《基本平面图形》测试题
七年级数学上册 第四章 基本平面图形 单元测试卷(北师版 2024年秋)
七年级数学上册第四章基本平面图形单元测试卷(北师版2024年秋)七年级数学上(BS版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.[新趋势跨学科综合2024杭州西湖区月考]《红楼梦》第57回有这么一句话,“自古道:‘千里姻缘一线牵’,管姻缘的有一位月下老儿,暗里只用一根红线,把这两个人的脚绊住.”请问,这里所说的“线”若是真的,则在数学中指的应是()A.直线B.射线C.线段D.以上都不对2.小明在设计黑板报时,想在黑板上画出一条笔直的参照线,由于尺子不够长,他想出了如下方法:①在一根长度合适的毛线上涂满粉笔末;②由两名同学分别按住毛线两端,并绷紧;③捏起毛线后松开,便可在黑板上弹出一条笔直的参照线.上述方法的数学依据是()A.两点之间,线段最短B.两点确定一条直线C.线段中点的定义D.两点间距离的定义3.如图,点B,D,C在直线l上,点A在直线l外,下列说法正确的是()(第3题)A.直线BD和直线CD表示的是同一条直线B.射线BD和射线CD表示的是同一条射线C.∠A和∠BAD表示的是同一个角D.∠1和∠B表示的是同一个角4.[教材P121观察·思考变式2023河北]淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()(第4题)A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向5.[新考向数学文化2024北京昌平区月考]东汉初年,我国的《周髀算经》里就有“径一周三”的古率,提出了圆的直径与周长之间存在一定的比例关系.如图,将图中的半圆)向右水平拉直(保持M端不动),根据该古率,与拉直后铁丝N端的位置弧形铁丝(M最接近的是()(第5题)A.点A B.点B C.点C D.点D 6.[2024驻马店驿城区期末]如图,点A,B,C在直线l上,下列说法正确的是()(第6题)A.点C在线段AB上B.点A在线段BC的延长线上C.射线BC与射线CB是同一条射线D.AC=BC+AB7.[2024广州越秀区月考]下列说法正确的是()A.钟表现在的时间是10点30分,此时时针与分针所成的夹角是105°B.若经过某个多边形一个顶点的所有对角线,将这个多边形分成八个三角形,则这个多边形是九边形C.若AC=BC,则点C是线段AB的中点D.31.25°=31°15'8.[2024深圳南山区一模]如图①是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图②所示,它是以点O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为()(第8题)A.4.25πm2B.3.25πm2C.3πm2D.2.25πm29.如图,将一个三角尺60°角的顶点与另一个三角尺的直角顶点重合,∠1=27°40',则∠2的度数是()(第9题)A.27°40'B.62°20'C.57°40'D.58°20'10.[2024昆明三中月考]已知线段MN=10cm,P是直线MN上一点,NP=4cm,若E是线段MP的中点,则线段ME的长度为()A.3cm B.6cmC.3cm或7cm D.2cm或8cm二、填空题(每题3分,共24分)11.如图,从学校A到书店B最近的路线是①号路线,其中的道理是.(第11题)12.[2024滁州中学模拟]如图,比较图中∠BOC,∠BOD的大小:因为OB是公共边,OC 在∠BOD的内部,所以∠BOC∠BOD(填“>”“<”或“=”).(第12题)13.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,正h 边形的内角和为360°,则代数式h·(m-k)n=.14.[2024北京十二中期末]如图,D是AB的中点,E是BC的中点,BE=16AC=3cm,则线段DE=.(第14题)15.[教材P127习题T8变式2024西安高新一中期末]小明利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,小明到家时时针和分针夹角的度数是.16.将一张长方形ABCD纸片按如图所示的方式折叠,OE和OF为折痕,点B落在点B'处,点C落在点C'处,若∠BOE=35°,∠COF=30°,则∠B'OC'的度数为.(第16题)17.[情境题生活应用]由三门峡南开往北京丰台的G562次列车,运行途中停靠的车站依次是:洛阳龙门—郑州东—鹤壁东—安阳东—石家庄—保定东—涿州东,那么要为这次列车制作车票种.18.[2024郑州外国语中学月考]如图,∠AOC和∠BOD都是直角.固定∠BOD不动,将∠AOC绕点O旋转,在旋转过程中,下列结论正确的有.(第18题)①如果∠DOC=20°,那么∠AOB=160°;②∠DOC+∠AOB是定值;③若∠DOC变小,则∠AOB变大;④∠AOD=∠BOC.三、解答题(19,22,24题每题12分,其余每题10分,共66分)19.[教材P116习题T2变式2024绵阳涪城区期末]如图,在平面内有三点A,B,C.(1)利用尺规,按下面的要求作图.(要求:不写画法,保留作图痕迹)①作射线BA;②作直线BC;③连接AC,并在线段AC上作一条线段AD,使AD=AB,连接BD.(2)数数看,此时图中线段共有条.20.如图,一、二、三、四这四个扇形的面积之比为1∶3∶5∶1.(1)请分别求出它们圆心角的度数.(2)一、二、四这三个扇形的圆心角的度数之和是多少?21.如图,OM平分∠AOB,ON平分∠COD,∠MON=90°,∠BOC=26°43',求∠AOD 的度数.22.如图,点C,D,E在线段AB上,AD=13DC,E是线段CB的中点,CE=16AB=2,求线段DE的长.23.如图,已知O是直线AB上的一点,∠AOC∶∠BOC=2∶7,射线OM是∠AOC的平分线,射线ON是∠BOC的平分线.(1)∠AOC=,∠BOC=;(2)求∠MON的度数;(3)过点O作射线OD,若∠DON=12∠AOC,求∠COD的度数.24.[新视角动态探究题2024合肥包河区月考]如图,M是线段AB上一点,AB=10cm,点C,D分别从M,B两点同时出发以1cm/s,3cm/s的速度沿直线BA向左运动(C在线段AM上,D在线段BM上).(1)当点C,D运动了1s时,这时图中有条线段;(2)当点C,D运动了2s时,求AC+MD的值;(3)若点C,D运动时,总有MD=3AC,求AM的长.参考答案一、1.C2.B3.A4.D5.A6.D7.D8.D9.C10.C二、11.两点之间,线段最短12.<13.50014.9cm15.165°16.50°17.3618.①②③④点拨:因为∠AOC=∠BOD=90°,∠AOC=∠AOD+∠COD,∠BOD=∠BOC+∠COD,所以∠AOC+∠BOD=∠AOD+∠COD+∠BOC+∠COD=180°,即∠AOD+∠COD+∠BOC=180°-∠COD,即∠AOB=180°-∠COD.当∠DOC=20°时,∠AOB=160°.故①正确;因为∠AOB=180°-∠COD,所以∠DOC+∠AOB=180°是定值.故②正确;因为∠AOB=180°-∠COD,所以若∠DOC变小,则∠AOB变大.故③正确;因为∠AOC=∠BOD=∠AOD+∠COD=∠BOC+∠COD,所以∠AOD=∠BOC.故④正确.三、19.解:(1)如图所示.(2)620.解:(1)因为一、二、三、四这四个扇形的面积之比为1∶3∶5∶1,所以各个扇形的面积分别占整个圆面积的110,310,12,110.所以一、二、三、四这四个扇形的圆心角的度数分别为110×360°=36°,310×360°=108°,12×360°=180°,110×360°=36°.(2)一、二、四这三个扇形的圆心角的度数之和是36°+108°+36°=180°. 21.解:因为OM平分∠AOB,ON平分∠COD,所以∠BOM=12∠AOB,∠CON=12∠COD.因为∠MON=90°,∠BOC=26°43',所以∠CON+∠BOM=∠MON-∠BOC=90°-26°43'=63°17'.所以12∠COD+12∠AOB=∠CON+∠BOM=63°17'.所以∠COD+∠AOB=126°34'.所以∠AOD=∠COD+∠BOC+∠AOB=126°34'+26°43'=153°17'.22.解:因为CE=16AB=2,所以AB=12.因为E是线段CB的中点,所以BC=2CE=4.所以AC=8.因为AD=13DC,所以DC=34AC=6.所以DE=DC+CE=8.23.解:(1)40°;140°(2)因为射线OM是∠AOC的平分线,射线ON是∠BOC的平分线,所以∠COM=12∠AOC=20°,∠CON=12∠BOC=70°.所以∠MON=∠COM+∠CON=20°+70°=90°.(3)易得∠DON=12∠AOC=20°.当射线OD在∠CON的内部时,如图①,则∠COD=∠CON-∠DON=70°-20°=50°;当射线OD在∠BON的内部时,如图②,则∠COD=∠CON+∠DON=70°+20°=90°.综上,∠COD的度数为50°或90°.24.解:(1)10(2)当点C,D运动了2s时,CM=2cm,BD=6cm.又因为AB=10cm,所以AC+MD=AB-CM-BD=10-2-6=2(cm).(3)因为C,D两点的速度分别为1cm/s,3cm/s,所以BD=3CM.又因为MD=3AC,所以BD+MD=3CM+3AC,即BM=3AM.所以AM=14AB=14×10=2.5(cm).。
初一数学(上册)《第四章基本平面图形》单元测试题(十二)
初一数学(上册)《第四章基本平面图形》单元测试题(十二)一、选择题1.如果点A 在点B 北偏东400的方向上,那么点B 在点A 的( )A.北偏东500B.南偏西500C.南偏西400D.南偏东4002.图是一块手表早上8时的时针、分针的位置,那么分针与时针所成的角的度数是( )A.600B.800C.1200D.15003.如图所示,C 是AB 的中点,D 是BC 的中点,下面等式不正确的是( )A.CD=AC-DBB.CD=AD-BCC.CD=21AB-BD D.CD=31ABA C DB 第3题图第2题图4.在∠AOB 内部任取一点C ,作射线OC ,则一定存在( )A.∠AOB ﹥∠AOCB.∠AOC ﹥∠BOCC.∠BOC ﹥∠AOCD.∠AOC=∠BOC 5.下列计算错误的是( ) 0=900//B.1.50=90/C.1000//=(185)0 0=125.45/6.直线l 外一点P 与直线l 上三点的连线长分别是4厘米、5厘米、6厘米,则点P 到直线l 的最短的线段长度是( ) A.4厘米 B.5厘米 C.不超过4厘米 D.大于6厘米7.下列说法正确的是( )A 、直线是平角 B.线段AB 的长度就是A ,B 两点间的距离C 、若∠AOB=2∠BOC ,则射线OC 是∠AOB 的平分线 D.若点P 使PA=PB ,则P 是AB 的中点 8.如果由多边形的一个顶点可以作6条对角线,那么这个多边形边数是( )A. 7B.9C.5D.49.下列各直线的表示法中,正确的是( )A .直线A B.直线ABC .直线ab D.直线Ab 10.下列说法正确的是( )A 、过一点P 只能作一条直线。
B 、射线AB 和射线BA 表示同一条射线C 、直线AB 和直线BA 表示同一条直线D 、射线a 比直线b 短 11.下列说法中,正确的有( )个。
A 、0 B 、1 C 、2 D 、3 A 过两点有且只有一条直线 B.连结两点的线段叫做两点的距离 C.两点之间,线段最短 D.AB =BC ,则点B 是线段AC 的中点 12.下面表示ABC 的图是 ( )AA B C D13.平面上有不同的三点,经过其中任意两点画直线,共可以画( )。
(常考题)北师大版初中数学七年级数学上册第四单元《基本平面图形》测试(含答案解析)(1)
一、选择题1.如图,棋盘上有黑、白两色棋子若干,如果在一条至少有两颗棋子的直线(包括图中没有画出的直线)上只有颜色相同的棋子,我们就称“同棋共线”.图中“同棋共线”的线共有( )A .12条B .10条C .8条D .3条2.如图,点C 把线段MN 分成两部分,其比为:5:4MC CN =,点P 是MN 的中点,2cm PC =,则MN 的长为( )A .30cmB .36cmC .40cmD .48cm 3.有下列说法:①由许多条线段连接而成的图形叫做多边形;②从一个多边形(边数为n )的同一个顶点出发,分别连接这个顶点与其余与之不相邻的各顶点,可以把这个多边形分割成()2n -个三角形;③角的边越长,角越大;④一条射线就是一个周角.其中正确的结论有( )A .1个B .2个C .3个D .0个 4.如图,OC 是AOB ∠的平分线,3COD BOD ∠=∠,75AOD ∠=︒,则AOB ∠等于( )A .75°B .70°C .65°D .60° 5.甲打电话给乙:“你在哪儿啊?”在下面乙的回话中,甲能确定乙位置的是( ). A .我和你相距500米 B .我在你北偏东30的方向500米处C .我在你北偏东30的方向D .你向北走433米,然后转90︒再走250米 6.把一副三角板按如图所示方式拼在一起,并作ABE ∠的平分线BM ,则CBM ∠的度数是( )A .120°B .60°C .30°D .15°7.下列说法:①把弯曲的河道改直,能够缩短航程,这是由于两点之间线段最短;②若线段AC BC =,则点C 是线段AB 的中点;③射线OB 与射线OC 是同一条射线;④连结两点的线段叫做这两点的距离;⑤将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.其中说法正确的有( )A .1个B .2个C .3个D .4个8.如图,点C 、D 是线段AB 上任意两点,点M 是AC 的中点,点N 是DB 的中点,若AB a ,MN b =,则线段CD 的长是( )A .2b a -B .()2a b -C .-a bD .1()2a b + 9.如图,经过创平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .在同一平面内,过一点有且只有一条直线与已知直线垂直10.如图,两条直线相交,有一个交点.三条直线相交,最多有三个交点,四条直线相交,最多有六个交点,当有10条直线相交时,最多有多少个交点( )A .60B .50C .45D .4011.已知线段AB =8cm ,在直线AB 上画线BC ,使BC=12AB ,则线段AC 等于( ) A .12cm B .4cm C .12cm 或4cmD .8cm 或12cm 12.点A ,B ,C 在同一条直线上,6cm AB =,2cm BC =,M 为AB 中点,N 为BC 中点,则MN 的长度为( )A .2cmB .4cmC .2cm 或4cmD .不能确定二、填空题13.如图,B 、C 是线段AD 上的任意两点,M 是AB 的中点,N 是CD 的中点,如果MN =3cm ,BC =1.5cm ,求AD 的长.14.如图,已知线段m ,n ,射线AM .点B ,C 为射线AM 上两点,且AB m n =+,2AC m n =-.(1)请用尺规作图确定B ,C 两点的位置(要求:保留作图痕迹,不写作法); (2)若3m =,5n =,求BC 的长.15.如图:已知直线AB 、CD 相于点O ,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数;(2)若:2:7BOD BOC ∠∠=,求BOD ∠的度数.16.已知O 为直线AB 上一点,OE 平分∠AOC ,OF 平分∠COB(1)若已知∠AOC =60°,求∠EOF 的大小.(2)小明说无论∠AOC 等于多少度,∠EOF 的度数不变,他的说法对吗?17.如图,已知线段DA 与B 、C 两点,用圆规和无刻度的直尺按下列要求画图并计算:(不写作法但要保留作图痕迹)⑴ 画线段AC 、直线AB 、射线DC ,且直线AB 与射线DC 相交于点O ;延长线段DA 至点E ,使AE=AC ;⑵ 若AC=2cm ,AD=3cm ,点F 为线段AD 的中点,求线段EF 的长.18.如图,点O 是线段AB 的中点,14cm OB =,点P 将线段AB 分为两部分,:5:2AP PB =.若点M 在线段AB 上,且点M 与点P 的距离为4cm ,求线段AM 的长.19.如图1,线段AB 长为24个单位长度,动点P 从A 出发,以每秒2个单位长度的速度沿射线AB 运动,M 为AP 的中点,设P 的运动时间为x 秒.(1)当2PB AM =时,求x 的值(2)当P 在线段AB 上运动时,2BM BP -=________,请填空并说明理由.(3)如图2,当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA PN +的值不变,选择一个正确的结论,并求出其值.20.已知:如图,O 是直线AB 上一点,90MON ∠=︒,作射线OC .(1)如图,若ON 平分BOC ∠,60BON ∠=︒,则COM ∠=______°(直接写出答案);(2)如图,若OC 平分AOM ∠,BON ∠比COM ∠大36°,求COM ∠的度数;(3)如图,若OC 平分AON ∠,当2BON COM ∠=∠时,能否求出COM ∠的度数?若可以,求出度数;若不可以,请说明理由.三、解答题21.计算(1)58°32′36″+36.22°(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷522.如图,点A O B 、、在同一条直线上,COD ∠为直角,将COD ∠绕点О在直线AB 上方旋转(AOC ∠大于0︒,且小于或等于90),射线OE 是BOC ∠的平分线.(1)当30AOC ∠=︒时,求DOE ∠的度数﹔(2)若OC 恰好将AOE ∠分成了1:2的两个角,求此时DOE ∠的度数.23.如图,线段AB 的中点为M ,C 点将线段MB 分成MC ,CB 两段,且:1:3MC CB =,若20AC =,求AB 的长.24.已知AOB ∠内部有三条射线,其中,OE 平分BOC ∠,OF 平分AOC ∠.(1)如图1,若90AOB ∠=︒,30AOC ∠=︒,求EOF ∠的度数;(2)如图2,若AOB α∠=,求EOF ∠的度数(用含α的式子表示);(3)若将题中的“平分”条件改为“3EOB COB ∠∠=,32COF COA ∠∠=”,且AOB α∠=,用含α的式子表示EOF ∠的度数为 .25.如图,已知直线AB ,CD 相交于点O ,OE ,OF 为射线,∠AOE=90°,OF 平分∠BOC , (1)若∠EOF=30°,求∠BOD 的度数;(2)试问∠EOF 与∠BOD 有什么数量关系?请说明理由.26.已知:80AOB COD ∠=∠=︒(1)如图1,AOC BOD ∠=∠吗?请说明理由.(2)如图2,直线MN 平分AOD ∠,直线MN 平分BOC ∠吗?请说明理由. (3)若150BOD ∠=︒,20BOE ∠=︒,求COE ∠的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】把问题转化两白棋子共线和两黑棋子共线两种情形求解即可.【详解】结合图形,从横行、纵行、斜行三个方面进行分析;一条直线上至少有两颗棋子并且颜色相同,如下,共有10条:故选B.【点睛】本题考查了新定义问题,准确理解新定义的内涵,并灵活运用分类的思想是解题的关键.2.B解析:B【分析】根据题意设MC=5x,CN=4x,根据线段之间的计算得出等量关系,列方程求解即可解答.【详解】解:根据题意,设MC=5x,CN=4x,则MN=MC+CN=9x,∵点P是MN的中点,∴PN= 12MN=92x,∴PC=PN﹣CN= 12x=2,解得:x=4,∴MN=9×4=36cm,故选:B.【点睛】本题考查线段的计算,由题目中的比例关系设未知数是常见做题技巧,根据线段之间关系列方程求解是解答的关键.3.A解析:A【分析】根据多边形的定义,多边形对角线,角的大小,周角等知识逐项判断即可求解.【详解】解:①由许多条线段连接而成的图形叫做多边形,判断错误;②从一个多边形(边数为n)的同一个顶点出发,分别连接这个顶点与其余与之不相邻的各顶点,可以把这个多边形分割成()2n-个三角形,判断正确;③角的边越长,角越大,判断错误;④一条射线就是一个周角,判断错误.故选:A【点睛】本题考查了多边形、角等知识,理解多边形、多边形对角线、角、周角的概念是解题关键.4.D解析:D【分析】设∠BOD 为x °,3COD BOD ∠=∠,得出∠BOC =2x°,利用角平分线的性质得出∠AOB =2∠BOC ,根据75AOD ∠=︒可以求出x °,再求出AOB ∠.【详解】解:设∠BOD 为x °,则∠COD 为3x °,∴∠COB =∠COD ﹣∠BOD =2x °,∵OC 是∠AOB 的平分线,∴∠AOB =2∠COB =4x °,∵∠AOD =75°,∴∠AOD=∠BOD+∠AOB =5 x °=75°∴x=15∴∠AOB =4×15°=60°.故选:D .【点睛】此题主要考查了角的计算和角平分线的定义,能够正确得出∠BOC =2∠BOD 是解题的关键.5.B解析:B【分析】要确定乙位置,必须有方位角和距离两个条件才能确定,由此进行判断即可.【详解】解:A 、我和你相距500米,没有方位,不能确定乙位置,故此选项错误;B 、我在你北偏东30°的方向500米处,能确定乙位置,故此选项正确;C 、我在你北偏东30°的方向,没有距离,不能确定乙位置,故此选项错误;D 、你向北走433米,然后转90°再走250米,没有说清顺时针还是逆时针转,不能确定乙位置,故此选项错误;故选:B .【点睛】此题主要考查了如何利用方位角和距离确定位置,关键是掌握确定位置的方法. 6.C解析:C【分析】根据角平分线的定义和角的和差计算即可.【详解】解:∵一副三角板所对应的角度是60°,45°,30°,90°,∴∠ABE =∠ABC +∠CBE =30°+90°=120°,∵BM 平分∠ABE ,∴∠ABM =12∠ABE =12×120°=60°, ∴∠CBM =∠ABM−∠ABC =60°−30°=30°,故答案为:30°.【点睛】本题考查了角平分线的定义和角的计算.解题的关键是掌握角平分线的定义,明确一副三角板所对应的角度是60°,45°,30°,90°.7.B解析:B【分析】根据线段的性质及两点间距离的定义对各说法进行逐一分析即可.【详解】解:①符合两点之间线段最短,故本说法正确;②当ABC 不共线时,点C 不是线段AB 的中点,故本说法错误;③射线OB 与射线OC 可能是两条不同的射线,故本说法错误;④连接两点的线段的长度叫做这两点的距离,故本说法错误;⑤符合两点确定一条直线,故本说法正确.故选:B .【点睛】本题考查的是线段的性质,熟知“两点之间线段最短”是解答此题的关键.8.A解析:A【分析】先由AB MN a b -=-,得AM BN a b +=-,再根据中点的性质得22AC BD a b +=-,最后由()CD AB AC BD =-+即可求出结果.【详解】解:∵AB a ,MN b =,∴AB MN a b -=-,∴AM BN a b +=-,∵点M 是AC 的中点,点N 是DB 的中点,∴AM MC =,BN DN =,∴()()2222AC BD AM MC BN DN AM BN a b a b +=+++=+=-=-, ∴()()222CD AB AC BD a a b b a =-+=--=-.故选:A .【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.9.A解析:A【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A .【点睛】本题考查了直线的性质在实际生活中的运用,牢记“经过两点有且只有一条直线”是解题的关键..10.C解析:C【分析】根据交点个数的变化规律:n 条直线相交,最多有1+2+3+…+(n ﹣1)=(1)2n n -个交点,然后计算求解即可.【详解】解:两条直线相交,最多一个交点,三条直线相交,最多有三个交点,1+2=3=3(31)2-, 四条直线相交,最多有六个交点,1+2+3=6=4(41)2-, ……∴n 条直线相交,最多有1+2+3+…+(n ﹣1)=(1)2n n -个交点, 故10条直线相交,最多有1+2+3+ (9)10(101)2-=5×9=45个交点, 故选:C .【点睛】 本题考查了图形的变化规律探究,在相交线的基础上,着重培养学生的观察,猜想归纳的能力,掌握从特殊到一般的方法,找出变化规律是解答的关键.11.C解析:C【分析】分两种情形:①当点C 在线段AB 上时,②当点C 在线段AB 的延长线上时,再根据线段的和差即可得出答案【详解】解:∵BC=12AB,AB=8cm,∴BC=4cm①当点C在线段AB上时,如图1,∵AC=AB-BC,又∵AB=8cm,BC=4cm,∴AC=8-4=4cm;②当点C在线段AB的延长线上时,如图2,∵AC=AB+BC,又∵AB=8cm,BC=4cm,∴AC=8+4=12cm.综上可得:AC=4cm或12cm.故选:C.【点睛】本题考查的是两点间的距离,在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.12.C解析:C【分析】分点C在直线AB上和直线AB的延长线上两种情况,分别利用线段中点的定义和线段的和差解答即可.【详解】解:①当点C在直线AB上时∵M为AB中点,N为BC中点∴AM=BM=12AB=3,BN=CN=12BC=1,∴MN=BM-BN=3-1=2;②当点C在直线AB延长上时∵M为AB中点,N为BC中点∴AM=CM=12AB=3,BN=CN=12BC=1,∴MN=BM+BN=3+1=4综上,MN的长度为2cm或4cm.故答案为C.【点睛】本题主要考查了线段中点的定义以及线段的和差运算,掌握分类讨论思想成为解答本题的关键.二、填空题13.AD的长为45cm【分析】由已知条件可知MN=MB+CN+BC又因为M是AB 的中点N是CD中点则AB+CD=2(MB+CN)故AD=AB+CD+BC可求【详解】解:∵MN=MB+BC+CN∵MN=3解析:AD的长为4.5cm.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【详解】解:∵MN=MB+BC+CN,∵MN=3cm,BC=1.5cm,∴MB+CN=3﹣1.5=1.5cm,∴AD=AB+BC+CD=2(MB+CN)+BC=2×1.5+1.5=4.5cm.答:AD的长为4.5cm.【点睛】本题考查了线段的计算,线段中点的意义,线段和的意义,线段差的意义,熟练掌握线段的中点的意义,灵活运用线段和与线段差表示线段是解题的关键.14.(1)见解析;(2)7【分析】(1)在射线AM上以点A为端点取m的长得到端点D再以点D为端点向右取n的长可得点B;以点A为端点取2m的长得到点F再以点F为端点向左取n的长可得点C;(2)根据BC=A解析:(1)见解析;(2)7【分析】(1)在射线AM 上以点A 为端点取m 的长,得到端点D ,再以点D 为端点向右取n 的长,可得点B ;以点A 为端点取2m 的长,得到点F ,再以点F 为端点向左取n 的长,可得点C ;(2)根据BC=AB-AC 计算出BC ,将m 和n 代入求值即可.【详解】解:(1)如图,点B 和点C 即为所作;(2)∵AB=m+n ,AC=2m-n ,∴BC=AB-AC=m+n-(2m-n )=m+n-2m+n=2n-m=2×5-3=7.【点睛】本题考查的是作图-基本作图,整式的加减—化简求值,解题的关键是根据描述作出相应线段.15.(1)58°;(2)40°【分析】(1)根据平角的定义结合角的和差进行计算;(2)根据平角的定义结合角的比进行求解计算【详解】解:(1)直线ABCD 相交于点O (2)【点睛】本题考查几何图形中角度的和解析:(1)58°;(2)40°【分析】(1)根据平角的定义,结合角的和差进行计算;(2)根据平角的定义,结合角的比进行求解计算.【详解】解:(1)直线AB 、CD 相交于点O180AOC COE BOE ∴∠+∠+∠=︒180BOE AOC COE ∴∠=︒-∠-∠90,32COE AOC ∠=︒∠=︒BOE 180329058∴∠=︒-︒-︒=︒(2)180COD ∠=︒,:2:7BOD BOC ∠∠=2180409BOD ∴∠=︒⨯=︒. 【点睛】 本题考查几何图形中角度的和差计算,理解题意,列出角的和差关系,正确计算是解题关键.16.(1)90°;(2)对【分析】(1)根据角平分线的定义求解即可;(2)根据角平分线的定义求解即可【详解】解:(1)∵∠AOC =60°∴∠BOC =180°-∠AOC =180°-60°=120°∵OE 平解析:(1)90°;(2)对【分析】(1)根据角平分线的定义求解即可;(2)根据角平分线的定义求解即可.【详解】解:(1)∵∠AOC=60°,∴∠BOC=180°-∠AOC=180°-60°=120°,∵OE平分∠AOC,OF平分∠COB∴∠EOC=12∠AOC=30°,∠COF=12∠BOC=60°∴∠EOC+∠COF =30°+60°=90°;(2)小明说的对,理由如下:∵OE平分∠AOC,OF平分∠COB∴∠EOC=12∠AOC,∠COF=12∠BOC∵∠AOB是平角∴∠EOC+∠COF =12(∠AOC+∠BOC)=12×∠AOB=12×180°=90°所以,无论∠AOC等于多少度,∠EOF=90°【点睛】本题考查角平分线的定义;角的和差关系.结合图形解题是本题的关键.17.(1)见解析;(2)35cm【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶因为AD=3cmF为线段AD的中点所以AF=15cm又因为AE=AC=2c解析:(1)见解析;(2)3.5cm【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶因为AD=3cm,F为线段AD的中点,所以 AF=1.5cm,又因为AE=AC=2cm,所以 EF=AE+AF=3.5cm .【点睛】本题主要考查了作图-基本作图,准确分析作图是解题的关键.18.的长为或【分析】根据小段中点的定义求得AB 的长度然后结合可求的AP 的长度再分点M 在点P 左边和右边两种情况求解【详解】解:∵O 为中点∴又∵∴①当点M 在点P 左边时如图1当点M 在点P 右边时如图2综上的长为 解析:AM 的长为16cm 或24cm【分析】根据小段中点的定义求得AB 的长度,然后结合:5:2AP PB =可求的AP 的长度,再分点M 在点P 左边和右边两种情况求解.【详解】解:∵O 为中点∴221428cm AB OB ==⨯=又∵:5:2AP PB = ∴552820cm 77AP AB ==⨯= ① 当点M 在点P 左边时,如图1,20416cm AM AP MP =-=-=当点M 在点P 右边时,如图2,20424cm AM AP MP =+=+=综上,AM 的长为16cm 或24cm .【点睛】本题考查线段的和差计算,理解线段中点的定义,并数形结合思想分情况讨论解题是关键.19.(1)6;(2)24;理由见解析;(3)①长度不变为12;②的值改变理由见解析【分析】(1)根据PB=2AM 建立关于x 的方程解方程即可;(2)将BM=24-xPB=24-2x 代入2BM-BP 后化简即解析:(1)6;(2)24;理由见解析;(3)①MN 长度不变,为12;②MA PN +的值改变,理由见解析.