180°,∴∠AOE=∠COE=∠BOC=60°,∴∠AOD=∠BOC=60°,∴∠BOD=120°,∴①②③④都正确.故选:D.4.解:如图,故选:B.5.解:根据作法得m>0,n>MN.故选:C.6.解:使∠α和∠β顶点和一边重合,,由图直观可得∠α>∠β,故选:A.7.解:在平面内与点P的距离为1cm的点的个数为为:所有到定点P的距离等于1cm的点的集合,故选:A.8.解:A选项中,直线AB与射线EF无交点,不合题意;B选项中,直线AB与射线EF有交点,符合题意;C选项中,直线AB与射线EF无交点,不合题意;D选项中,直线AB与射线EF无交点,不合题意;故选:B.9.解:A、∵1°=60′,∴0.28°=16.8′,∵1′=60″,∴0.8′=48″,∴47.28°=47°16′48″,故A不符合题意;B、∵1°=60′,∴0.5°=30′,∴83.5°=83°30′,故B符合题意;C、∵1′=60″,∴24″=0.4′,∵1°=60′,∴5.4′=0.09°,∴16°5′24″=16.09°,故C不符合题意;D、∵1°=3600″,∴0.25°=900″,故D不符合题意;故选:B.10.解:∵正方形具有矩形和菱形所有的性质,∴正方形既是矩形也是菱形.故选:D.11.解:现实生活中“为何有人乱穿马路,请用数学知识解释这一现象,其原因是两点之间,线段最短,故选:C.12.解:A.由作法知AD=AC,∴△ACD是等腰三角形,故选项A不符合题意;B.由作法知所作图形是线段BC的垂直平分线,∴不能推出△ACD和△ABD是等腰三角形,故选项B符合题意;C由作法知,所作图形是线段AB的垂直平分线,∴DA=DB,∴△ABD是等腰三角形,故选项C不符合题意;D.∠C=90°,∠B=30°,∠BAC=60°,由作法知AD是∠BAC的平分线,∴∠BAD=30°=∠B,∴DB=DA,∴△ABD是等腰三角形,故选项D不符合题意;故选B.二.填空题(共12小题,满分36分)13.解:经过刨平的木板上的两个点,而且只能弹出一条墨线,其数学原理为两点确定一条直线,故答案为:两点确定一条直线.14.解:如图,∵AB∥CD,∴∠BAD=∠ADE=140°,∴∠α=∠BAD=70°.故答案为:70°.15.解:∵一个n边形过一个顶点有5条对角线,∴n﹣3=5,解得n=8.故答案为:8.16.解:设平面内这4个点分别为A,B,C,D,过任意两点画射线则有,射线AB,射线BA,射线AC,射线CA,射线AD,射线DA,射线BC,射线CB,射线BD,射线DB,射线CD,射线DC,共12条.故答案为:12.17.解:由作图的痕迹得DE垂直平分AB,∴AD=BD,EA=EB,所以②正确;∵∠ACB=90°,∴CD=DA=DB,即CD=AB,所以③正确;∴∠DBC=∠BCB,∠BAE=∠ACD,所以①错误,④正确.故答案为:②③④.18.解:∵1°=60′,∴0.45°=27′,∴∠1=30.45°=30°+0.45°=30°27′,∵∠2=30°28′,∴∠1<∠2.故答案为:<.19.解:∵AB=6cm,BC=10cm,P、Q分别是AB、BC中点,∴BP=AB=3(cm),BQ=BC=5(cm),当点B在线段AC上时,PQ=BP+BQ=8(cm),当B点在CA的延长线上时,PQ=BQ﹣BP=2(cm),综上,线段PQ的长为8cm或2cm.故答案为:8或2.20.解:由题意得:30°﹣15×0.5°=30°﹣7.5°=22.5°,故答案为:22.5.21.解:如图:从A地出发沿北偏东50°的方向行驶到B,则∠BAC=90°﹣50°=40°,从B地出发沿南偏西30°的方向行驶到C,则∠BCD=90°﹣30°=60°,∴∠ABC=∠BCD﹣∠BAC=60°﹣40°=20°.即∠ABC是20°.22.解:设运动场上的小环半径为r米,大环半径半径为R米,根据题意得:2π(R﹣r)=π,解得:R﹣r=,即跑道的宽度为米.故答案为:.23.解:只能使用直尺和圆规这两种工具去作几何图形的方法称为尺规作图. 故答案为:直尺,圆规.24.解:由对称性可知,图中的①、②、③、④的面积相等,所以S 阴影部分=S 正方形﹣S 扇形ABD=36﹣=36﹣9π,故答案为:36﹣9π.三.解答题(共7小题,满分78分)25.解:(1)∵AB =CD ,∴AB +BC =CD +BC ,∴AC =BD .(2)∵BC =AC ,且AC =12(cm ),∴BC =12×=9(cm ),∴AB =CD =AC ﹣BC =12﹣9=3(cm ),∴AD =AC +CD =12+3=15(cm ).26.解:如图,连接AB 交直线m 于点O ,则O 点即为所求的点.理由如下:根据连接两点的所有线中,线段最短,∴OA +OB 最短.27.解:(1)∵∠AOC =48°,OE 平分∠AOC ,∴∠AOE=∠COE==24°.∴∠BOE=180°﹣∠AOE=156°.(2)是,理由如下:由(1)得,∠COE=24°.∴∠COD=∠DOE﹣∠COE=90°﹣24°=66°.∵∠BOE=156°,∴∠BOD=∠BOE﹣∠DOE=156°﹣90°=66°.∴∠COD=∠BOD.∴OD平分∠BOC.28.解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n ﹣3,多边形对角线的总条数为n(n﹣3);故答案为:n﹣3,n(n﹣3);(2)∵3×6=18,×18×(18﹣3)=135(个).答:数学社团的同学们一共将拨打电话为135个.29.解:(1)如图,∠OAD即为所求;(2)结论:AD∥BC.理由:∵∠OAD=∠ABC,∴AD∥BC.30.解:∵AB=30cm,BD=18cm,∴AD=AB﹣BD=30﹣18=12(cm),∴纸扇上贴纸部分的面积S=S扇形BAC ﹣S扇形DAE=﹣=300π﹣48π=252π(cm2).31.解:(1)点C表示的数为:=3;(2)点C所表示的数为3,设点P所表示的数为p,则|p﹣3|=2,解得p=5或p=1,答:点P所表示的数为1或5;(3)设点D在数轴上所表示的数为d,运动的时间为ts,则点M所表示的数为﹣6+4t,点N所表示的数为d+3t,①当点M在点N的左侧,点N在点C的左侧,MN=d+3t﹣(﹣6+4t)=d﹣t+6=1,即d﹣t=﹣5,NC=3﹣d﹣3t=2,即d+3t=1,由可解得d=﹣;②当点M在点N的左侧,点N在点C的右侧,MN=d+3t﹣(﹣6+4t)=d﹣t+6=1,即d﹣t=﹣5,NC=d+3t﹣3=2,即d+3t=5,由可解得d=﹣;③当点M在点N的右侧,点N在点C的左侧,MN=﹣6+4t﹣(d+3t)=﹣6+t﹣d=1,即d﹣t=﹣7,NC=3﹣d﹣3t=2,即d+3t=1,由可解得d=﹣5;④当点M在点N的右侧,点N在点C的右侧,MN=﹣6+4t﹣(d+3t)=﹣6+t﹣d=1,即d﹣t=﹣7,NC=d+3t﹣3=2,即d+3t=5,由可解得d=﹣4;综上所述,点D所表示的数为﹣或﹣或﹣5或﹣4.。

