虚拟变量虚拟解释变量的回归虚拟被解释变量的回归
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现在要考虑城镇居民和农村居民之间的差异,如何办? 为了对 “城镇居民”、“农村居民”进行区分,分析
各自在住房消费支出 Yi上的差异,设 D1i = 1 为城镇;
D1i = 0 为农村,则模型为
Yi = 0 + 1Xi +1D1 + ui (2)
(模型有截距,“居民属性”定性变量只有两个相互排斥
4
第八章 虚拟变量回归
本章主要讨论:
●虚拟变量 ●虚拟解释变量的回归 ●虚拟被解释变量的回归(选讲,不包括)
5
第一节 虚拟变量
本节基本内容:
●基本概念 ●虚拟变量设置规则
6
一、基本概念
定量因素:可直接测度、数值性的因素。 定性因素:属性因素,表征某种属性存在与否的
非数值性的因素。
基本思想:
直接在回归模型中加入定性因素存在诸多的困难 (那些困难?),是否可将这些定性因素进行量 化,以达到定性因素能与定量因素有着相同作用 之目的。
7
虚拟变量的定义
计量经济学中,将取值为0和1的人工变量称为虚 拟变量。虚拟变量也称:哑元变量、定性变量等 等。通常用字母D或DUM加以表示(英文中虚拟 或者哑元Dummy的缩写)。 对定性变量的量化可采用虚拟变量的方式实现。
8
二、虚拟变量设置规则
虚拟变量的设置规则涉及三个方面: 1.“0”和“1”选取原则 2.属性(状态、水平)因素与设置虚拟变量
则对任一家庭都有: D1 + D2 = 1 D1 + D2 - 1 = 0 ,
即产生完全共线,陷入了“虚拟变量陷阱”。
“虚拟变量陷阱”的实质是:完全多重共线性。
15
综上可知: 1.引入虚拟变量的个数与两个因素有关;一是定性 变量的属性多少,一是有无截距项; 2.对虚拟变量的运用要谨慎,虚拟变量的使用得当 常能发挥积极的作用,但在模型中引入虚拟变量的 数量要适当,引入的虚拟变量的数量过度,则可能 带来负面的影响。
数量的关系 3.虚拟变量在回归分析中的角色以及作用等
方面的问题
9
“0”和“1”选取原则
虚拟变量取“1”或“0”的原则,应从分析问 题的目的出发予以界定。
从理论上讲,虚拟变量取“0”值通常代表比较 的基础类型;而虚拟变量取“1”值通常代表被 比较的类型。 “0”代表基期(比较的基础,参照物); “1”代表报告期(被比较的效应)。
2
在实际的经济分析中,这些定性因素有时具有不可忽 视的重要作用。例如,研究居民收入水平时,职业、 性别、文化程度、就业的地域等因素,通常是值得考 虑的影响因素。 因此,在计量经济学的建模中有必要将定量因素和定 性因素同时纳入回归模型之内。
3
本章要研究的主要问题是: 1.如何将作为解释变量的定性因素引入回归模型? 2.这些定性解释变量在回归模型中有何特殊的作用?
11
属性的状态(水平)数与虚拟变量 数量的关系
定性因素的属性既可能为两种状态,也可能为多种 状态。例如,性别(男、女两种)、季节(4种状 态),地理位置(东、中、西部),行业归属,所 有制,收入的分组等。
(1,0)
如:(D1,D2)=
(0,1)
(0, 0)
天气阴 天气雨 其他
12
虚拟变量数量的设置规则
10
例如,比较收入时考察性别的作用。当研究男性收入是否 高于女性时,是将女性作为比较的基础(参照物),故有 男性为“1”,女性为“0”。
例1
(1)
D
=
1 0
பைடு நூலகம்男 女
(2)
D
=
1 0
改革开放以后 改革开放以前
(3)
D1
=
1 0
天气阴 (4) 其他
D2
=
1 0
天气雨 其他
问题:
为何只选0、1,选2、3、4行吗?为什么?