【分析】(1)根据PB=2AM 建立关于x 的方程,解方程即可;(2)将BM=24-x ,PB=24-2x 代入2BM-BP 后,化简即可得出结论;(3)利用PA=2x ,AM=PM=x ,PB=2x-24,PN=12PB=x-12,分别表示出MN 及MA+PN 的长度,即可作出判断.【详解】解:(1)∵M 是线段AP 的中点,∴AM=12AP=x , PB=AB-AP=24-2x .∵PB=2AM ,∴24-2x=2x ,解得x=6;(2)∵AM=x ,BM=24-x ,PB=24-2x ,∴2BM-BP=2(24-x )-(24-2x )=24,即2BM-BP 为定值;(3)当P 在AB 延长线上运动时,点P 在B 点右侧.∵PA=2x ,AM=PM=x ,PB=2x-24,PN=12PB=x-12, ∴①MN=PM -PN=x-(x-12)=12是定值;②MA+PN=x+x -12=2x-12,是变化的.【点睛】本题考查了两点间的距离,解答本题的关键是用含时间的式子表示出各线段的长度,有一定难度.20.(1)30;(2)18°;(3)不能求出的度数理由见解析【分析】(1)根据若平分可得到∠CON=60°然后计算∠COM 即可;(2)可设然后得到再利用角平分线性质得到然后利用平角定义列方程即可;(3)解析:(1)30;(2)18°;(3)不能求出COM ∠的度数,理由见解析【分析】(1)根据若ON 平分BOC ∠,60BON ∠=︒可得到∠CON =60°,然后计算∠COM 即可; (2)可设COM x ∠=︒,然后得到(36)BON x ∠=+︒,再利用角平分线性质得到AOC x ∠=︒,然后利用平角定义列方程即可;(3)思路和(2)相同,设出∠COM ,然后根据题意列出方程判断即可.【详解】解:(1)∵ON 平分BOC ∠∴BON CON ∠=∠=60°∵∠MON =90°∴∠COM =∠MON -∠CON =30°故答案为:30;(2)设COM x ∠=︒,则(36)BON x ∠=+︒,∵OC 平分AOM ∠,∴AOC x ∠=︒,∴ 9036180x x x ++++=,∴18x =,即18COM ∠=︒;(3)不能求出COM ∠的度数,理由如下:设COM x ∠=︒,2BON x ∠=︒,∵OC 平分AON ∠,∴21802AON CON x ∠=∠=︒-︒,∴90CON x ∠=︒-︒,∵90MON ∠=︒,∴9090x x +-=,方程恒成立,故不论COM ∠等于多少度,只能得出BON ∠始终COM ∠的2倍,所以求不出COM ∠的度数.【点睛】本题主要考查角的简单计算和角平分线的简单性质,解题的关键是能够梳理角关系,利用直角和平角是解题的关键.三、解答题21.(1) 94°45′48″;(2)17【分析】(1)根据度分秒的加法,相同的单位相加,满60时向上以单位进1,可得答案; (2)原式先计算乘方,再计算乘除,最后进行加减运算即可.【详解】解:(1)58°32′36″+36.22°=58°32′36″+36°13′12″=94°45′48″;(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷5=-9×(-2)+16÷(-8)÷10-4÷5=18-0.2-0.8=17.【点睛】本题考查了度分秒的换算,度分秒的加减,同一单位向加减,度分秒的乘法,从小单位算起,满60时向上以单位进1.同时还考查了含有乘方的有理数的混合运算.22.(1)15DOE ∠=;(2)18DOE ∠=或45【分析】(1)利用平角的定义求得∠BOC=150︒,利用角平分线的性质求得∠COE=75︒,再利用余角的性质即可求得∠DOE=15︒;(1)分:①∠AOC :∠COE=1:2;②∠AOC :∠COE=2:1两种情况讨论,利用平角的定义和角平分线的性质求解即可.【详解】解:(1)∵30180AOC AOB ∠=︒∠=︒,,∴150BOC AOB AOC ∠=∠-∠=︒,∵射线OE 是BOC ∠的平分线,∴75COE BOE ∠=∠=,∵90COD ∠=,∴907515DOE COD COE ∠=∠-∠=︒-︒=;(1)∵OC 恰好将AOE ∠分成了1:2的两个角,∴有两种情况:①∠AOC :∠COE=1:2;②∠AOC :∠COE=2:1;①如答图1,当∠AOC :∠COE=1:2时,设∠AOC=x ,∠COE=2x ,则2BOE COE x ∠=∠=,∵180AOB ∠=︒,∴22180x x x ++=︒,解得,36x =︒,∴272EOC x ∠==︒,∴907218DOE COD COE ∠=∠-∠=︒-︒=︒;②如答图2,当∠AOC :∠COE=2:1时,设∠AOC=2x ,∠COE=x ,则BOE COE x ∠=∠=,∵180AOB ∠=︒∴2180x x x ++=︒,解得,45x =︒,∴45EOC x ∠==︒,∴904545DOE COD COE ∠=∠-∠=︒-︒=︒;综上所述18DOE ∠=或45.【点睛】本题考查了角的计算,角平分线的定义,正确的识别图形并且运用好有关性质准确计算角的和差倍分是解题的关键.23.32【分析】本题需先设MC x =,根据已知条件C 点将线段MB 分成:1:3MC CB =的两段,求出MB=4x ,利用M 为AB 的中点,列方程求出x 的长,即可求出AB 的长;【详解】解:∵ :1:3MC CB =,设MC x =,则3CB x =,∴4AM MB MC CB x ==+=,∴4520AC AM MC x x x =+=+==,解得4x =.∵M 为AB 的中点∴832AB x ==.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,求出线段的长是解本题的关键;24.(1)∠EOF=45°,(2)∠EOF=12α,(3)∠EOF=23α . 【分析】(1) 首先求得∠BOC 的度数, 然后根据角的平分线的定义和角的和差可得:∠EOF=∠EOC+∠COF 即可求解;(2) 根据角的平分线的定义和角的和差可得∠EOF=∠EOC+∠COF= 12∠BOC+12∠AOC= 12(∠BOC+∠AOC),即可求解; (3) 根据角的等分线的定义可得:∠EOF=∠EOC+∠COF= 23∠BOC+ 23∠AOC= 23(∠BOC+∠AOC) =23∠AOB ,即可求解 .【详解】解:(1)∠BOC=∠AOB﹣∠AOC=90°﹣30°=60°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=12×60°=30°,∠COF=12∠AOC=12×30°=15°,∴∠EOF=∠EOC+∠COF=30°+15°=45°;(2)∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC,∠COF=12∠AOC,∴∠EOF=∠EOC+∠COF= 12∠BOC+ 12∠AOC= 12(∠BOC+∠AOC)=12∠AOB= 12α;(3)3∠EOB=∠COB ,3∠COF=2∠COA即∠EOB=13∠BOC,∠COF=23∠AOC,∴∠EOC=23∠BOC∴∠EOF=∠EOC+∠COF=23∠BOC+23∠AOC= 23(∠BOC+∠AOC)=23∠AOB= 23α.【点睛】本题主要考查角的计算及角平分线的定义,角的等分线的定义,注意运算的准确性. 25.(1)∠BOD=60°;(2)∠BOD=2∠EOF,理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°,由OF平分∠BOC求出∠BOC=120°,进而求出∠BOD=180°-120°=60°;(2)设∠EOF=α,将∠FOB、∠BOC分别用α的代数式表示,最后∠BOD=180°-∠BOC即可求解.【详解】解:(1)∠BOE=180°-∠AOE=180°-90°=90°,∵∠EOF=30°,∴∠FOB=90°-30°=60°,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=120°,∴∠BOD=180°-∠BOC=180°-120°=60°;(2)设∠EOF=α,则∠FOB=90°-α,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=2(90°-α),∴∠BOD=180°-∠BOC=180°-2(90°-α)=2α,即∠BOD=2∠EOF.【点睛】本题主要考查了垂线,角平分线的定义以及平角的综合运用,掌握角平分线平分角,垂线得到直角这两个性质是解决本题的关键.26.(1)AOC BOD ∠=∠,见解析;(2)直线MN 平分BOC ∠,见解析;(3)150°或110°【分析】(1)根据角的和差关系可得结论;(2)根据角平分线的定义求解即可;(3)分OE 在AOB ∠内部和外部两种情况进行求解即可.【详解】解:(1)AOC BOD ∠=∠.理由如下:80AOB COD ∠=∠=︒AOB AOD COD AOD ∴∠+∠=∠+∠即BOD AOC ∠=∠(2)直线MN 平分BOC ∠.理由如下:180AOB MOA NOB ∠+∠+∠=︒,180COD MOD NOC ∠+∠+∠=︒又80AOB COD ∠=∠=︒100MOA NOB MOD NOC ∠+∠=∠+∠=︒∴直线MN 平分AOD ∠MOA MOD ∠=∠∴NOB NOC ∠=∠∴即直线MN 平分BOC ∠.(3)150BOD ∠=︒,80AOB COD ∠=∠=︒70AOD ∴∠=︒,130COB ∠=︒①当OE 在AOB ∠内部时,如图所示:13020150COE BOC BOE ∠=∠+∠=︒+︒=︒②当OE 在AOB ∠外部时,如图所示:13020110∠=∠-∠=︒-︒=︒COE BOC BOE∠的度数为150°或110°.综上所述,COE【点睛】本题考查了解度的计算,角平分线的定义,正确识别图形是解题的关键.。
北师大版七年级上册数学第四章基本平面图形测试题(全章)
7.12点15分,时针与分针所夹的小于平角的角为()
A.90°B.67.5°C.82.5°D.60°
8.如图所示,从点O出发的5条射线,可以组成的角的个数是().
A.4B.6C.8D.10
9.如图,下列说法中正确的是:
A.OA的方向是北偏东30°
B.OB的方向是北偏西25°
(3)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,且过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,请直接写出点P的坐标.
22.如图,四边形ABCD中,AC⊥BD垂足为点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD,连接NF.
(2)连接CD,并将其反向延长至E,使得DE=2CD;
(3)在平面内找到一点F,使F到A、B、C、D四点距离最短.
24.如图,C为线段AB的中点,D在线段CB上,且DA=6,DB=4.求:
(1)求AB的长;
(2)求CD的长.
25.如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.
20.从1,2,3,4四个数中随机选取两个不同的数,分别记为a,c,请用树状图或列表法求:“关于x的一元二次方程ax2+4x+c=0有实数根的概率.
21.如图,一次函数y=x﹣3的图象与反比例函数y= (k≠0)的图象交于点A与点B(a,﹣4).
(1)求反比例函数的表达式;
(2)一次函数y=x﹣3的图象与x轴交于点M,连接OB,求△OBM的面积;
14.三角形的两边长分别为3和6,第三边的长是方程 -6x+8=0的解,则此三角形的第三边长是_____
2020—2021年最新鲁教版五四制六年级数学下册《基本平面图形》单元测试题及答案.docx
鲁教版(五四制)六年级下册单元评价检测第五章(45分钟100分)一、选择题(每小题4分,共28分)1.下列说法:①射线AB与射线BA是同一条射线;②线段AB是直线AB的一部分;③延长线段AB到C,使AB=AC;④射线AB与射线BA的公共部分是线段AB.正确的个数是( )(A)1 (B)2 (C)3 (D)42.如图所示,长度为12 cm的线段AB的中点为M,C为线段MB上一点,且MC∶CB=1∶2,则线段AC的长度为( )(A)2 cm (B)8 cm (C)6 cm (D)4 cm3.下列说法正确的是( )(A)角的两边可以度量(B)一条直线可看成一个平角(C)角是由一点引出的两条射线组成的图形(D)一条射线可看成一个周角4.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为( )(A)95°(B)100°(C)110°(D)120°5.如图,已知C是线段AB的中点,D是BC的中点,E是AD的中点,F是AE的中点,那么线段AF是线段AC的( )(A)18(B)14(C)38(D)3166.如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数是( )(A)3对(B)4对(C)5对(D)7对7.已知∠α和∠β的和是平角,且∠α∶∠β=1∶8,则∠β的度数是( )(A)20°(B)40°(C)80°(D)160°二、填空题(每小题5分,共25分)8.30.12°=________°_______′_______″,100°12′36″=_______°.9.已知线段AB,延长线段AB到C,使BC=2AB,反向延长AB到D,使AD=AB,则AC=_______AB;DC=_______AC.10.如图,圆中两条半径把圆分成面积为4∶5的两个扇形,则两个扇形的圆心角的度数为_________.11.如图,点C是∠AOB的边OA上一点,D,E是OB上两点,则图中共有_________条线段,可用字母表示的射线有_________条,_________个小于平角的角.12.直线上有2 013个点,我们进行如下操作:在每相邻两点间插入1个点.经过3次这样的操作后,直线上共有_________个点.三、解答题(共47分)13.(11分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18 cm,求DE的长;(2)若CE=5 cm,求BD的长.14.(11分)如图所示,∠AOB=30°,∠BOC=40°,∠COD=26°,OE平分∠AOD.求∠BOE的度数.15.(12分)如图所示,回答下列问题.(1)2条直线相交有几个交点?(2)3条直线两两相交,最多有几个交点?(3)4条直线两两相交,最多有几个交点?(4)根据(1)(2)(3)总结:n(n为大于或等于2的正整数)条直线两两相交,最多有几个交点;(5)根据上述结论,求100条直线两两相交最多有几个交点.16.(13分)(1)如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)如果(1)中的∠AOB=α(OC在∠AOB外),其他条件不变,求∠MON的度数;(3)如果(1)中的∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)(2)(3)的结论中能得出什么结论?答案解析1.【解析】选B.射线的端点不同,射线就不同,所以射线AB与射线BA不是同一条射线,①错;②对;③错,因为无法使AB=AC;④对;所以选B.2.【解析】选B.因为AM=MB=12AB=6(cm),MC=6×13=2(cm),所以AC=AM+MC=6+2=8(cm),故选B.3.【解析】选C.角是由具有公共端点的两条射线组成的,可知C正确;射线不可以度量,故A错;角有顶点和两条边,故B,D错,因此选C.4.【解析】选C.因为∠BOC=90°-20°=70°,所以∠2=180°-∠BOC=180°-70°=110°.5.【解析】选C.根据题意可设CD=DB=x,则AC=CB=2DB=2x,AD=3x,AE=32x,AF=12AE=34x,所以3xAF34==AC2x8,故选C.6.【解析】选C.因为∠COB=∠DOE=90°,所以∠COE+∠COD=90°,∠COD+∠BOD=90°,所以∠COE=∠BOD;因为∠AOC=∠DOE,所以∠COE+∠COD=90°,∠AOE+∠COE=90°,所以∠AOE=∠COD;∠AOC=∠BOC.故选C.7.【解析】选D.可设∠α=x,∠β=8x,则x+8x=180°,x=20°,所以∠β=8x=160°,故选D.8.【解析】0.12°=0.12×60'=7.2',0.2'=0.2×60″=12″,所以30.12°=30°7'12″,36″=36×(160)'=0.6',12.6'=12.6×(160)°=0.21°,所以100°12'36″=100.21°.答案:30 7 12 100.219.【解析】如图所示,AC=3AB,DC=4AB,所以DC=43AC.答案:3 4310.【解析】两个扇形圆心角的度数分别为360°×49=160°和360°×59=200°.答案:160°,200°11.【解析】图中有线段OD,OE,OB,DE,DB,EB,OC,OA,CA,DC,EC,共11条,射线OA,CA,OB,DB,EB,共5条,小于平角的角有∠O,∠ODC,∠CDE,∠CED,∠CEB,∠ACE,∠ECD,∠DCO,∠ACD,∠OCE,共10个.答案:11 5 1012.【解析】2 013+2 012=4 025,4 025+4 024=8 049,8 049+8 048=16 097. 答案:16 09713.【解析】(1)因为C 是AB 的中点,所以AC=BC=12AB=9 cm.因为D 是AC 的中点,所以AD=DC=12AC=92cm.因为E 是BC 的中点,所以CE=BE=12BC=92cm.又因为DE=DC+CE,所以DE=92+92=9(cm). (2)由(1)知AD=DC=CE=BE,所以CE=13BD. 因为CE=5 cm,所以BD=15 cm.14.【解析】因为∠AOB=30°,∠BOC=40°,∠COD=26°,所以∠AOD=∠AOB+∠BOC+∠COD=30°+40°+26°=96°, 又因为OE 平分∠AOD,所以∠AOE=12∠AOD=12×96°=48°, 所以∠BOE=∠AOE-∠AOB=48°-30°=18°. 15.【解析】(1)由图可知,2条直线相交有1个交点. (2)3条直线两两相交,最多有2+1=3个交点. (3)4条直线两两相交,最多有3+2+1=6个交点. (4)依此类推,n 条直线两两相交最多有n-1+…+3+2+1=n(n 1)2-个交点. (5)根据上述结论,当n=100时, n(n 1)2-=100992⨯=4 950个交点.16.【解析】(1)因为ON 是∠BOC 的平分线, 所以∠CON=∠BON=12∠BOC=12×30°=15°. 因为OM 是∠AOC 的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+30°)=60°,所以∠MON=∠COM-∠CON=60°-15°=45°. (2)当∠AOB=α,其他条件不变时,由(1)得∠CON=15°.因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(α+30°)=12α+15°,所以∠MON=∠COM-∠CON=12α+15°-15°=12α.(3)当∠BOC=β,其他条件不变时,因为ON是∠BOC的平分线,所以∠CON=∠BON=1 2∠BOC=12β,因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+β)=45°+12β,所以∠MON=∠COM-∠CON=45°+12β-12β=45°.(4)∠MON的度数总等于∠AOB的一半,而与锐角∠BOC的度数没有关系.。
2022年精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形单元测试练习题(含详解)
六年级数学下册第五章基本平面图形单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点D 是线段AB 的中点,点E 是AC 的中点,若6cm AB =,14cm AC =,则线段DE 的长度是( )A .3cmB .4cmC .5cmD .6cm2、如图,已知点C 为线段AB 的中点,D 为CB 上一点,下列关系表示错误的是( )A .CD =AC ﹣DBB .BD +AC =2BC ﹣CD C .2CD =2AD ﹣AB D .AB ﹣CD =AC ﹣BD3、七巧板是我国民间流传最广的一种传统智力玩具,由正方形分割成七块板组成(如图),则图中4号部分的小正方形面积是整个正方形面积的( )A .14B .16C .18D .1164、如图,码头A 在码头B 的正西方向,甲、乙两船分别从A ,B 同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( )A .北偏西55°B .北偏东65°C .北偏东35°D .北偏西35°5、已知70A ∠=︒,则A ∠的补角的度数为( )A .20︒B .30C .110︒D .130︒6、如图,点A ,B 在线段EF 上,点M ,N 分别是线段EA ,BF 的中点,EA :AB :BF =1:2:3,若MN =8cm ,则线段EF 的长为( )cmA .10B .11C .12D .137、延长线段AB 到C ,使得BC =3AB ,取线段AC 的中点D ,则下列结论:①点B 是线段AD 的中点.②BD =12CD ,③AB =CD ,④BC ﹣AD =AB .其中正确的是( )A .①②③B .①②④C .①③④D .②③④8、如图所示,若90AOB ∠=︒,则射线OB 表示的方向为( ).A .北偏东35°B .东偏北35°C .北偏东55°D .北偏西55°9、将三角尺与直尺按如图所示摆放,下列关于∠α与∠β之间的关系一定正确的是()A .∠α=∠βB .∠α=12∠β C .∠α+∠β=90° D .∠α+∠β=180°10、如图,一副三角板(直角顶点重合)摆放在桌面上,若150BOC ︒∠=,则AOD ∠等于()A .30︒B .45︒C .50︒D .60︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、45°30'=_____°.2、9830'18︒"=_____度,90°﹣3527'︒=___° __'.3、一个圆的周长是31.4cm ,它的半径是_____cm ,面积是_____cm 2.4、如图,点C 在线段AB 上,点D 是线段AB 的中点,AB =10cm ,AC =7cm ,则CD =______cm .5、A 、B 、C 三个城市的位置如右图所示,城市C 在城市A 的南偏东60°方向,且155BAC ∠=︒,则城市B 在城市A 的______方向.三、解答题(5小题,每小题10分,共计50分)1、课上,老师提出问题:如图,点O 是线段上一点,C ,D 分别是线段AO ,BO 的中点,当AB =10时,求线段CD 的长度.(1)下面是小明根据老师的要求进行的分析及解答过程,请你补全解答过程;未知线段 已知线段……=12= .(2)小明进行题后反思,提出新的问题:如果点O 运动到线段AB 的延长线上,CD 的长度是否会发生变化?请你帮助小明作出判断并说明理由.2、如图(1),∠BOC 和∠AOB 都是锐角,射线OB 在∠AOC 内部,AOB α∠=,BOC β∠=.(本题所涉及的角都是小于180°的角)(1)如图(2),OM 平分∠BOC ,ON 平分∠AOC ,填空:①当40α=︒,70β=︒时,COM ∠=______,CON ∠=______,MON ∠=______;②MON ∠=______(用含有α或β的代数式表示).(2)如图(3),P 为∠AOB 内任意一点,直线PQ 过点O ,点Q 在∠AOB 外部:①当OM 平分∠POB ,ON 平分∠POA ,∠MON 的度数为______;②当OM 平分∠QOB ,ON 平分∠QOA ,∠MON 的度数为______;(∠MON 的度数用含有α或β的代数式表示)(3)如图(4),当40α=︒,70β=︒时,射线OP 从OC 处以5°/分的速度绕点O 开始逆时针旋转一周,同时射线OQ 从OB 处以相同的速度绕点O 逆时针也旋转一周,OM 平分∠POQ ,ON 平分∠POA ,那么多少分钟时,∠MON 的度数是40°?3、已知线段a 、b (如图),用直尺和圆规在方框内按以下步骤作图:(保留作图痕迹,不要求写出作法和结论)①画射线OP ;②在射线OP 上顺次截取OA =a ,AB =a ;③在线段OB 上截取BC =b ;④作出线段OC 的中点D .(1)根据以上作图可知线段OC = ;(用含有a 、b 的式子表示)(2)如果OD =2厘米,CD =2AC ,那么线段BC = 厘米.4、如图,∠AOB 是平角,80AOC ∠=︒,30BOD ∠=︒,OM 、ON 外别是∠AOC 、∠BOD 的平分线,求∠MON 的度数.5、已知:如图1,M 是定长线段AB 上一定点,C D ,两点分别从M ,B 出发以1cm/s ,3cm /s 的速度沿BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若10cm AB =,当点C D ,运动了2s ,求AC MD +的值;(2)若点C D ,运动时,总有3MD AC =,试说明14AM AB =; (3)如图2,已知14AM AB =,N 是线段AB 所在直线AB 上一点,且AN BN MN -=,求MN AB的值. -参考答案-一、单选题1、B【解析】【分析】根据中点的定义求出AE 和AD ,相减即可得到DE .【详解】解:∵D 是线段AB 的中点,AB =6cm ,∴AD =BD =3cm ,∵E 是线段AC 的中点,AC =14cm ,∴AE =CE =7cm ,∴DE =AE -AD =7-3=4cm ,故选B .【点睛】本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.2、D【解析】【分析】根据图形可以明确线段之间的关系,对线段CD、BD、AD进行和、差转化,即可发现错误选项.【详解】解:∵C是线段AB的中点,∴AC=BC,AB=2BC=2AC,AB﹣BD=AC﹣BD;∴CD=BC﹣BD=12∵BD+AC=AB﹣CD=2BC﹣CD;∵CD=AD﹣AC,∴2CD=2AD﹣2AC=2AD﹣AB;∴选项A、B、C均正确.而答案D中,AB﹣CD=AC+BD;∴答案D错误符合题意.故选:D.【点睛】本题考查线段的和差,是基础考点,掌握相关知识是解题关键.3、C【解析】【分析】把正方形进行分割,可分割成16个面积相等的等腰直角三角形,4号是正方形,由两个等腰直角三角形组成,占整个正方形面积的18.【详解】解:把大正方形进行切割,如下图,由图可知,正方形可分割成16个面积相等的等腰直角三角形,4号正方形,由两个等腰直角三角形组成,∴占整个正方形面积的21 168=.故选 C.【点睛】本题主要考查了七巧板,正方形的性质,能够正确的识别图形,明确4号部分的正方形是由两个等腰直角三角形构成是解题的关键.4、D【解析】【分析】如图,根据两船同时出发,同速行驶,假设相撞时得到AC=BC,求出∠CBA=∠CAB=90°-35°=55°,即可得到答案.【详解】解:假设两船相撞,如同所示,根据两船的速度相同可得AC=BC ,∴∠CBA =∠CAB =90°-35°=55°,∴乙的航向不能是北偏西35°,故选:D .【点睛】此题考查了方位角的表示方法,角度的运算,正确理解题意是解题的关键.5、C【解析】【分析】两个角的和为180,︒ 则这两个角互补,利用补角的含义直接列式计算即可.【详解】 解: 70A ∠=︒,∴ A ∠的补角18070110,故选C【点睛】本题考查的是互为补角的含义,掌握“两个角的和为180,︒ 则这两个角互补”是解本题的关键.6、C【解析】【分析】由于EA :AB :BF =1:2:3,可以设EA =x ,AB =2x ,BF =3x ,而M 、N 分别为EA 、BF 的中点,那么线段MN 可以用x 表示,而MN =8cm ,由此即可得到关于x 的方程,解方程即可求出线段EF 的长度.【详解】解:∵EA :AB :BF =1:2:3,可以设EA =x ,AB =2x ,BF =3x ,而M 、N 分别为EA 、BF 的中点,∴MA =12EA =12x ,NB =12BF 32x , ∴MN =MA +AB +BN =12x +2x +32x =4x , ∵MN =16cm ,∴4x =8,∴x =2,∴EF =EA +AB +BF =6x =12,∴EF 的长为12cm ,故选C .【点睛】本题考查了两点间的距离.利用线段中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7、B【解析】【分析】先根据题意,画出图形,设AB a ,则3,4BC a AC a == ,根据点D 是线段AC 的中点,可得122AD CD AC a === ,从而得到BD a = ,BD =12CD ,AB =12CD ,BC AD a -= ,即可求解. 【详解】解:根据题意,画出图形,如图所示:设AB a ,则3,4BC a AC a == ,∵点D 是线段AC 的中点, ∴122AD CD AC a === , ∴BD AD AB a =-= ,∴AB =BD ,即点B 是线段AD 的中点,故①正确;∴BD =12CD ,故②正确;∴AB =12CD ,故③错误;∴32BC AD a a a -=-= ,∴BC ﹣AD =AB ,故④正确;∴正确的有①②④.故选:B【点睛】本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.8、A【解析】【分析】根据同角的余角相等90BOD AOD AOD AOC ∠+∠=∠+∠=︒即可得,35BOD AOC ∠=∠=︒,根据方位角的表示方法即可求解.【详解】如图,90,35AOB AOC ∠=︒∠=︒90BOD AOD AOD AOC ∠+∠=∠+∠=︒35BOD AOC ∴∠=∠=︒即射线OB 表示的方向为北偏东35°故选A【点睛】本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.9、C【解析】【分析】如果两个角的和等于90°(直角),就说这两个角互为余角,由题意可知∠α与∠β互余,即∠α+∠β=90°.【详解】解:∠α+∠β=180°﹣90°=90°,故选:C .【点睛】本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.10、A【解析】【分析】由三角板中直角三角尺的特征计算即可.【详解】△和AOB为直角三角尺∵COD∴90∠=AOB︒∠=,90COD︒∴BOC COD BOC AOB∠-∠=∠-∠∴1509060∠=∠=︒-︒=︒AOC BOD∴906030AOD BOA BOD∠=∠-∠=︒-︒=︒故选:A.【点睛】本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.二、填空题1、45.5【解析】【分析】先将30'化为度数,然后与整数部分的度数相加即可得.【详解】解:'30300.560⎛⎫=︒=︒ ⎪⎝⎭ 4530'450.545.5︒=︒+︒=︒.故答案为:45.5.