第四章 基本平面图形 达标测试卷(含答案)北师大版(2024)数学七年级上册

第四章 基本平面图形 达标测试卷(含答案)北师大版(2024)数学七年级上册

第四章基本平面图形达标测试卷(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各组图中所给的线段、射线、直线能相交的是()A B C D2.下列图形中,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A B C D3. 若一个n边形从一个顶点最多能引出6条对角线,则n是()A. 5B. 8C. 9D. 104. 图1所示生产、生活中的现象,体现了基本事实“两点确定一条直线”的有()A.1个B.2个C.3个D.4个图15. 如图2,用同样大小的三角板比较∠A和∠B的大小,下列判断正确的是()A.∠A<∠B B.∠A>∠BC.∠A=∠B D.没有量角器,无法确定图2 图3 图46. 观察图3所示的图形,有下列说法:∠图中共有5条线段;∠射线AC 和射线CD 是同一条射线; ∠从A 地到D 地的所有路径中,线段AD 最短;∠直线AB 和直线BD 交于点B.其中正确的有( ) A .4个B .3个C .2个D .1个7. 如图4,OA 的方向是北偏东20°,OB 的方向是北偏西35°,OA 平分∠BOC ,则OC 的方向是( ) A .北偏东35° B .北偏东45°C .北偏东55°D .北偏东75°8. 如图5,A ,B ,C ,D 是直线上的顺次四点,M ,N 分别是线段AB ,CD 的中点,且MN=7 cm ,BC=4 cm ,则线段AD 的长为( )A .10 cmB .11 cmC .12 cmD .13 cm图5 图69. 图6-∠是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图6-∠所示,它是以O 为圆心,分别以OA ,OB 的长为半径,圆心角∠O =120°形成的扇面.若OA =5 m ,OB =3 m ,则阴影部分的面积为( ) A .316πm 2 B .38πm 2C .4π m 2D .3π m 210. 如图7,线段AB=40 cm ,线段CD=30 cm ,现将线段AB 和CD 放在同一条直线上,使点A 与点C 重合,此时两条线段中点之间的距离是( )A .5 cmB .35 cmC .10 cm 或70 cmD .5 cm 或35 cm图7二、填空题(本大题共6小题,每小题3分,共18分)11.在图8中共有m条射线,n条线段,则m+n的值是.图812.计算:23°38′41″+ 17°26′32″=.13. 如图9,钟表上显示的时刻是10点10分,再过20分钟,时针与分针所成的角的度数是_____________.图9 图1014. 将长方形纸片ABCD按图10所示的方式折叠,使得∠A′EB′=40°,其中EF,EG为折痕,则∠AEF+∠BEG的度数为_________________.15.如图11,已知线段AB=6 cm,延长线段BA至点C,使AC=32AB,若D,E分别是线段AB,BC的中点,则DE=cm.图11 图1216. 如图12,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线“.若∠AOB=60°,且射线OC 是∠AOB的“巧分线“,则∠AOC的度数为______________.三、解答题(本大题共6小题,共52分)17.(6分)如图13,B是线段AC上一点,D是线段AB的三等分点(D靠近B),E是线段BC的中点,若BE=51AC=3 cm,求线段DE的长.图13E DA BC18. (9分)如图14,平面内有四个点A,B,C,D,请利用直尺和圆规,根据下列语句画出符合要求的图,并保留作图痕迹.(1)画直线AB,射线AC,线段BC;(2)在直线AB上找一点M,使线段MD与线段MC之和最小;(3)在线段AD的延长线上截AE=3AD,连线段CE交直线AB于点F.图1419.(9分)如图15,O为直线AB上一点,OE是∠AOD的平分线,∠COD=90°.(1)若∠AOD=138°,求∠COE和∠AOC的度数;(2)若∠AOC=2∠COE,求∠AOC的度数.图1520.(9分)(1)如图16-∠,已知线段AB=8 cm,C是线段AB上一点,AC=3 cm,M是AB的中点,N是AC的中点.求线段MN的长;(2)如图16-∠,已知点O是直线AD上一点,射线OC,OE分别是∠AOB,∠BOD的平分线.①若∠AOC=20°,求∠COE的度数.②如果把条件“∠AOC=20°”去掉,那么∠COE的度数有变化吗?请说明理由.图1621.(9分)如图17,线段AB=24,动点P从A出发,以每秒2个单位长度的速度沿射线AB运动,M为线段AP的中点.设点P的运动时间为x秒.(1)秒后,PB=2AM;(2)当点P在线段AB上运动时,试说明2BM﹣PB为定值;(3)当点P在线段AB的延长线上运动时,N为线段BP的中点,求线段MN的长.图1722.(10分)已知∠AOB=120°,∠COD=80°,OM,ON分别是∠AOB,∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图18-∠,求∠MON的度数;(2)如果将图∠中的∠COD绕点O顺时针旋转n°(0<n<160),如图18-∠.则∠MON=__________;(用含n的代数式表示)(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小,将图∠中的OC绕着O点顺时针旋转m°(0<m<100),如图18-∠,求∠MON的度数.(用含m的代数式表示)图18附加题(20分,不计入总分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一个直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.∠求t的值;∠此时OQ是否平分∠AOC?请说明理由.(2)若在三角板转动的同时,射线OC也绕点O以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由.(3)在(2)问的基础上,经过____________秒OC平分∠POB.(四川钟志能)第四章基本平面图形达标测试卷参考答案答案速览一、1. B 2. C 3. C 4. C 5. A 6. C 7. D 8. A 9. A 10. D二、11.9 12.41°5′13″ 13.135° 14.70° 15.2 16. 20°或30°或40°三、解答题见“答案详解”答案详解16. 20°或30°或40°解析:根据题意,有三种情况:①∠BOC=2∠AOC,此时∠AOC=20°;②∠AOB=2∠AOC,此时∠AOC=30°;③∠AOC=2∠BOC,此时∠AOC=40°.综上,∠AOC的度数为20°或30°或40°.因为E是线段BC的中点,所以BC=2BE=6 cm.所以AB=AC-BC=9 cm.所以DE=DB+BE=3+3=6(cm ).18. 解:(1)如图,直线AB ,射线AC ,线段BC 为所求作. (2)如图,点M 为所求作. (3)如图,点E ,F 为所求作.19.解:(1)因为∠AOD =138°,OE 是∠AOD 的平分线,所以∠AOE =∠EOD =21∠AOD = 21×138°=69°.因为∠COD =90°,所以∠COE =∠COD ﹣∠EOD =90°﹣69°=21°. 所以∠AOC =∠AOE ﹣∠COE =69°﹣21°=48°. (2)设∠COE=x°,则∠AOC=2x°.. 所以∠AOE =∠AOC + ∠COE =3x°.因为OE 是∠AOD 的平分线,所以∠AOE =∠EOD =3x°.所以∠COD =∠COE + ∠EOD =4x°=90°,解得x=22.5.所以∠AOC =2x°=45°.所以∠BOD=180°-∠AOB=180°-2∠AOC=180°-2×20°=140°.②∠COE 的度数没有变化.理由如下:(∠BOD+∠AOB ).所以∠COE 的度数没有变化. 21. 解:(1)6(2)因为M 是线段AP 的中点,AP =2x ,所以AM =21AP =x ,PB =AB ﹣AP =24﹣2x ,BM =24﹣x .所以2BM ﹣PB =2(24﹣x )﹣(24﹣2x )=24,即2BM ﹣PB 为定值24. (3)当点P 在线段AB 的延长线上运动时,点P 在点B 的右侧.因为M 是线段AP 的中点,AP =2x ,所以AM =PM =x ,PB =2x ﹣24.所以PN =21PB =x ﹣12. 所以MN =PM ﹣PN =x ﹣(x ﹣12)=12.所以∠MON=∠AOM-∠AON=60°-40°=20°. (2)20°+n°因为∠AOD=80°,∠AOC=m°,所以∠COD=∠AOD+∠AOC=80°+m°.m°. 附加题解:(1)∠因为∠AOC =30°,所以∠BOC =180°﹣30°=150°. 因为OP 平分∠BOC ,所以∠COP =21∠BOC =75°.所以∠COQ =90°﹣75°=15°. 所以∠AOQ =∠AOC ﹣∠COQ =30°﹣15°=15°.所以t =15°÷3°=5. ∠OQ 平分∠AOC .理由如下:因为∠COQ =15°,∠AOQ =15°,所以OQ 平分∠AOC . (2)5秒时OC 平分∠POQ .理由如下: 因为OC 平分∠POQ ,所以∠COQ =21∠POQ =45°. 根据旋转的速度,设∠AOQ =3°t ,∠AOC =30°+6°t . 由∠AOC ﹣∠AOQ =45°,可得30+6t ﹣3t =45,解得t =5. 所以5秒时OC 平分∠POQ .(3)370解析:设经过t 秒后OC 平分∠POB . 因为OC 平分∠POB ,所以∠BOC =21∠POB .因为∠AOQ +∠POB =90°,所以∠POB =90°﹣3°t .又∠BOC =180°﹣∠AOC =180°﹣(30°+6°t ),所以180﹣(30+6t )=21(90﹣3t ),解得t =370.。

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版一、选择题1.下列各线段的表示方法中,正确的是( )A .线段AB .线段abC .线段ABD .线段Ab2.下列命题是假命题的是( )A .等角的补角相等B .垂线段最短C .两点之间,线段最短D .无限小数是无理数3.下列四个图中,能用1∠,O ∠与AOB ∠三种方法表示同一个角的是( )A .B .C .D .4.利用一副三角板不能画出的角的度数是( )A .105︒B .100︒C .75︒D .15︒5.从多边形的一个顶点出发,可以画出4条对角线,则该多边形的边数为( )A .5B .6C .7D .86.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .经过一点有且只有一条直线与已知直线垂直7.如图,已知ABC ,点D 是BC 边中点,且ADC BAC.∠∠=若BC 6=,则AC =( )A .3B .4C .42D .328.一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西30︒方向上,在海岛B 的北偏西60︒方向上,则海岛B 到灯塔C 的距离是( ) A .15海里B .20海里C .30海里D .60海里9.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于( )A .72︒B .90︒C .108︒D .144︒10.下列命题正确的是( )A .三点确定一个圆B .圆的任意一条直径都是它的对称轴C .等弧所对的圆心角相等D .平分弦的直径垂直于这条弦二、填空题11.要在墙上订牢一根木条,至少需要2颗钉子,其理由是 .12.如图,在菱形ABCD 中,10AB =,M ,N 分别为BC ,CD 的中点,P 是对角线BD 上的一个动点,则PM PN +的最小值是 .13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若80BOC ∠=︒,则COE ∠的度数是 .14.一个多边形的每个内角都等于150°,则这个多边形的边数为 ,对角线总数是条。