1.若定性因素具有 m 个 (m 2) 相互排斥属性(或
几个水平),当回归模型有截距项时,只能引入 m -1个虚拟变量;
2.当回归模型无截距项时,则可引入 m 个虚拟变
量;否则,就会陷入“虚拟变量陷阱”。(为什 么?)
13
一个例子(虚拟变量陷阱)
研究居民住房消费支出 Yi 和居民可支配收入 Xi 之间的 数量关系。回归模型的设定为:Yi = 0 + 1Xi +ui (1)
16
虚拟变量在回归模型中的角色
虚拟变量既可作为被解释变量,也可作为解释 变量,分别称其为虚拟被解释变量和虚拟解释变量。 虚拟被解释变量的研究是当前计量经济学研究的 前沿领域,如MacFadden、Heckmen等人的微观计 量经济学研究,大量涉及到虚拟被解释变量的分析。 本课程只是讨论虚拟解释变量的问题
17
显然,在研究房地产价格影响机理时,需要分 析那些不易量化的定性因素对房地产价格是否 真的有显著影响。 能否把定性的因素也引入计量经济模型中呢? 怎样才能在模型中有效地表示这些定性因素的 作用呢?
1
问题的一般性描述
在前面各章的分析中,被解释变量主要是受可以直 接度量的定量因素的影响,如收入、产出、商品需 求量、价格、成本、资金、人数等。但现实经济生 活中,影响被解释变量变动的因素,除了可以直接 观测数据的定量变量外,可能还包括一些本质上为 定性因素的影响,例如性别、种族、职业、季节、 文化程度、战争、自然灾害、政府经济政策的变动 等。
的属性状态( m 2 ),故只设定一个虚拟变量。)
14
若对两个相互排斥的属性 “居民属性” ,仍然 引入 m 2 个虚拟变量,则有
1 城镇居民 D1i = 0 农村居民
1 农村居民 D2i = 0 城镇居民
则模型(1)为
Yi 0 1Xi 1D1 2D2 ui (3)
各自在住房消费支出 Yi上的差异,设 D1i = 1 为城镇;
D1i = 0 为农村,则模型为
Yi = 0 + 1Xi +1D1 + ui (2)
(模型有截距,“居民属性”定性变量只有两个相互排斥
4
第八章 虚拟变量回归
本章主要讨论:
●虚拟变量 ●虚拟解释变量的回归 ●虚拟被解释变量的回归(选讲,不包括)
5
第一节 虚拟变量
本节基本内容:
●基本概念 ●虚拟变量设置规则
6
一、基本概念
定量因素:可直接测度、数值性的因素。 定性因素:属性因素,表征某种属性存在与否的
非数值性的因素。
基本思想:
直接在回归模型中加入定性因素存在诸多的困难 (那些困难?),是否可将这些定性因素进行量 化,以达到定性因素能与定量因素有着相同作用 之目的。
7
虚拟变量的定义
计量经济学中,将取值为0和1的人工变量称为虚 拟变量。虚拟变量也称:哑元变量、定性变量等 等。通常用字母D或DUM加以表示(英文中虚拟 或者哑元Dummy的缩写)。 对定性变量的量化可采用虚拟变量的方式实现。
8
二、虚拟变量设置规则
虚拟变量的设置规则涉及三个方面: 1.“0”和“1”选取原则 2.属性(状态、水平)因素与设置虚拟变量
则对任一家庭都有: D1 + D2 = 1 D1 + D2 - 1 = 0 ,
即产生完全共线,陷入了“虚拟变量陷阱”。
“虚拟变量陷阱”的实质是:完全多重共线性。
15
综上可知: 1.引入虚拟变量的个数与两个因素有关;一是定性 变量的属性多少,一是有无截距项; 2.对虚拟变量的运用要谨慎,虚拟变量的使用得当 常能发挥积极的作用,但在模型中引入虚拟变量的 数量要适当,引入的虚拟变量的数量过度,则可能 带来负面的影响。
数量的关系 3.虚拟变量在回归分析中的角色以及作用等
方面的问题
9
“0”和“1”选取原则
虚拟变量取“1”或“0”的原则,应从分析问 题的目的出发予以界定。
从理论上讲,虚拟变量取“0”值通常代表比较 的基础类型;而虚拟变量取“1”值通常代表被 比较的类型。 “0”代表基期(比较的基础,参照物); “1”代表报告期(被比较的效应)。
2
在实际的经济分析中,这些定性因素有时具有不可忽 视的重要作用。例如,研究居民收入水平时,职业、 性别、文化程度、就业的地域等因素,通常是值得考 虑的影响因素。 因此,在计量经济学的建模中有必要将定量因素和定 性因素同时纳入回归模型之内。
3
本章要研究的主要问题是: 1.如何将作为解释变量的定性因素引入回归模型? 2.这些定性解释变量在回归模型中有何特殊的作用?