【点睛】题目主要考查角度的变换,熟练掌握角度之间的变换进率是解题关键.2、 90.505 54 33【解析】【分析】根据角度的和差以及角度值进行化简计算即可【详解】 解:1830.3180.330.3==0.5056060''''==︒, ∴9830'18︒"90.505=︒90°﹣3527'︒896035275433'''=︒-︒=︒故答案为:90.505,54,33【点睛】本题考查了角度的和差以及角度值,掌握角度值单位的转化是解题的关键.3、 5 78.5【解析】【分析】设圆的半径为cm r .先利用圆的周长公式求出r ,再利用圆的面积公式即可得.【详解】解:设圆的半径为cm r ,由题意得:231.4r π=,解得=5r ,则圆的面积为22578.5(cm )π⋅=,故答案为:5,78.5.【点睛】本题考查了圆的周长、面积等知识,解题的关键是记住圆的周长公式和面积公式.4、2【解析】【分析】根据点D 是线段AB 的中点,可得15cm 2AD AB == ,即可求解. 【详解】解:∵点D 是线段AB 的中点,AB =10cm , ∴15cm 2AD AB == , ∵AC =7cm ,∴752cm CD AC AD =-=-= .故答案为:2【点睛】本题主要考查了中点的定义,线段的和与差,熟练掌握把一条线段分成相等的两段的点,叫做线段的中点是解题的关键.5、35°##35度【分析】根据方向角的表示方法可得答案.【详解】解:如图,∵城市C在城市A的南偏东60°方向,∴∠CAD=60°,∴∠CAF=90°-60°=30°,∵∠BAC=155°,∴∠BAE=155°-90°-30°=35°,即城市B在城市A的北偏西35°,故答案为:35°.【点睛】本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.三、解答题1、 (1)BO,BO,AB,5(2)不变,见解析【分析】(1)根据已知条件及解答过程中的每步推理即可完成;(2)由线段中点的定义及线段的差即可完成.(1)因为C,D分别是线段AO,BO的中点,所以CO=12AO,DO=12BO.因为AB=10,所以CD=CO+DO=12AO+12BO=12AB=5.故答案为:BO,BO,AB,5(2)不会发生变化:理由如下:如图因为C,D分别是线段AO,BO的中点,所以12CO AO =,12DO BO =. 因为10AB =, 所以1115222CD CO DO AO BO AB =-=-==. 【点睛】本题考查了线段中点的定义,线段的和、差等知识,掌握这些知识是关键.2、 (1)135,55,20,2︒︒︒α (2)12α,11802α︒-(3)48分钟时,∠MON 的度数是40°【解析】【分析】(1)根据角平分线的定义判断即可;(2)①根据()12MON POB POA ∠=∠+∠求解即可,②根据()12MON BOQ QOA ∠=∠+∠求解即可; (3)分OP 在AOB ∠的外部和内部两种情况讨论,在外部时根据旋转的时间乘以速度等于POA AOB BOC ∠+∠+∠,在内部时可以判断35POM ∠=︒,MON POM PON ∠=∠-40=︒,则此情况不存在(1) ① OM 平分∠BOC ,ON 平分∠AOC ,当40α=︒,70β=︒时,COM ∠=113522BOC ∠=β=︒, CON ∠=()111()55222AOC AOB BOC ∠=∠+∠=α+β=︒, MON ∠=()11120222CON COM αββα∠-=+-==︒②MON ∠()111222CON COM =∠-=α+β-β=α 故答案为:135,55,20,2︒︒︒α (2) ①OM 平分∠POB ,ON 平分∠POA , ∴()12MON POB POA ∠=∠+∠ 1122AOB =∠=α ②OM 平分∠QOB ,ON 平分∠QOA , ∴()12MON BOQ QOA ∠=∠+∠()1136018022AOB =︒-∠=︒-α 故答案为:12α,11802α︒-(3)根据题意POQ BOC ∠=∠=βOM 平分∠POQ ,113522POM POQ ∴∠=∠=β=︒ 如图,当OP 在AOB ∠的外部时,MON的度数是40°∠=∠+MON PON POM∴∠=︒5PONON平分∠POA,210∴∠=∠=︒POA PON∴∠=︒120POC︒-︒=︒则OP旋转了360120240∴÷=分240548即48分钟时,∠MON的度数是40°如图,OP在AOB∠的内部时,∠=∠-∠MON POM PON即4035PON︒=︒-∠∴∠=-︒PON5此情况不存在综上所述,48分钟时,∠MON的度数是40°【点睛】本题考查了几何图形中角度的计算,角平分线的意义,掌握角平分线的意义是解题的关键.-3、 (1)作图见解答,2a b(2)6【解析】【分析】利用基本作图画出对应的几何图形,(1)根据线段的和差得到OC OA AB BC=+-;(2)先利用D点为CA=厘米,然后利用BC CA AB CA OC CA==厘米,则1DC ODOC的中点得到2=+=++进行计算.(1)解:如图,=+-=+-=-;2OC OA AB BC a a b a b-;故答案为:2a b(2)解:D点为OC的中点,∴==厘米,DC OD2=,2CD CACA∴=厘米,1∴=+=+=++=++=(厘米);1416BC CA AB CA OA CA OC CA故答案为:6.【点睛】本题考查了作图-复杂作图,两点间的距离,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.4、125︒【解析】【分析】根据角平分线的定义求出,AOM BON ∠∠,再用平角减去+AOM BON ∠∠即可得到结果.【详解】解:∵∠AOB 是平角,∴180AOB ∠=︒∵OM 、ON 外别是∠AOC 、∠BOD 的平分线,且∠AOC =80°,∠BOD =30°, ∴1402AOM AOC ∠=∠=︒,1152BON BOD ∠=∠=︒, ∴∠MON =∠AOB -∠AOM -∠BON =180°-40°-15°=125°.【点睛】本题主要考查了角的平分线的有关计算,性质、角的和差等知识点.解决本题亦可利用:∠MON =∠COD +∠COM +∠DON .5、 (1)2cm(2)见解析 (3)12或1【解析】【分析】(1)根据运动的时间为2s ,结合图形可得出2AC AM =-,6MD BM =-,即可得出26AC MD AM BM +=-+-,再由AM BM AB +=,即得出AC +MD 的值;(2)根据题意可得出AC AM t =-,3MD BM t =-.再由3MD AC =,可求出3BM AM =,从而可求出3AM BM AM AM AB +=+=,即证明14AM AB =; (3)①分类讨论当点N 在线段AB 上时、②当点N 在线段AB 的延长线上时和③当点N 在线段BA 的延长线上时,根据线段的和与差结合AN BN MN -=,即可求出线段MN 和AB 的等量关系,从而可求出MN AB的值,注意舍去不合题意的情形. (1)∵时间2t =时,2AC AM =-,32MD BM =-⨯,∴26AC MD AM BM +=-+-8AB =-108=-2cm =;(2)∵AC AM t =-,3MD BM t =-,又∵3MD AC =,∴33()BM t AM t -=-,∴3BM AM =,∴3AM BM AM AM AB +=+=, ∴14AM AB =; (3)①如图,当点N 在线段AB 上时,∵AN BN MN AN AM MN -=-=,, ∴14BN AM AB ==, ∴12MN AB AM BN AB =--=, ∴12MN AB =; ②如图,当点N 在线段AB 的延长线上时,∵AN BN MN AN BN AB -=-=,,∴MN AB =, ∴1MN AB=, ③如图,当点N 在线段BA 的延长线上时,AN BN MN -≠,这种情况不可能, 综上可知,MN AB 的值为12或1. 【点睛】本题考查线段的和与差、与线段有关的动点问题.利用数形结合和分类讨论的思想是解答本题的关键.。
七年级上册数学单元测试卷-第四章 基本平面图形-北师大版(含答案)
七年级上册数学单元测试卷-第四章基本平面图形-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,如果射线OA表示在阳光下你的身影的方向,那么你的身影的方向是( )A.北偏东60°B.南偏西60°C.北偏东30°D.南偏西30°2、小明根据下列语句,分别画出了图形(a)、(b)、(c)、(d)并将图形的标号填在了相应的“语句”后面的横线上,其中正确的是()①直线l经过点A、B、C三点,并且点C在点A与B之间②点C在线段AB的反向延长线③点P是直线a外一点,过点P的直线b与直线a相交于点Q④直线l、m、n相交于点DA.①、②、③、④B.①、②、④C.①、③、④D.②、③3、如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°4、如果、、三点共线,线段,,那么、两点间的距离是()A.1B.11C.5.5D.11或15、对于直线AB,线段CD,射线EF,在下列各图中能相交的是()A. B. C. D.6、如图,点D,E,F分别为△ABC各边的中点,下列说法正确的是( )A.DE=DFB.EF= ABC.S△ABD =S△ACDD.AD平分∠BAC7、下列命题中,正确的是()A.圆只有一条对称轴B.圆的对称轴不止一条,但只有有限条C.圆有无数条对称轴,每条直径都是它的对称轴 D.圆有无数条对称轴,每条直径所在的直线都是它的对称轴8、钟表在4点10分时,它的时针和分针所形成的锐角度数是()A.75°B.65°C.85°D.90°9、下列说法中正确的是()A.若|a|=﹣a,则 a 一定是负数B.单项式 x 3y 2z 的系数为 1,次数是6 C.若 AP=BP,则点 P 是线段 AB 的中点 D.若∠AOC= ∠AOB,则射线 OC 是∠AOB 的平分线10、下列说法:①两点之间,直线最短;②若AC=BC,且A,B,C三点共线,则点C是线段AB的中点;③经过一点有且只有一条直线与已知直线垂直;④经过一点有且只有一条直线与已知直线平行.其中正确的说法有()A.1个B.2个C.3个D.4个11、如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10 +5D.3512、如图,一枚半径为r的硬币沿着直线滚动一圈,圆心经过的距离是()A.4πrB.2πrC.πrD.2r13、当分针指向12,时针这时恰好与分针成120°的角,此时是()A.9点钟B.8点钟C.4点钟D.8点钟或4点钟14、下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧15、如图,点C是AB的中点,点D是BC的中点,现给出下列等式:①CD=AC-DB,②CD= AB,③CD=AD-BC,④BD=2AD-AB.其中正确的等式编号是()A. B. C. D.二、填空题(共10题,共计30分)16、一列火车在A、B两站间往返行驶,之间还有4个车站,至多共有________种不同的价格的车票.17、如图,AB=24,点C为AB的中点,点D在线段AC上,且AD:DC=1:2,则DB的长度为________.18、如图,将一副直角三角板如图放置,若,则________度.19、[知识背景]:三角形是数学中常见的基本图形,它的三个角之和为180°.等腰三角形是一种特殊的三角形,如果一个三角形有两边相等,那么这个三角形是等腰三角形,相等的两边所对的角也相等.如图1,在三角形ABC中,如果AB=AC,那么∠B=∠C.同样,如果∠B=∠C,则AB=AC,即这个三角形也是等腰三角形.[知识应用]:如图2,在三角形ABC中,∠ACB=90°,∠ABC=30°,将三角形ABC绕点C 逆时针旋转α(0°<α<60°)度(即∠ECB=α度),得到对应的三角形DEC,CE交AB于点H,连接BE,若三角形BEH为等腰三角形,则α=________°.20、如果一个多边形从一个顶点出发的对角线将这个多边形分成7个三角形,则这个多边形共有________ 条对角线.21、在灯塔处观测到轮船位于北偏西的方向,同时轮船在南偏东的方向,那么的大小为________.22、,,________23、如图:若CD=4cm,BD=7cm,B是AC的中点,则AC的长为________.24、如图,点A、B、C是直线l上的三个点,图中共有线段条数是________25、如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM(________)∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=________∠AMN,∠FNM=________∠DNM (角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF(________)由此我们可以得出一个结论:两条平行线被第三条直线所截,一对________角的平分线互相________.三、解答题(共5题,共计25分)26、计算:(1)13°29’+78°37‘(2)62°5’-21°39‘ (3)22°16′×5 (4)42°15′÷527、如图所示,军舰A在军舰B的正东方向上,且同时发现了一艘敌舰,其中A舰发现它在北偏东15°的方向上,B舰发现它在东北方向上,(1)试画出这艘敌舰的位置(用字母C表示).(2)求∠BCA=?28、如图,已知∠AOD和∠BOC都是直角,∠AOC=38°,OE平分∠BOD,求∠COE的度数。
基本平面图形测试题
基本平面图形测试题1. 平面图形识别题:- 请从下列选项中选择出所有属于平面图形的选项:A. 立方体B. 圆C. 球体D. 长方形2. 圆的周长计算题:- 已知圆的半径为10厘米,求圆的周长。
(π取3.14)3. 正方形的面积计算题:- 一个正方形的边长为8厘米,计算它的面积。
4. 三角形的内角和计算题:- 一个三角形的三个内角分别为α、β、γ,已知α=60°,β=45°,求γ的度数。
5. 平行四边形的对角线特性题:- 一个平行四边形的对角线互相平分,如果一条对角线的长度为20厘米,求另一条对角线的长度。
6. 圆的面积计算题:- 已知圆的半径为7厘米,求圆的面积。
7. 多边形的外角和计算题:- 一个正八边形的每个内角是多少度?求它的外角和。
8. 相似图形比例计算题:- 如果一个矩形的长和宽分别是10厘米和5厘米,另一个相似矩形的长是15厘米,求它的宽。
9. 三角形的高计算题:- 在一个直角三角形中,已知斜边长度为13厘米,一条直角边长度为5厘米,求另一条直角边的长度。
10. 图形的对称性判断题:- 请判断下列图形哪些是轴对称图形,哪些是中心对称图形:A. 等边三角形B. 等腰梯形C. 圆形D. 长方形11. 图形的周长和面积比较题:- 两个矩形,一个矩形的长和宽分别是4厘米和6厘米,另一个矩形的长和宽分别是8厘米和3厘米,比较它们的周长和面积。
12. 图形的分割与组合题:- 一个正方形被分割成两个等腰直角三角形,求每个三角形的面积。
13. 图形的相似性判断题:- 两个三角形,一个三角形的三边长分别为3厘米、4厘米和5厘米,另一个三角形的三边长分别为6厘米、8厘米和10厘米,判断这两个三角形是否相似。
14. 图形的旋转对称性题:- 一个正方形绕其中心点旋转90°后,它的四个顶点的新位置是什么?15. 图形的平移与反射题:- 一个长方形在平面上向右平移5个单位,再向下反射,描述它的新位置。
(好题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(答案解析)
一、选择题1.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点,若13AB cm =,5BC cm =,则BD 的长为( )A .7cmB .8cmC .9cmD .10cm 2.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为( )A .10B .12C .16D .18 3.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm4.如图,已知110AOB ∠=︒,60BOC ∠=︒,OD 平分COA ∠,则AOD ∠度数为( )A .25︒B .20︒C .85︒D .305.如图,90,50,AOB COD OE ∠=︒∠=平分,AOC OF ∠平分∠BOD ,则EOF ∠的大小为( )A .110B .105C .100D .95 6.下列说法中,错误的是( )A .两点之间直线最短B .两点确定一条直线C .一个锐角的补角一定比它的余角大90°D .等角的补角相等 7.如图,下列各个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )A .B .C .D .8.已知点C 在线段AB 上,点D 在线段AB 的延长线上,若5AC =,3BC =,14BD AB =,则CD 的长为( ) A .2 B .5C .7D .5或1 9.已知点A ,B ,C 在同一条直线上,线段5AC =,2BC =,则线段AB 的长度为( ) A .7 B .3 C .7或3 D .不能确定 10.如图,OA 是北偏东30方向的一条射线,OB 是北偏西50︒方向的一条射线,那么AOB ∠的大小为( )A .70︒B .80︒C .100︒D .110︒11.已知30AOB ∠=︒,自AOB ∠顶点O 引射线OC ,若:4:3AOC AOB ∠∠=,那么BOC ∠的度数是( )A .10°B .40°C .70°D .10°或70° 12.如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较二、填空题13.如图,点C 为线段AB 上一点,点D 为BC 的中点,且AB=12,AC=4CD .(1)求AC 的长;(2)若点E 在直线AB 上,且AE=3,求DE 的长.14.如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,∠FOC =90°,∠1=38°.求∠2和∠3的度数.15.如图1所示,将一副三角尺的直角顶点重合在点O 处.(1)①指出∠AOD 和∠BOC 的数量关系.②∠AOC 和∠BOD 在数量上有何关系?说明理由;(2)若将等腰直角三角尺绕点O 旋转到如图2的位置.①∠AOD 和∠BOC 相等吗?说明理由;②指出∠AOC 和∠BOD 的数量关系.16.(初步探究)(1)如图1,已知线段12cm AB =,点C 和点D 为线段AB 上的两个动点,且3cm CD =,点M 、N 分别是AC 和BD 的中点,求MN 的长是多少?(类比探究)如图2,已知,直角COD ∠与平角AOB ∠如图摆放在一起,且OM 和ON 分别是AOC ∠,BOD ∠的角平分线,则MON ∠的度数为多少?(知识迁移)(3)当AOB α∠=,COD β∠=时,如图3摆放在一起,且OM 和ON 分别是AOC ∠,BOD ∠的角平分线,则MON ∠的度数为多少?(α和β均为小于平角的角)17.已知3AOB BOC ∠=∠,OD 、OE 分别为AOB ∠和BOC ∠的平分线.(1)如图1,当OC 在AOB ∠的内部时,若20BOC ∠=︒,求DOE ∠的度数. (2)如图2,当OC 在AOB ∠的外部时,若22DOE ∠=︒,求AOC ∠的度数. (3)若DOE n ∠=︒,求AOC ∠的度数.18.如图,平面上有A 、B 、C 、D 、F 五个点,请根据下列语句画出图形:(1)直线BC 与射线AD 相交于点M ;(2)连接AB ,并延长线段AB 至点E ,使点B 为AE 中点;(3)在直线BC 上找一点P ,使点P 到A 、F 两点的距离之和最小,作图的依据是: .19.已知:如图,O 是直线AB 上一点,90MON ∠=︒,作射线OC .(1)如图,若ON 平分BOC ∠,60BON ∠=︒,则COM ∠=______°(直接写出答案);(2)如图,若OC 平分AOM ∠,BON ∠比COM ∠大36°,求COM ∠的度数;(3)如图,若OC 平分AON ∠,当2BON COM ∠=∠时,能否求出COM ∠的度数?若可以,求出度数;若不可以,请说明理由.20.如图,不在同一条直线上的四个点A ,B ,C ,D ,请按下列要求画图.(不写画法)(1)连接AC ,BD 相交于点O ;(2)连接CB ,DA ,延长线段CB 交DA 延长线交于点P ;(3)连接BA ,并延长,在射线BA 上用圆规截取线段BE BD =.三、解答题21.如图,点C 为线段AB 上一点,点D 为BC 的中点,且AB=12,AC=4CD .(1)求AC 的长;(2)若点E 在直线AB 上,且AE=3,求DE 的长.22.如图所示,OB 平分AOC ∠,OD 平分COE ∠.(1)若18AOB ∠=︒,35∠=︒DOE ,求AOE ∠的度数;(2)若110AOE ∠=︒,:1:4BOC BOE ∠∠=,求COD ∠的度数.23.如图所示,线段AB =16cm ,E 为线段AB 的中点,点C 为线段EB 上一点,且EC =3cm ,点D 为线段AC 的中点,求线段DE 的长度.24.已知线段AC 和线段BC 在同一直线上,若12cm AC =,8cm BC =,线段AC 的中点为M ,线段BC 的中点为N ,试求M 、N 两点之间的距离.25.计算(1)58°32′36″+36.22°(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷526.如图,已知O 是直线AC 上一点,OC 平分BOD ∠,160AOB ∠=︒,OE AC ⊥,求DOE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据CB =5cm ,AB =13cm 求出A C 的长,再根据D 是AC 的中点即可得出DC 的长,即可求出BD .解:∵CB=5cm,AB=13cm,∴AC=AB-CB=13-5=8cm∵D是AC的中点,∴AC=2CD=8cm.∴CD=4 cm∴DB=CB+CD=5+4=9cm,故选:C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.2.B解析:B【分析】由已知条件可知,EC+FD=EF-CD=8-4=4,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=EF-CD=8-4=4,∵E是AC的中点,F是BD的中点,∴AE=EC,BF=DF∴AE+FB=EC+FD=4,∴AB=AE+FB+EF=4+8=12.故选:B.【点睛】本题考查的是线段上两点间的距离,解答此题时利用中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.B解析:B【分析】利用线段和的定义和线段中点的意义计算即可.【详解】∵AB=AC+BC,且AB=10,BC=4,∴AC=6,∵D是线段AC的中点,∴AD=DC=1AC=3,2∴BD=BC+CD=4+3=7,故选B.本题考查了线段和的意义和线段中点的意义,熟练掌握两个概念并灵活运用进行线段的计算是解题的关键.4.A解析:A【分析】先求出∠AOC=50°,再根据角平分线的定义求出∠AOD 即可.【详解】解:∵110AOB ∠=︒,60BOC ∠=︒,∴∠AOC=∠AOB-∠BOC=110°-60°=50°,∵OD 平分COA ∠,∴∠AOD=12∠AOC=12×50°=25° 故选:A .【点睛】主要考查了角平分线的定义和角的运算,要会结合图形找到其中的等量关系. 5.A解析:A【分析】由OE 平分AOC ∠,OF 平分BOD ∠可知12COE AOC ∠=∠,12DOF BOD ∠=∠.即可求出1122EOF AOC BOD COD ∠=∠+∠-∠,又由360AOC BOD AOB COD ∠+∠=︒-∠+∠,即可求出EOF ∠的大小.【详解】EOF EOD COD COF ∠=∠+∠+∠,()()COE COD COD DOF COD =∠-∠+∠+∠-∠,COE DOF COD =∠+∠-∠.∵OE 平分AOC ∠,OF 平分BOD ∠. ∴12COE AOC ∠=∠,12DOF BOD ∠=∠. ∴1122EOF AOC BOD COD ∠=∠+∠-∠, ∵360AOC BOD AOB COD ∠+∠=︒-∠+∠, ∴1(360)2EOF AOB COD COD ∠=︒-∠+∠-∠,即1(3609050)501102EOF ∠=︒-︒+︒-︒=︒. 故选:A .本题考查角平分线的性质.根据题意结合角平分线的性质找出角的等量关系是解答本题的关键.6.A解析:A【分析】根据基本平面图的性质判断即可;【详解】A两点之间线段最短,故错误;B两点确定一条直线,故正确;C一个锐角的补角一定比它的余角大90°,故正确;D等角的补角相等,故正确;故答案选A.【点睛】本题主要考查了基本平面图形的性质应用,准确分析判断是解题的关键.7.B解析:B【分析】根据角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】解:A. 不能用∠O表示,选项A不符合题意;B. 能用∠1,∠AOB,∠O,选项B符合题意;C 不能用∠O表示,选项C不符合题意;D. 不能用∠O表示,选项D不符合题意.故选:B.【点睛】本题考查了角的表示方法,解决本题的关键是掌握表示角的方法.8.B解析:B【分析】根据线段的和差关系可求AB,再根据14BD AB=,可求BD,再根据线段的和差关系可求CD的长.【详解】解:如图,∵点C在线段AB上,AC=5,BC=3,∴AB=AC+BC=5+3=8,∴14BD AB ==2,∵点D 在线段AB 的延长线上,∴CD=BC+BD=3+2=5.故选B【点睛】本题考查了线段的和差,根据题意,画出正确图形,是解题关键. 9.C解析:C【分析】分类讨论,点B 在线段AC 上或在线段AC 外,即可得到结果.【详解】解:①如图所示:∵5AC =,2BC =,∴527AB AC BC =+=+=;②如图所示:∵5AC =,2BC =,∴523AB AC BC =-=-=.故选:C .【点睛】 本题考查线段的和差问题,解题的关键是进行分类讨论,画出图象,求出线段的和或差. 10.B解析:B【分析】根据方向角可得∠1的度数,从而可得∠AOB 的值.【详解】解:如图,∵OB是北偏西50 方向的一条射线,∴∠1=50°∴∠AOB=∠1+30°=50°+30°=80°故选:B.【点睛】本题考查了方向角,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.11.D解析:D【分析】分为两种情况:①OC和OB在OA的两侧时,②OC和OB在OA的同侧时,分别进行求解即可.【详解】∵∠AOB=30°,∠AOC:∠AOB=4:3,∴∠AOC=40°,分为两种情况:当OC和OB在OA的两侧时,如图1∠BOC=∠AOB+∠AOC=30°+40°=70°②OC和OB在OA的同侧时,如图2∠BOC=∠AOC-∠AOB=40°-30°=10°故选:D.【点睛】考查了角的计算,解题关键是分两种情况:OC、OB在OA的两侧时和OC、OB在OA的同侧时.12.B解析:B【解析】∵∠AOB=∠COD,∴∠AOB-∠BOD=∠COD-∠BOD ,∴∠1=∠2;故选B .【点睛】考查了角的大小比较,培养了学生的推理能力.二、填空题13.(1)8;(2)7或13【分析】(1)根据D 是BC 的中点得BC=2BD 再根据AC+BC=AB 求出CD 的长进而可求得AC 的长;(2)分①当点在线段上;②当点在线段的延长线上两种情况求解即可【详解】解:解析:(1)8;(2)7或13.【分析】(1)根据D 是BC 的中点得BC=2BD ,再根据AC+BC=AB 求出CD 的长,进而可求得AC 的长;(2)分①当点E 在线段AB 上;②当点E 在线段BA 的延长线上两种情况求解即可.【详解】解:(1)∵点D 为BC 的中点,∴22BC CD BD ==∵AB AC BC =+,4AC CD =,∴4212CD CD +=,∴2CD =∴4428AC CD ==⨯=(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点E 在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=所以BE 的长为7或13.【点睛】本题考查线段的中点、线段的和差计算、两点间的距离,分类讨论是解答的关键. 14.∠2=64°∠3=52°【分析】利用平角互补和角平分线的定义进行计算即可【详解】解:∵AB 为直线∴∠3+∠FOC+∠1=180°∵∠FOC=90°∠1=38°∴∠3=180°-90°-38°=52° 解析:∠2=64°,∠3=52°.【分析】利用平角、互补和角平分线的定义进行计算即可.【详解】解:∵AB 为直线,∴∠3+∠FOC +∠1=180°.∵∠FOC =90°,∠1=38°,∴∠3=180°-90°-38°=52°.∵∠3与∠AOD 互补,∴∠AOD =180°-∠3=128°.∵OE 平分∠AOD ,∴∠2=12∠AOD =64°. 【点睛】本题考查了角的计算,掌握平角、补角及角平分线的定义,并利用数形结合的思想是解答此题的关键.15.(1)①;②;(2)①相等理由见解析;②【分析】(1)①由再同时加上也相等即可证明;②由即可证明;(2)①由再同时减去也相等即可证明;②由即可证明【详解】解:(1)①∵∴即;②∵∴;(2)①理由:∵ 解析:(1)①AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒;(2)①相等,理由见解析;②180AOC BOD ∠+∠=︒【分析】(1)①由90AOB COD ∠=∠=︒,再同时加上BOD ∠也相等,即可证明AOD BOC ∠=∠;②由360AOB COD BOD AOC ∠+∠+∠+∠=︒,即可证明180BOD AOC ∠+∠=︒; (2)①由90AOB COD ∠=∠=︒,再同时减去BOD ∠也相等,即可证明AOD BOC ∠=∠;②由AOC AOB COD BOD ∠=∠+∠-∠,即可证明180AOC BOD ∠+∠=︒.【详解】解:(1)①AOD BOC ∠=∠,∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠+∠=∠+∠,即AOD BOC ∠=∠;②180BOD AOC ∠+∠=︒,∵90AOB COD ∠=∠=︒,360AOB COD BOD AOC ∠+∠+∠+∠=︒,∴3609090180BOD AOC ∠+∠=︒-︒-︒=︒;(2)①AOD BOC ∠=∠,理由:∵90AOB COD ∠=∠=︒,∴AOB BOD COD BOD ∠-∠=∠-∠,即AOD BOC ∠=∠;②180AOC BOD ∠+∠=︒,∵90AOB COD ∠=∠=︒,AOC AOB COD BOD ∠=∠+∠-∠,∴180AOC BOD ∠=︒-∠,即180AOC BOD ∠+∠=︒.【点睛】本题考查角度关系求解,解题的关键是掌握三角板的角度.16.(1)(2)(3)【分析】(1)根据线段的中点及线段的和与差即可得出答案;(2)根据角的平分线及角的和与差即可得出答案;(3)根据角的平分线及角的和与差即可得出答案【详解】解:(1)点分别是和的中点 解析:(1)7.5cm (2)135︒ (3)2αβ+【分析】(1)根据线段的中点及线段的和与差即可得出答案;(2)根据角的平分线及角的和与差即可得出答案;(3)根据角的平分线及角的和与差即可得出答案.