第四章 基本平面图形(A卷提升卷 单元重点综合测试)(教师版)24-25学年七年级数学上册(成都专用

第四章 基本平面图形(A卷提升卷 单元重点综合测试)(教师版)24-25学年七年级数学上册(成都专用

第四章 基本平面图形(A 卷·提升卷)(考试时间:120分钟 试卷满分:150分)A 卷(共100分)第Ⅰ卷(选择题,共32分)一、单项选择题:本题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图所示,点E 、F 分别是线段AC 、AB 的中点,若EF =2,则BC 的长为( )A .3B .4C .6D .8【答案】B【分析】根据线段的中点,可得AE 与AC 的关系,AF 与AB 的关系,根据线段的和差,可得答案.【详解】解:E 、F 分别是线段AC 、AB 的中点,AC =2AE =2CE ,AB =2AF =2BF ,EF =AE ﹣AF =22AE ﹣2AF =AC ﹣AB =2EF =4,BC =AC ﹣AB =4,故选:B .【点睛】本题考查了两点间的距离,根据中点的性质求出线段AC -AB =4是解题关键.2.若45,45n n a b Ð=°-°Ð=°+°,则a Ð与Ðb 的关系是( )A .互补B .互余C .和为钝角D .和为周角【答案】B【分析】本题考查了互余,解题关键是掌握若两个角的和等于90°,即这两个角互余.根据已知条件,得出90a b Ð+Ð=°,即可得到答案.【详解】解:∵45,45n n a b Ð=°-°Ð=°+°,454590n n a b \Ð+Ð=°-°+°+°=°,a \Ð与Ðb 互余,故选:B .3.钟面上3点20分时,时针与分针的夹角度数是( )A .30°B .25°C .15°D .20°4.如图所示图形中,共有( )条线段.A .10B .12C .15D .30【答案】A【分析】根据线段的定义即可获得答案.【详解】解:该图形中,线段有AB BC CD DE AC BD CE AD BE AE 、、、、、、、、、,共计10条.故选:A .【点睛】本题主要考查了线段数量的知识,数量掌握线段的定义是解题关键.5.如图,线段10AB =,点C 、D 分别是线段AB 上两点()CD AC CD BD >>,,用圆规在线段CD 上分别截取CE AC DF BD ==,,若点E 与点F 恰好重合,则CD 的长度为( )A .3B .4C .5D .66.下列说法中正确的是()A.两点之间,直线最短B.由两条射线组成的图形叫做角C.若过多边形的一个顶点可以画5条对角线,则这个多边形是八边形=,则点C是线段AB的中点D.对于线段AC与BC,若AC BC【答案】C【分析】根据两点之间线段最短,角的定义,多边形的对角线以及线段中点的定义对各小题分析判断即可得解【详解】A、两点之间,线段最短,故本选项不合题意;B、有公共端点是两条射线组成的图形叫做角,故本选项不合题意;C、若过多边形的一个顶点可以画5条对角线,则这个多边形是八边形,故本选项符合题意;=,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项不合题意;D、若线段AC BC故选:C.【点睛】本题考查了两点之间线段最短,角的定义,线段中点的定义,多边形的对角线,熟练掌握概念是解题的关键.7.正多边形通过镶嵌能够密铺成一个无缝隙的平面,下列组合中不能镶嵌成一个平面的是( )A.正三角形和正方形B.正三角形和正六边形C.正方形和正六边形D.正方形和正八边形【答案】C【分析】由正多边形的内角拼成一个周角进行判断,ax+by=360°(a、b表示多边形的一个内角度数,x、y 表示多边形的个数).【详解】解:A、∵正三角形和正方形的内角分别为60°、90°,3×60°+2×90°=360°,∴正三角形和正方形可以镶嵌成一个平面,故A选项不符合题意;B、∵正三角形和正六边形的内角分别为60°、120°,2×60°+2×120°=360°,或4×60°+1×120°=360°,∴正三角形和正六边形可以镶嵌成一个平面,故B选项不符合题意;C、∵正方形和正六边形的内角分别为90°、120°,2×90°+1×120°=300°<360°且3×90°+1×120°=390°>360°,∴正方形和正六边形不能镶嵌成一个平面,故C 选项符合题意;D 、正方形和正八边形的内角分别为90°、135°,1×90°+2×135°=360°,∴正方形和正八边形可以镶嵌成一个平面,故D 选项不符合题意;故选:C .【点睛】本题主要考查了平面镶嵌,两种或两种以上几何图形向前成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.8.如图,已知点C 是线段AB 上一点,点D 是AC 的中点,点E 是BC 的中点.若12AB =,则DE 的长为( )A .7B .6C .5D .4第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.已知1672832¢¢¢Ð=°,则它的余角是.【答案】223128¢¢¢°【分析】根据余角的定义求即可.【详解】解:∵1672832¢¢¢Ð=°,∴它的余角是90672832223128¢¢¢¢¢¢°-°=°,故答案为:223128¢¢¢°.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.10.82.3°用度、分、秒可表示为 .【答案】8218¢°【分析】根据1分等于60分,将0.3度转化为用分表示即可.【详解】解:0.30.36018¢°=´=,∴82.38218¢°=°,故答案为:8218¢°.【点睛】本题考查度、分、秒之间的转化,能够掌握三个单位之间的转换方法是解决本题的关键.11.如图,100AOB Ð=°,OM 平分AOC Ð,ON 平分BOC Ð,则MON Ð= .12.如图,线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间距离是10,则AB = ,CD = .13.如图1,一款暗插销由外壳AB ,开关CD ,锁芯DE 三部分组成,其工作原理如图2,开关CD 绕固定点O 转动,由连接点D 带动锁芯DE 移动.图3为插销开启状态,此时连接点D 在线段AB 上,如1D 位置.开关CD 绕点O 顺时针旋转180°后得到22C D ,锁芯弹回至22D E 位置(点B 与点2E 重合),此时插销闭合如图4.已知72mm CD =,2150mm AD AC -=,则1BE = mm .【答案】22【分析】本题主要考查了线段的和差计算,结合图形得出当点D 在O 的右侧时,即1D 位置时,B 与点E 的距离为1BE ,当点D 在O 的左侧时,即2D 位置时,B 与点E 重合,即2E 位置,得出11222BE OD OD OD =+=,再由图形中线段间的关系得出12225072mm CD OC OD OD OD =+=++=,即可求解.【详解】解:由图3得,当点D 在O 的右侧时,即1D 位置时,B 与点E 的距离为1BE ,由图4得,当点D 在O 的左侧时,即2D 位置时,B 与点E 重合,即2E 位置,∴11222BE OD OD OD =+=,∵2150mm AD AC -=,∴()()2150mm AO OD AO OC ---=,∴1250mm OC OD -=,∴1250OC OD =+,∵11CD OC OD OC OD =+=+,∴12225072mm CD OC OD OD OD =+=++=,∴2222mm OD =,∴122mm BE =,故答案为:22.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.计算(结果用度、分、秒表示).(1)58496731¢¢°+°;(2)47.6251236¢¢¢°-°;(3)384572.5¢°+°;(4)()180583570.3¢°-°+°.【答案】(1)12620¢°(2)222324¢¢¢°(3)11115¢°(4)517¢°【分析】本题考查度,分,秒的计算,解题的关键是掌握160¢°=,160¢¢¢=进行计算,即可.(1)根据160¢°=,进行计算,即可;(2)根据160¢°=,160¢¢¢=,进行计算,即可;(3)根据160¢°=,160¢¢¢=,进行计算,即可;(4)根据160¢°=,160¢¢¢=,进行计算,即可.【详解】(1)解:58496731¢¢°+°12580¢=°+12620¢=°.(2)解:47.6251236¢¢¢°-°4736251236¢¢¢¢=°-°473560251236¢¢¢¢¢¢=°-°222324¢¢¢=°.(3)解:384572.5¢°+°38457230¢¢=°+°11075¢=°11115¢¢=.(4)解:()180583570.3¢°-°+°()180********¢¢=°-°+°18012835¢=°-°517¢=°.15.如图是依依家到学校的行走路线图.(1)小公园在依依家的 偏 ° 米处.(2)小公园在银行的 偏 ° 米处.(3)学校西偏南20°,距离250m 处是超市,请用★标出超市的位置.(1cm 表示100m )【答案】(1)北;西20;距离80.(2)南;西30;距离100(3)见解析【分析】本题主要考查了方位角的表示,解题的关键是熟练掌握方位角的定义.(1)根据方位角的定义进行解答即可;(2)根据方位角的定义进行解答即可;(3)根据学校西偏南20°,距离250m处是超市,进行解答即可.【详解】(1)解:小公园在依依家的北偏西20°距离80米处.故答案为:北;西20;80.(2)解:∵银行在小公园的北偏东30°距离100米处;∴小公园在银行的南偏西30°距离100米处.故答案为:南;西30;距离100.(3)解:如图所示:A B C D.根据下列语句按要求画图.16.如图,已知平面内有四个点,,,(1)连接AB;=;(2)作射线AD,并在线段AD的延长线上用圆规截取DE AD+>,得出这个结论的依据是:______.(3)作直线BC与射线AD交于点F.观察图形发现,线段AF BF AB【答案】(1)见解析(2)见解析(3)见解析;两点之间,线段最短【分析】本题考查了作图-复杂作图,直线、射线、线段,线段的性质:两点之间,线段最短,解决本题的关键是掌握基本的作图方法.(1)根据题意,求解即可;=(以(2)根据射线和线段的定义,作出射线AD,端点为A,并在线段AD的延长线上用圆规截取DE AD点D为圆心,AD为半径)即可;(3)根据直线和射线的定义即可作出直线BC与射线AD交于点F,进而可得出结论的依据.【详解】(1)如图,AB即为所作;(2)如图,点E即为所作;(3)如图,点F即为所作;观察图形发现,线段AF BF AB+>,得出这个结论的依据是:两点之间,线段最短.17.如图,线段16AB=,点C是线段AB的中点,点D是线段BC的中点.(1)求线段AD的长;(2)若在线段AB上有一点E,14CE BC=,求AE的长.18.(1)如图1,射线OC 在AOB Ð的内部,OM 平分AOC Ð,ON 平分BOC Ð,若110AOB Ð=°,求MON Ð的度数;(2)射线OC ,OD 在AOB Ð的内部,OM 平分AOC Ð,ON 平分BOD Ð,若100AOB Ð=°,20COD Ð=°,求MON Ð的度数;(3)在(2)中,AOB m Ð=°,COD n Ð=°,其他条件不变,请用含m ,n 的代数式表示MON 的度数(不用说理).B 卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)19.如图,总共有 个角.【答案】10【分析】根据图形分别表示出所有角即可.【详解】解:图中的角有:AOC Ð,AOD Ð,AOE Ð,AOB Ð,COD Ð,COE Ð,COB Ð,DOE Ð,Ð共有10个角.Ð,EOBDOB故答案为:10.【点睛】本题考查了角的概念,正确会表示角,做到不重不漏是关键.20.已知点C是线段AB的三等分点,点D是线段AC的中点.若线段2AD=,则AB=.21.如图,将一副三角尺的直角顶点O重合在一起.若∠COB与∠DOA的比是2:7,OP平分∠DOA,则∠POC =度.22.已知:90AOB Ð=°,30BOC Ð=o ,OM 平分AOC Ð,则MOB Ð的度数为.Ð②当OC在AOBQÐ=°ÐAOB BOC90,\Ð=ÐAOC AOBQ OM平分AOCÐ1\Ð=ÐCOM AOC故答案为:30°或23.如图,在数轴上剪下6个单位长度(从1-到5)的一条线段,并把这条线段沿某点向左折叠,然后在::,则折痕处对应的点表示的数可重叠部分的某处剪一刀得到三条线段,发现这三条线段的长度之比为112能是.如图所示:①二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.如图,点C 、D 为线段AB 上两点,点M 为线段AC 的中点,点N 为线段BD 的中点.(1)若14cm AB =,4cm CD =.求AC BD +的长及MN 的长.(2)若AB a =,CD b =.直接用含a 、b 的式子表示MN 的长.CD= 25.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB=(单位长度),慢车长4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数a=,c是代数式轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是c,其中8 2-+的二次项系数.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个x x1625单位长度/秒的速度向左匀速继续行驶.(1)此时刻a=________,c=________;(2)从此时刻开始算起,问再行驶多少秒钟两列火车的车头AC相距16个单位长度?(3)此时在快车AB上有一位爱动脑筋的乘客——天桥少年M,他发现行驶中有一段时间t秒钟,他的位置M+++为定到两列火车头AC的距离和加上到两列火车尾BD的距离和是一个不变的值(即MA MC MB MD 值).你认为天桥少年M发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.(2)解:()()241662-¸+88=¸1=(秒),或()()2416625+¸+=(秒),答:再行驶1秒或5秒两列火车行驶到车头AC 相距16个单位长度;(3)解:这个结论正确,当M 在CD 之间时,MC MD +是定值4,()462t =¸+48=¸0.5=(秒),∵2MA MB AB +==,∴此时()()246MA MC MB MD MA MB MC MD +++=+++=+=(单位长度),故这个时间是0.5秒,定值是6单位长度.26.钟面上的数学基本概念:钟面角是指时钟的时针与分针所成的角.如图1,AOB Ð即为某一时刻的钟面角,通常0180AOB °£Ð£°[简单认识]时针和分针在绕点O 一直沿着顺时针方向旋转,时针每小时转动的角度是30°,分针每小时转动一周,角度为360°.由此可知:(1)时针每分钟转动 °,分针每分钟转动 °:[初步研究](2)已知某一时刻的钟面角的度数为a ,在空格中写出一个与之对应的时刻:①当90a =°时, ;②当180a =°时, ;(3)如图2,钟面显示的时间是8点04分,此时钟面角AOB Ð= .[深入思考](4)在某一天的下午2点到3点之间(不包括2点整和3点整).①时针恰好与分针重叠,则这一时刻是;时针恰好与分针垂直,求此时对应的时刻是;、所在射线与射线OC中恰有一条是另两条射线所②记钟面上刻度为3的点为C,当钟面角的两条边OA OB成角的角平分线时,请直接写出此时对应的时刻.。

七年级上-基本平面图形测试题

七年级上-基本平面图形测试题

七年级上-基本平面图形测试题七年级上册第四章《平面图形及其位置关系》测试题1.七(1)班的同学用二个图钉就把刚获得的校田径运动会团体总分第一名的奖状挂在墙上了,请你用本章的一个知识来说明这样做的道理: ;2.如图1,用“>”、“<”或“=”连接下列各式,并说明理由.AB +BC_____AC ,AC +BC_____AB ,BC_____AB +AC ,理由是______ ___;3.如图2,AB 的长为m ,BC 的长为n ,MN 分别是AB ,BC 的中点,则MN =___ __;4.如图3:小于平角的角有__________个,用两种不同的方法表示最大的一个角是________;5.要整齐地栽一行树,只要确定下两端的树坑 图2 C N M B A CBA 图1的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是_________________1)°=( )´=( )″;48″6.(12=( ) ´=( )°7.上午10点30分,时针与分针成___________度的角。

8.已知两根木条,一根长60 cm,一根长100 cm,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是___________________ cm9.已知从A地到B地共有五条路,小红应选择第_____________路,用数学知识解释为___________________________10.已知线段AB的中点是C,BC的中点是D,AD的中点是E,则AE=________AB。

11.下列说法正确的是( )A、两点之间,线段最短B、射线就是直线C、两条射线组成的图形叫做角D、小于平角的角可分为锐角和钝角两类12.以下给出的四个语句中,结论正确的有( )①如果线段AB=BC,则B是线段AC的中点②线段和射线都可看作直线上的一部分③大于直角的角是钝角④如图,∠ABD也可用∠B表示A、1个B、2个C、3个D、4个13.在同一平面内两条直线的位置关系可能是( )A、相交或垂直B、垂直或平行C、平行或相交D、不行或相交或重合14.下列说法中正确的是( )A、在同一平面内,两条不平行的线段必相交B、在同一平面内,不相交的两条线段是平行线C、两条射线或线段平行是指它们所在的直线平行D、一条直线有可能同时与两条相交直线平行15.下列结论正确的有( )A、如果a⊥b,b⊥c,那么a⊥cB、a ⊥b,b∥c,那么a∥cC、如果a∥b,b⊥c,那么a∥cD、如果a⊥b,b∥c,那么a⊥c16.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于A、11cmB、5cmC、11cm或5cmD、8cm或11cm17.甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是()(A)甲说3点时和3点30分(B)乙说6点15分和6点45分(C)丙说9时整和12时15分(D)丁说3时整和9时整18.如图,四条表示方向的射线中,表示北偏东60°的是()(A)(B)(C)(D)19.一个人从A点出发向北偏东60°的方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC的度数是()(A)75°(B)105°(C)45°(D)135°20.直线a外有一定点A,点A到a的距离是cm5,P是直线a上的任意一点,则()(A)AP >cm5(C)AP =5(B)AP≥cm5(D)AP < cm5cm21.下列说法正确的是()(A)过一点能作已知直线的一条平行线(B)过一点能作已知直线的一条垂线(C)射线AB的端点是A和B(D)点可以用一个大写字母表示,也可用小写字母表示解答题:22.如图,已知线段AB=15cm,C点在AB上,3AC,求BC的长BC=423.如图:∠AOB=∠COD=90°,∠AOD=146°,求:∠BOC的度数。