11
属性的状态(水平)数与虚拟变量 数量的关系
定性因素的属性既可能为两种状态,也可能为多种 状态。例如,性别(男、女两种)、季节(4种状 态),地理位置(东、中、西部),行业归属,所 有制,收入的分组等。
(1,0)
如:(D1,D2)=
(0,1)
(0, 0)
天气阴 天气雨 其他
12
虚拟变量数量的设置规则
10
例如,比较收入时考察性别的作用。当研究男性收入是否 高于女性时,是将女性作为比较的基础(参照物),故有 男性为“1”,女性为“0”。
例1
(1)
D
=
1 0
பைடு நூலகம்男 女
(2)
D
=
1 0
改革开放以后 改革开放以前
(3)
D1
=
1 0
天气阴 (4) 其他
D2
=
1 0
天气雨 其他
问题:
为何只选0、1,选2、3、4行吗?为什么?
1.若定性因素具有 m 个 (m 2) 相互排斥属性(或
几个水平),当回归模型有截距项时,只能引入 m -1个虚拟变量;
2.当回归模型无截距项时,则可引入 m 个虚拟变
量;否则,就会陷入“虚拟变量陷阱”。(为什 么?)
13
一个例子(虚拟变量陷阱)
研究居民住房消费支出 Yi 和居民可支配收入 Xi 之间的 数量关系。回归模型的设定为:Yi = 0 + 1Xi +ui (1)
16
虚拟变量在回归模型中的角色
虚拟变量既可作为被解释变量,也可作为解释 变量,分别称其为虚拟被解释变量和虚拟解释变量。 虚拟被解释变量的研究是当前计量经济学研究的 前沿领域,如MacFadden、Heckmen等人的微观计 量经济学研究,大量涉及到虚拟被解释变量的分析。 本课程只是讨论虚拟解释变量的问题
17
显然,在研究房地产价格影响机理时,需要分 析那些不易量化的定性因素对房地产价格是否 真的有显著影响。 能否把定性的因素也引入计量经济模型中呢? 怎样才能在模型中有效地表示这些定性因素的 作用呢?
1
问题的一般性描述
在前面各章的分析中,被解释变量主要是受可以直 接度量的定量因素的影响,如收入、产出、商品需 求量、价格、成本、资金、人数等。但现实经济生 活中,影响被解释变量变动的因素,除了可以直接 观测数据的定量变量外,可能还包括一些本质上为 定性因素的影响,例如性别、种族、职业、季节、 文化程度、战争、自然灾害、政府经济政策的变动 等。
的属性状态( m 2 ),故只设定一个虚拟变量。)
14
若对两个相互排斥的属性 “居民属性” ,仍然 引入 m 2 个虚拟变量,则有
1 城镇居民 D1i = 0 农村居民
1 农村居民 D2i = 0 城镇居民
则模型(1)为
Yi 0 1Xi 1D1 2D2 ui (3)