【详解】解:(1)点M 、N 分别是AC 和BD 的中点, 11,22AM AC BN BD ∴==, 12cm AB =,3cm CD =,1239AC BD ∴+=-=cm ,()1937.522MN CD MC DN CD AC BD cm ∴=++=++=+=; (2)OM 和ON 分别是AOC ∠,BOD ∠的角平分线,,AOM MOC BON NOD ∴∠=∠∠=∠,11,22MOC AOC DON BOD ∴∠=∠∠=∠, 90180COD AOB ∠=︒∠=︒,,AOC COD BOD AOB ∠+∠+∠=∠,90AOC BOD ∴∠+∠=︒,45MOC NOD ∴∠+∠=︒,9045135MON MOC COD DON ∴∠=∠+∠+∠=︒+︒=︒;(3)∵OM 是AOC ∠的角平分线, ∴12MOC AOC ∠=∠, ∵ON 是BOD ∠的角平分线, ∴12NOD BOD ∠=∠, ∵AOB α∠=,COD β∠=,∴MON MOC COD NOD ∠=∠+∠-∠12AOC BOC BOD NOD =∠+∠+∠-∠ 1122AOC BOC BOD =∠+∠+∠ 11112222AOC BOC BOC BOD =∠+∠+∠+∠ 1()2AOB COD =∠+∠2αβ+=.【点睛】本题考查了线段的中点及线段的和与差以及角的平分线及角的和与差,根据图形找到线段与角的关系是解题的关键.17.(1);(2);(3)或【分析】(1)由得根据角平分线定义得出∠BOD-∠BOE 即可得出答案;(2)根据角平分线定义设即可得出;(3)根据角平分线定义设分OC 在的内部和OC 在的外部两种情况求解即可得解析:(1)20DOE ∠=︒;(2)44AOC ∠=︒;(3)2AOC n ∠=︒或(3602)n -︒【分析】(1)由3AOB BOC ∠=∠得60AOB ∠=︒,根据角平分线定义得出1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠,∠BOD-∠BOE ,即可得出答案; (2)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,=2AOB x ∠,2BOC y ∠=,即可得出222AOC x y DOE =+=∠∠;(3)根据角平分线定义,设=AOD BOD x =∠∠,BOE COE y ==∠∠,分OC 在AOB ∠的内部和OC 在AOB ∠的外部两种情况求解,即可得出答案.【详解】解:(1)∵3AOB BOC ∠=∠,∴20360AOB ∠=︒⨯=︒,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线, ∴1=302BOD AOB =︒∠∠,1=102BOE BOC ∠=︒∠, ∴301020DOE BOD BOE =-=︒-︒=︒∠∠∠;(2)由题意得:设=AOD BOD x =∠∠;BOE COE y ==∠∠,∵22DOE ∠=︒,∴=22DOE x y +=︒∠,∵OD ,OE 分别为AOB ∠和BOC ∠的角平分线,∴=2AOB x ∠,2BOC y ∠=,∴22244AOC x y DOE =+==︒∠∠;(3)设DOA DOB x ∠=∠=,EOB EOC y ∠=∠=①当OC 在AOB ∠的外部时,DOE x y n ∠=+=︒∴当090n <≤时,2222AOC x y DOE n ∠=+=∠=︒,当90120n <≤时,360(22)3602(3602)AOC x y DOE n ∠=-+=-∠=-︒.②当OC 在AOB ∠的内部时,DOE x y n ∠=-=︒,2222AOC x y DOE n ∴∠=-=∠=︒,综上,2AOC n ∠=︒或()3602n -︒.【点睛】本题考查了角的有关计算和角平分线定义,熟记角的特点与角平分线的定义是解决此题的关键.18.(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)根据直线射线的定义画出图形即可;(2)根据线段的延长线的定义以及中点的定义画出图形即可;(3)连接AF 交直线BC 于点P 点P 即为所求解析:(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)根据直线,射线的定义画出图形即可;(2)根据线段的延长线的定义以及中点的定义画出图形即可;(3)连接AF 交直线BC 于点P ,点P 即为所求.【详解】解:(1)如图,直线BC ,射线AD 即为所求作.(2)如图,线段BE 即为所求作.(3)如图,点P 即为所求作.理由:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了作图-复杂作图,两点之间线段最短,直线,射线,线段的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(1)30;(2)18°;(3)不能求出的度数理由见解析【分析】(1)根据若平分可得到∠CON=60°然后计算∠COM 即可;(2)可设然后得到再利用角平分线性质得到然后利用平角定义列方程即可;(3)解析:(1)30;(2)18°;(3)不能求出COM ∠的度数,理由见解析【分析】(1)根据若ON 平分BOC ∠,60BON ∠=︒可得到∠CON =60°,然后计算∠COM 即可; (2)可设COM x ∠=︒,然后得到(36)BON x ∠=+︒,再利用角平分线性质得到AOC x ∠=︒,然后利用平角定义列方程即可;(3)思路和(2)相同,设出∠COM ,然后根据题意列出方程判断即可.【详解】解:(1)∵ON 平分BOC ∠∴BON CON ∠=∠=60°∵∠MON =90°∴∠COM =∠MON -∠CON =30°故答案为:30;(2)设COM x ∠=︒,则(36)BON x ∠=+︒,∵OC 平分AOM ∠,∴AOC x ∠=︒,∴ 9036180x x x ++++=,∴18x =,即18COM ∠=︒;(3)不能求出COM ∠的度数,理由如下:设COM x ∠=︒,2BON x ∠=︒,∵OC 平分AON ∠,∴21802AON CON x ∠=∠=︒-︒,∴90CON x ∠=︒-︒,∵90MON ∠=︒,∴9090x x +-=,方程恒成立,故不论COM ∠等于多少度,只能得出BON ∠始终COM ∠的2倍,所以求不出COM ∠的度数.【点睛】本题主要考查角的简单计算和角平分线的简单性质,解题的关键是能够梳理角关系,利用直角和平角是解题的关键.20.(1)见解析;(2)见解析;(3)见解析【分析】(1)分别连结AC 和BD 并把ACBD 的交点标记为O 即可;(2)连接CB 和DA 并分别延长并把它们延长线的交点标记为P 即可;(3)以B 为端点作一条射线经过解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)分别连结A 、C 和B 、D ,并把AC 、BD 的交点标记为O 即可;(2)连接CB 和DA 并分别延长,并把它们延长线的交点标记为P 即可;(3)以B 为端点,作一条射线经过A ,然后以B 为圆心、BD 长为半径画弧交射线BA 于点E 即可.【详解】解:(1)如图,AC ,BD 相交于点O .(2)如图,CB ,DA 相交于点P .(3)如答图,BE 为所求.【点睛】本题考查与线段有关的尺规作图,熟练掌握用尺规作线段及其延长线以及在射线上截取线段等于已知线段的方法和步骤是解题关键.三、解答题21.(1)8;(2)7或13.【分析】(1)根据D 是BC 的中点得BC=2BD ,再根据AC+BC=AB 求出CD 的长,进而可求得AC 的长;(2)分①当点E 在线段AB 上;②当点E 在线段BA 的延长线上两种情况求解即可.【详解】解:(1)∵点D 为BC 的中点,∴22BC CD BD ==∵AB AC BC =+,4AC CD =,∴4212CD CD +=,∴2CD =∴4428AC CD ==⨯=(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点E 在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=所以BE 的长为7或13.【点睛】本题考查线段的中点、线段的和差计算、两点间的距离,分类讨论是解答的关键. 22.(1)106AOE ∠=︒;(2)33COD ∠=︒【分析】(1)据角平分线的定义求得∠AOC 和∠COE 的度数,再相加可得∠AOE 的度数; (2)据角平分线的定义和:1:4BOC BOE ∠∠=得到:2:3AOC COE ∠∠=,再由110AOE ∠=︒求得COE ∠的度数,最后由OD 平分COE ∠求得COD ∠的度数.【详解】解(1)如图∵OB 平分AOC ∠,18AOB ∠=︒∴236AOC AOB ∠=∠=︒∵OD 平分COE ∠,35∠=︒DOE∴270COE DOE ∠=∠=︒∴106AOE AOC COE ∠=∠+∠=︒;(2)如图∵:1:4BOC BOE ∠∠=∴:1:3BOC COE ∠∠=∵OB 平分AOC ∠∴2AOC BOC ∠=∠∴:2:3AOC COE ∠∠=又110AOE ∠=︒ ∴3311066235COE AOE ∠=⨯∠=⨯︒=︒+ ∵OD 平分COE ∠ ∴11663322COD COE ∠=∠=⨯︒=︒. 【点睛】此题考查角平分线的定义和角的有关运算,理解角平分线的定义和结合图形能进行角的加减是关键.23.5cm【分析】根据线段中点的定义求出AE 的长,进而求出AC 的长,再根据中点的定义求出CD 的长,然后利用线段的和差可得答案.【详解】解:∵E 为线段AB 的中点,AB =16cm ,∴AE =12AB =8(cm ), ∵EC =3cm ,∴AC =AE+EC =11(cm ),∵点D 为线段AC 的中点,∴CD =12AC =5.5(cm ), ∴DE =CD ﹣EC =5.5﹣3=2.5(cm ).【点睛】本题考查的是两点间的距离,掌握线段中点的定义、线段的有关计算是解题的关键. 24.10cm 或2cm【分析】分两种情况解答:当点B 位于AC 的延长线上,当点B 位于AC 之间,根据线段中点把线段分成相等的两部分,以及线段的和差关系即可解答【详解】解:∵点M 是线段AC 的中点,∴12MC AC =,同理12NC BC =. (1)当点B 位于AC 外,如图1所示,1122MN MC NC AC BC =+=+ ()()()1112810cm 22AC BC =+=+=.(2)当点B 位于AC 之间,如图2所示,1122MN MC NC AC BC =-=- ()()()111282cm 22AC BC =-=⨯-=. 综上,M 、N 两点间的距离为10cm 或2cm .【点睛】本题考查了线段中点的定义,解题关键是分情况确定点B 的位置,进行解答. 25.(1) 94°45′48″;(2)17【分析】(1)根据度分秒的加法,相同的单位相加,满60时向上以单位进1,可得答案; (2)原式先计算乘方,再计算乘除,最后进行加减运算即可.【详解】解:(1)58°32′36″+36.22°=58°32′36″+36°13′12″=94°45′48″;(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷5=-9×(-2)+16÷(-8)÷10-4÷5=18-0.2-0.8=17.【点睛】本题考查了度分秒的换算,度分秒的加减,同一单位向加减,度分秒的乘法,从小单位算起,满60时向上以单位进1.同时还考查了含有乘方的有理数的混合运算.26.70︒.【分析】根据平角的定义,求∠BOC ,后利用角的平分线,垂直的定义计算即可.【详解】解:∵160AOB ∠=︒,∴18016020BOC AOC AOB ∠=∠-∠=︒-︒=︒,∵OC 平分BOD ∠,∴20COD BOC ∠=∠=︒,∵OE AC ⊥,∴90COE ∠=︒,∴902070DOE COE COD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平角的定义,角的平分线,垂直的定义,熟练掌握互补的定义,角的平分线的性质是解题的关键.。
(北师大版)青岛市七年级数学上册第四单元《基本平面图形》测试(有答案解析)
一、选择题1.下列说法正确的有( )①角的大小与所画边的长短无关;②如图,ABD ∠也可用B 表示③连接两点的线段叫做这两点之间的距离;④两点之间线段最短;⑤如果12AOC AOB ∠=∠,那么OC 是AOB ∠的平分线; ⑥点E 在线段CD 上,若12DE CD =,则点E 是线段CD 的中点.A .1个B .2个C .3个D .4个2.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点,若13AB cm =,5BC cm =,则BD 的长为( )A .7cmB .8cmC .9cmD .10cm 3.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为( )A .10B .12C .16D .184.周末早上,小兰9:00从家里出发去图书馆看书,上午10:30回到家中,这段时间内钟面上的时针转了( )A .37.5°B .45°C .52.5°D .60°5.已知点O 在直线AB 上,且线段4OA =,6OB =,点E ,F 分别是OA ,OB 的中点,则线段EF 的长为( )A .1B .5C .3或5D .1或5 6.如图,OC 是AOB ∠的平分线,3COD BOD ∠=∠,75AOD ∠=︒,则AOB ∠等于( )A .75°B .70°C .65°D .60°7.若线段,,AP BP AB 满足AP BP AB +>,则关于P 点的位置,下列说法正确的是( ) A .P 点一定在直线AB 上B .P 点一定在直线AB 外C .P 点一定在线段AB 上D .P 点一定在线段AB 外 8.若线段AB =13cm ,MA +MB =17cm ,则下列说法正确的是( )A .点M 在线段AB 上B .点M 在直线AB 上,也有可能在直线AB 外C .点M 在直线AB 外D .点M 在直线AB 上9.已知:线段a ,b ,求作:线段AB ,使得AB =2a +b ,小明给出了四个步骤(如图):①作-条射线AE ;②则线段AB = 2a +b ;③在射线AE 上作线段AC =a ,再在射线CE 上作线段CD =a ;④在射线DE 上作线段DB =b ;你认为顺序正确的是( )A .②①③④B .①③④②C .①④③②D .④①⑧② 10.B 是线段AD 上一动点,沿A 至D 的方向以2cm/s 的速度运动.C 是线段BD 的中点.10cm AD =.在运动过程中,若线段AB 的中点为E .则EC 的长是( ) A .2cm B .5cm C .2cm 或5cm D .不能确定 11.下列命题中,正确的有( )①两点之间线段最短;②连接两点的线段,叫做两点间的距离;③角的大小与角的两边的长短无关;④射线是直线的一部分,所以射线比直线短.A .1个B .2个C .3个D .4个12.如图,A 点在B 点的北偏东40°方向,C 点在B 点的北偏东75°方向,A 点在C 点的北偏西50°方向,则∠BAC 的度数是( )A .85°B .80°C .90°D .95°二、填空题13.综合与实践如图,某学校由于经常拔河,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求,已知磨损的麻绳总长度不足20米.只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳.七年级的聪聪马上想出一个了办法:在线段CD 上取一点M ,使CM CA =,对折BM 找到其中点F ,将AC 和BF 剪掉就得到一条长20米的拔河比赛专用绳CF .请你完成下列任务;(1)在图中标出点M 、点F 的位置;(2)判断聪聪剪出的专用绳CF 是否符合要求.试说明理由.14.如图,已知156,48AOD DON ∠=︒∠=︒,射线,,OB OM ON 在AOD ∠内部,OM 平分,AOB ON ∠平分BOD ∠.(1)求MON ∠的度数;(2)若射线OC 在AOD ∠内部,23NOC ∠=︒,求COM ∠的度数.15.点A 、B 在数轴上的位置如图所示,点A 表示的数是5,线段AB 的长是线段OA 的1.2倍,点C 在数轴上,M 为线段OC 的中点,(1)点B 表示的数为 ;(2)若线段BM 的长是4,求线段AC 的长.16.如图,已知线段a b c 、、,用尺规求作线段AM ,使得2AM a b c =+-.(不写作法,保留作图痕迹)17.综合与探究问题背景数学活动课上,老师将一副三角尺按图1所示位置摆放,三角尺ABC中,∠BAC=90°,∠B=∠C=45°;三角尺ADE中,∠D=90°,∠DAE=60°,∠E=30°.分别作出∠BAD、∠CAE的平分线AM、AN.然后提出问题:求出∠MAN的度数.特例探究“智慧小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,AM和AN仍然是∠BAD和∠CAE的平分线.其中,按图2方式摆放时,AB和AE在同一直线上.按图3方式摆放时, AB、AD、AM在同一直线上.(1)计算:图2中∠MAN的度数为 °,图3中∠MAN的度数为 °(直接写出答案,不写过程).发现感悟(2)探究完图2,图3所示的特殊位置问题后,请你猜想图1中∠MAN的度数为 °;“智慧小组”的同学认为图2,图3中∠BAD、∠CAE的度数都已知或能求出具体的度数,图1中,∠MAN=∠MAB+∠BAE+∠EAN ,这些角比较一般化,求不出具体的度数,所以想到了用字母表示数,如果设∠BAE为x°,则可以用含x的式子表示∠BAD和∠CAE,进而可以表示∠MAB和∠EAN,这样就能求出∠MAN的度数;请你根据智慧小组的思路,求出图1中∠MAN的度数.类比拓展(3)受到“智慧小组”的启发,“创新小组”将三角尺按图4所示方式摆放,分别作出∠BAD、∠CAE的平分线AM、AN.他们认为也能求出∠MAN的度数.请你求出∠MAN的度数.18.如图,OE 是∠COA 的平分线,∠AOE =40°,∠AOB =∠COD =18°.(1)求∠BOC 的度数;(2)比较∠AOC 和∠BOD 的大小,并说明理由.19.用直尺和圆规作图,不写作法,但要保留作图痕迹.如图,已知线段a 、b ,求作:线段AB ,使2AB a b =+.20.(1)计算:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭(2)如图,OD 平分AOC ∠,75BOC ∠=︒,15BOD ∠=︒.求AOB ∠的度数.三、解答题21.(1)计算:1517(36)61218⎫⎛+-⨯-⎪⎝⎭ (2)计算:2020211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ (3)计算:18050243'-⨯22.已知线段a,b,求作线段AB,使2AB a b=-(写出作法).23.如图,点B、C在线段AD上,且::2:3:4AB BC CD=,点M是线段AC的中点,点N是线段CD上的一点,且9MN=.(1)若点N是线段CD的中点,求BD的长;(2)当13CN CD=时,求BD的长.24.如图,B、C是线段AD上的任意两点,M是AB的中点,N是CD的中点,如果MN=3cm,BC=1.5cm,求AD的长.25.读句画图如图,点,,A B C是同一平面内三个点,借助直尺、刻度尺、量角器完成(以答题卡上印刷的图形为准):(1)画图:①画射线AB;②画直线BC;③连接AC并延长到点D,使得CD CA=.(2)测量:ABC∠约为_________°(精确到1︒).26.已知O为直线AB上一点,OE平分∠AOC,OF平分∠COB(1)若已知∠AOC=60°,求∠EOF的大小.(2)小明说无论∠AOC等于多少度,∠EOF的度数不变,他的说法对吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用角的定义可确定①,利用角的表示方法可确定②,利用两点之间的距离定义可确定③,利用线段公理可确定④,利用角平分线定义可确定⑤,利用线段中点定义可确定⑥.【详解】解:①角的大小与角的张口大小有关与所画边的长短无关正确;②如图,ABD∠不可用B表示,以B为顶点的角只有一个时才可以, ②不正确;③两点之间线段的长度叫做这两点之间的距离,为此连接两点的线段叫做这两点之间的距离不正确;④两点之间线段最短正确;⑤如果12AOC AOB∠=∠,如果OC在∠AOB的内部,那么OC是AOB∠的平分线;如果OC在∠AOB外, 那么OC不是AOB∠的平分线;为此⑤不正确;⑥点E在线段CD上,若12DE CD=,则点E是线段CD的中点正确.有3个说法正确①④⑥.故选择:C.【点睛】本题考查角的定义,角的表示方法,两点之间的距离,线段公理,角平分线定义,线段中点定义,是基础题,只有掌握各知识是解题关键.2.C解析:C【分析】先根据CB=5cm,AB=13cm求出A C的长,再根据D是AC的中点即可得出DC的长,即可求出BD.【详解】解:∵CB=5cm,AB=13cm,∴AC=AB-CB=13-5=8cm∵D是AC的中点,∴AC=2CD=8cm.∴CD=4 cm∴DB=CB+CD=5+4=9cm,故选:C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.3.B解析:B【分析】由已知条件可知,EC+FD=EF-CD=8-4=4,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=EF-CD=8-4=4,∵E是AC的中点,F是BD的中点,∴AE=EC,BF=DF∴AE+FB=EC+FD=4,∴AB=AE+FB+EF=4+8=12.故选:B.【点睛】本题考查的是线段上两点间的距离,解答此题时利用中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.4.B解析:B【分析】9时是分针指向12,时针指向9,10:30时分针指向6,时针指向10和11正中间,所以时针走了1.5个大格,因为每个大格所对的角度是30度,所以3个大格之间的夹角是30°×1.5=45°,据此解答即可.【详解】解:由分析得出:从上午9:00到上午10:30,钟面上的时针转了:30°×1.5=45°.故选:B.【点睛】解决本题要先分析时针位置的变化,再利用每个大格所对的角度是30度进行解答.5.D解析:D【分析】根据题意,画出图形,此题分两种情况:①点A,B在点O同侧时;②点A,B在点O两侧时两种情况.【详解】解:分情况讨论:①点A,B在点O同侧时,由线段OA=4,线段OB=6,∵E,F分别是OA,OB的中点,∴OE =12OA =2,OF=12OB=3, ∴EF=OF-OE=3-2=1;②点A ,B 在点O 两侧时,如图,由线段OA=4,线段OB=6,∵E ,F 分别是OA ,OB 的中点,∴OE=12OA=2,OF=12OB=3, ∴EF=OE+OF=2+3=5,∴线段EF 的长度为1或5.故选D .【点睛】本题考查线段中点的定义及线段长的求法.利用中点性质转化线段之间的倍分关系是解题的关键.6.D解析:D【分析】设∠BOD 为x °,3COD BOD ∠=∠,得出∠BOC =2x°,利用角平分线的性质得出∠AOB =2∠BOC ,根据75AOD ∠=︒可以求出x °,再求出AOB ∠.【详解】解:设∠BOD 为x °,则∠COD 为3x °,∴∠COB =∠COD ﹣∠BOD =2x °,∵OC 是∠AOB 的平分线,∴∠AOB =2∠COB =4x °,∵∠AOD =75°,∴∠AOD=∠BOD+∠AOB =5 x °=75°∴x=15∴∠AOB =4×15°=60°.故选:D .【点睛】此题主要考查了角的计算和角平分线的定义,能够正确得出∠BOC =2∠BOD 是解题的关键.7.D解析:D【分析】根据P 点在线段AB 上时,AP+BP=AB ,进行判断即可.【详解】解:A. P点在线段AB上时,AP+BP=AB,此时点P在直线AB上,故错误;B. P点在线段AB延长线上时,AP BP AB+>,故错误;C. P点在线段AB上时,AP+BP=AB,故错误;D. P点在线段AB上时,AP+BP=AB,P点一定在线段AB外时,AP BP AB+>,故正确;故选:D.【点睛】本题考查了点和直线、线段的位置关系,解题关键是抓住当P点在线段AB上时,AP+BP=AB这一结论,进行判断.8.B解析:B【分析】此题要分多种可能情况讨论:当M点在直线外时,根据两点之间线段最短,能出现MA+MB=17;当M点在线段AB延长线上,也可能出现MA+MB=17;由此解答即可.【详解】(1)当M点在直线外时,M,A,B构成三角形,两边之和大于第三边,能出现MA+MB=17;(2)当M点在线段AB延长线上,也可能出现MA+MB=17.故选:B.【点睛】此题考查比较线段的长短,正确认识直线、线段,注意对各个情况的分类,讨论可能出现的情况.9.B解析:B【分析】先作射线AE,然后在射线AE上作线段AC=a,再在射线CE上作线段CD=a,最后在射线DE 上作线段DB=b,则线段AB= 2a+b.【详解】解:由题意知,正确的画图步骤为:①作一条射线AE;③在射线AE上作线段AC=a,再在射线CE上作线段CD=a;④在射线DE上作线段DB=b;②则线段AB= 2a+b;故选:B.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.10.B解析:B【分析】根据线段中点的性质,做出线段AD,按要求标出各点大致位置,列出EB,BC的表达式,即可求出线段EC.【详解】设运动时间为t ,则AB=2t ,BD=10-2t ,∵C 是线段BD 的中点,E 为线段AB 的中点,∴EB=2AB =t ,BC=2BD =5-t , ∴EC=EB+BC=t+5-t=5cm ,故选:B .【点睛】 此题考查对线段中点的的理解和运用,涉及到关于动点的线段的表示方法,难度一般,理解题意是关键.11.B解析:B【分析】根据直线的性质,两点间的距离的定义,线段的性质进行分析.【详解】解:①两点之间线段最短,正确;②连接两点的线段的长度,叫做两点间的距离,故原说法错误;③角的大小与角的两边的长短无关,正确;④直线无限长,射线无限长,射线是直线的一部分,所以射线比直线短的说法是错误的. 故选:B【点睛】本题考查了直线、射线、线段,关键是熟悉它们的定义.属于基础题.12.C解析:C【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解.【详解】∵∠DBA =40°,∠DBC =75°,∴∠ABC =∠DBC−∠DBA =75°−40°=35°,∵DB ∥EC ,∴∠DBC +∠ECB =180°,∴∠ECB =180°−∠DBC =180°−75°=105°,∴∠ACB =∠ECB−∠ACE =105°−50°=55°,∴∠BAC =180°−∠ACB−∠ABC =180°−55°−35°=90°.【点睛】本题考查了方向角.解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.二、填空题13.(1)见解析;(2)符合要求见解析【分析】(1)根据题意可直接进行作图;(2)由题意易得进而可得然后由可进行判断【详解】解:(1)由题意可作如图所示:(2)符合要求理由是:∵为的中点为的中点∴∴∵∴解析:(1)见解析;(2)符合要求,见解析【分析】(1)根据题意可直接进行作图;(2)由题意易得12AC CM AM ==,12MF FB MB ==,进而可得20CF m =,然后由20AC BD m +<可进行判断.【详解】解:(1)由题意可作如图所示:(2)符合要求.理由是:∵C 为AM 的中点,F 为BM 的中点, ∴12AC CM AM ==,12MF FB MB ==, ∴CF CM MF =+1122AM MB =+()1122AM MB AB =+=, ∵40AB m =,∴20CF m =,∵20AC BD m +<,∴20CD m >,∴CF 符合要求.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.14.(1)∠MON=78°;(2)∠COM=101°或55°【分析】(1)由题意易得由∠BOD+∠AOB=∠AOD 进而问题可求解;(2)由题意可分当射线OC 在∠MON 的外部时和当射线OC 在∠MON 的内部解析:(1)∠MON=78°;(2)∠COM=101°或55°【分析】(1)由题意易得11,22BON BOD BOM AOB ∠=∠∠=∠,由∠BOD+∠AOB=∠AOD ,进而问题可求解;(2)由题意可分当射线OC 在∠MON 的外部时和当射线OC 在∠MON 的内部时,然后分类求解即可.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠BOD , ∴11,22BON BOD BOM AOB ∠=∠∠=∠, ∵∠AOD=∠BOD+∠AOB=156°, ∴()111567822MON BON BOM BOD AOB ∠=∠+∠=∠+∠=⨯︒=︒; (2)由题意得:①当射线OC 在∠MON 的外部时,如图所示:由(1)得∠MON=78°,∵∠CON=23°,∴∠COM=∠CON+∠MON=101°;②当射线OC 在∠MON 的内部时,如图所示:∴∠COM=∠MON-∠NOC=55°;综上所述:∠COM=101°或55°.【点睛】本题主要考查角平分线的定义及角的和差关系,熟练掌握角平分线的定义及角的和差关系是解题的关键.15.(1)-1;(2)1或15【分析】(1)根据点A 表示的数为5线段AB 的长为线段OA长的12倍即可得点B表示的数;(2)根据线段BM的长为45即可得线段AC的长【详解】解:(1)∵点A表示的数为5线段解析:(1)-1;(2)1或15【分析】(1)根据点A表示的数为5,线段AB的长为线段OA长的1.2倍.即可得点B表示的数;(2)根据线段BM的长为4.5,即可得线段AC的长.【详解】解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=1.2×5=6∵OA=5,∴OB=AB-OA=1,∴点B表示的数为-1.故答案为-1;(2)若点M在点B的右边,点B表示的数是-1,且|BM|=4,所以点M表示的数是3,即|OM|=3又M是线段OC的中点,所以|OC|=6,即点C所表示的数是6,点A表示的数是5,所以|AC|=1;若点M在点B的左边,点B表示的数是-1,且|BM|=4,所以点M表示的数是-5,所以|OM|=5而M是线段OC的中点,所以|OC|=10,即点C所表示的数是-10,点A表示的数是5,所以|AC|=15【点睛】本题考查了数轴,解决本题的关键是用数轴表示两点之间的距离.16.见解析【分析】在射线AE上依次截取AB=aBC=CD=b在DA上截取DM=c则AM满足条件【详解】解:如图AM为所作【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图一般是结解析:见解析【分析】在射线AE上依次截取AB=a,BC=CD=b,在DA上截取DM=c,则AM满足条件.