(必考题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(答案解析)(1)

(必考题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(答案解析)(1)

一、选择题1.下列说法正确的是( )A .经过两点可以作无数条直线B .各边相等,各角也相等的多边形是正多边形C .长方体的截面形状一定是长方形D .棱柱的每条棱长都相等 2.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为( )A .10B .12C .16D .183.下列说法中,正确的是( ).A .a -的相反数是正数B .两点之间线的长度叫两点之间的距离C .两条射线组成的图形叫做角D .两点确定一条直线 4.周末早上,小兰9:00从家里出发去图书馆看书,上午10:30回到家中,这段时间内钟面上的时针转了( )A .37.5°B .45°C .52.5°D .60°5.如图,上午8:20,钟表的时针与分针所成的角是( )A .120°B .125°C .130°D .135°6.已知点C 在线段AB 上,点D 在线段AB 的延长线上,若5AC =,3BC =,14BD AB =,则CD 的长为( ) A .2 B .5 C .7 D .5或1 7.如图,OA 是北偏东30方向的一条射线,OB 是北偏西50︒方向的一条射线,那么AOB ∠的大小为( )A .70︒B .80︒C .100︒D .110︒ 8.下列说法中,正确的是( ) A .射线是直线的一半 B .线段AB 是点A 与点B 的距离C .两点之间所有连线中,线段最短D .角的大小与角的两边所画的长短有关 9.如图,轮船与灯塔相距120nmile ,则下列说法中正确的是( )A .轮船在灯塔的北偏西65°,120 n mile 处B .灯塔在轮船的北偏东25°,120 n mile 处C .轮船在灯塔的南偏东25°,120 n mile 处D .灯塔在轮船的南偏西65°,120 n mile 处10.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是( )A .B .C .D . 11.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个 B .2个 C .3个 D .4个12.如图,∠PQR 等于138°,SQ ⊥QR ,QT ⊥PQ .则∠SQT 等于( )A.42°B.64°C.48°D.24°二、填空题13.如图,已知C,D两点将线段AB分成三部分,且这三部分的长度之比为2:3:4,点M为线段AB的中点,BD=8cm,求线段DM的长.14.如图,已知线段m,n.射线AP.实践与操作:在射线AP上作线段AB=m,AC=m+n.(要求:尺规作图,保留作图痕迹,不写作法).推理与计算:若线段AB的中点是点D,线段AC的中点是点E.请在上图中标出点D,E.当m=4,n=2时,求线段DE的长度.15.如图,已知直线AB,CD相交于点O,OE,OF为射线,∠AOE=90°,OF平分∠BOC,(1)若∠EOF=30°,求∠BOD的度数;(2)试问∠EOF与∠BOD有什么数量关系?请说明理由.16.已知O为直线AB上一点,OE平分∠AOC,OF平分∠COB(1)若已知∠AOC=60°,求∠EOF的大小.(2)小明说无论∠AOC等于多少度,∠EOF的度数不变,他的说法对吗?AB=,M是线段AB的中点,P是线段AB上任意一点,N是线段17.已知,线段20PB的中点.(1)当P是线段AM的中点时,求线段NB的长;MP=时,求线段NB的长;(2)当线段1(3)若点P 在线段BA 的延长线上,猜想线段PA 与线段MN 的数量关系,并画图加以证明.18.如图,已知线段a ,b .(1)任意画一直线,利用尺规作图在直线上从左至右依次截取AB =a ,BC =b ;(2)在(1)的条件下,如果AB =8,BC =6,M 是线段AB 的中点,N 是线段BC 的中点,求MN 的长.19.如图,已知60cm AB =,点C 为线段AB 的中点,点D 是线段AB 上的点,且AD 与DB 的长度之比2:1.(1)求BD 的长.(2)求CD 的长.20.(1)计算:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭(2)如图,OD 平分AOC ∠,75BOC ∠=︒,15BOD ∠=︒.求AOB ∠的度数.三、解答题21.综合与实践如图,某学校由于经常拔河,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求,已知磨损的麻绳总长度不足20米.只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳.七年级的聪聪马上想出一个了办法:在线段CD 上取一点M ,使CM CA =,对折BM 找到其中点F ,将AC 和BF 剪掉就得到一条长20米的拔河比赛专用绳CF .请你完成下列任务;(1)在图中标出点M 、点F 的位置;(2)判断聪聪剪出的专用绳CF 是否符合要求.试说明理由.22.综合与探究问题背景数学活动课上,老师将一副三角尺按图1所示位置摆放,三角尺ABC中,∠BAC=90°,∠B=∠C=45°;三角尺ADE中,∠D=90°,∠DAE=60°,∠E=30°.分别作出∠BAD、∠CAE的平分线AM、AN.然后提出问题:求出∠MAN的度数.特例探究“智慧小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,AM和AN仍然是∠BAD和∠CAE的平分线.其中,按图2方式摆放时,AB和AE在同一直线上.按图3方式摆放时, AB、AD、AM在同一直线上.(1)计算:图2中∠MAN的度数为 °,图3中∠MAN的度数为 °(直接写出答案,不写过程).发现感悟(2)探究完图2,图3所示的特殊位置问题后,请你猜想图1中∠MAN的度数为 °;“智慧小组”的同学认为图2,图3中∠BAD、∠CAE的度数都已知或能求出具体的度数,图1中,∠MAN=∠MAB+∠BAE+∠EAN ,这些角比较一般化,求不出具体的度数,所以想到了用字母表示数,如果设∠BAE为x°,则可以用含x的式子表示∠BAD和∠CAE,进而可以表示∠MAB和∠EAN,这样就能求出∠MAN的度数;请你根据智慧小组的思路,求出图1中∠MAN的度数.类比拓展(3)受到“智慧小组”的启发,“创新小组”将三角尺按图4所示方式摆放,分别作出∠BAD、∠CAE的平分线AM、AN.他们认为也能求出∠MAN的度数.请你求出∠MAN的度数.23.已知射线AB ,线段6AB =,在直线AB 上取一点P ,使3AP PB ,Q 为PB 的中点.(1)根据题意,画出图形;(2)求线段AQ 的长.24.已知直线AB 与射线OC 相交于点O .(1)如图,90AOC ∠=︒,射线OD 平分AOC ∠,求BOD ∠的度数;(2)如图,120AOC ∠=︒,射线OD 在AOC ∠的内部,射线OE 在BOC ∠的内部,且4BOD BOE ∠=∠,2COD COE ∠=∠.若射线OF 使12COF COE ∠=∠,请在图中作出射线OF ,并求出BOF ∠的度数.25.计算:(1)2113623⎛⎫-+⨯-⎪⎝⎭ (2)48396735''︒+︒26.如图,已如A,B两点.(1)画线段AB;=;(2)延长线段AB到点C,使BC AB=;(3)反向延长线段AB到点D,使DA ABAB=,请求出线段CD的长.(4)点A,B分别是哪条线段的中点?若3cm【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】两点确定一条直线,长方体的截面有多种形状,棱柱的棱长可能相等.【详解】∵两点确定一条直线,∴A说法是错误;∵各边相等,各角也相等的多边形是正多边形,是正确的,∴B说法是正确;∵长方体的截面形状可以是正方形,也可以是六边形,∴C说法是错误;一般长方体的棱长是不相等的,∴D说法是错误;故选B.【点睛】本题考查了一些列的数学基本概念和性质,熟记数学概念和性质是解题的关键.2.B解析:B【分析】由已知条件可知,EC+FD=EF-CD=8-4=4,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=EF-CD=8-4=4,∵E是AC的中点,F是BD的中点,∴AE=EC,BF=DF∴AE+FB=EC+FD=4,∴AB=AE+FB+EF=4+8=12.故选:B.【点睛】本题考查的是线段上两点间的距离,解答此题时利用中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.D解析:D【分析】依据角的概念、直线的性质、相反数的定义以及两点之间的距离的定义进行判断即可;【详解】A、-a的相反数不一定是正数,故错误;B、两点之间的线段的长度叫两点之间的距离,故错误;C、有公共顶点两条射线组成的图形叫做角,故错误;D、两点确定一条直线,故正确;故选:D.【点睛】本题主要考查了直线的性质、角的概念、两点之间的距离的定义,掌握相关概念和性质是解题的关键.4.B解析:B【分析】9时是分针指向12,时针指向9,10:30时分针指向6,时针指向10和11正中间,所以时针走了1.5个大格,因为每个大格所对的角度是30度,所以3个大格之间的夹角是30°×1.5=45°,据此解答即可.【详解】解:由分析得出:从上午9:00到上午10:30,钟面上的时针转了:30°×1.5=45°.故选:B.【点睛】解决本题要先分析时针位置的变化,再利用每个大格所对的角度是30度进行解答.5.C解析:C【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:8:20时,时针与分针相距4+2060=133份,8:20时,时针与分针所夹的角是30°×133=130°,故选:C .【点睛】本题考查了钟面角,确定时针与分针相距的分数是解题关键.6.B解析:B【分析】根据线段的和差关系可求AB ,再根据14BD AB =,可求BD ,再根据线段的和差关系可求CD 的长.【详解】解:如图,∵点C 在线段AB 上,AC=5,BC=3,∴AB=AC+BC=5+3=8,∴14BD AB ==2,∵点D 在线段AB 的延长线上,∴CD=BC+BD=3+2=5.故选B【点睛】本题考查了线段的和差,根据题意,画出正确图形,是解题关键.7.B解析:B【分析】根据方向角可得∠1的度数,从而可得∠AOB 的值.【详解】解:如图,∵OB 是北偏西50 方向的一条射线,∴∠1=50°∴∠AOB=∠1+30°=50°+30°=80°故选:B .【点睛】本题考查了方向角,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.8.C解析:C【分析】依据射线、直线、线段、角的概念,以及两点之间的连线,线段最短,即可进行判断;【详解】A.射线的长度无法度量,故不是直线的一半,故本选项错误;B.线段AB的长度是点A与点B的距离,故本选项错误;C.两点之间所有连线中,线段最短,故本选项正确;D.角的大小与角的两边所画的长短无关,故本选项错误;故选:C.【点睛】本意主要考查了射线、直线、线段以及角的概念,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短;9.B解析:B【分析】根据方向角的定义作出判断.【详解】解:灯塔在轮船的北偏东25°,120 n mile处.故选B.【点睛】考查方向角的定义.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)10.D解析:D【分析】分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.【详解】解:A.正六边形每个内角为120°,能够整除360°,不合题意;B.正三角形每个内角为60°,能够整除360°,不合题意;C.正方形每个内角为90°,能够整除360°,不合题意;D.正五边形每个内角为108°,不能整除360°,符合题意.故选:D.【点睛】能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.11.A解析:A【分析】根据两点之间距离的定义可以判断A、C,根据射线的定义可以判断B,据题意画图可以判断D.【详解】∵线段AB的长度是A、 B两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.12.A解析:A【分析】利用垂直的概念和互余的性质计算.【详解】解:∵∠PQR=138°,QT⊥PQ,∴∠PQS=138°﹣90°=48°,又∵SQ⊥QR,∴∠PQT=90°,∴∠SQT=42°.故选A.【点睛】本题是对有公共部分的两个直角的求角度的考查,注意直角的定义和度数.第II卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据按比例分配的意义线段中点的意义及线段的和差运算解答【详解】解:由图可知:AC:CD:DB=2:3:4∴∵BD=8cm ∴cm ∵点M 为线段AB 的中点∴BM=18cm ∴DM=BM-BD=9-8解析:=1cm DM【分析】根据按比例分配的意义、线段中点的意义及线段的和差运算解答.【详解】解:由图可知:AC:CD:DB=2:3:4, ∴49DB AB =, ∵BD=8cm , ∴98184AB =⨯=cm , ∵点M 为线段AB 的中点,∴BM=18192⨯=cm , ∴DM=BM-BD=9-8=1cm .【点睛】本题考查线段的应用,熟练掌握按比例分配的意义、线段中点的意义及线段的和差运算是解题关键.14.实践与操作:见解析;推理与计算:图见解析1【分析】实践与操作:在射线AP 上分别顺次截取线段AB=mBC=n 即可推理与计算:先求出AC 长再根据线段的中点求出AD 和EE 长即可求出答案;【详解】实践与操作解析:实践与操作:见解析;推理与计算:图见解析,1【分析】实践与操作:在射线AP 上分别顺次截取线段AB =m ,BC =n 即可.推理与计算:先求出AC 长,再根据线段的中点求出AD 和EE 长,即可求出答案;【详解】实践与操作:如图,线段AB ,AC 即为所求.推理与计算:∵m=4,n=2,∴AC=4+2=6因为D, E分别是AB,AC的中点,所以AD=12AB=12×4=2,AE=12AC=12×6=3,∴DE=AE-AD=3-2=1【点睛】本题主要考查两点间的距离,掌握中点的定义是解题的关键.15.(1)∠BOD=60°;(2)∠BOD=2∠EOF理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°由OF平分∠BOC求出∠BOC=120°进而求出∠BOD=180°-120°=60°;解析:(1)∠BOD=60°;(2)∠BOD=2∠EOF,理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°,由OF平分∠BOC求出∠BOC=120°,进而求出∠BOD=180°-120°=60°;(2)设∠EOF=α,将∠FOB、∠BOC分别用α的代数式表示,最后∠BOD=180°-∠BOC即可求解.【详解】解:(1)∠BOE=180°-∠AOE=180°-90°=90°,∵∠EOF=30°,∴∠FOB=90°-30°=60°,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=120°,∴∠BOD=180°-∠BOC=180°-120°=60°;(2)设∠EOF=α,则∠FOB=90°-α,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=2(90°-α),∴∠BOD=180°-∠BOC=180°-2(90°-α)=2α,即∠BOD=2∠EOF.【点睛】本题主要考查了垂线,角平分线的定义以及平角的综合运用,掌握角平分线平分角,垂线得到直角这两个性质是解决本题的关键.16.(1)90°;(2)对【分析】(1)根据角平分线的定义求解即可;(2)根据角平分线的定义求解即可【详解】解:(1)∵∠AOC=60°∴∠BOC=180°-∠AOC=180°-60°=120°∵OE平解析:(1)90°;(2)对【分析】(1)根据角平分线的定义求解即可;(2)根据角平分线的定义求解即可.【详解】解:(1)∵∠AOC=60°,∴∠BOC =180°-∠AOC =180°-60°=120°,∵OE 平分∠AOC ,OF 平分∠COB∴∠EOC=12∠AOC=30°,∠COF=12∠BOC=60° ∴∠EOC+∠COF =30°+60°=90°;(2)小明说的对,理由如下:∵OE 平分∠AOC ,OF 平分∠COB∴∠EOC=12∠AOC ,∠COF=12∠BOC ∵∠AOB 是平角 ∴∠EOC+∠COF =12(∠AOC+∠BOC )=12×∠AOB=12×180°=90° 所以,无论∠AOC 等于多少度,∠EOF=90°【点睛】本题考查角平分线的定义;角的和差关系.结合图形解题是本题的关键.17.(1)75;(2)45或55;(3)画图证明见解析【分析】(1)画出符合题意的图形先求解再求解可得再利用中点的含义可得答案;(2)分两种情况讨论:当在左边时当在右边时先求解再利用中点的含义可得答案;解析:(1)7.5;(2)4.5或5.5;(3)2PA MN =,画图证明见解析.【分析】(1)画出符合题意的图形,先求解10AM =,再求解5AP =, 可得15PB =, 再利用中点的含义可得答案;(2)分两种情况讨论:当P 在M 左边时,当P 在M 右边时,先求解,PB 再利用中点的含义可得答案;(3)当P 在线段BA 延长线上时,如图,设PA t =,求解1102NB t =+,再求解12MN NB MB t =-=,从而可得结论. 【详解】解:(1)如图,∵M 是线段AB 的中点,20AB =∴1102MA AB == ∵P 是线段AM 的中点,∴152AP AM == ∴20515PB AB AP =-=-=∵N 是线段PB 的中点 ∴17.52NB PB == (2)∵1MP =, ∴当P 在M 左边时,如图,11BP MB MP =+=,∵N 是线段PB 的中点, ∴1 5.52NB PB ==, 如图,当P 在M 右边时,9BP MB MP =-=,∵N 是线段PB 的中点,∴1 4.52NB PB ==. (3)线段PA 和线段MN 的数量关系是:2PA MN =,理由如下:当P 在线段BA 延长线上时,如图,设PA t =,则20PB t =+∵N 是线段PB 的中点∴111022NB PB t ==+ ∵M 是线段AB 的中点,20AB =∴1102MB AB == ∴12MN NB MB t =-=又∵PA t =∴2PA MN =【点睛】本题考查的是线段的和差关系,线段的中点的含义,整式的加减运算,分类思想的运用,掌握以上知识是解题的关键.18.(1)见解析;(2)7【分析】(1)根据线段定义即可利用尺规作图在直线上从左至右依次截取AB=aBC=b;(2)根据AB=8BC=6求出MBBN即可求MN的长【详解】解:(1)如图线段AB=aBC=解析:(1)见解析;(2)7【分析】(1)根据线段定义即可利用尺规作图在直线上从左至右依次截取AB=a,BC=b;(2)根据AB=8,BC=6,求出MB、BN,即可求MN的长.【详解】解:(1)如图,线段AB=a,BC=b即为所求;(2)∵AB=8,BC=6,M是线段AB的中点,N是线段BC的中点,∴BM=12AB=4,BN=12BC=3,∴MN=MB+BN=4+3=7.答:MN的长为7.【点睛】本题考查了线段和差的画法和求线段长,解题关键是理解中点的意义,准确识图,利用线段的和差求值.19.(1)20cm;(2)10cm【分析】(1)根据AD与DB的长度之比2:1列式求解即可;(2)根据中点的定义求出BC再由CD=BC-BD可得出答案【详解】解:(1)∵AD与DB的长度之比2:1∴(2解析:(1)20cm;(2)10cm【分析】(1)根据AD与DB的长度之比2:1列式求解即可;(2)根据中点的定义求出BC,再由CD=BC-BD,可得出答案.【详解】解:(1)∵60cmAB ,AD与DB的长度之比2:1,∴16020cm 3BD =⨯= (2)∵60cm AB =,点C 为线段AB 的中点, ∴130cm 2BC AB ==, ∴CD BC BD =- 3020=-10cm =【点睛】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.20.(1);(2)【分析】(1)先计算有理数的乘方将除法转化为乘法小数化为分数再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得再根据角平分线的定义可得然后根据角的和差即可得【详解】(1)解:; 解析:(1)9-;(2)45︒.【分析】(1)先计算有理数的乘方、将除法转化为乘法、小数化为分数,再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得60COD ∠=︒,再根据角平分线的定义可得60AOD COD ∠=∠=︒,然后根据角的和差即可得.【详解】(1)解:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭ ()55187142=---⨯-- 55922=-+- 9=-;(2)解:75BOC ∠=︒,15BOD ∠=︒,751560COD BOC BOD ∴∠=∠-∠=︒-︒=︒,∵OD 平分AOC ∠,∴60AOD COD ∠=∠=︒,∴601545AOB AOD BOD ∠=∠-∠=︒-︒=︒.【点睛】 本题考查了含乘方的有理数混合运算、与角平分线有关的角度计算,熟练掌握各运算法则和角平分线的定义是解题关键.三、解答题21.(1)见解析;(2)符合要求,见解析【分析】(1)根据题意可直接进行作图;(2)由题意易得12AC CM AM ==,12MF FB MB ==,进而可得20CF m =,然后由20AC BD m +<可进行判断.【详解】解:(1)由题意可作如图所示:(2)符合要求.理由是:∵C 为AM 的中点,F 为BM 的中点, ∴12AC CM AM ==,12MF FB MB ==, ∴CF CM MF =+1122AM MB =+()1122AM MB AB =+=, ∵40AB m =,∴20CF m =,∵20AC BD m +<,∴20CD m >,∴CF 符合要求.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.22.(1)75,75;(2)75,过程见解析;(3)105°.【分析】(1)图2,由角平分线的性质得到11,22EAM MAD EAD CAN NAB CAB ∠=∠=∠∠=∠=∠,再结合角的和差解题即可;图3,由角平分线的性质,得到12CAN NAE CAE ∠=∠=∠,再结合角的和差解题即可;(2)由∠MAN=∠MAB+∠BAE+∠EAN ,结合角平分线的性质解题;(3)由∠MAN=∠MAD +∠EAN-∠DAE ,结合角平分线的性质解题.【详解】解:(1)图2中,AM 和AN 是∠BAD 和∠CAE 的平分线, 1130,4522EAM MAD EAD CAN NAB CAB ∴∠=∠=∠=︒∠=∠=∠=︒ 304575MAN EAM NAB ∴∠=∠+∠=︒+︒=︒;图3中,AM 和AN 是∠BAD 和∠CAE 的平分线,111()(9060)15222CAN NAE CAE CAB EAB ∴∠=∠=∠=∠-∠=⨯︒-︒=︒ 901575MAN MAC CAN ∴∠=∠-∠=︒-︒=︒故答案为:75;75;(2)设∠BAE 为x°,则∠BAD=∠DAE- x°=60°- x°,∠CAE=∠BAC- x°=90°-x°因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAB=12∠BAD =12(60°- x°)=30°-12 x° ∠EAN=12∠CAE=12(90°- x°)=45°+12x°. 所以∠MAN=∠MAB+∠BAE+∠EAN=(30°-12 x°)+ x°+(45°-12 x°) =75°,故答案为:75°;(3)设∠BAE 为x°,则∠BAD=∠DAE+ x°=60°+ x°,∠CAE=360°-∠BAC-∠BAE=360°-90°-x°=270°-x°,因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAD=12∠BAD =12(60°+ x°)=30°+12 x° ∠EAN=12∠CAE=12(270°- x°)=135°-12x°. 所以∠MAN=∠MAD +∠EAN-∠DAE=(30°+12 x°)+(135°-12x°)- 60° =105°.【点睛】 本题考查三角板的特殊角、角平分线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(1)见解析;(2)7.5或5.25【分析】(1)分P 在AB 的延长线上和在AB 之间两种情况画出图形即可;(2)分两种情况,先根据3AP PB 求得AB 和BP ,再根据线段的中点求得BQ ,根据线段的和差即可求得AQ .【详解】解:(1)由于点P 与点B 的位置关系没有确定,∴根据题意,可画出满足条件的两个图形,如图1,图2所示(2)①在图1中,点P 在点B 右边,设PB x =,∵3AP PB ,∴3AP x =,26AB x ==.∴3x =,∵Q 为BP 的中点,∴ 1.5BQ =,6 1.57.5AQ =+=,②在图2中,点P 在点B 左边,∵3AP PB , ∴3 4.54AP AB ==, 1.5PB =, ∵点Q 为PB 中点,∴0.75PQ =, 4.50.75 5.25AQ =+=.【点睛】本题考查线段的和差.能正确识图是解题关键,解题时注意分类思想的运用. 24.(1)135︒;(2)45°或75°.【分析】(1)由90AOC ∠=︒可求90BOC ∠=°,由OD 是AOC ∠的平分线得=45AOD DOC ∠∠=︒,可求=+135BOD DOC BOC ∠∠∠=︒;(2)由120AOC ∠=︒,可求∠BOC=60º,由4BOD BOE ∠=∠,设∠BOE=xº可得∠BOD=4x°,∠DOE=3x°由2COD COE ∠=∠, 可求2,COD x COE x ∠=︒∠=︒,可得∠COE=∠BOE=30由12COF COE ∠=∠,可求15COF ∠=︒,当OF 在∠EOC 内部时,当OF 在∠DOC 内部时利用角和差计算即可.【详解】证明:(1)∵90AOC ∠=︒∴18090BOC AOC ∠=︒-∠=︒∵OD 是AOC ∠的平分线,∴AOD DOC ∠=∠. ∴=45AOD DOC ∠∠=︒,∴=+4590135BOD DOC BOC ∠∠∠=︒+︒=︒;(2)∵120AOC ∠=︒,∴∠BOC=180º-∠AOC=60º,∵4BOD BOE ∠=∠,设∠BOE=xº,∴∠BOD=4x°,∠DOE=3x°,∵2COD COE ∠=∠,+=3COD COE DOE x ∠∠∠=︒,∴2,COD x COE x ∠=︒∠=︒,∴∠COE=∠BOE=11BOC=60=3022∠⨯︒︒, ∵12COF COE ∠=∠, ∴11=30=1522COF COE ∠=∠⨯︒︒,当OF 在∠EOC 内部时,=601545BOF BOC COF ∠∠-∠=︒-︒=︒,当OF 在∠DOC 内部时,=+60+1575BOF BOC COF ∠∠∠=︒︒=︒, BOF ∠的度数为45°或75°.【点睛】本题考查了角平分线的定义及角的和差,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.25.(1)-8;(2)'11614︒【分析】(1)先算乘方和括号,再算乘法,后算加法;(2)两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度,从而得出答案.【详解】解:(1)2113623⎛⎫-+⨯-⎪⎝⎭ =1966-+⨯=-9+1=-8;(2)48396735''︒+︒='11574︒='11614︒.【点睛】本题考查了有理数的混合运算,以及度、分、秒的计算,熟练掌握1°=60',160'''=是解答本题的关键.26.(1)见解析;(2)见解析;(3)见解析;(4)点A 是线段BD 的中点,点B 是线段AC 的中点;CD=9cm .【分析】(1)(2)(3)根据线段的定义和几何语言画出对应的几何图形;(4)根据线段的中点的定义可判断点A 是线段BD 的中点;点B 是线段AC 的中点;然后利用CD=3AB 求解.【详解】解:(1)如图,线段AB 为所作;(2)如图,点C 为所作;(3)如图,点D 为所作;(4)点A 是线段BD 的中点;点B 是线段AC 的中点;所以339CD DA AB BC =++=⨯=(cm ).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.。