【详解】解:如图,AM为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.17.(1)7575;(2)75过程见解析;(3)105°【分析】(1)图2由角平分线的性质得到再结合角的和差解题即可;图3由角平分线的性质得到再结合角的和差解题即可;(2)由∠MAN=∠MAB+∠BAE解析:(1)75,75;(2)75,过程见解析;(3)105°.【分析】(1)图2,由角平分线的性质得到11,22EAM MAD EAD CAN NAB CAB ∠=∠=∠∠=∠=∠,再结合角的和差解题即可;图3,由角平分线的性质,得到12CAN NAE CAE ∠=∠=∠,再结合角的和差解题即可;(2)由∠MAN=∠MAB+∠BAE+∠EAN ,结合角平分线的性质解题;(3)由∠MAN=∠MAD +∠EAN-∠DAE ,结合角平分线的性质解题.【详解】解:(1)图2中,AM 和AN 是∠BAD 和∠CAE 的平分线, 1130,4522EAM MAD EAD CAN NAB CAB ∴∠=∠=∠=︒∠=∠=∠=︒ 304575MAN EAM NAB ∴∠=∠+∠=︒+︒=︒;图3中,AM 和AN 是∠BAD 和∠CAE 的平分线,111()(9060)15222CAN NAE CAE CAB EAB ∴∠=∠=∠=∠-∠=⨯︒-︒=︒ 901575MAN MAC CAN ∴∠=∠-∠=︒-︒=︒故答案为:75;75;(2)设∠BAE 为x°,则∠BAD=∠DAE- x°=60°- x°,∠CAE=∠BAC- x°=90°-x°因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAB=12∠BAD =12(60°- x°)=30°-12 x° ∠EAN=12∠CAE=12(90°- x°)=45°+12x°. 所以∠MAN=∠MAB+∠BAE+∠EAN=(30°-12x°)+ x°+(45°-12x°)=75°,故答案为:75°;(3)设∠BAE为x°,则∠BAD=∠DAE+ x°=60°+ x°,∠CAE=360°-∠BAC-∠BAE=360°-90°-x°=270°-x°,因为AM和AN是∠BAD和∠CAE的平分线,所以∠MAD=12∠BAD =12(60°+ x°)=30°+12x°∠EAN=12∠CAE=12(270°- x°)=135°-12x°.所以∠MAN=∠MAD +∠EAN-∠DAE=(30°+12x°)+(135°-12x°)- 60°=105°.【点睛】本题考查三角板的特殊角、角平分线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.18.(1)62°;(2)∠AOC=∠BOD理由见解析【分析】(1)根据角平分线定义求出∠AOC根据∠BOC=∠AOC﹣∠AOB代入求出即可;(2)∠AOC=∠BOD理由是根据∠BOD=∠BOC+∠COD解析:(1)62°;(2)∠AOC=∠BOD,理由见解析【分析】(1)根据角平分线定义求出∠AOC,根据∠BOC=∠AOC﹣∠AOB代入求出即可;(2)∠AOC=∠BOD,理由是根据∠BOD=∠BOC+∠COD求出∠BOD=80°,即可得出答案.【详解】解:(1)∵OE是∠COA的平分线,∠AOE=40°,∴∠AOC=2∠AOE=80°,∵∠AOB=18°,∴∠BOC=∠AOC﹣∠AOB=62°;(2)∠AOC=∠BOD,理由如下:∵∠BOC=62°,∠COD=18°,∴∠BOD=∠BOC+∠COD=80°,∵∠AOC=80°,∴∠AOC=∠BOD.【点睛】本题考查了角平分线定义和角的有关计算,主要考查学生能根据图形求出有关角的度,题目比较典型,是一道比较好的题目.19.答案见解析【分析】首先作射线然后依次截取线段AC=aCB=bBD=b 则AD 即为所求【详解】解:如图所示线段AD 即为所求:【点睛】本题主要考查了基本作图作图的关键是理解作一条线段等于已知线段的作法解析:答案见解析.【分析】首先作射线,然后依次截取线段AC=a ,CB=b ,BD=b ,则AD 即为所求.【详解】解:如图所示,线段AD 即为所求:【点睛】本题主要考查了基本作图,作图的关键是理解作一条线段等于已知线段的作法. 20.(1);(2)【分析】(1)先计算有理数的乘方将除法转化为乘法小数化为分数再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得再根据角平分线的定义可得然后根据角的和差即可得【详解】(1)解:; 解析:(1)9-;(2)45︒.【分析】(1)先计算有理数的乘方、将除法转化为乘法、小数化为分数,再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得60COD ∠=︒,再根据角平分线的定义可得60AOD COD ∠=∠=︒,然后根据角的和差即可得.【详解】(1)解:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭ ()55187142=---⨯-- 55922=-+- 9=-;(2)解:75BOC ∠=︒,15BOD ∠=︒,751560COD BOC BOD ∴∠=∠-∠=︒-︒=︒,∵OD 平分AOC ∠, ∴60AOD COD ∠=∠=︒,∴601545AOB AOD BOD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了含乘方的有理数混合运算、与角平分线有关的角度计算,熟练掌握各运算法则和角平分线的定义是解题关键.三、解答题21.(1)13;(2)16;(3)2848'. 【分析】(1)利用乘法分配律,进行计算即可;(2)根据有理数混合运算的计算方法进行计算即可;(3)根据度分秒的换算方法计算即可.【详解】 (1) 1517()(36)61218+-⨯- ()()()151736363661218=⨯-+⨯--⨯- 6(15)(34)=-+---61534=--+13= (2)2020211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ 111(29)23=--⨯⨯- 11(7)6=--⨯- 16= (3)18050243'-⨯1796015072''=-2848'=.【点睛】本题考查乘法分配律,有理数的混合运算,度分秒的换算,掌握有理数的混合运算的法则以及度分秒的换算方法是得出正确答案的前提.22.见解析【分析】先在射线AM 上顺次截取AC=CD=a ,再在线段DA 上截取DB=b ,则AB=2a-b .【详解】解:(1)作射线AM ,在射线AM 上顺次截取AC=CD=a ;(2)在线段DA 上截取DB=b ,则线段AB 为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23.(1)14(2)378 23【分析】(1)根据题意可得出CM=12AC,CN=12CD,所以MN=CM+CN=12(AC+CD)=12AD=9,从而得出AD的长,根据AB:BC:CD=2:3:4,可得出AB的长,继而求出BD的长;(2)根据题意,当CN=13CD时,设AB=2x,BC=3x,CD=4x,可得AC=5x,因为点M是线段AC的中点,可得CM=2.5x,因为CN=13CD,可求出CN=43x,根据MN=9,可解出x的值,继而得出BD的长;【详解】解:(1)如图,∵点M是线段AC的中点,点N是线段CD的中点,∴CM=12 AC,CN=12CD,∴MN=CM+CN=12 (AC+CD)=12AD=9,∴AD=18,∵AB:BC:CD=2:3:4,∴AB=29×AD=4,∴BD=AD﹣AB=18﹣4=14;(2)∵当CN=13CD时,如图,∵AB:BC:CD=2:3:4,∴设AB=2x,BC=3x,CD=4x,∴AC=5x,∵点M是线段AC的中点,∴CM=12AC=2.5x,∵CN=13CD=43x,∴CM+CN=52x+43x=MN=9,∴x=5423,∴BD=7x=37823;【点睛】本题考查了线段的中点,线段的和与差的计算及线段三等分点的计算.能求出各个线段的长度是解题的关键.24.AD的长为4.5cm.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【详解】解:∵MN=MB+BC+CN,∵MN=3cm,BC=1.5cm,∴MB+CN=3﹣1.5=1.5cm,∴AD=AB+BC+CD=2(MB+CN)+BC=2×1.5+1.5=4.5cm.答:AD的长为4.5cm.【点睛】本题考查了线段的计算,线段中点的意义,线段和的意义,线段差的意义,熟练掌握线段的中点的意义,灵活运用线段和与线段差表示线段是解题的关键.25.(1)①见解析;②见解析;③见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示:①射线AB即为所求;②直线BC即为所求;③线段CD=CA即为所求(2)ABC约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量.26.(1)90°;(2)对【分析】(1)根据角平分线的定义求解即可;(2)根据角平分线的定义求解即可.【详解】解:(1)∵∠AOC=60°,∴∠BOC=180°-∠AOC=180°-60°=120°,∵OE平分∠AOC,OF平分∠COB∴∠EOC=12∠AOC=30°,∠COF=12∠BOC=60°∴∠EOC+∠COF =30°+60°=90°;(2)小明说的对,理由如下:∵OE平分∠AOC,OF平分∠COB∴∠EOC=12∠AOC,∠COF=12∠BOC∵∠AOB是平角∴∠EOC+∠COF =12(∠AOC+∠BOC)=12×∠AOB=12×180°=90°所以,无论∠AOC等于多少度,∠EOF=90°【点睛】本题考查角平分线的定义;角的和差关系.结合图形解题是本题的关键.。
北师大版七年级上册数学《基本平面图形》各个章节整理试题以及答案
七年级上册《基本平面图形》中直线、射线、线段和比较线段的长短测试试题一、选择题。
1、已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A、11cmB、5cmC、11cm或5cmD、8cm或11cm2、在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设天线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有().A、①②B、①③C、②④D、③④3、如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于().A、3cmB、6cmC、11cmD、14cm4、手电筒射出去的光线,给我们的形象是( )A、直线B、射线C、线段D、折线5、下列各直线的表示法中,正确的是( )A、直线AB、直线ABC、直线abD、直线Ab6、如图,A、B在直线l上,下列说法错误的是()A、线段AB和线段BA同一条线段B、直线AB和直线BA同一条直线C、射线AB和射线BA同一条射线D、图中以点A为端点的射线有两条。
AB,AC=CB,AB=2AC,AC+CB=AB,能说明C 7、如果点C在线段AB上,则下列各式中:AC=12是线段AB中点的有( )A、1个B、2个C、3个D、4个8、如图,AB=CD,则AC与BD的大小关系是( )A、AC>BDB、AC<BDC、AC=BDD、不能确定9、如果线段AB=5cm,线段BC=4cm,那么A、C两点之间的距离是()A、9cmB、1cmC、1cm或9cmD、以上答案都不对10、同一平面内互不重合的三条直线的公共点的个数是( )A、可能是0个,1个,2个B、可能是0个,2个,3个C、可能是0个,1个,2个或3个D、可能是1个可3个11、下列说法中,正确的有()A、过两点有且只有一条直线B、连接两点的线段叫做两点的距离C、两点之间,直线最短D、AB=BC,则点B是AC的中点12、如图,CB=4cm,DB=7cm,D为AC的中点,则AB的长为( )A、7cmB、8cmC、9cmD、10cm13、下列说法正确的有( )①连接两点之间的线段叫两点间的距离;②木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;③若AB=2CB,则点C是AB的中点;④直线AB的长为2cm.A、0个B、1个C、2个D、3个14、如图,以O为端点的射线有()条。
2022年鲁教版(五四制)六年级数学下册第五章基本平面图形综合测试试题(含解析)
六年级数学下册第五章基本平面图形综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,∠BOC =90°,∠COD =45°,则图中互为补角的角共有( )A .一对B .二对C .三对D .四对2、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A 表示养心殿所在位置,点O 表示太和殿所在位置,点B 表示文渊阁所在位置.已知养心殿位于太和殿北偏西2118'︒方向上,文渊阁位于太和殿南偏东5818︒'方向上,则∠AOB 的度数是( )︒'B.143︒C.140︒D.153︒A.79363、下列说法错误的是()A.两点之间,线段最短B.经过两点有一条直线,并且只有一条直线C.延长线段AB和延长线段BA的含义是相同的D.射线AB和射线BA不是同一条射线4、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为17.8km,而导航提供的三条可选路线的长度分别为37km、28km、34km(如图),这个现象说明()A.两点之间,线段最短B.垂线段最短C .经过一点有无数条直线D .两点确定一条直线5、上午8:30时,时针和分针所夹锐角的度数是( )A .75°B .80°C .70°D .67.5°6、已知α与β互为余角,若20α=︒,则β的补角的大小为( )A .70︒B .110︒C .140︒D .160︒7、如图,将一块三角板60°角的顶点与另一块三角板的直角顶点重合,12720'∠=︒,2∠的大小是( )A .2720'︒B .5720'︒C .5840'︒D .6240'︒8、在一幅七巧板中,有我们学过的( )A .8个锐角,6个直角,2个钝角B .12个锐角,9个直角,2个钝角C .8个锐角,10个直角,2个钝角D .6个锐角,8个直角,2个钝角9、在9:30这一时刻,时钟上的时针和分针之间的夹角为( )A .105︒B .100︒C .90︒D .85︒10、已知50A ∠=,则∠A 的补角等于( )A .40B .50C .130D .140第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个角的补角是其余角的3倍,则这个角的度数为___.2、式子31257x x x x x ++++-+-+-的最小值是______.3、平面内不同的两点确定一条直线,不同的三点最多确定三条直线,则平面内不同的n 个点最多可确定_____条直线(用含有n 的代数式表示).4、同一直线上有两条线段,AB CD (A 在B 的左边,C 在D 的左边),M ,N 分别是,AB CD 的中点,若5cm MN =,7cm BC =,则AD =_________cm .5、4236'︒=______°.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,直线AB 、CD 相交于点O ,∠EOC =90°,OF 平分∠AOE .(1)若∠BOC =40°,求∠AOF 的大小.(2)若∠COF =x °,求∠BOC 的大小.2、解答下列各题:(1)化简并求值:(a ﹣ab )+(b +2ab )﹣(a +b ),其中a =7,b =﹣17.(2)如图,OD 为∠AOB 的平分线,∠AOC =2∠BOC ,AO ⊥CO ,求∠COD 的度数.3、已知P 为线段AB 上一点,AP 与PB 的长度之比为3∶2,若6AP =cm ,求PB ,AB 的长.4、如图,已知A、B、C、D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.(1)画射线BA;(2)画直线AC;(3)在直线AC上找一点P,使得PB PD最小.5、点M,N是数轴上的两点(点M在点N的左侧),当数轴上的点P满足PM=2PN时,称点P为线段MN的“和谐点”.已知,点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:(1)当a=﹣1,b=5时,求线段AB的“和谐点”所表示的数;(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a的值.-参考答案-一、单选题1、C【解析】【分析】根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.【详解】解:∵∠BOC =90°,∠COD =45°,∴∠AOC =90°,∠BOD =45°,∠AOD =135°,∴∠AOC +∠BOC =180°,∠AOD +∠COD =180°,∠AOD +∠BOD =180°,∴图中互为补角的角共有3对,故选:C .【点睛】本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.2、B【解析】【分析】由图知,∠AOB =180°−5818︒'+2118'︒,从而可求得结果.【详解】∠AOB =180°−5818︒'+2118'︒=180°-37°=143°故选:B【点睛】本题考查了方位角及角的和差运算,掌握角的和差运算是关键.3、C【解析】【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;D. 射线AB和射线BA不是同一条射线,故该项不符合题意;故选:C.【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.4、A【解析】【分析】根据两点之间线段最短,即可完成解答.【详解】由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.故选:A【点睛】本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.5、A【解析】【分析】根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.故选:A .【点睛】本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.6、B【解析】【分析】根据90βα=︒-求得β,根据180β︒-求得β的补角【详解】解:∵α与β互为余角,若20α=︒,∴9070βα=︒-=︒∴180β︒-110=︒故选B【点睛】本题考查了求一个角的余角、补角,解题的关键是理解互为余角的两角之和为90︒,互为补角的两角之和为180︒.7、B【解析】【分析】根据∠BAC=60°,∠1=27°20′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.【详解】解:∵∠BAC=60°,∠1=27°20′,∴∠EAC=32°40′,∵∠EAD=90°,∴∠2=90°-∠EAC=90°-32°40′=57°20′;故选:B.【点睛】本题主要考查了与三角板有关的角度计算,解题的关键是能够正确求出∠EAC的度数.8、B【解析】【分析】根据一副七巧板图形,查出锐角,直角和钝角的个数即可.【详解】5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,在一幅七巧板中根据12个锐角,9个直角,2个钝角.故选择B.【点睛】本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.9、A【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:9:30时针与分针相距3.5份,每份的度数是30°,在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.故选:A.【点睛】本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.10、C【解析】【分析】若两个角的和为180,︒则这两个角互为补角,根据互补的含义直接计算即可.【详解】解:50∠=,A∴∠A的补角为:18050130,故选C【点睛】本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.二、填空题1、45°##45度【解析】【分析】根据补角和余角的定义,利用“一个角的补角是它的余角的度数的3倍”作为相等关系列方程求解即可得出结果.【详解】解:设这个角的度数是x,则180°-x=3(90°-x),解得x=45°.答:这个角的度数是45°.故答案为:45°.【点睛】本题考查了余角和补角的知识,设出未知数是解决本题的关键,要掌握解答此类问题的方法.2、16【解析】【分析】画出数轴,根据两点间的距离公式解答.【详解】解:如图1,当点P与点C重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+0=AE+BD;如图2,当点P 与点C 不重合时,点P 到A 、B 、C 、D 、E 各点的距离之和为:PA +PB +PC +PD +PE=(PA +PE )+(PB +PD )+PC=AE +BD +PC ;∵AE +BD +PC > AE +BD ,∴当点P 与点C 重合时,点P 到A 、B 、C 、D 、E 各点的距离之和最小,令数轴上数x 表示的为P ,则31257x x x x x ++++-+-+-表示点P 到A 、B 、C 、D 、E 各点的距离之和,∴当x =2时,31257x x x x x ++++-+-+-取得最小值, ∴31257x x x x x ++++-+-+-的最小值 =2321225227++++-+-+-=5+3+0+3+5=16,故答案为:16.【点睛】本题考查了绝对值意义、数轴上两点间的距离,数形结合是解答本题的关键.3、(1)2n n - 【解析】【分析】平根据面内不同的两点确定一条直线,不同的三点最多确定三条直线…依此类推找出规律.【详解】解:平面内不同的2个点确定1条直线,3个点最多确定3条,即3=1+2;4个点确定最多1+2+3=6条直线;则n 个点最多确定1+2+3+……(n -1)=(1)2n n -条直线, 故答案为(1)2n n -. 【点睛】此题主要考查了两点确定一条直线,解决问题的关键是通过观察、分析、归纳、验证,然后得出一般性的结论,再代入求值.4、17【解析】【分析】根据A 在B 的左边,C 在D 的左边,M ,N 分别是,AB CD 的中点,得出AM =BM ,CN =DN ,当点B 在点C 的右边时满足条件,分三种情况,当点B 在NM 上,设AM =BM =x ,得出BN =MN -BM =5-x ,ND =CN =12-x ,可求AD =AM +MN +ND =x +5+12-x =17;当MN 在BC 上,设AM =BM =x ,CM =7-x , 得出ND =CN =12-x ,可求AD =AM +MN +ND =x +5+12-x =17;当点C 在MN 上,设AM =BM =x ,MC =BM -BC =x -7,得出CN =DN =MN -MC =5-(x -7)=12-x ,可求AD =AM +MN +ND =x +5+12-x =17即可.【详解】解:∵A 在B 的左边,C 在D 的左边,M ,N 分别是,AB CD 的中点,∴AM=BM,CN=DN,当点B在点C的右边时满足条件,分三种情况:当点B在NM上,设AM=BM=x,∴BN=MN-BM=5-x,∴CN=BC+BN=7+5-x=12-x,∴ND=CN=12-x,∴AD=AM+MN+ND=x+5+12-x=17;当MN在BC上,设AM=BM=x,∴BN=x-5,CM=7-x,∴CN=CM+MN=7-x+5=12-x,∴ND=CN=12-x,∴AD=AM+MN+ND=x+5+12-x=17;当点C在MN上,设AM=BM=x,∴MC=BM-BC=x-7,∴CN=DN=MN-MC=5-(x-7)=12-x,∴AD=AM+MN+ND=x+5+12-x=17;综合得AD=17.故答案为17.【点睛】本题考查线段中点有关的计算,线段和差,整式加减运算,分类思想的应用使问题得以全面解决是解题关键.5、42.6【解析】【分析】根据角度进制的转化求解即可,601'=︒.【详解】解:36 360.660'==︒∴4236'︒=42.6︒故答案为:42.6【点睛】本题考查了角度进制的转化,掌握角度进制是解题的关键.三、解答题1、(1)25︒;(2)2702x︒-︒【解析】【分析】(1)结合题意,根据平角和角度和差的性质计算得AOE∠,再根据角平分线的性质计算,即可得到答案;(2)根据角度和差性质,计算得EOF∠;根据角平分线的性质计算,即可得到答案.【详解】(1)∵∠EOC=90°,∠BOC=40°∴18050AOE BOC EOC∠=︒-∠-∠=︒∵OF 平分∠AOE ∴252AOE AOF ∠∠==︒ ; (2)∵∠COF =x °,∠EOC =90°∴90EOF COF EOF x ∠=∠-∠=︒-︒∵OF 平分∠AOE∴22180AOE EOF x ∠=∠=︒-︒∴()1801802180902702BOC AOE EOC x x ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒.【点睛】本题考查了角的知识;解题的关键是熟练掌握角平分线、角度和差的性质,从而完成求解.2、 (1)ab ,-1(2)22.5°【解析】【分析】(1)首先化简(a -ab )+(b +2ab )-(a +b ),然后把a =7,b =17-代入化简后的算式即可.(2)根据垂直的定义得到∠AOC =90°,求得∠AOB =∠AOC +∠BOC =135°,根据角平分线的定义求出∠BOD ,再减去∠BOC 可得结果.【小题1】解:(a -ab )+(b +2ab )-(a +b )=a -ab +b +2ab -a -b=ab当a =7,b =17-时,原式=7×(17)=-1.【小题2】∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=12∠AOB=67.5°,∴∠COD=∠BOD-∠BOC=22.5°.【点睛】此题主要考查了整式的加减-化简求值问题,角度的计算,角平分线的定义,要熟练掌握,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.3、BP=4cm,AB=10cm【解析】【分析】设AP=3x cm,BP=2x cm,由AP=6cm,求出x=2,即可得到答案.【详解】解:∵AP与PB的长度之比为3∶2,∴设AP=3x cm,BP=2x cm,又∵AP=6cm,∴3x=6,x=2,∴BP=4cm,AB=10cm.【点睛】此题考查了线段的和差计算,根据AP与PB的长度之比为3∶2设未知数是解题的固定思路,注意此方法的积累,在角度计算,应用题中同样可以应用.4、 (1)画图见解析;(2)画图见解析;(3)画图见解析.【解析】【分析】(1)根据射线的定义连接BA并延长即可求解;(2)根据直线的定义连接AC并向两端延长即可求解;(3)连接AC和BD,根据两点之间线段最短可得AC与BD的交点即为点P.(1)解:如图所示,连接BA并延长即为要求作的射线BA,(2)解:连接AC并向两端延长即为要求作的直线AC,(3)解:如图所示,连接AC和BD,∵两点之间线段最短,∴当点P,B,D在一条直线上时,PB PD最小,∴线段AC 与BD 的交点即为要求作的点P .【点睛】本题主要是考查了几何作图能力以及两点之间线段最短和直线的概念,熟练掌握画图技巧,是解决作图题的关键.5、 (1)3或11;(2)a 的值为-12,-9,-4,-3.【解析】【分析】(1):设线段AB 的“和谐点”表示的数为x ,根据a =﹣1,b =5,分三种情况,①当1x <-时, 列出方程12(5)x x --=-.②当15x -≤<时,列出方程12(5)x x +=-.③当5x ≥时,列出方程12(5)x x +=-解方程即可.(2):点O 为AB 的“和谐点”OA =2OB ,列方程()020a b -=-或()020a b -=-,根据b =a +6且a <0,可得()0206a a -=--或()0260a a -=+-解方程,当A 为OB 的“和谐点”当b <0时,AB =2AO ,即6=-a ,不合题意,当b >0时,AO =2AB ,a =12>0,不合题意,当点B 为AO 的“和谐点”BA =2BO ,点B 在点O 的左边,6=2(-a -6),点B 在点O 的右边,6=2(a +6),解方程即可.(1)解:设线段AB 的“和谐点”表示的数为x ,①当1x <-时,列出方程12(5)x x --=-.解得11x =.(舍去)②当15x -≤<时,列出方程12(5)x x +=-.解得3x =.③当5x ≥时,列出方程12(5)x x +=-解得11x =.综上所述,线段AB 的“和谐点”表示的数为3或11.(2)解:点O 为AB 的“和谐点”OA =2OB ,()020a b -=-或()020a b -=-,∵b =a +6且a <0,()0206a a -=--,解得12a =-,()0260a a -=+-,解得4a =-,当A 为OB 的“和谐点”,当b <0时,a <-6,AB =2AO ,即6=-a ,解得a =-6,不合题意,当b >0时,AO =2AB ,即a =2×(b -a ),∵b =a +6,解得a=12>0,不合题意,当点B为AO的“和谐点”BA=2BO,点B在点O的左边,6=2(-a-6),解得:a=-9,点B在点O的右边,6=2(a+6),解得:a=-3,综合a的值为-12,-9,-4,-3.【点睛】本题考查新定义线段的和谐点,数轴上两点距离,一元一次方程,线段的倍分关系,掌握新定义线段的和谐点,数轴上两点距离求法,解一元一次方程,线段的倍分关系是解题关键.。
第四章 基本平面图形 达标测试卷(含答案)北师大版(2024)数学七年级上册