(好题)初中数学七年级数学上册第四单元《基本平面图形》测试(包含答案解析)

(好题)初中数学七年级数学上册第四单元《基本平面图形》测试(包含答案解析)

一、选择题1.如图,∠AOB =∠COD =90°,若∠BOD =150°,则∠BOC 的度数为( )A .150°B .120°C .90°D .60°2.如图,B 为线段AC 上一点,H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,则下列说法:①MN HC =;②1()2MH AH HB =-;③1()2MN AC HB =+;④1()2HN HC HB =+,其中正确的是( )A .①②B .①②③C .①②③④D .①②④3.下列说法不正确的是( )A .两点确定一条直线B .两点间线段最短C .两点间的线段叫做两点间的距离D .正多边形的各边相等,各角相等4.已知点O 在直线AB 上,且线段4OA =,6OB =,点E ,F 分别是OA ,OB 的中点,则线段EF 的长为( ) A .1 B .5C .3或5D .1或55.如图,OC 是AOB ∠的平分线,OD 是AOC ∠的平分线,且25COD ∠=︒,则AOB∠等于( )A .25︒B .50︒C .75︒D .100︒6.如图,点C 为线段AB 上一点且AC BC >,点D 、E 分别为线段AB 、CB 的中点,若7AC =,则DE =( )A .3.5B .4C .4.5D .无法确定7.如图,甲、乙两人同时从A 地出发,甲沿北偏东50︒ 方向步行前进,乙沿图示方向步行前进.当甲到达B 地,乙到达C 地时,甲与乙前进方向的夹角∠BAC 为100︒ ,则此时乙位于A 地的( )A .南偏东30︒B .南偏东50︒C .北偏西30︒D .北偏西50︒8.如图,点C 、D 是线段AB 上任意两点,点M 是AC 的中点,点N 是DB 的中点,若AB a ,MN b =,则线段CD 的长是( )A .2b a -B .()2a b -C .-a bD .1()2a b + 9.如图,线段CD 在线段AB 上,且2CD =,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .3110.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,n (n ≥2,且n 是整数)条直线相交最多能有( )A .()23n -个交点B .()36n -个交点C .()410n -个交点D .()112n n -个交点 11.如图,轮船与灯塔相距120nmile ,则下列说法中正确的是( )A .轮船在灯塔的北偏西65°,120 n mile 处B .灯塔在轮船的北偏东25°,120 n mile 处C .轮船在灯塔的南偏东25°,120 n mile 处D .灯塔在轮船的南偏西65°,120 n mile 处12.已知∠'α21=,∠β0.36=︒,则∠α和∠β的大小关系是( ) A .∠α=∠βB .∠α>∠βC .∠α<∠βD .无法确定二、填空题13.如图,OC 是∠AOB 的平分线,且∠BOD =13∠COD . (1)当∠BOD =15°时,则∠AOB 的大小为 ; (2)当∠AOB =70°时,则∠AOD 的大小为 ;(3)若射线OP 在∠AOD 的内部,且∠POD =∠AOB ,∠AOP 与∠AOC 数量关系可以表示为 .14.已知:90AOB ∠=︒,做射线OC ,OD 是AOC ∠的角平分线,OE 是BOC ∠的角平分线.(1)如图①,当70BOC ∠=︒时,求DOE ∠的度数;①(2)如图②,若射线OC 在AOB ∠内部绕O 点旋转,当BOC a ∠=时,求DOE ∠的度数;②(3)若射线OC 在AOB ∠外绕O 点旋转且AOC ∠为钝角时,求DOE ∠的度数.15.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使60AOC ∠=︒,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)如图2,将图1中的三角板绕点O 逆时针旋转,使边OM 在BOC ∠的内部,且OM 恰好平分BOC ∠.求此时BOM ∠度数;(2)如图3,继续将图2中的三角板绕点O 按逆时针方向旋转,使得ON 在AOC ∠的内部.试探究AOM ∠与CON ∠之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 以一定速度沿逆时针方向旋转一周,在旋转的过程中,若射线ON 恰好与射线OC 在同一直线上,则此时AOM ∠的角度为_________.(直接写出结果)16.如图:已知直线AB 、CD 相于点O ,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数; (2)若:2:7BOD BOC ∠∠=,求BOD ∠的度数. 17.已知:80AOB COD ∠=∠=︒(1)如图1,AOC BOD ∠=∠吗?请说明理由.(2)如图2,直线MN 平分AOD ∠,直线MN 平分BOC ∠吗?请说明理由. (3)若150BOD ∠=︒,20BOE ∠=︒,求COE ∠的大小.18.如图,已知线段DA 与B 、C 两点,用圆规和无刻度的直尺按下列要求画图并计算:(不写作法但要保留作图痕迹)⑴ 画线段AC 、直线AB 、射线DC ,且直线AB 与射线DC 相交于点O ;延长线段DA 至点E ,使AE=AC ;⑵ 若AC=2cm ,AD=3cm ,点F 为线段AD 的中点,求线段EF 的长.19.如图,已知点A ,B ,C ,D .按要求画图:①连接AD ,画射线BC ;②画直线CD 和直线AB ,两条直线交于点E ; ③画点P ,使PA PB PC PD +++的值最小.20.如图,已知点C 在线段AB 上,点D 、E 分别在线段AC 、BC 上,(1)观察发现:若D 、E 分别是线段AC 、BC 的中点,且12AB =,则DE =_______; (2)拓展探究;若2AD DC =,2BE CE =,且10AB =,求线段DE 的长;(3)数学思考:若AD kDC =,BE kCE =(k 为正数),则线段DE 与AB 的数量关系是________.三、解答题21.(1)计算:1517(36)61218⎫⎛+-⨯- ⎪⎝⎭(2)计算:2020211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ (3)计算:18050243'-⨯22.已知射线AB 上有一点C ,10AB cm =,4BC cm =,点M 是AC 的中点,点N 是BC 的中点.(1)如图①,若点C 在AB 之间时,求MN 的长; (2)如图②,若点C 在B 点右边时,求MN 的长.23.如图,已知110AOF BOC ∠=∠=︒,80BOF ∠=︒,OE 是AOC ∠的平分线,求COE ∠的度数.24.如图,已知O 是直线AC 上一点,OC 平分BOD ∠,160AOB ∠=︒,OE AC ⊥,求DOE ∠的度数.25.如图,已知,∠AOB=120°,在∠AOB 内画射线OC ,∠AOC=40°.(1)如图1,求∠BOC 的度数;(2)如图2,OD 平分∠AOC ,OE 平分∠BOC ,求∠DOE 的度数.26.如图,已知点M 是线段AB 的中点,点E 将AB 分成:3:4AE EB =的两段,若2cmEM=,求线段AB的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】把∠BOD和∠COD的度数代入∠BOC=360°﹣∠BOD﹣∠COD,即可求出答案.【详解】解:∵∠BOD=150°,∠DOC=90°,∴∠BOC=360°﹣∠BOD﹣∠COD=360°﹣150°﹣90°=120°,故选:B.【点睛】本题考查了周角,角的有关计算的应用,主要考查学生观察图形的能力和计算能力,注意:1周角=360°.2.D解析:D【分析】根据线段中点的性质、结合图形、线段和差倍分计算即可判断.【详解】解:∵H为AC的中点,M为AB的中点,N为BC的中点,∴AH=CH=12AC,AM=BM=12AB,BN=CN=12BC,∴MN=MB+BN=12(AB+BC)=12AC,∴MN=HC,①正确;1 2(AH﹣HB)=12(AB﹣BH﹣BH)=MB﹣HB=MH,②正确;MN=12AC<1()2AC HB+,③错误;1 2(HC+HB)=12(BC+HB+HB)=BN+HB=HN,④正确,故选择:D.【点睛】本题考查线段的中点定义,线段和差倍分的概念,掌握线段的中点定义,线段和差倍分的概念.3.C解析:C【分析】分别利用直线的性质,线段的性质,正多边形的性质以及两点间的距离的定义分析求出即可.【详解】解:A.两点确定一条直线是正确的,不符合题意;B.两点间线段最短是正确的,不符合题意;C.两点间的垂线段的长度叫做两点间的距离,原来的说法错误,符合题意;D.正多边形的各边相等,各角相等是正确的,不符合题意.故选:C.【点睛】此题主要考查了直线的性质,线段的性质,正多边形的性质以及两点间的距离等知识,正确把握相关性质是解题关键.4.D解析:D【分析】根据题意,画出图形,此题分两种情况:①点A,B在点O同侧时;②点A,B在点O两侧时两种情况.【详解】解:分情况讨论:①点A,B在点O同侧时,由线段OA=4,线段OB=6,∵E,F分别是OA,OB的中点,∴OE=12OA=2,OF=12OB=3,∴EF=OF-OE=3-2=1;②点A,B在点O两侧时,如图,由线段OA=4,线段OB=6,∵E,F分别是OA,OB的中点,∴OE=12OA=2,OF=12OB=3,∴EF=OE+OF=2+3=5,∴线段EF 的长度为1或5. 故选D . 【点睛】本题考查线段中点的定义及线段长的求法.利用中点性质转化线段之间的倍分关系是解题的关键.5.D解析:D 【分析】根据角平分线定义得出∠AOC=2∠COD ,∠AOB=2∠AOC ,代入求出即可. 【详解】解:∵OD 是AOC ∠的平分线,∠COD=25°, ∴∠AOC=2∠COD=50°, ∵OC 是AOB ∠的平分线, ∴∠AOB=2∠AOC=100°, 故选:D . 【点睛】本题考查了角平分线定义的应用,能理解角平分线定义是解此题的关键.6.A解析:A 【分析】根据线段的中点的意义可得12DB AB =,12BE BC =,再根据12DE DB EB AC =-=即可得到结论. 【详解】解:∵点D 、E 分别为线段AB 、CB 的中点, ∴12AD DB AB ==,12CE BE BC == 又1111()2222DE DB EB AB BC AB BC AC =-=-=-= ∵7AC = ∴ 3.5DE = 故选:A . 【点睛】本题考查的是两点间的距离,关键是通过中点确定所求线段和整体线段的数量关系,进而求解.7.A解析:A 【分析】直接根据题意得出各角度数,进而结合方向角表示方法得出答案.【详解】 解:如图所示:由题意得: ∠1=50︒,∠BAC =100︒ ∴∠2=180°-∠1-∠BAC =180°-50︒-100︒ =30︒故乙位于A 地的南偏东30︒. 故选:A . 【点睛】此题主要考查了方向角,正确掌握方向角的表示方法是解题关键.8.A解析:A 【分析】先由AB MN a b -=-,得AM BN a b +=-,再根据中点的性质得22AC BD a b +=-,最后由()CD AB AC BD =-+即可求出结果.【详解】解:∵AB a ,MN b =, ∴AB MN a b -=-, ∴AM BN a b +=-,∵点M 是AC 的中点,点N 是DB 的中点, ∴AM MC =,BN DN =,∴()()2222AC BD AM MC BN DN AM BN a b a b +=+++=+=-=-, ∴()()222CD AB AC BD a a b b a =-+=--=-. 故选:A . 【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.9.B解析:B 【分析】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB ,然后根据CD=2,线段AB 的长度是一个正整数,依次对选项进行判断即可解答本题.【详解】解:由题意可得,图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和是: AC+CD+DB+AD+CB+AB=(AC+CD+DB )+(AD+CB )+AB=AB+AB+CD+AB=3AB+CD , ∵CD=2,∴AC+CD+DB+AD+CB+AB=3AB+2,∴A 选项中:当和为28时,即3AB+2=28,解得:AB=263,与AB 长度是正整数不符,故不符合要求;B 选项中:当和为29时,即3AB+2=29,解得:AB=9,AB 长度是正整数,故符合要求;C 选项中:当和为30时,即3AB+2=30,解得:AB=283,与AB 长度是正整数不符,故不符合要求;D 选项中:当和为31时,即3AB+2=31,解得:AB=293,与AB 长度是正整数不符,故不符合要求;故选:B .【点睛】本题考查线段的长度,解题的关键是明确题意,找出所求问题需要的条件. 10.D解析:D【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:()112n n - 【详解】解:2条直线相交有1个交点;3条直线相交有1+2=3个交点;4条直线相交有1+2+3=6个交点;5条直线相交有1+2+3+4=10个交点;6条直线相交有1+2+3+4+5=15个交点;…n 条直线相交有1+2+3+4+…+(n-1)=()112n n - 故选:D【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有()112n n -个交点. 11.B解析:B【分析】根据方向角的定义作出判断.【详解】解:灯塔在轮船的北偏东25°,120 n mile 处.故选B .【点睛】考查方向角的定义.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)12.C解析:C【分析】一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解.【详解】解:∵∠α=21′,∠β=0.36︒=21.6′,∴∠α<∠β.故选:C .【点睛】考查了度分秒的换算,熟练掌握角的比较与运算,能够在度与分之间进行转化.二、填空题13.(1)60°;(2)875°;(3)∠【分析】(1)先根据∠BOD =∠COD 求出∠COB=30°再根据角平分线的定义求解即可;(2)角平分线的定义求出∠COB=35°由∠BOD =∠COD 求出∠BOD解析:(1)60°;(2)87.5°;(3)∠12AOP AOC =∠ 【分析】(1)先根据∠BOD =13∠COD 求出∠COB=30°,再根据角平分线的定义求解即可; (2) 角平分线的定义求出∠COB=35°,由∠BOD =13∠COD 求出∠BOD 的度数,从而可进一步得出结论; (3)先得出∠BOD AOP =∠,再由∠1122BOD COB AOC =∠=∠即可得出结论. 