第四章基本平面图形达标测试卷(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各组图中所给的线段、射线、直线能相交的是()A B C D2.下列图形中,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A B C D3. 若一个n边形从一个顶点最多能引出6条对角线,则n是()A. 5B. 8C. 9D. 104. 图1所示生产、生活中的现象,体现了基本事实“两点确定一条直线”的有()A.1个B.2个C.3个D.4个图15. 如图2,用同样大小的三角板比较∠A和∠B的大小,下列判断正确的是()A.∠A<∠B B.∠A>∠BC.∠A=∠B D.没有量角器,无法确定图2 图3 图46. 观察图3所示的图形,有下列说法:∠图中共有5条线段;∠射线AC 和射线CD 是同一条射线; ∠从A 地到D 地的所有路径中,线段AD 最短;∠直线AB 和直线BD 交于点B.其中正确的有( ) A .4个B .3个C .2个D .1个7. 如图4,OA 的方向是北偏东20°,OB 的方向是北偏西35°,OA 平分∠BOC ,则OC 的方向是( ) A .北偏东35° B .北偏东45°C .北偏东55°D .北偏东75°8. 如图5,A ,B ,C ,D 是直线上的顺次四点,M ,N 分别是线段AB ,CD 的中点,且MN=7 cm ,BC=4 cm ,则线段AD 的长为( )A .10 cmB .11 cmC .12 cmD .13 cm图5 图69. 图6-∠是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图6-∠所示,它是以O 为圆心,分别以OA ,OB 的长为半径,圆心角∠O =120°形成的扇面.若OA =5 m ,OB =3 m ,则阴影部分的面积为( ) A .316πm 2 B .38πm 2C .4π m 2D .3π m 210. 如图7,线段AB=40 cm ,线段CD=30 cm ,现将线段AB 和CD 放在同一条直线上,使点A 与点C 重合,此时两条线段中点之间的距离是( )A .5 cmB .35 cmC .10 cm 或70 cmD .5 cm 或35 cm图7二、填空题(本大题共6小题,每小题3分,共18分)11.在图8中共有m条射线,n条线段,则m+n的值是.图812.计算:23°38′41″+ 17°26′32″=.13. 如图9,钟表上显示的时刻是10点10分,再过20分钟,时针与分针所成的角的度数是_____________.图9 图1014. 将长方形纸片ABCD按图10所示的方式折叠,使得∠A′EB′=40°,其中EF,EG为折痕,则∠AEF+∠BEG的度数为_________________.15.如图11,已知线段AB=6 cm,延长线段BA至点C,使AC=32AB,若D,E分别是线段AB,BC的中点,则DE=cm.图11 图1216. 如图12,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线“.若∠AOB=60°,且射线OC 是∠AOB的“巧分线“,则∠AOC的度数为______________.三、解答题(本大题共6小题,共52分)17.(6分)如图13,B是线段AC上一点,D是线段AB的三等分点(D靠近B),E是线段BC的中点,若BE=51AC=3 cm,求线段DE的长.图13E DA BC18. (9分)如图14,平面内有四个点A,B,C,D,请利用直尺和圆规,根据下列语句画出符合要求的图,并保留作图痕迹.(1)画直线AB,射线AC,线段BC;(2)在直线AB上找一点M,使线段MD与线段MC之和最小;(3)在线段AD的延长线上截AE=3AD,连线段CE交直线AB于点F.图1419.(9分)如图15,O为直线AB上一点,OE是∠AOD的平分线,∠COD=90°.(1)若∠AOD=138°,求∠COE和∠AOC的度数;(2)若∠AOC=2∠COE,求∠AOC的度数.图1520.(9分)(1)如图16-∠,已知线段AB=8 cm,C是线段AB上一点,AC=3 cm,M是AB的中点,N是AC的中点.求线段MN的长;(2)如图16-∠,已知点O是直线AD上一点,射线OC,OE分别是∠AOB,∠BOD的平分线.①若∠AOC=20°,求∠COE的度数.②如果把条件“∠AOC=20°”去掉,那么∠COE的度数有变化吗?请说明理由.图1621.(9分)如图17,线段AB=24,动点P从A出发,以每秒2个单位长度的速度沿射线AB运动,M为线段AP的中点.设点P的运动时间为x秒.(1)秒后,PB=2AM;(2)当点P在线段AB上运动时,试说明2BM﹣PB为定值;(3)当点P在线段AB的延长线上运动时,N为线段BP的中点,求线段MN的长.图1722.(10分)已知∠AOB=120°,∠COD=80°,OM,ON分别是∠AOB,∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图18-∠,求∠MON的度数;(2)如果将图∠中的∠COD绕点O顺时针旋转n°(0<n<160),如图18-∠.则∠MON=__________;(用含n的代数式表示)(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小,将图∠中的OC绕着O点顺时针旋转m°(0<m<100),如图18-∠,求∠MON的度数.(用含m的代数式表示)图18附加题(20分,不计入总分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一个直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.∠求t的值;∠此时OQ是否平分∠AOC?请说明理由.(2)若在三角板转动的同时,射线OC也绕点O以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由.(3)在(2)问的基础上,经过____________秒OC平分∠POB.(四川钟志能)第四章基本平面图形达标测试卷参考答案答案速览一、1. B 2. C 3. C 4. C 5. A 6. C 7. D 8. A 9. A 10. D二、11.9 12.41°5′13″ 13.135° 14.70° 15.2 16. 20°或30°或40°三、解答题见“答案详解”答案详解16. 20°或30°或40°解析:根据题意,有三种情况:①∠BOC=2∠AOC,此时∠AOC=20°;②∠AOB=2∠AOC,此时∠AOC=30°;③∠AOC=2∠BOC,此时∠AOC=40°.综上,∠AOC的度数为20°或30°或40°.因为E是线段BC的中点,所以BC=2BE=6 cm.所以AB=AC-BC=9 cm.所以DE=DB+BE=3+3=6(cm ).18. 解:(1)如图,直线AB ,射线AC ,线段BC 为所求作. (2)如图,点M 为所求作. (3)如图,点E ,F 为所求作.19.解:(1)因为∠AOD =138°,OE 是∠AOD 的平分线,所以∠AOE =∠EOD =21∠AOD = 21×138°=69°.因为∠COD =90°,所以∠COE =∠COD ﹣∠EOD =90°﹣69°=21°. 所以∠AOC =∠AOE ﹣∠COE =69°﹣21°=48°. (2)设∠COE=x°,则∠AOC=2x°.. 所以∠AOE =∠AOC + ∠COE =3x°.因为OE 是∠AOD 的平分线,所以∠AOE =∠EOD =3x°.所以∠COD =∠COE + ∠EOD =4x°=90°,解得x=22.5.所以∠AOC =2x°=45°.所以∠BOD=180°-∠AOB=180°-2∠AOC=180°-2×20°=140°.②∠COE 的度数没有变化.理由如下:(∠BOD+∠AOB ).所以∠COE 的度数没有变化. 21. 解:(1)6(2)因为M 是线段AP 的中点,AP =2x ,所以AM =21AP =x ,PB =AB ﹣AP =24﹣2x ,BM =24﹣x .所以2BM ﹣PB =2(24﹣x )﹣(24﹣2x )=24,即2BM ﹣PB 为定值24. (3)当点P 在线段AB 的延长线上运动时,点P 在点B 的右侧.因为M 是线段AP 的中点,AP =2x ,所以AM =PM =x ,PB =2x ﹣24.所以PN =21PB =x ﹣12. 所以MN =PM ﹣PN =x ﹣(x ﹣12)=12.所以∠MON=∠AOM-∠AON=60°-40°=20°. (2)20°+n°因为∠AOD=80°,∠AOC=m°,所以∠COD=∠AOD+∠AOC=80°+m°.m°. 附加题解:(1)∠因为∠AOC =30°,所以∠BOC =180°﹣30°=150°. 因为OP 平分∠BOC ,所以∠COP =21∠BOC =75°.所以∠COQ =90°﹣75°=15°. 所以∠AOQ =∠AOC ﹣∠COQ =30°﹣15°=15°.所以t =15°÷3°=5. ∠OQ 平分∠AOC .理由如下:因为∠COQ =15°,∠AOQ =15°,所以OQ 平分∠AOC . (2)5秒时OC 平分∠POQ .理由如下: 因为OC 平分∠POQ ,所以∠COQ =21∠POQ =45°. 根据旋转的速度,设∠AOQ =3°t ,∠AOC =30°+6°t . 由∠AOC ﹣∠AOQ =45°,可得30+6t ﹣3t =45,解得t =5. 所以5秒时OC 平分∠POQ .(3)370解析:设经过t 秒后OC 平分∠POB . 因为OC 平分∠POB ,所以∠BOC =21∠POB .因为∠AOQ +∠POB =90°,所以∠POB =90°﹣3°t .又∠BOC =180°﹣∠AOC =180°﹣(30°+6°t ),所以180﹣(30+6t )=21(90﹣3t ),解得t =370.。
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版一、选择题1.下列各线段的表示方法中,正确的是( )A .线段AB .线段abC .线段ABD .线段Ab2.下列命题是假命题的是( )A .等角的补角相等B .垂线段最短C .两点之间,线段最短D .无限小数是无理数3.下列四个图中,能用1∠,O ∠与AOB ∠三种方法表示同一个角的是( )A .B .C .D .4.利用一副三角板不能画出的角的度数是( )A .105︒B .100︒C .75︒D .15︒5.从多边形的一个顶点出发,可以画出4条对角线,则该多边形的边数为( )A .5B .6C .7D .86.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .经过一点有且只有一条直线与已知直线垂直7.如图,已知ABC ,点D 是BC 边中点,且ADC BAC.∠∠=若BC 6=,则AC =( )A .3B .4C .42D .328.一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西30︒方向上,在海岛B 的北偏西60︒方向上,则海岛B 到灯塔C 的距离是( ) A .15海里B .20海里C .30海里D .60海里9.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于( )A .72︒B .90︒C .108︒D .144︒10.下列命题正确的是( )A .三点确定一个圆B .圆的任意一条直径都是它的对称轴C .等弧所对的圆心角相等D .平分弦的直径垂直于这条弦二、填空题11.要在墙上订牢一根木条,至少需要2颗钉子,其理由是 .12.如图,在菱形ABCD 中,10AB =,M ,N 分别为BC ,CD 的中点,P 是对角线BD 上的一个动点,则PM PN +的最小值是 .13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若80BOC ∠=︒,则COE ∠的度数是 .14.一个多边形的每个内角都等于150°,则这个多边形的边数为 ,对角线总数是条。
第四章 基本平面图形(A卷提升卷 单元重点综合测试)(教师版)24-25学年七年级数学上册(成都专用
第四章 基本平面图形(A 卷·提升卷)(考试时间:120分钟 试卷满分:150分)A 卷(共100分)第Ⅰ卷(选择题,共32分)一、单项选择题:本题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示,点E 、F 分别是线段AC 、AB 的中点,若EF =2,则BC 的长为( )A .3B .4C .6D .8【答案】B【分析】根据线段的中点,可得AE 与AC 的关系,AF 与AB 的关系,根据线段的和差,可得答案.【详解】解:E 、F 分别是线段AC 、AB 的中点,AC =2AE =2CE ,AB =2AF =2BF ,EF =AE ﹣AF =22AE ﹣2AF =AC ﹣AB =2EF =4,BC =AC ﹣AB =4,故选:B .【点睛】本题考查了两点间的距离,根据中点的性质求出线段AC -AB =4是解题关键.2.若45,45n n a b Ð=°-°Ð=°+°,则a Ð与Ðb 的关系是( )A .互补B .互余C .和为钝角D .和为周角【答案】B【分析】本题考查了互余,解题关键是掌握若两个角的和等于90°,即这两个角互余.根据已知条件,得出90a b Ð+Ð=°,即可得到答案.【详解】解:∵45,45n n a b Ð=°-°Ð=°+°,454590n n a b \Ð+Ð=°-°+°+°=°,a \Ð与Ðb 互余,故选:B .3.钟面上3点20分时,时针与分针的夹角度数是( )A .30°B .25°C .15°D .20°4.如图所示图形中,共有( )条线段.A .10B .12C .15D .30【答案】A【分析】根据线段的定义即可获得答案.【详解】解:该图形中,线段有AB BC CD DE AC BD CE AD BE AE 、、、、、、、、、,共计10条.故选:A .【点睛】本题主要考查了线段数量的知识,数量掌握线段的定义是解题关键.5.如图,线段10AB =,点C 、D 分别是线段AB 上两点()CD AC CD BD >>,,用圆规在线段CD 上分别截取CE AC DF BD ==,,若点E 与点F 恰好重合,则CD 的长度为( )A .3B .4C .5D .66.下列说法中正确的是()A.两点之间,直线最短B.由两条射线组成的图形叫做角C.若过多边形的一个顶点可以画5条对角线,则这个多边形是八边形=,则点C是线段AB的中点D.对于线段AC与BC,若AC BC【答案】C【分析】根据两点之间线段最短,角的定义,多边形的对角线以及线段中点的定义对各小题分析判断即可得解【详解】A、两点之间,线段最短,故本选项不合题意;B、有公共端点是两条射线组成的图形叫做角,故本选项不合题意;C、若过多边形的一个顶点可以画5条对角线,则这个多边形是八边形,故本选项符合题意;=,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项不合题意;D、若线段AC BC故选:C.【点睛】本题考查了两点之间线段最短,角的定义,线段中点的定义,多边形的对角线,熟练掌握概念是解题的关键.7.正多边形通过镶嵌能够密铺成一个无缝隙的平面,下列组合中不能镶嵌成一个平面的是( )A.正三角形和正方形B.正三角形和正六边形C.正方形和正六边形D.正方形和正八边形【答案】C【分析】由正多边形的内角拼成一个周角进行判断,ax+by=360°(a、b表示多边形的一个内角度数,x、y 表示多边形的个数).【详解】解:A、∵正三角形和正方形的内角分别为60°、90°,3×60°+2×90°=360°,∴正三角形和正方形可以镶嵌成一个平面,故A选项不符合题意;B、∵正三角形和正六边形的内角分别为60°、120°,2×60°+2×120°=360°,或4×60°+1×120°=360°,∴正三角形和正六边形可以镶嵌成一个平面,故B选项不符合题意;C、∵正方形和正六边形的内角分别为90°、120°,2×90°+1×120°=300°<360°且3×90°+1×120°=390°>360°,∴正方形和正六边形不能镶嵌成一个平面,故C 选项符合题意;D 、正方形和正八边形的内角分别为90°、135°,1×90°+2×135°=360°,∴正方形和正八边形可以镶嵌成一个平面,故D 选项不符合题意;故选:C .【点睛】本题主要考查了平面镶嵌,两种或两种以上几何图形向前成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.8.如图,已知点C 是线段AB 上一点,点D 是AC 的中点,点E 是BC 的中点.若12AB =,则DE 的长为( )A .7B .6C .5D .4第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.已知1672832¢¢¢Ð=°,则它的余角是.【答案】223128¢¢¢°【分析】根据余角的定义求即可.【详解】解:∵1672832¢¢¢Ð=°,∴它的余角是90672832223128¢¢¢¢¢¢°-°=°,故答案为:223128¢¢¢°.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.10.82.3°用度、分、秒可表示为 .【答案】8218¢°【分析】根据1分等于60分,将0.3度转化为用分表示即可.【详解】解:0.30.36018¢°=´=,∴82.38218¢°=°,故答案为:8218¢°.【点睛】本题考查度、分、秒之间的转化,能够掌握三个单位之间的转换方法是解决本题的关键.11.如图,100AOB Ð=°,OM 平分AOC Ð,ON 平分BOC Ð,则MON Ð= .12.如图,线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间距离是10,则AB = ,CD = .13.如图1,一款暗插销由外壳AB ,开关CD ,锁芯DE 三部分组成,其工作原理如图2,开关CD 绕固定点O 转动,由连接点D 带动锁芯DE 移动.图3为插销开启状态,此时连接点D 在线段AB 上,如1D 位置.开关CD 绕点O 顺时针旋转180°后得到22C D ,锁芯弹回至22D E 位置(点B 与点2E 重合),此时插销闭合如图4.已知72mm CD =,2150mm AD AC -=,则1BE = mm .【答案】22【分析】本题主要考查了线段的和差计算,结合图形得出当点D 在O 的右侧时,即1D 位置时,B 与点E 的距离为1BE ,当点D 在O 的左侧时,即2D 位置时,B 与点E 重合,即2E 位置,得出11222BE OD OD OD =+=,再由图形中线段间的关系得出12225072mm CD OC OD OD OD =+=++=,即可求解.【详解】解:由图3得,当点D 在O 的右侧时,即1D 位置时,B 与点E 的距离为1BE ,由图4得,当点D 在O 的左侧时,即2D 位置时,B 与点E 重合,即2E 位置,∴11222BE OD OD OD =+=,∵2150mm AD AC -=,∴()()2150mm AO OD AO OC ---=,∴1250mm OC OD -=,∴1250OC OD =+,∵11CD OC OD OC OD =+=+,∴12225072mm CD OC OD OD OD =+=++=,∴2222mm OD =,∴122mm BE =,故答案为:22.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.计算(结果用度、分、秒表示).(1)58496731¢¢°+°;(2)47.6251236¢¢¢°-°;(3)384572.5¢°+°;(4)()180583570.3¢°-°+°.【答案】(1)12620¢°(2)222324¢¢¢°(3)11115¢°(4)517¢°【分析】本题考查度,分,秒的计算,解题的关键是掌握160¢°=,160¢¢¢=进行计算,即可.(1)根据160¢°=,进行计算,即可;(2)根据160¢°=,160¢¢¢=,进行计算,即可;(3)根据160¢°=,160¢¢¢=,进行计算,即可;(4)根据160¢°=,160¢¢¢=,进行计算,即可.【详解】(1)解:58496731¢¢°+°12580¢=°+12620¢=°.(2)解:47.6251236¢¢¢°-°4736251236¢¢¢¢=°-°473560251236¢¢¢¢¢¢=°-°222324¢¢¢=°.(3)解:384572.5¢°+°38457230¢¢=°+°11075¢=°11115¢¢=.(4)解:()180583570.3¢°-°+°()180********¢¢=°-°+°18012835¢=°-°517¢=°.15.如图是依依家到学校的行走路线图.(1)小公园在依依家的 偏 ° 米处.(2)小公园在银行的 偏 ° 米处.(3)学校西偏南20°,距离250m 处是超市,请用★标出超市的位置.(1cm 表示100m )【答案】(1)北;西20;距离80.(2)南;西30;距离100(3)见解析【分析】本题主要考查了方位角的表示,解题的关键是熟练掌握方位角的定义.(1)根据方位角的定义进行解答即可;(2)根据方位角的定义进行解答即可;(3)根据学校西偏南20°,距离250m处是超市,进行解答即可.【详解】(1)解:小公园在依依家的北偏西20°距离80米处.故答案为:北;西20;80.(2)解:∵银行在小公园的北偏东30°距离100米处;∴小公园在银行的南偏西30°距离100米处.故答案为:南;西30;距离100.(3)解:如图所示:A B C D.根据下列语句按要求画图.16.如图,已知平面内有四个点,,,(1)连接AB;=;(2)作射线AD,并在线段AD的延长线上用圆规截取DE AD+>,得出这个结论的依据是:______.(3)作直线BC与射线AD交于点F.观察图形发现,线段AF BF AB【答案】(1)见解析(2)见解析(3)见解析;两点之间,线段最短【分析】本题考查了作图-复杂作图,直线、射线、线段,线段的性质:两点之间,线段最短,解决本题的关键是掌握基本的作图方法.(1)根据题意,求解即可;=(以(2)根据射线和线段的定义,作出射线AD,端点为A,并在线段AD的延长线上用圆规截取DE AD点D为圆心,AD为半径)即可;(3)根据直线和射线的定义即可作出直线BC与射线AD交于点F,进而可得出结论的依据.【详解】(1)如图,AB即为所作;(2)如图,点E即为所作;(3)如图,点F即为所作;观察图形发现,线段AF BF AB+>,得出这个结论的依据是:两点之间,线段最短.17.如图,线段16AB=,点C是线段AB的中点,点D是线段BC的中点.(1)求线段AD的长;(2)若在线段AB上有一点E,14CE BC=,求AE的长.18.(1)如图1,射线OC 在AOB Ð的内部,OM 平分AOC Ð,ON 平分BOC Ð,若110AOB Ð=°,求MON Ð的度数;(2)射线OC ,OD 在AOB Ð的内部,OM 平分AOC Ð,ON 平分BOD Ð,若100AOB Ð=°,20COD Ð=°,求MON Ð的度数;(3)在(2)中,AOB m Ð=°,COD n Ð=°,其他条件不变,请用含m ,n 的代数式表示MON 的度数(不用说理).B 卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)19.如图,总共有 个角.【答案】10【分析】根据图形分别表示出所有角即可.【详解】解:图中的角有:AOC Ð,AOD Ð,AOE Ð,AOB Ð,COD Ð,COE Ð,COB Ð,DOE Ð,Ð共有10个角.Ð,EOBDOB故答案为:10.【点睛】本题考查了角的概念,正确会表示角,做到不重不漏是关键.20.已知点C是线段AB的三等分点,点D是线段AC的中点.若线段2AD=,则AB=.21.如图,将一副三角尺的直角顶点O重合在一起.若∠COB与∠DOA的比是2:7,OP平分∠DOA,则∠POC =度.22.已知:90AOB Ð=°,30BOC Ð=o ,OM 平分AOC Ð,则MOB Ð的度数为.Ð②当OC在AOBQÐ=°ÐAOB BOC90,\Ð=ÐAOC AOBQ OM平分AOCÐ1\Ð=ÐCOM AOC故答案为:30°或23.如图,在数轴上剪下6个单位长度(从1-到5)的一条线段,并把这条线段沿某点向左折叠,然后在::,则折痕处对应的点表示的数可重叠部分的某处剪一刀得到三条线段,发现这三条线段的长度之比为112能是.如图所示:①二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.如图,点C 、D 为线段AB 上两点,点M 为线段AC 的中点,点N 为线段BD 的中点.(1)若14cm AB =,4cm CD =.求AC BD +的长及MN 的长.(2)若AB a =,CD b =.直接用含a 、b 的式子表示MN 的长.CD= 25.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB=(单位长度),慢车长4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数a=,c是代数式轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是c,其中8 2-+的二次项系数.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个x x1625单位长度/秒的速度向左匀速继续行驶.(1)此时刻a=________,c=________;(2)从此时刻开始算起,问再行驶多少秒钟两列火车的车头AC相距16个单位长度?(3)此时在快车AB上有一位爱动脑筋的乘客——天桥少年M,他发现行驶中有一段时间t秒钟,他的位置M+++为定到两列火车头AC的距离和加上到两列火车尾BD的距离和是一个不变的值(即MA MC MB MD 值).你认为天桥少年M发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.(2)解:()()241662-¸+88=¸1=(秒),或()()2416625+¸+=(秒),答:再行驶1秒或5秒两列火车行驶到车头AC 相距16个单位长度;(3)解:这个结论正确,当M 在CD 之间时,MC MD +是定值4,()462t =¸+48=¸0.5=(秒),∵2MA MB AB +==,∴此时()()246MA MC MB MD MA MB MC MD +++=+++=+=(单位长度),故这个时间是0.5秒,定值是6单位长度.26.钟面上的数学基本概念:钟面角是指时钟的时针与分针所成的角.如图1,AOB Ð即为某一时刻的钟面角,通常0180AOB °£Ð£°[简单认识]时针和分针在绕点O 一直沿着顺时针方向旋转,时针每小时转动的角度是30°,分针每小时转动一周,角度为360°.由此可知:(1)时针每分钟转动 °,分针每分钟转动 °:[初步研究](2)已知某一时刻的钟面角的度数为a ,在空格中写出一个与之对应的时刻:①当90a =°时, ;②当180a =°时, ;(3)如图2,钟面显示的时间是8点04分,此时钟面角AOB Ð= .[深入思考](4)在某一天的下午2点到3点之间(不包括2点整和3点整).①时针恰好与分针重叠,则这一时刻是;时针恰好与分针垂直,求此时对应的时刻是;、所在射线与射线OC中恰有一条是另两条射线所②记钟面上刻度为3的点为C,当钟面角的两条边OA OB成角的角平分线时,请直接写出此时对应的时刻.。
七年级上-基本平面图形测试题
七年级上-基本平面图形测试题七年级上册第四章《平面图形及其位置关系》测试题1.七(1)班的同学用二个图钉就把刚获得的校田径运动会团体总分第一名的奖状挂在墙上了,请你用本章的一个知识来说明这样做的道理: ;2.如图1,用“>”、“<”或“=”连接下列各式,并说明理由.AB +BC_____AC ,AC +BC_____AB ,BC_____AB +AC ,理由是______ ___;3.如图2,AB 的长为m ,BC 的长为n ,MN 分别是AB ,BC 的中点,则MN =___ __;4.如图3:小于平角的角有__________个,用两种不同的方法表示最大的一个角是________;5.要整齐地栽一行树,只要确定下两端的树坑 图2 C N M B A CBA 图1的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是_________________1)°=( )´=( )″;48″6.(12=( ) ´=( )°7.上午10点30分,时针与分针成___________度的角。
8.已知两根木条,一根长60 cm,一根长100 cm,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是___________________ cm9.已知从A地到B地共有五条路,小红应选择第_____________路,用数学知识解释为___________________________10.已知线段AB的中点是C,BC的中点是D,AD的中点是E,则AE=________AB。
11.下列说法正确的是( )A、两点之间,线段最短B、射线就是直线C、两条射线组成的图形叫做角D、小于平角的角可分为锐角和钝角两类12.以下给出的四个语句中,结论正确的有( )①如果线段AB=BC,则B是线段AC的中点②线段和射线都可看作直线上的一部分③大于直角的角是钝角④如图,∠ABD也可用∠B表示A、1个B、2个C、3个D、4个13.在同一平面内两条直线的位置关系可能是( )A、相交或垂直B、垂直或平行C、平行或相交D、不行或相交或重合14.下列说法中正确的是( )A、在同一平面内,两条不平行的线段必相交B、在同一平面内,不相交的两条线段是平行线C、两条射线或线段平行是指它们所在的直线平行D、一条直线有可能同时与两条相交直线平行15.下列结论正确的有( )A、如果a⊥b,b⊥c,那么a⊥cB、a ⊥b,b∥c,那么a∥cC、如果a∥b,b⊥c,那么a∥cD、如果a⊥b,b∥c,那么a⊥c16.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于A、11cmB、5cmC、11cm或5cmD、8cm或11cm17.甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是()(A)甲说3点时和3点30分(B)乙说6点15分和6点45分(C)丙说9时整和12时15分(D)丁说3时整和9时整18.如图,四条表示方向的射线中,表示北偏东60°的是()(A)(B)(C)(D)19.一个人从A点出发向北偏东60°的方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC的度数是()(A)75°(B)105°(C)45°(D)135°20.直线a外有一定点A,点A到a的距离是cm5,P是直线a上的任意一点,则()(A)AP >cm5(C)AP =5(B)AP≥cm5(D)AP < cm5cm21.下列说法正确的是()(A)过一点能作已知直线的一条平行线(B)过一点能作已知直线的一条垂线(C)射线AB的端点是A和B(D)点可以用一个大写字母表示,也可用小写字母表示解答题:22.如图,已知线段AB=15cm,C点在AB上,3AC,求BC的长BC=423.如图:∠AOB=∠COD=90°,∠AOD=146°,求:∠BOC的度数。
(好题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(有答案解析)
一、选择题1.下列说法不正确的是()A.两点确定一条直线B.两点间线段最短C.两点间的线段叫做两点间的距离D.正多边形的各边相等,各角相等CD=,若线段AB的长度是一个正整数,则图中2.如图,线段CD在线段AB上,且3以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.不能确定3.下列说法正确的是()A.射线AB和射线BA是同一条射线B.连接两点的线段叫两点间的距离C.两点之间,直线最短D.七边形的对角线一共有14条4.下列说法:①把弯曲的河道改直,能够缩短航程,这是由于两点之间线段最短;②若=,则点C是线段AB的中点;③射线OB与射线OC是同一条射线;④连线段AC BC结两点的线段叫做这两点的距离;⑤将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.其中说法正确的有()A.1个B.2个C.3个D.4个5.如图,甲从点A出发向北偏东65°方向走到点B,乙从点A出发向南偏西20°方向走到∠的度数是()点C,则BACA.85°B.135°C.105°D.150°CD=,若线段AB的长度是一个正整数,则图中6.如图,线段CD在线段AB上,且2以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.317.下列说法中,正确的是()A.射线是直线的一半B.线段AB是点A与点B的距离C.两点之间所有连线中,线段最短D.角的大小与角的两边所画的长短有关8.如图,A点在B点的北偏东40°方向,C点在B点的北偏东75°方向,A点在C点的北偏西50°方向,则∠BAC 的度数是( )A .85°B .80°C .90°D .95°9.如图,点C 在线段AB 上,且13AC AB =.点D 在线段AC 上,且13CD AD =.E 为AC 的中点,F 为DB 的中点,且11EF =,则CB 的长度为( )A .15B .16C .17D .18 10.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°11.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ).A .点C 在线段AB 上 B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定12.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个二、填空题13.如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =65°,求∠AOE 的度数.14.如图,已知线段DA 与B 、C 两点,用圆规和无刻度的直尺按下列要求画图并计算:(不写作法但要保留作图痕迹)⑴ 画线段AC 、直线AB 、射线DC ,且直线AB 与射线DC 相交于点O ;延长线段DA 至点E ,使AE=AC ;⑵ 若AC=2cm ,AD=3cm ,点F 为线段AD 的中点,求线段EF 的长.15.如图,点O 是线段AB 的中点,14cm OB =,点P 将线段AB 分为两部分,:5:2AP PB =.若点M 在线段AB 上,且点M 与点P 的距离为4cm ,求线段AM 的长.16.新定义问题如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠、BOC ∠、AOB ∠.若这三个角中有一个角是另外一个角的2倍,则称射线OC 为AOB∠的“幸运线”.(本题中所研究的角都是大于0︒而小于180︒的角.)(阅读理解)(1)角的平分线_________这个角的“幸运线”;(填“是”或“不是”) (初步应用)(2)如图①,45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,则AOC ∠的度数为_______; (解决问题)(3)如图②,已知60AOB ∠=︒,射线OM 从OA 出发,以每秒20︒的速度绕O 点逆时针旋转,同时,射线ON 从OB 出发,以每秒15︒的速度绕O 点逆时针旋转,设运动的时间为t 秒(09t <<).若OM 、ON 、OA 三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t 值. 17.已知线段a ,线段b ,动手画线段3,,AM a AN b ==点A M N 、、在一条直线上; (1)画图:(只要求画图,不必写画法) (2)写出线段MN 表示的长度是多少?(3)线段3a cm =,线段4b cm =,取线段AN 的中点P ,取线段MN 的中点Q ,直接写出PQ 的长.18.(1)特例感知:如图1,OC 、OD 是AOB ∠内部的两条射线,若120AOD BOC ∠=∠=︒,30AOC ∠=︒,则BOD ∠= °.(2)知识迁移:如图2,OC 是AOB ∠内部的一条射线,若OM 、ON 分别平分AOC ∠和BOC ∠,且AON BOM ∠≠∠,则MOC NOCAON BOM∠-∠∠-∠的值为 . (3)类比探究:如图3,OC 、OD 是AOB ∠内部的两条射线.若OM 、ON 分别平分AOD ∠和BOC ∠,且AOD BOC ∠≠∠,求的值MOC NODAOD BOC∠-∠∠-∠.19.把下列解答过程补充完整:如图,已知线段16cm AB =,点C 为线段AB 上的一个动点,点M ,N 分别是AC 和BC 的中点.(1)若点C 恰为AB 的中点,求MN 的长; (2)若6cm AC =,求MN 的长;(3)试猜想:不论AC 取何值(不超过16cm ),MN 的长总等于_______________. 20.如图,已知O 是直线AC 上一点,OC 平分BOD ∠,160AOB ∠=︒,OE AC ⊥,求DOE ∠的度数.三、解答题21.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长;(2)当13CN CD =时,求BD 的长. 22.点A 、B 在数轴上的位置如图所示,点A 表示的数是5,线段AB 的长是线段OA 的1.2倍,点C 在数轴上,M 为线段OC 的中点,(1)点B 表示的数为 ;(2)若线段BM 的长是4,求线段AC 的长. 23.将一副三角板按图甲的位置放置,(1)∠AOD ∠BOC (选填“<”或“>”或“=”); (2) 猜想∠AOC 和∠BOD 在数量上的关系是 .(3)若将这副三角板按图乙所示摆放,三角板的直角顶点重合在点O 处.(1)(2)中的结论还成立吗?请说明理由.24.如图所示,线段AB =16cm ,E 为线段AB 的中点,点C 为线段EB 上一点,且EC =3cm ,点D 为线段AC 的中点,求线段DE 的长度.25.如图,已知120AOB ∠=︒,30BOC ∠=︒,OD 是AOC ∠的角平分线,求BOD ∠的度数.26.如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =65°,求∠AOE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别利用直线的性质,线段的性质,正多边形的性质以及两点间的距离的定义分析求出即可.【详解】解:A.两点确定一条直线是正确的,不符合题意;B.两点间线段最短是正确的,不符合题意;C.两点间的垂线段的长度叫做两点间的距离,原来的说法错误,符合题意;D.正多边形的各边相等,各角相等是正确的,不符合题意.故选:C.【点睛】此题主要考查了直线的性质,线段的性质,正多边形的性质以及两点间的距离等知识,正确把握相关性质是解题关键.2.C解析:C【分析】写出所有线段之和为AC+AD+AB+CD+CB+BD=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AB-CD)=3(AB+1),从而确定这个结果是3的倍数,即可求解.【详解】解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB-CD)=12+3(AB-3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.【点睛】本题考查线段的和差、线段计数,根据图形写出所有线段之和是解题的关键.3.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.4.B解析:B【分析】根据线段的性质及两点间距离的定义对各说法进行逐一分析即可.【详解】解:①符合两点之间线段最短,故本说法正确;②当ABC不共线时,点C不是线段AB的中点,故本说法错误;③射线OB与射线OC可能是两条不同的射线,故本说法错误;④连接两点的线段的长度叫做这两点的距离,故本说法错误;⑤符合两点确定一条直线,故本说法正确.故选:B.【点睛】本题考查的是线段的性质,熟知“两点之间线段最短”是解答此题的关键.5.B解析:B【分析】如图,先求出∠BAD=906525︒-︒=︒,∠CAE=20°,∠EAD=90︒,根据BAC∠=∠BAD+∠EAD+∠CAE即可计算得出答案.【详解】如图,∵∠BAD=906525︒-︒=︒,∠CAE=20°,∠EAD=90︒,∴BAC∠=∠BAD+∠EAD+∠CAE=135°,故选:B..【点睛】此题考查方位角的计算,正确掌握方位角的表示及角度的和差计算是解题的关键.6.B解析:B【分析】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB,然后根据CD=2,线段AB的长度是一个正整数,依次对选项进行判断即可解答本题.【详解】解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∵CD=2,∴AC+CD+DB+AD+CB+AB=3AB+2,∴A选项中:当和为28时,即3AB+2=28,解得:AB=263,与AB长度是正整数不符,故不符合要求;B选项中:当和为29时,即3AB+2=29,解得:AB=9,AB长度是正整数,故符合要求;C选项中:当和为30时,即3AB+2=30,解得:AB=283,与AB长度是正整数不符,故不符合要求;D选项中:当和为31时,即3AB+2=31,解得:AB=293,与AB长度是正整数不符,故不符合要求;故选:B.【点睛】本题考查线段的长度,解题的关键是明确题意,找出所求问题需要的条件.7.C解析:C【分析】依据射线、直线、线段、角的概念,以及两点之间的连线,线段最短,即可进行判断;【详解】A.射线的长度无法度量,故不是直线的一半,故本选项错误;B.线段AB的长度是点A与点B的距离,故本选项错误;C.两点之间所有连线中,线段最短,故本选项正确;D .角的大小与角的两边所画的长短无关,故本选项错误; 故选:C . 【点睛】本意主要考查了射线、直线、线段以及角的概念,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短;8.C解析:C 【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解. 【详解】∵∠DBA =40°,∠DBC =75°,∴∠ABC =∠DBC−∠DBA =75°−40°=35°, ∵DB ∥EC ,∴∠DBC +∠ECB =180°,∴∠ECB =180°−∠DBC =180°−75°=105°, ∴∠ACB =∠ECB−∠ACE =105°−50°=55°, ∴∠BAC =180°−∠ACB−∠ABC =180°−55°−35°=90°. 【点睛】本题考查了方向角.解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.9.B解析:B 【分析】设CB x =,然后根据题目中的线段比例关系用x 表示出线段EF 的长,令它等于11,解出x 的值. 【详解】 解:设CB x =, ∵13AC AB =,∴1122AC BC x ==, ∵13CD AD =,∴1148CD AC x ==, ∵E 是AC 中点,∴1124CE AC x ==, 111488DE CE CD x x x =-=-=,1988BD BC CD x x x =+=+=, ∵F 是BD 中点,∴19216DF BD x ==, 91111116816EF DF DE x x x =+=+==,解得16x =.故选:B.【点睛】本题考查线段之间和差计算,解题的关键是设未知数帮助我们理顺线段与线段之间的数量关系,然后列式求解未知数.10.B解析:B【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.11.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:+=,从图中我们可以发现AC BC AB所以点C在线段AB上.故选A.【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.12.B解析:B根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;乙∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,故乙正确;丙∠AOB=∠COD,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B.【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.二、填空题13.(1)∠DOE=90°;(2)∠AOE=155°【分析】(1)首先根据角平分线定义可得∠COD=∠AOC∠COE=∠BOC然后再根据角的和差关系可得答案;(2)首先计算出∠AOD的度数再利用∠AOE解析:(1)∠DOE=90°;(2)∠AOE =155°.【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC,∠COE=12∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠AOD的度数,再利用∠AOE =∠AOD+∠DOE可得答案.【详解】解:(1)∵OD平分∠AOC,OE平分∠COB,∴∠DOC=12∠AOC,∠COE=12∠COB,∴∠DOE=∠DOC+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=12×180°=90°;(2)∵OD平分∠AOC,∠COD=65°,∴∠AOD=∠COD=65°,∴∠AOE =∠AOD+∠DOE=155°;【点睛】此题主要角平分线,关键是掌握角平分线把角分成相等的两部分.14.(1)见解析;(2)35cm 【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶因为AD=3cmF 为线段AD 的中点所以AF=15cm 又因为AE=AC=2c解析:(1)见解析;(2)3.5cm【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶ 因为AD=3cm ,F 为线段AD 的中点,所以 AF=1.5cm ,又因为AE=AC=2cm ,所以 EF=AE+AF=3.5cm .【点睛】本题主要考查了作图-基本作图,准确分析作图是解题的关键.15.的长为或【分析】根据小段中点的定义求得AB 的长度然后结合可求的AP 的长度再分点M 在点P 左边和右边两种情况求解【详解】解:∵O 为中点∴又∵∴①当点M 在点P 左边时如图1当点M 在点P 右边时如图2综上的长为 解析:AM 的长为16cm 或24cm【分析】根据小段中点的定义求得AB 的长度,然后结合:5:2AP PB =可求的AP 的长度,再分点M 在点P 左边和右边两种情况求解.【详解】解:∵O 为中点∴221428cm AB OB ==⨯=又∵:5:2AP PB =∴552820cm 77AP AB ==⨯= ① 当点M 在点P 左边时,如图1,20416cm AM AP MP =-=-=当点M 在点P 右边时,如图2,20424cm AM AP MP =+=+=综上,AM 的长为16cm 或24cm .【点睛】本题考查线段的和差计算,理解线段中点的定义,并数形结合思想分情况讨论解题是关键.16.(1)是;(2)15°或225°或30°;(3)或或或【分析】(1)若OC 为∠AOB 的角平分线则有则根据题意可求解;(2)根据幸运线的定义可得当时当时当时然后根据角的和差关系进行求解即可;(3)由题解析:(1)是;(2)15°或22.5°或30°;(3)127t =或125t =或1211t =或365t = 【分析】(1)若OC 为∠AOB 的角平分线,则有2AOB AOC ∠=∠,则根据题意可求解; (2)根据“幸运线”的定义可得当2AOB AOC ∠=∠时,当2AOC BOC ∠=∠时,当2BOC AOC ∠=∠时,然后根据角的和差关系进行求解即可;(3)由题意可分①当04t <<时ON 在与OA 重合之前,则有20MOA t ∠=,6015AON t ∠=-,由OA 是MON ∠的幸运线可进行分类求解;②当49<<t 时,ON 在与OA 重合之后,则有560MON t ∠=+,1560AON t ∠=-,由ON 是AOM ∠的幸运线可分类进行求解.【详解】解:(1)若OC 为∠AOB 的角平分线,则有2AOB AOC ∠=∠,符合“幸运线”的定义,所以角平分线是这个角的“幸运线”;故答案为是;(2)由题意得:∵45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,∴①当2AOB AOC ∠=∠时,则有:22.5AOC ∠=︒;②当2AOC BOC ∠=∠时,则有2303AOC AOB ∠=∠=︒;③当2BOC AOC ∠=∠时,则有1153AOC AOB ∠=∠=︒; 综上所述:当射线OC 为AOB ∠的“幸运线”时,∠AOC 的度数为15︒,22.5︒,30, 故答案为15︒,22.5︒,30;(3)∵60AOB ∠=︒,∴射线ON 与OA 重合的时间为15460︒÷︒=(秒),∴当04t <<时ON 在与OA 重合之前,如图所示:∴20MOA t ∠=,6015AON t ∠=-,OA 是MON ∠的幸运线,则有以下三类情况:①206015t t =-,127t =, ②()2026015t t =-,125t =, ③2206015t t ⨯=-,1211t =; 当49<<t 时,ON 在与OA 重合之后,如图所示:∴560MON t ∠=+,1560AON t ∠=-,ON 是AOM ∠的幸运线,则有以下三类情况:①5601560t t +=-,12t =(不符合题意,舍去),②()56021560t t +=-,365t =, ③()25601560t t +=-,36t =(不符合题意,舍去);综上:127t =或125t =或1211t =或365t =. 【点睛】本题主要考查角平分线的定义及角的动点问题,熟练掌握角平分线的定义及和差关系是解题的关键. 17.(1)见解析;(2)或;(3)45cm 【分析】(1)画线段AM=3aAN=b 点AMN 在一条直线上;(2)分两种情况讨论:当点N 在线段AM 上时MN=3a-b 或当点N 在MA 的延长线上时MN=3a+b ;(解析:(1)见解析;(2)3MN a b =-或3a b +;(3)4.5cm【分析】(1)画线段AM=3a ,AN=b ,点A 、M 、N 在一条直线上;(2)分两种情况讨论:当点N 在线段AM 上时,MN=3a-b ,或当点N 在MA 的延长线上时,MN=3a+b ;(3)分两种情况讨论:依据点P 为线段AN 的中点,点Q 为线段MN 的中点,即可得到PQ=2+2.5=4.5cm ,或PQ=6.5-2=4.5cm .【详解】解:(1)如图所示,(2)当点N 在线段AM 上时,3MN a b =-,或当点N 在MA 的延长线上时,3MN a b =+;(3)线段3a cm =,线段4b cm =,∴4AN cm =,9AM cm =,945MN cm ∴=-=,或9413MN cm =+=, 又点P 为线段AN 的中点,点Q 为线段MN 的中点,2 2.5 4.5PQ cm ∴=+=,或 6.52 4.5PQ cm =-=.∴PQ 的长为:4.5cm .【点睛】本题考查的是基本作图以及两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.18.(1)30;(2)1;(3)【分析】(1)根据可推出即可求出结果(2)根据OMON 分别是和角平分线可得出通过化简计算从而得到进而求出比值结果(3)根据OMON 分别是和角平分线可得到进而求出比值结果【解析:(1)30;(2)1;(3)12 【分析】(1)根据AOD BOC ∠=∠,可推出AOC BOD ∠=∠,即可求出结果.(2)根据OM 、ON 分别是AOC ∠和BOC ∠角平分线,可得出2AOC MOC ∠=∠,2BOC NOC ∠=∠,通过化简计算从而得到AON BOM MOC NOC ∠-∠=∠-∠,进而求出比值结果.(3)根据OM 、ON 分别是AOD ∠和BOC ∠角平分线,可得到12MOD AOD ∠=∠,12NOC BOC ∠=∠,()12MOC NOD AOD BOC ∠-∠=∠-∠,进而求出比值结果. 【详解】 (1)∵120AOD BOC ∠=∠=︒∴AOD COD BOC COD ∠∠=∠-∠-,∴AOC BOD ∠=∠∵30AOC ∠=︒∴30BOD ∠=︒(2)∵OM 、ON 分别平分AOC ∠,BOC ∠,2AOC MOC ∴∠=∠,2BOC NOC ∠=∠,AON AOC NOC ∠=∠+∠BOM BOC MOC ∠=∠+∠()()AON BOM AOC BOC NOC MOC ∴∠-∠=∠-∠+∠-∠22MOC NOC NOC MOC =∠-∠+∠-∠MOC NOC =∠-∠,AON BOM ∠≠∠,1MOC NOC AON BOM∠-∠∴=∠-∠ (3)∵OM 、ON 分别平分AOD ∠和BOC ∠,12MOD AOD ∴∠=∠,12NOC BOC ∠=∠, 又MOC MOD COD ∠=∠-∠,NOD NOC COD ∠=∠-∠,()()MOC NOD MOD COD NOC COD ∴∠-∠=∠-∠-∠-∠,MOD NOC =∠-∠1122AOD BOC =∠-∠ ()12AOD BOC =∠-∠ 12MOC NOD AOD BOC ∠-∠∴=∠-∠; 【点睛】本题主要考察角平分线的性质,角的计算,准确找出题目中的等角,利用等角找出它们之间的联系是解题关键.19.(1)8;(2)8;(3)【分析】(1)根据中点的性质求出ACBC 的长根据线段中点的定义计算即可;(2)根据线段的和差求出ACBC 的长根据线段中点的定义计算即可;(3)根据中点的性质求出ACBC 的长解析:(1)8;(2)8;(3)8cm【分析】(1)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可;(2)根据线段的和差求出AC 、BC 的长,根据线段中点的定义计算即可;(3)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可说明结论.【详解】解:(1)∵点C 恰为AB 的中点,16cm AB =, ∴18cm 2AC BC AB ===, ∴点M ,N 分别是AC 和BC 的中点, ∴114cm,4cm 22CM AC CN BC ====, ∴8cm MN MC CN =+=;(2)∵16cm AB =,6cm AC =,∴10cm BC =,∵点M ,N 分别是AC 和BC 的中点 ∴113cm,5cm 22MC AC CN CB ====, ∴8cm MN MC CN =+=;(3)猜想:不论AC 取何值(不超过16cm ),MN 的长总等于8cm .∵点M 、N 分别是AC 和BC 的中点,∴MC=12AC ,CN=12BC , ∴MN=12(AC+BC )=12AB=12×16=8cm , ∴不论AC 取何值(不超过16cm ),MN 的长不变【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.20.【分析】根据平角的定义求∠BOC 后利用角的平分线垂直的定义计算即可【详解】解:∵∴∵平分∴∵∴∴【点睛】本题考查了平角的定义角的平分线垂直的定义熟练掌握互补的定义角的平分线的性质是解题的关键解析:70︒.【分析】根据平角的定义,求∠BOC ,后利用角的平分线,垂直的定义计算即可.【详解】解:∵160AOB ∠=︒,∴18016020BOC AOC AOB ∠=∠-∠=︒-︒=︒,∵OC 平分BOD ∠,∴20COD BOC ∠=∠=︒,∵OE AC ⊥,∴90COE ∠=︒,∴902070DOE COE COD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平角的定义,角的平分线,垂直的定义,熟练掌握互补的定义,角的平分线的性质是解题的关键.三、解答题21.(1)14(2)37823 【分析】 (1)根据题意可得出CM =12 AC ,CN =12CD ,所以MN =CM+CN = 12(AC+CD)=12 AD =9,从而得出AD 的长,根据AB :BC :CD =2:3:4,可得出AB 的长,继而求出BD 的长;(2)根据题意,当CN =13CD 时,设AB =2x ,BC =3x ,CD =4x ,可得AC =5x ,因为点M 是线段AC 的中点,可得CM =2.5x ,因为CN =13CD ,可求出CN= 43x ,根据MN=9,可解出x 的值,继而得出BD 的长;【详解】解:(1)如图,∵点M 是线段AC 的中点,点N 是线段CD 的中点,∴CM =12 AC ,CN =12CD , ∴MN =CM+CN =12 (AC+CD)=12AD =9, ∴AD =18,∵AB :BC :CD =2:3:4,∴AB =29×AD =4, ∴BD =AD ﹣AB =18﹣4=14;(2)∵当CN =13CD 时,如图,∵AB :BC :CD =2:3:4,∴设AB=2x,BC=3x,CD=4x,∴AC=5x,∵点M是线段AC的中点,∴CM=12AC=2.5x,∵CN=13CD=43x,∴CM+CN=52x+43x=MN=9,∴x=5423,∴BD=7x=37823;【点睛】本题考查了线段的中点,线段的和与差的计算及线段三等分点的计算.能求出各个线段的长度是解题的关键.22.(1)-1;(2)1或15【分析】(1)根据点A表示的数为5,线段AB的长为线段OA长的1.2倍.即可得点B表示的数;(2)根据线段BM的长为4.5,即可得线段AC的长.【详解】解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=1.2×5=6∵OA=5,∴OB=AB-OA=1,∴点B表示的数为-1.故答案为-1;(2)若点M在点B的右边,点B表示的数是-1,且|BM|=4,所以点M表示的数是3,即|OM|=3又M是线段OC的中点,所以|OC|=6,即点C所表示的数是6,点A表示的数是5,所以|AC|=1;若点M在点B的左边,点B表示的数是-1,且|BM|=4,所以点M表示的数是-5,所以|OM|=5而M是线段OC的中点,所以|OC|=10,即点C所表示的数是-10,点A表示的数是5,所以|AC|=15【点睛】本题考查了数轴,解决本题的关键是用数轴表示两点之间的距离.23.(1)∠AOD=∠BOC;(2)∠AOC+∠BOD=180°;(3)任然成立,理由如见解析【分析】(1)根据角的和差关系解答,(2)利用周角的定义和直角解答;(3)根据同角的余角相等解答∠AOD和∠BOC的关系,根据图形,表示出∠BOD+∠AOC=∠BOD+∠AOB+∠COB整理即可得到原关系仍然成立.【详解】解:(1)∠AOD和∠BOC相等,∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,∴∠AOD=∠COB;(2)∠AOC和∠BOD互补.∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°,∴∠AOC和∠BOD互补;⑶成立.∵∠AOB=∠COD=90°,∴∠AOB-∠BOD=∠COD-∠BOD,∴∠AOD=∠COB,∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=∠BOD+∠AOB+∠COB,=90°+∠BOD+∠COB,=90°+∠DOC,=90°+90°,=180°.【点睛】本题主要考查角的和、差关系,互余互补的角关系,理清角的和或差,互余与互补关系是解题的关键.24.5cm【分析】根据线段中点的定义求出AE 的长,进而求出AC 的长,再根据中点的定义求出CD 的长,然后利用线段的和差可得答案.【详解】解:∵E 为线段AB 的中点,AB =16cm ,∴AE =12AB =8(cm ), ∵EC =3cm ,∴AC =AE+EC =11(cm ),∵点D 为线段AC 的中点,∴CD =12AC =5.5(cm ), ∴DE =CD ﹣EC =5.5﹣3=2.5(cm ).【点睛】本题考查的是两点间的距离,掌握线段中点的定义、线段的有关计算是解题的关键. 25.75°【分析】根据角的和差性质计算,得∠AOC ;根据角平分线的性质计算,得COD ∠;再根据角的和差性质计算,即可得到答案.【详解】∵∠AOB =120°,∠BOC =30°∴∠AOC =∠AOB -∠BOC =90°又∵OD 是∠AOC 的角平分线, ∴1452COD AOC ∠=∠=︒ ∴∠BOD =∠COD+∠BOC =45°+30°=75°.【点睛】本题考查了角的和差和角平分线的知识;解题的关键是熟练掌握角的和差和角平分线的性质,从而完成求解.26.(1)∠DOE =90°;(2)∠AOE =155°.【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC ,∠COE=12∠BOC ,然后再根据角的和差关系可得答案;(2)首先计算出∠AOD 的度数,再利用∠AOE =∠AOD +∠DOE 可得答案.【详解】解:(1)∵OD 平分∠AOC ,OE 平分∠COB ,∴∠DOC =12∠AOC ,∠COE =12∠COB ,∴∠DOE=∠DOC+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=12×180°=90°;(2)∵OD平分∠AOC,∠COD=65°,∴∠AOD=∠COD=65°,∴∠AOE =∠AOD+∠DOE=65°+90°=155°;【点睛】此题主要角平分线,关键是掌握角平分线把角分成相等的两部分.。
(必考题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(答案解析)(1)