【详解】解:(1)∵∠BOD =15°,∠BOD =13∠COD∴∠331545COD BOD =∠==︒⨯︒∴∠451530COB COD BOD =∠-∠=︒-︒=︒又∵OC 是∠AOB 的平分线∴∠223060AOB COB =∠=⨯︒=︒故答案为:60°;(2)∵1,3BOD COD COD COB BOD ∠=∠∠=∠+∠ ∴∠1()3BOD COB BOD =∠+∠ ∴∠12BOD COB =∠ ∵∠AOB =70°,OC 是∠AOB 的平分线,∴∠11703522COB AOB =∠==︒⨯︒ ∴∠113517.522BOD COB ︒=∠=⨯=︒ ∴∠70=187.57.5AOD AOB BOD =∠+︒∠=+︒︒故答案为:87.5°; (3)∵∠POD POB BOD =∠+∠,∠AOB AOP POB =∠+∠,且∠POD AOB =∠ ∴∠BOD AOP =∠,又∠1122BOD COB AOC =∠=∠ ∴∠12AOP AOC =∠ 【点睛】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键. 14.(1)45°;(2)45°;(3)45°或135°【分析】(1)由∠BOC 的度数求出∠AOC 的度数利用角平分线定义求出∠COD 与∠COE 的度数相加即可求出∠DOE 的度数;(2)∠DOE 度数不变理由为解析:(1)45°;(2)45°;(3)45°或135°【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE =∠COD +∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】解:(1)∵90AOB ∠=︒,70BOC ∠=︒∴9020AOC BOC ∠=︒-∠=︒,∵OD 、OE 分别平分AOC ∠和BOC ∠, ∴1102COD AOC ∠=∠=︒,1352COE BOC ∠=∠=︒, ∴45DOE COD COE ∠=∠+∠=︒;(2)DOE ∠的大小不变,理由是:∵90AOB ∠=︒,BOC α∠=∴90AOD α∠=︒-又∵OE ,OD 分别是BOC ∠与AOC ∠的平分线∴12EOC α∠=,()1902COD α∠=︒- ∴DOE EOC COD ∠=∠+∠()11904522αα=+︒-=︒. (3)DOE ∠的大小发生变化情况为,如图3,则DOE ∠为45°;如图4,则DOE ∠为135°,分两种情况:如图3所示,∵OD 、OE 分别平分AOC ∠和BOC ∠,∴12COD AOC ∠=∠,12COE BOC ∠=∠, ∴()1452DOE COD COE AOC BOC ∠=∠-∠=∠-∠=︒; 如图4所示,∵OE ,OD 分别是BOC ∠与AOC ∠的平分线∴EOC BOE ∠=∠,COD AOD ∠=∠又∵90AOB ∠=︒∴270AOD DOC COE EOB ∠+∠+∠+∠=︒∴22270DOC COE ∠+∠=︒∴135DOC COE ∠+∠=︒∴135DOE ∠=︒.【点睛】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键.容易出错的地方是解(3)小题漏掉其中的一种情况.15.(1)60°;(2)理由见解析;(3)30°或150°【分析】(1)由OM 恰好平分∠BOC 得∠BOM=∠BOC=(180°-∠AOC )=(180°-60°)=60°;(2)由∠AOM+∠NOA=90解析:(1)60°;(2)30AOM NOC ∠-∠=︒,理由见解析;(3)30°或150°【分析】(1)由OM 恰好平分∠BOC 得,∠BOM=12∠BOC=12(180°-∠AOC )=12(180°-60°)=60°;(2)由∠AOM+∠NOA=90°,∠AON+∠NOC=60°,可得结论;(3)结合旋转过程分情况讨论,并利用角的和差关系计算求解【详解】(1)∵60AOC ∠=︒∴180********BOC AOC ∠=︒-∠=︒-︒=︒,又∵OM 平分BOC ∠∴1602BOM BOC ∠=∠=︒ (2)30AOM NOC ∠-∠=︒,理由∵6090AOC MON ∠=︒∠=︒,∴90AOM MON AON AON ∠=∠-∠=︒-∠60NOC AOC AON AON ∠=∠-∠=︒-∠∴30AOM NOC ∠-∠=︒.(3)如图,当点N 在射线OC 上时此时∠AOM=∠MON-∠AOC=90°-60°=30°当点N 在射线OC 的反向延长线上时,此时,∠MOB=∠MON-∠BON=∠MON-∠AOC=90°-60°=30°∴∠AOM=180°-∠MOB=150°综上,∠MON 的度数为30°或150°故答案为:30或150︒【点睛】考查角平分线的意义及角的和差运算,理解题意,注意分类讨论思想解题是关键. 16.(1)58°;(2)40°【分析】(1)根据平角的定义结合角的和差进行计算;(2)根据平角的定义结合角的比进行求解计算【详解】解:(1)直线ABCD 相交于点O (2)【点睛】本题考查几何图形中角度的和解析:(1)58°;(2)40°【分析】(1)根据平角的定义,结合角的和差进行计算;(2)根据平角的定义,结合角的比进行求解计算.【详解】解:(1)直线AB 、CD 相交于点O180AOC COE BOE ∴∠+∠+∠=︒180BOE AOC COE ∴∠=︒-∠-∠90,32COE AOC ∠=︒∠=︒BOE 180329058∴∠=︒-︒-︒=︒(2)180COD ∠=︒,:2:7BOD BOC ∠∠=2180409BOD ∴∠=︒⨯=︒. 【点睛】 本题考查几何图形中角度的和差计算,理解题意,列出角的和差关系,正确计算是解题关键.17.(1)见解析;(2)直线平分见解析;(3)150°或110°【分析】(1)根据角的和差关系可得结论;(2)根据角平分线的定义求解即可;(3)分在内部和外部两种情况进行求解即可【详解】解:(1)理由如解析:(1)AOC BOD ∠=∠,见解析;(2)直线MN 平分BOC ∠,见解析;(3)150°或110°【分析】(1)根据角的和差关系可得结论;(2)根据角平分线的定义求解即可;(3)分OE 在AOB ∠内部和外部两种情况进行求解即可.【详解】解:(1)AOC BOD ∠=∠.理由如下:80AOB COD ∠=∠=︒AOB AOD COD AOD ∴∠+∠=∠+∠即BOD AOC ∠=∠(2)直线MN 平分BOC ∠.理由如下:180AOB MOA NOB ∠+∠+∠=︒,180COD MOD NOC ∠+∠+∠=︒又80AOB COD ∠=∠=︒100MOA NOB MOD NOC ∠+∠=∠+∠=︒∴直线MN 平分AOD ∠MOA MOD ∠=∠∴NOB NOC ∠=∠∴即直线MN 平分BOC ∠.(3)150BOD ∠=︒,80AOB COD ∠=∠=︒70AOD ∴∠=︒,130COB ∠=︒①当OE 在AOB ∠内部时,如图所示:13020150COE BOC BOE ∠=∠+∠=︒+︒=︒②当OE 在AOB ∠外部时,如图所示:13020110COE BOC BOE ∠=∠-∠=︒-︒=︒综上所述,COE ∠的度数为150°或110°.【点睛】本题考查了解度的计算,角平分线的定义,正确识别图形是解题的关键.18.(1)见解析;(2)35cm 【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶因为AD=3cmF 为线段AD 的中点所以AF=15cm 又因为AE=AC=2c解析:(1)见解析;(2)3.5cm【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶因为AD=3cm,F为线段AD的中点,所以 AF=1.5cm,又因为AE=AC=2cm,所以 EF=AE+AF=3.5cm.【点睛】本题主要考查了作图-基本作图,准确分析作图是解题的关键.19.①见解析;②见解析;③见解析【分析】①连接AD作射线BC即可;②作直线CD和AB交点为点E③画点P使PA+PB+PC+PD的值最小即可;【详解】解:如图所示:【点睛】本题考查了作图——复杂作图线段的解析:①见解析;②见解析;③见解析【分析】①连接AD,作射线BC即可;②作直线CD和AB,交点为点E③画点P,使PA+PB+PC+PD的值最小即可;【详解】解:如图所示:【点睛】本题考查了作图——复杂作图、线段的性质:两点之间线段最短、两点间的距离,解决本题的关键是根据语句准确画图.20.(1)6;(2);(3)【分析】(1)根据中点的定义结合线段的和差计算即可(2)利用线段之间的和差关系倍数关系计算即可(3)结合(2)的求解再利用线段之间的和差关系倍数关系计算即可【详解】(1)为线解析:(1)6;(2)103;(3)()1AB k DE =+ 【分析】(1)根据中点的定义,结合线段的和、差计算即可(2)利用线段之间的和、差关系倍数关系计算即可(3)结合(2)的求解,再利用线段之间的和、差关系倍数关系计算即可【详解】 (1)D 、E 为线段AC ,BC 的中点11,22DC AC CE BC ∴== ()12DC CE AC BC ∴+=+ ,DE DC CE AB AC BC =+=+12DE AB ∴= 1211262AB DE =∴=⨯= (2)2,2AD DC BE CE == AB AD DC CE BE =+++,()223AB DC DC CE CE DC CE ∴=+++=+10,AB DE DC CE ==+3310103DE ABDE DE ∴=∴=∴=(3),AD kDC BE kCE == AB AD DC CE BE =+++,DE DC CE =+()()1AB kDC DC CE kCE k DC CE ∴=+++=++()1k DE AB ∴+=【点睛】本题考查了线段n 等分点的有关计算,掌握线段之间和、差倍数关系是解题关键.三、解答题21.(1)13;(2)16;(3)2848'.【分析】(1)利用乘法分配律,进行计算即可;(2)根据有理数混合运算的计算方法进行计算即可;(3)根据度分秒的换算方法计算即可.【详解】 (1) 1517()(36)61218+-⨯- ()()()151736363661218=⨯-+⨯--⨯- 6(15)(34)=-+---61534=--+13= (2)2020211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ 111(29)23=--⨯⨯- 11(7)6=--⨯- 16= (3)18050243'-⨯1796015072''=-2848'=.【点睛】本题考查乘法分配律,有理数的混合运算,度分秒的换算,掌握有理数的混合运算的法则以及度分秒的换算方法是得出正确答案的前提.22.(1)5cm ;(2)5cm【分析】(1)求出AC ,根据中点分别求出CM 和CN ,即可求出答案;(2)求出AC ,根据中点分别求出CM 和BN ,再求出MB ,即可求出答案;【详解】(1)∵10AB =,4BC =∴6AC =又∵M 点是AC 的中点,N 点是BC 的中点∴ 3AM MC ==,2BN CN ==∴5MN MC CN =+=.(2)∵10AB =,4BC =∴14AC AB BC =+=又∵M 点是AC 的中点,N 点是BC 的中点∴7AM MC ==,2BN CN ==∴3MB MC BC =-=∴5MN MB BN =+=.【点睛】本题考查了两点之间的距离的应用,能求出CM 和CN=BN 的长度是解此题的关键,求解过程类似.23.70︒【分析】根据AOF BOC ∠=∠可证AOB COF ∠=∠,利用角的和差关系可求出30AOB ∠=︒,则由110BOC ∠=°得出140BO OC O C A A B ∠=+∠=∠︒,即可根据角平分线定义求得结果.【详解】解:∵AOF BOC ∠=∠,∴AOF BOF BOC BOF ∠-∠=∠-∠,即AOB COF ∠=∠.∵80BOF ∠=︒,110BOC ∠=°,∴30BO OF BO C C F ∠-∠=∠=︒,∴30AOB ∠=︒,∴140BO OC O C A A B ∠=+∠=∠︒,∵OE 是AOC ∠的平分线, ∴1702COE AOC ∠=∠=︒. 【点睛】本题考查了角的计算问题,掌握角平分线的定义并能利用角的和差关系求解是解题的关键.24.70︒.【分析】根据平角的定义,求∠BOC ,后利用角的平分线,垂直的定义计算即可.【详解】解:∵160AOB ∠=︒,∴18016020BOC AOC AOB ∠=∠-∠=︒-︒=︒,∵OC 平分BOD ∠,∴20COD BOC ∠=∠=︒,∵OE AC ⊥,∴90COE ∠=︒,∴902070DOE COE COD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平角的定义,角的平分线,垂直的定义,熟练掌握互补的定义,角的平分线的性质是解题的关键.25.(1)80°;(2)60°【分析】(1)利用两个角的和进行计算即可;(2)根据角平分线的意义和等式的性质,得出∠DOE═12∠AOB即可.【详解】解:(1)如图1,∵∠AOB =120°,∠AOC =40°;∴∠BOC=∠AOB-∠AOC=120°-40°=80°;(2)如图2,∵OD平分∠AOC,∴∠AOD=∠COD=12∠AOC ∵OE平分∠BOC,∴∠BOE=∠COE=12∠BOC ∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12∠AOB=12×120° =60°.【点睛】本题考查角平分线的意义,根据图形直观,得出角的和或差,是解决问题的关键. 26.线段AB 的长为28cm .【分析】由点E 将AB 分成:3:4AE EB =的两段,设AE=3k ,BE=4k ,可用k 表示AB=7k ,由点M 是线段AB 的中点,AM=17AB=22k ,由EM=AM-AE=71322k k k -==2cm ,求出k=4cm 即可.【详解】解:∵点E 将AB 分成:3:4AE EB =的两段,设AE=3k ,BE=4k ,∴AB=AE+BE=3k+4k=7k ,∵点M 是线段AB 的中点,∴AM=17AB=22k , ∴EM=AM-AE=71322k k k -==2cm , ∴k=4cm ,∴AB=7k=7×4=28cm .∴线段AB 的长为28cm .【点睛】本题考查线段比例,线段中点,掌握线段的比例问题解题法法,线段中点,会利用线段差构造等式解决问题是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册第四章《平面图形及其位置关系》测试题
1.七(1)班的同学用二个图钉就把刚获得的校田径运动会团体总分第一名的奖状挂在墙上了,请你用本章的一个知识来说明这样做的道理: ;
2.如图1,用“>”、“<”或“=”连接下列各式,并说明理由.
AB +BC_____AC ,AC +BC_____AB ,BC_____AB +AC ,
理由是______ ___;
3.如图2,AB 的长为m ,BC 的长为n ,MN 分别是AB ,BC 的中点,则MN =___ __;
4.如图3:小于平角的角有__________个,用两种不同的方法表示最大的一个角是________;
5.要整齐地栽一行树,只要确定下两端的树坑的位置 ,就能确定这一行树坑所在的直线,这里用到的数学知识是_________________
6.(12
1)°=( ) ´=( )″;48″=( ) ´=( ) ° 7.上午10点30分,时针与分针成___________度的角。