一、选择题1.下列说法正确的是( )A .经过两点可以作无数条直线B .各边相等,各角也相等的多边形是正多边形C .长方体的截面形状一定是长方形D .棱柱的每条棱长都相等 2.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为( )A .10B .12C .16D .183.下列说法中,正确的是( ).A .a -的相反数是正数B .两点之间线的长度叫两点之间的距离C .两条射线组成的图形叫做角D .两点确定一条直线 4.周末早上,小兰9:00从家里出发去图书馆看书,上午10:30回到家中,这段时间内钟面上的时针转了( )A .37.5°B .45°C .52.5°D .60°5.如图,上午8:20,钟表的时针与分针所成的角是( )A .120°B .125°C .130°D .135°6.已知点C 在线段AB 上,点D 在线段AB 的延长线上,若5AC =,3BC =,14BD AB =,则CD 的长为( ) A .2 B .5 C .7 D .5或1 7.如图,OA 是北偏东30方向的一条射线,OB 是北偏西50︒方向的一条射线,那么AOB ∠的大小为( )A .70︒B .80︒C .100︒D .110︒ 8.下列说法中,正确的是( ) A .射线是直线的一半 B .线段AB 是点A 与点B 的距离C .两点之间所有连线中,线段最短D .角的大小与角的两边所画的长短有关 9.如图,轮船与灯塔相距120nmile ,则下列说法中正确的是( )A .轮船在灯塔的北偏西65°,120 n mile 处B .灯塔在轮船的北偏东25°,120 n mile 处C .轮船在灯塔的南偏东25°,120 n mile 处D .灯塔在轮船的南偏西65°,120 n mile 处10.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是( )A .B .C .D . 11.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个 B .2个 C .3个 D .4个12.如图,∠PQR 等于138°,SQ ⊥QR ,QT ⊥PQ .则∠SQT 等于( )A.42°B.64°C.48°D.24°二、填空题13.如图,已知C,D两点将线段AB分成三部分,且这三部分的长度之比为2:3:4,点M为线段AB的中点,BD=8cm,求线段DM的长.14.如图,已知线段m,n.射线AP.实践与操作:在射线AP上作线段AB=m,AC=m+n.(要求:尺规作图,保留作图痕迹,不写作法).推理与计算:若线段AB的中点是点D,线段AC的中点是点E.请在上图中标出点D,E.当m=4,n=2时,求线段DE的长度.15.如图,已知直线AB,CD相交于点O,OE,OF为射线,∠AOE=90°,OF平分∠BOC,(1)若∠EOF=30°,求∠BOD的度数;(2)试问∠EOF与∠BOD有什么数量关系?请说明理由.16.已知O为直线AB上一点,OE平分∠AOC,OF平分∠COB(1)若已知∠AOC=60°,求∠EOF的大小.(2)小明说无论∠AOC等于多少度,∠EOF的度数不变,他的说法对吗?AB=,M是线段AB的中点,P是线段AB上任意一点,N是线段17.已知,线段20PB的中点.(1)当P是线段AM的中点时,求线段NB的长;MP=时,求线段NB的长;(2)当线段1(3)若点P 在线段BA 的延长线上,猜想线段PA 与线段MN 的数量关系,并画图加以证明.18.如图,已知线段a ,b .(1)任意画一直线,利用尺规作图在直线上从左至右依次截取AB =a ,BC =b ;(2)在(1)的条件下,如果AB =8,BC =6,M 是线段AB 的中点,N 是线段BC 的中点,求MN 的长.19.如图,已知60cm AB =,点C 为线段AB 的中点,点D 是线段AB 上的点,且AD 与DB 的长度之比2:1.(1)求BD 的长.(2)求CD 的长.20.(1)计算:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭(2)如图,OD 平分AOC ∠,75BOC ∠=︒,15BOD ∠=︒.求AOB ∠的度数.三、解答题21.综合与实践如图,某学校由于经常拔河,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求,已知磨损的麻绳总长度不足20米.只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳.七年级的聪聪马上想出一个了办法:在线段CD 上取一点M ,使CM CA =,对折BM 找到其中点F ,将AC 和BF 剪掉就得到一条长20米的拔河比赛专用绳CF .请你完成下列任务;(1)在图中标出点M 、点F 的位置;(2)判断聪聪剪出的专用绳CF 是否符合要求.试说明理由.22.综合与探究问题背景数学活动课上,老师将一副三角尺按图1所示位置摆放,三角尺ABC中,∠BAC=90°,∠B=∠C=45°;三角尺ADE中,∠D=90°,∠DAE=60°,∠E=30°.分别作出∠BAD、∠CAE的平分线AM、AN.然后提出问题:求出∠MAN的度数.特例探究“智慧小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,AM和AN仍然是∠BAD和∠CAE的平分线.其中,按图2方式摆放时,AB和AE在同一直线上.按图3方式摆放时, AB、AD、AM在同一直线上.(1)计算:图2中∠MAN的度数为 °,图3中∠MAN的度数为 °(直接写出答案,不写过程).发现感悟(2)探究完图2,图3所示的特殊位置问题后,请你猜想图1中∠MAN的度数为 °;“智慧小组”的同学认为图2,图3中∠BAD、∠CAE的度数都已知或能求出具体的度数,图1中,∠MAN=∠MAB+∠BAE+∠EAN ,这些角比较一般化,求不出具体的度数,所以想到了用字母表示数,如果设∠BAE为x°,则可以用含x的式子表示∠BAD和∠CAE,进而可以表示∠MAB和∠EAN,这样就能求出∠MAN的度数;请你根据智慧小组的思路,求出图1中∠MAN的度数.类比拓展(3)受到“智慧小组”的启发,“创新小组”将三角尺按图4所示方式摆放,分别作出∠BAD、∠CAE的平分线AM、AN.他们认为也能求出∠MAN的度数.请你求出∠MAN的度数.23.已知射线AB ,线段6AB =,在直线AB 上取一点P ,使3AP PB ,Q 为PB 的中点.(1)根据题意,画出图形;(2)求线段AQ 的长.24.已知直线AB 与射线OC 相交于点O .(1)如图,90AOC ∠=︒,射线OD 平分AOC ∠,求BOD ∠的度数;(2)如图,120AOC ∠=︒,射线OD 在AOC ∠的内部,射线OE 在BOC ∠的内部,且4BOD BOE ∠=∠,2COD COE ∠=∠.若射线OF 使12COF COE ∠=∠,请在图中作出射线OF ,并求出BOF ∠的度数.25.计算:(1)2113623⎛⎫-+⨯-⎪⎝⎭ (2)48396735''︒+︒26.如图,已如A,B两点.(1)画线段AB;=;(2)延长线段AB到点C,使BC AB=;(3)反向延长线段AB到点D,使DA ABAB=,请求出线段CD的长.(4)点A,B分别是哪条线段的中点?若3cm【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】两点确定一条直线,长方体的截面有多种形状,棱柱的棱长可能相等.【详解】∵两点确定一条直线,∴A说法是错误;∵各边相等,各角也相等的多边形是正多边形,是正确的,∴B说法是正确;∵长方体的截面形状可以是正方形,也可以是六边形,∴C说法是错误;一般长方体的棱长是不相等的,∴D说法是错误;故选B.【点睛】本题考查了一些列的数学基本概念和性质,熟记数学概念和性质是解题的关键.2.B解析:B【分析】由已知条件可知,EC+FD=EF-CD=8-4=4,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=EF-CD=8-4=4,∵E是AC的中点,F是BD的中点,∴AE=EC,BF=DF∴AE+FB=EC+FD=4,∴AB=AE+FB+EF=4+8=12.故选:B.【点睛】本题考查的是线段上两点间的距离,解答此题时利用中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.D解析:D【分析】依据角的概念、直线的性质、相反数的定义以及两点之间的距离的定义进行判断即可;【详解】A、-a的相反数不一定是正数,故错误;B、两点之间的线段的长度叫两点之间的距离,故错误;C、有公共顶点两条射线组成的图形叫做角,故错误;D、两点确定一条直线,故正确;故选:D.【点睛】本题主要考查了直线的性质、角的概念、两点之间的距离的定义,掌握相关概念和性质是解题的关键.4.B解析:B【分析】9时是分针指向12,时针指向9,10:30时分针指向6,时针指向10和11正中间,所以时针走了1.5个大格,因为每个大格所对的角度是30度,所以3个大格之间的夹角是30°×1.5=45°,据此解答即可.【详解】解:由分析得出:从上午9:00到上午10:30,钟面上的时针转了:30°×1.5=45°.故选:B.【点睛】解决本题要先分析时针位置的变化,再利用每个大格所对的角度是30度进行解答.5.C解析:C【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:8:20时,时针与分针相距4+2060=133份,8:20时,时针与分针所夹的角是30°×133=130°,故选:C .【点睛】本题考查了钟面角,确定时针与分针相距的分数是解题关键.6.B解析:B【分析】根据线段的和差关系可求AB ,再根据14BD AB =,可求BD ,再根据线段的和差关系可求CD 的长.【详解】解:如图,∵点C 在线段AB 上,AC=5,BC=3,∴AB=AC+BC=5+3=8,∴14BD AB ==2,∵点D 在线段AB 的延长线上,∴CD=BC+BD=3+2=5.故选B【点睛】本题考查了线段的和差,根据题意,画出正确图形,是解题关键.7.B解析:B【分析】根据方向角可得∠1的度数,从而可得∠AOB 的值.【详解】解:如图,∵OB 是北偏西50 方向的一条射线,∴∠1=50°∴∠AOB=∠1+30°=50°+30°=80°故选:B .【点睛】本题考查了方向角,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.8.C解析:C【分析】依据射线、直线、线段、角的概念,以及两点之间的连线,线段最短,即可进行判断;【详解】A.射线的长度无法度量,故不是直线的一半,故本选项错误;B.线段AB的长度是点A与点B的距离,故本选项错误;C.两点之间所有连线中,线段最短,故本选项正确;D.角的大小与角的两边所画的长短无关,故本选项错误;故选:C.【点睛】本意主要考查了射线、直线、线段以及角的概念,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短;9.B解析:B【分析】根据方向角的定义作出判断.【详解】解:灯塔在轮船的北偏东25°,120 n mile处.故选B.【点睛】考查方向角的定义.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)10.D解析:D【分析】分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.【详解】解:A.正六边形每个内角为120°,能够整除360°,不合题意;B.正三角形每个内角为60°,能够整除360°,不合题意;C.正方形每个内角为90°,能够整除360°,不合题意;D.正五边形每个内角为108°,不能整除360°,符合题意.故选:D.【点睛】能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.11.A解析:A【分析】根据两点之间距离的定义可以判断A、C,根据射线的定义可以判断B,据题意画图可以判断D.【详解】∵线段AB的长度是A、 B两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.12.A解析:A【分析】利用垂直的概念和互余的性质计算.【详解】解:∵∠PQR=138°,QT⊥PQ,∴∠PQS=138°﹣90°=48°,又∵SQ⊥QR,∴∠PQT=90°,∴∠SQT=42°.故选A.【点睛】本题是对有公共部分的两个直角的求角度的考查,注意直角的定义和度数.第II卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据按比例分配的意义线段中点的意义及线段的和差运算解答【详解】解:由图可知:AC:CD:DB=2:3:4∴∵BD=8cm ∴cm ∵点M 为线段AB 的中点∴BM=18cm ∴DM=BM-BD=9-8解析:=1cm DM【分析】根据按比例分配的意义、线段中点的意义及线段的和差运算解答.【详解】解:由图可知:AC:CD:DB=2:3:4, ∴49DB AB =, ∵BD=8cm , ∴98184AB =⨯=cm , ∵点M 为线段AB 的中点,∴BM=18192⨯=cm , ∴DM=BM-BD=9-8=1cm .【点睛】本题考查线段的应用,熟练掌握按比例分配的意义、线段中点的意义及线段的和差运算是解题关键.14.实践与操作:见解析;推理与计算:图见解析1【分析】实践与操作:在射线AP 上分别顺次截取线段AB=mBC=n 即可推理与计算:先求出AC 长再根据线段的中点求出AD 和EE 长即可求出答案;【详解】实践与操作解析:实践与操作:见解析;推理与计算:图见解析,1【分析】实践与操作:在射线AP 上分别顺次截取线段AB =m ,BC =n 即可.推理与计算:先求出AC 长,再根据线段的中点求出AD 和EE 长,即可求出答案;【详解】实践与操作:如图,线段AB ,AC 即为所求.推理与计算:∵m=4,n=2,∴AC=4+2=6因为D, E分别是AB,AC的中点,所以AD=12AB=12×4=2,AE=12AC=12×6=3,∴DE=AE-AD=3-2=1【点睛】本题主要考查两点间的距离,掌握中点的定义是解题的关键.15.(1)∠BOD=60°;(2)∠BOD=2∠EOF理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°由OF平分∠BOC求出∠BOC=120°进而求出∠BOD=180°-120°=60°;解析:(1)∠BOD=60°;(2)∠BOD=2∠EOF,理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°,由OF平分∠BOC求出∠BOC=120°,进而求出∠BOD=180°-120°=60°;(2)设∠EOF=α,将∠FOB、∠BOC分别用α的代数式表示,最后∠BOD=180°-∠BOC即可求解.【详解】解:(1)∠BOE=180°-∠AOE=180°-90°=90°,∵∠EOF=30°,∴∠FOB=90°-30°=60°,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=120°,∴∠BOD=180°-∠BOC=180°-120°=60°;(2)设∠EOF=α,则∠FOB=90°-α,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=2(90°-α),∴∠BOD=180°-∠BOC=180°-2(90°-α)=2α,即∠BOD=2∠EOF.【点睛】本题主要考查了垂线,角平分线的定义以及平角的综合运用,掌握角平分线平分角,垂线得到直角这两个性质是解决本题的关键.16.(1)90°;(2)对【分析】(1)根据角平分线的定义求解即可;(2)根据角平分线的定义求解即可【详解】解:(1)∵∠AOC=60°∴∠BOC=180°-∠AOC=180°-60°=120°∵OE平解析:(1)90°;(2)对【分析】(1)根据角平分线的定义求解即可;(2)根据角平分线的定义求解即可.【详解】解:(1)∵∠AOC=60°,∴∠BOC =180°-∠AOC =180°-60°=120°,∵OE 平分∠AOC ,OF 平分∠COB∴∠EOC=12∠AOC=30°,∠COF=12∠BOC=60° ∴∠EOC+∠COF =30°+60°=90°;(2)小明说的对,理由如下:∵OE 平分∠AOC ,OF 平分∠COB∴∠EOC=12∠AOC ,∠COF=12∠BOC ∵∠AOB 是平角 ∴∠EOC+∠COF =12(∠AOC+∠BOC )=12×∠AOB=12×180°=90° 所以,无论∠AOC 等于多少度,∠EOF=90°【点睛】本题考查角平分线的定义;角的和差关系.结合图形解题是本题的关键.17.(1)75;(2)45或55;(3)画图证明见解析【分析】(1)画出符合题意的图形先求解再求解可得再利用中点的含义可得答案;(2)分两种情况讨论:当在左边时当在右边时先求解再利用中点的含义可得答案;解析:(1)7.5;(2)4.5或5.5;(3)2PA MN =,画图证明见解析.【分析】(1)画出符合题意的图形,先求解10AM =,再求解5AP =, 可得15PB =, 再利用中点的含义可得答案;(2)分两种情况讨论:当P 在M 左边时,当P 在M 右边时,先求解,PB 再利用中点的含义可得答案;(3)当P 在线段BA 延长线上时,如图,设PA t =,求解1102NB t =+,再求解12MN NB MB t =-=,从而可得结论. 【详解】解:(1)如图,∵M 是线段AB 的中点,20AB =∴1102MA AB == ∵P 是线段AM 的中点,∴152AP AM == ∴20515PB AB AP =-=-=∵N 是线段PB 的中点 ∴17.52NB PB == (2)∵1MP =, ∴当P 在M 左边时,如图,11BP MB MP =+=,∵N 是线段PB 的中点, ∴1 5.52NB PB ==, 如图,当P 在M 右边时,9BP MB MP =-=,∵N 是线段PB 的中点,∴1 4.52NB PB ==. (3)线段PA 和线段MN 的数量关系是:2PA MN =,理由如下:当P 在线段BA 延长线上时,如图,设PA t =,则20PB t =+∵N 是线段PB 的中点∴111022NB PB t ==+ ∵M 是线段AB 的中点,20AB =∴1102MB AB == ∴12MN NB MB t =-=又∵PA t =∴2PA MN =【点睛】本题考查的是线段的和差关系,线段的中点的含义,整式的加减运算,分类思想的运用,掌握以上知识是解题的关键.18.(1)见解析;(2)7【分析】(1)根据线段定义即可利用尺规作图在直线上从左至右依次截取AB=aBC=b;(2)根据AB=8BC=6求出MBBN即可求MN的长【详解】解:(1)如图线段AB=aBC=解析:(1)见解析;(2)7【分析】(1)根据线段定义即可利用尺规作图在直线上从左至右依次截取AB=a,BC=b;(2)根据AB=8,BC=6,求出MB、BN,即可求MN的长.【详解】解:(1)如图,线段AB=a,BC=b即为所求;(2)∵AB=8,BC=6,M是线段AB的中点,N是线段BC的中点,∴BM=12AB=4,BN=12BC=3,∴MN=MB+BN=4+3=7.答:MN的长为7.【点睛】本题考查了线段和差的画法和求线段长,解题关键是理解中点的意义,准确识图,利用线段的和差求值.19.(1)20cm;(2)10cm【分析】(1)根据AD与DB的长度之比2:1列式求解即可;(2)根据中点的定义求出BC再由CD=BC-BD可得出答案【详解】解:(1)∵AD与DB的长度之比2:1∴(2解析:(1)20cm;(2)10cm【分析】(1)根据AD与DB的长度之比2:1列式求解即可;(2)根据中点的定义求出BC,再由CD=BC-BD,可得出答案.【详解】解:(1)∵60cmAB ,AD与DB的长度之比2:1,∴16020cm 3BD =⨯= (2)∵60cm AB =,点C 为线段AB 的中点, ∴130cm 2BC AB ==, ∴CD BC BD =- 3020=-10cm =【点睛】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.20.(1);(2)【分析】(1)先计算有理数的乘方将除法转化为乘法小数化为分数再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得再根据角平分线的定义可得然后根据角的和差即可得【详解】(1)解:; 解析:(1)9-;(2)45︒.【分析】(1)先计算有理数的乘方、将除法转化为乘法、小数化为分数,再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得60COD ∠=︒,再根据角平分线的定义可得60AOD COD ∠=∠=︒,然后根据角的和差即可得.【详解】(1)解:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭ ()55187142=---⨯-- 55922=-+- 9=-;(2)解:75BOC ∠=︒,15BOD ∠=︒,751560COD BOC BOD ∴∠=∠-∠=︒-︒=︒,∵OD 平分AOC ∠,∴60AOD COD ∠=∠=︒,∴601545AOB AOD BOD ∠=∠-∠=︒-︒=︒.【点睛】 本题考查了含乘方的有理数混合运算、与角平分线有关的角度计算,熟练掌握各运算法则和角平分线的定义是解题关键.三、解答题21.(1)见解析;(2)符合要求,见解析【分析】(1)根据题意可直接进行作图;(2)由题意易得12AC CM AM ==,12MF FB MB ==,进而可得20CF m =,然后由20AC BD m +<可进行判断.【详解】解:(1)由题意可作如图所示:(2)符合要求.理由是:∵C 为AM 的中点,F 为BM 的中点, ∴12AC CM AM ==,12MF FB MB ==, ∴CF CM MF =+1122AM MB =+()1122AM MB AB =+=, ∵40AB m =,∴20CF m =,∵20AC BD m +<,∴20CD m >,∴CF 符合要求.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.22.(1)75,75;(2)75,过程见解析;(3)105°.【分析】(1)图2,由角平分线的性质得到11,22EAM MAD EAD CAN NAB CAB ∠=∠=∠∠=∠=∠,再结合角的和差解题即可;图3,由角平分线的性质,得到12CAN NAE CAE ∠=∠=∠,再结合角的和差解题即可;(2)由∠MAN=∠MAB+∠BAE+∠EAN ,结合角平分线的性质解题;(3)由∠MAN=∠MAD +∠EAN-∠DAE ,结合角平分线的性质解题.【详解】解:(1)图2中,AM 和AN 是∠BAD 和∠CAE 的平分线, 1130,4522EAM MAD EAD CAN NAB CAB ∴∠=∠=∠=︒∠=∠=∠=︒ 304575MAN EAM NAB ∴∠=∠+∠=︒+︒=︒;图3中,AM 和AN 是∠BAD 和∠CAE 的平分线,111()(9060)15222CAN NAE CAE CAB EAB ∴∠=∠=∠=∠-∠=⨯︒-︒=︒ 901575MAN MAC CAN ∴∠=∠-∠=︒-︒=︒故答案为:75;75;(2)设∠BAE 为x°,则∠BAD=∠DAE- x°=60°- x°,∠CAE=∠BAC- x°=90°-x°因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAB=12∠BAD =12(60°- x°)=30°-12 x° ∠EAN=12∠CAE=12(90°- x°)=45°+12x°. 所以∠MAN=∠MAB+∠BAE+∠EAN=(30°-12 x°)+ x°+(45°-12 x°) =75°,故答案为:75°;(3)设∠BAE 为x°,则∠BAD=∠DAE+ x°=60°+ x°,∠CAE=360°-∠BAC-∠BAE=360°-90°-x°=270°-x°,因为AM 和AN 是∠BAD 和∠CAE 的平分线,所以∠MAD=12∠BAD =12(60°+ x°)=30°+12 x° ∠EAN=12∠CAE=12(270°- x°)=135°-12x°. 所以∠MAN=∠MAD +∠EAN-∠DAE=(30°+12 x°)+(135°-12x°)- 60° =105°.【点睛】 本题考查三角板的特殊角、角平分线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(1)见解析;(2)7.5或5.25【分析】(1)分P 在AB 的延长线上和在AB 之间两种情况画出图形即可;(2)分两种情况,先根据3AP PB 求得AB 和BP ,再根据线段的中点求得BQ ,根据线段的和差即可求得AQ .【详解】解:(1)由于点P 与点B 的位置关系没有确定,∴根据题意,可画出满足条件的两个图形,如图1,图2所示(2)①在图1中,点P 在点B 右边,设PB x =,∵3AP PB ,∴3AP x =,26AB x ==.∴3x =,∵Q 为BP 的中点,∴ 1.5BQ =,6 1.57.5AQ =+=,②在图2中,点P 在点B 左边,∵3AP PB , ∴3 4.54AP AB ==, 1.5PB =, ∵点Q 为PB 中点,∴0.75PQ =, 4.50.75 5.25AQ =+=.【点睛】本题考查线段的和差.能正确识图是解题关键,解题时注意分类思想的运用. 24.(1)135︒;(2)45°或75°.【分析】(1)由90AOC ∠=︒可求90BOC ∠=°,由OD 是AOC ∠的平分线得=45AOD DOC ∠∠=︒,可求=+135BOD DOC BOC ∠∠∠=︒;(2)由120AOC ∠=︒,可求∠BOC=60º,由4BOD BOE ∠=∠,设∠BOE=xº可得∠BOD=4x°,∠DOE=3x°由2COD COE ∠=∠, 可求2,COD x COE x ∠=︒∠=︒,可得∠COE=∠BOE=30由12COF COE ∠=∠,可求15COF ∠=︒,当OF 在∠EOC 内部时,当OF 在∠DOC 内部时利用角和差计算即可.【详解】证明:(1)∵90AOC ∠=︒∴18090BOC AOC ∠=︒-∠=︒∵OD 是AOC ∠的平分线,∴AOD DOC ∠=∠. ∴=45AOD DOC ∠∠=︒,∴=+4590135BOD DOC BOC ∠∠∠=︒+︒=︒;(2)∵120AOC ∠=︒,∴∠BOC=180º-∠AOC=60º,∵4BOD BOE ∠=∠,设∠BOE=xº,∴∠BOD=4x°,∠DOE=3x°,∵2COD COE ∠=∠,+=3COD COE DOE x ∠∠∠=︒,∴2,COD x COE x ∠=︒∠=︒,∴∠COE=∠BOE=11BOC=60=3022∠⨯︒︒, ∵12COF COE ∠=∠, ∴11=30=1522COF COE ∠=∠⨯︒︒,当OF 在∠EOC 内部时,=601545BOF BOC COF ∠∠-∠=︒-︒=︒,当OF 在∠DOC 内部时,=+60+1575BOF BOC COF ∠∠∠=︒︒=︒, BOF ∠的度数为45°或75°.【点睛】本题考查了角平分线的定义及角的和差,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.25.(1)-8;(2)'11614︒【分析】(1)先算乘方和括号,再算乘法,后算加法;(2)两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度,从而得出答案.【详解】解:(1)2113623⎛⎫-+⨯-⎪⎝⎭ =1966-+⨯=-9+1=-8;(2)48396735''︒+︒='11574︒='11614︒.【点睛】本题考查了有理数的混合运算,以及度、分、秒的计算,熟练掌握1°=60',160'''=是解答本题的关键.26.(1)见解析;(2)见解析;(3)见解析;(4)点A 是线段BD 的中点,点B 是线段AC 的中点;CD=9cm .【分析】(1)(2)(3)根据线段的定义和几何语言画出对应的几何图形;(4)根据线段的中点的定义可判断点A 是线段BD 的中点;点B 是线段AC 的中点;然后利用CD=3AB 求解.【详解】解:(1)如图,线段AB 为所作;(2)如图,点C 为所作;(3)如图,点D 为所作;(4)点A 是线段BD 的中点;点B 是线段AC 的中点;所以339CD DA AB BC =++=⨯=(cm ).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C A
D B 《基本平面图形》测试题
一、选择题(3×20=30)
1、手电筒射出去的光线,给我们的形象是( )
A.直线
B.射线
C.线段
D.折线
2、下列各直线的表示法中,正确的是( )
A .直线A
B .直线AB
C .直线ab
D .直线Ab
3、下列说法正确的是( )
A.画射线OA=3cm;
B.线段AB 和线段BA 不是同一条线段
C.点A 和直线a 的位置关系有两种:点A 在直线a 上 或点A 在直线a 外
D.三条直线相交有3个交点
4、如图,A,B 在直线l 上,下列说法错误的是 ( )
A.线段AB 和线段BA 同一条线段 B.直线AB 和直线BA 同一条直线 C.射线AB 和射线BA 同一条射线 D.图中以点A 为端点的射线有两条。
5、如果点C 在线段AB 上,则下列各式中:AC=12
AB ;AC=CB ;AB=2AC ;AC+CB=AB,能说明C 是线段AB 中点的有( )
A.1个
B.2个
C.3个
D.4个
6、如图,AB=CD,则AC 与BD 的大小关系是( ) A.AC>BD B.AC<BD C.AC=BD D.不能确定
7、如果线段AB=5cm,线段BC=4cm,那么A,C 两点之间的距离是( )
A. 9cm
B.1cm
C.1cm 或9cm
D.以上答案都不对
8、用一副三角板不能做出下列哪个角?( )
A.105°
B.75° C 15° D 65°
9、如图,下列表示角的方法,错误的是( )
A.∠1与∠AOB 表示同一个角;
B.∠AOC 也可用∠O 来表示
C.图中共有三个角:∠AOB 、∠AOC 、∠BOC;
D.∠β表示的是∠BOC
10、同一平面内互不重合的三条直线的公共点的个数是( )
A 、可能是0个,1个,2个
B 、可能是0个,2个,3个
C A
D B 图(6)D 'B 'A O C G D
B C 、可能是0个,1个,2个或3个 D 、可能是1个可3个
二、填空题
1、平面上有A 、B 、C 三点,过其中的每两点画直线,最多可以画_____条直线, 最少可以画_______条直线.
2、要把木条固定在墙上至少需要钉___颗钉子,根据是________________.
3、如图,直线上四点A 、B 、C 、D,看图填空: ①AC=______+BC;②CD=AD —_______;③AC+BD —BC=_______.
4、如图,BC=4 cm,BD=7 cm , D 是AC 的中点,则AC= cm , AB= cm
5、钟表上3时30分时,时针与分针的夹角为 。
6、1.25°= ′= ″ 35°2′24″= °
7、如图(6),把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处, 若得∠AOB ′=700, 则∠B ′OG 的度数为 。
8、从七边形的一个顶点出发有________条对角线,它们把七边形分成了_______个三角形,七边形共有___________条对角线。
三、画图题
1、如图,平面上有三点A 、B 、C.
(1)按下列要求画出图形:
①.画直线AB ;②.画射线AC ;③连接BC
(2)写出图中有哪几条线段.
(3)指出图中有几条射线,并写出其中能用字母表示的射线(不再添加字母)
A B C
第20题图A B C D E 2.如图,已知线段a,
用尺规作一条线段AB,使AB
=2a ;
四、解答题
1、如图,OA 丄OB ,OC 丄OD ,OE 为∠BOD 的平分线,∠BOE=17°,求∠AOC 的度数
2、已知线段AB=12cm ,在直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,求
线段AM 的长.
4.如图已知点C 为AB 上一点,AC =12cm, CB =
32AC ,D 、E 分别为AC 、AB 的中点求DE 的长。