8.已知两根木条,一根长60 cm ,一根长100 cm ,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是___________________ cm
9.已知从A 地到B 地共有五条路,小红应选择第_____________路,
用数学知识解释为___________________________
图2 C N M B A C
B
A 图1
10.已知线段AB的中点是C,BC的中点是D,AD的中点是E,则AE=________AB。

11.下列说法正确的是( )
A、两点之间,线段最短
B、射线就是直线
C、两条射线组成的图形叫做角
D、小于平角的角可分为锐角和钝角两类
12.以下给出的四个语句中,结论正确的有( )
①如果线段AB=BC,则B是线段AC的中点
②线段和射线都可看作直线上的一部分
③大于直角的角是钝角
④如图,∠ABD也可用∠B表示
A、1个
B、2个
C、3个
D、4个
13.在同一平面内两条直线的位置关系可能是( )
A、相交或垂直
B、垂直或平行
C、平行或相交
D、不行或相交或重合
14.下列说法中正确的是( )
A、在同一平面内,两条不平行的线段必相交
B、在同一平面内,不相交的两条线段是平行线
C、两条射线或线段平行是指它们所在的直线平行
D、一条直线有可能同时与两条相交直线平行
15.下列结论正确的有( )
A、如果a⊥b,b⊥c,那么a⊥c
B、a⊥b,b∥c,那么a∥c
C、如果a∥b,b⊥c,那么a∥c
D、如果a⊥b,b∥c,那么a⊥c
16.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于
A、11cm
B、5cm
C、11cm或5cm
D、8cm或11cm
17.甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是()
(A)甲说3点时和3点30分(B)乙说6点15分和6点45分
(C)丙说9时整和12时15分(D)丁说3时整和9时整
18.如图,四条表示方向的射线中,表示北偏东60°的是 ( )
(A ) (B ) (C ) (D )
19.一个人从A 点出发向北偏东60°的方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 的度数是 ( )
(A ) 75° (B ) 105° (C ) 45° (D )135°
20.直线a 外有一定点A ,点A 到a 的距离是cm 5,P 是直线a 上的任意一点,则( )
(A )AP >cm 5 (B )AP ≥cm 5 (C )AP = cm 5 (D )AP < cm 5
21.下列说法正确的是( )
(A )过一点能作已知直线的一条平行线 (B )过一点能作已知直线的一条垂线
(C )射线AB 的端点是A 和B (D )点可以用一个大写字母表示,也可用小写字母表示 解答题:
22.如图,已知线段AB=15cm ,C 点在AB 上,BC=4
3AC ,求BC 的长
23.如图:∠AOB=∠COD=90°,∠AOD=146°,求:∠BOC 的度数。

作图题
24.在右图中作出表示点B到线段AC距离的线段
25.作一个角,使它等于已知角,并在已知角中作出角分线。

26.如图,直线AB、CD、EF都经过点O,AB⊥CD,
∠AOE=70°,求∠BOF、∠DOF的度数
27.一个正方形的花坛,现将它分成面积相同的八块,分别种上不同颜色的花,如果要求这样分成的八块的形状也相同,请你画出几种不同的设计方案。

相关文档
最新文档