虚拟变量虚拟解释变量的回归虚拟被解释变量的回归

合集下载

第七章 虚拟变量

第七章 虚拟变量

第七章虚拟变量第一节虚拟变量的引入一、什么是虚拟变量前面几章介绍的解释变量都是可以直接度量的,称为定量变量。

如收入、支出、价格、资金等等。

但在现实经济生活中,影响应变量变动的因素,除了这些可以直接获得实际观测数据的定量变量外,还包括一些无法定量的解释变量的影响,如性别、民族、国籍、职业、文化程度、政府经济政策变动等因素,他们只表示某种特征的存在与不存在,所以称为属性变量或定性变量。

属性变量:不能精确计量的说明某种属性或状态的定性变量。

在计量经济模型中,应当包含属性变量对应变量的影响作用。

那怎么才能把定性变量包括在模型中呢?属性变量通常是非数值变量,直接纳入回归方程中进行回归,显然是很困难的。

为此,人们采取了一种构造人工变量的方法,将这些定性变量进行量化,使其能与定量变量一样在回归模型中得以应用。

由于定性变量通常是表明某种特征或属性是否存在,如性别变量中以男性为分析基础的话,那就只有男性、非男性;政策变动变量中以政策不变为基准,则有政策不变,和政策变动;至于有两种以上的状态的话,比如学历分高中,本科,本科以上等等,我们又怎么办呢?把疑问留到后面去解决。

既然定性变量只有存在或不存在两种状态,所以量化的一般方法是取值为0或1。

称为虚拟变量。

虚拟变量:人工构造的取值为0或1的作为属性变量代表的变量。

一般常用D表示。

D=0,表示某种属性或状态不存在D=1,表示某种属性或状态存在比如前面说的性别变量,以男性为基准,则当样本为男性时,虚拟变量取0,当样本为女性时,则虚拟变量取1。

当虚拟变量作为解释变量引入计量经济模型时,对其回归系数的估计和统计检验方法都与定量解释变量相同。

二、虚拟变量的作用1、作为属性因素的代表,如,性别、种族等2、作为某些非精确计量的数量因素的代表,如:受教育程度、年龄段等;3、作为某些偶然因素或政策因素的代表,如战争、911等。

4、时间序列分析中作为季节(月份)的代表(比如对某些明显有淡季、旺季之分的产品)5、分段回归,研究斜率、截距的变动;6、比较两个回归模型;7、虚拟应变量概率模型,应变量本身是定性变量(比如你研究某产品的购买率,应变量本身就是买或不买)三、虚拟变量的设置规则1、虚拟变量D取值为0,还是取值为1,要根据研究的目的决定。

虚拟变量回归模型

虚拟变量回归模型

PART 07
虚拟变量回归模型的发展 趋势和未来展望
发展趋势
模型应用范围不断扩大
随着数据科学和统计学的发展,虚拟变量回归模型的应用范围不断扩大,不仅局限于传统的回归分析,还广泛应用于 分类、聚类、预测等领域。
模型复杂度不断提高
为了更好地处理复杂的数据结构和特征,虚拟变量回归模型的复杂度不断提高,出现了多种新型的模型,如集成学习 模型、深度学习模型等。
医学领域的应用
流行病学研究
在流行病学研究中,利用虚拟变量回归模型分析疾病发病率和死亡 率的影响因素,如年龄、性别、生活习惯等。
临床医学研究
在临床医学研究中,利用虚拟变量回归模型分析治疗效果的影响因 素,如治疗方案、患者特征、疾病严重程度等。
药物研究
在药物研究中,利用虚拟变量回归模型分析药物疗效的影响因素, 如药物剂量、给药方式、患者生理特征等。
模型解释性要求更高
随着人们对数据分析和模型结果的关注度提高,虚拟变量回归模型的解释性要求也更高,需要更加清晰、 直观地解释模型结果和变量之间的关系。
未来展望
模型可解释性研究
未来将更加注重虚拟变量回归模型的可解释性研究,以提高模型结果的透明度和可信度。
新型特征选择和降维技术
随着数据规模的扩大和特征维度的增加,未来将更加关注新型的特征选择和降维技术,以提取关 键特征并降低模型复杂度。
PART 01
引言
目的和背景
探索自变量与因变量之间的关系
虚拟变量回归模型主要用于探索自变量与因变量之间的数量关系,帮助我们理 解不同类别数据对结果的影响。
处理分类变量
当自变量是分类变量时,虚拟变量回归模型能够将这些分类变量转换为一系列 二进制(0和1)的虚拟变量,从而进行回归分析。

第八章-虚拟变量回归

第八章-虚拟变量回归

1 高中 D2 0 其它
1 博士 D5 0 其它
1 大 学 D3 0 其 它
1 小 学 D6 0 其 它
则总体回归模型:
w 0 1 X 2 D1 3 D2 4 D3 5 D4 6 D5 7 D6+u
17
二、用虚拟变量测量斜率变动
基本思想
引入虚拟变量测量斜率变动,是在所设立的模型中,将虚 拟解释变量与其它解释变量的乘积,作为新的解释变量出 现在模型中,以达到其调整设定模型斜率系数的目的。
可能的情形:
(1)截距不变;
(2)截距和斜率均发生变化;
分析手段:仍然是条件期望。
18
(1)截距不变
模型形式:
意义:若α1显著,表明城市居民的平均人均可支配收入比农村 高α1元。但这种差异可能是由其它因素引起的,并不一定是由 户籍差异引起。
12
(2) 一个两属性定性解释变量和一个定量 解释变量
模型形式 Yi = f(Di,X i )+ μi 例如:Yi = 0 1 Di + X i + μi 1 城市 其中: Y-人均可支配收入;X-工作时间; Di 0 农村
会受到一些定性因素的影响,如性别、国籍、民族、自 然灾害和政治体制等。
问题:我们如何把这些定性想:将这些定性因素进行量化
由于定性变量通常表示某种属性是否存在,如是否男性、 是否经济特区、是否有色人和等。因此若该属性存在, 我们就将变量赋值为1,否则赋值为0,从而将定性因素 定量化。 计量经济学中,将取值为0和1的人工变量称为虚拟变量 (DUMMY)或哑元变量。通常用字母D或DUM表示。
7
一个例子(虚拟变量陷阱)
研究工资收入与学历之间的关系:

第七章 虚拟变量 虚拟变量回归模型ppt汇总 计量经济学

第七章 虚拟变量 虚拟变量回归模型ppt汇总 计量经济学
第七章 虚拟变量
• 在回归分析中,被解释变量的影响因素 除了量(或定量)的因素还有质(或定 性)的因素,这些质的因素可能 会使回 归模型中的参数发生变化,为了估计质 的因素产生的影响,在模型中就需要引 入一种特殊的变量—虚拟变量。
2020/6/16
(二)作用
• 1、可以描述和测量定性(或属性)因素 的影响;
2、多个因素各两种属性
• 如果有m个定性因素,且每个因素各有两个不同的 属性类型,则引入m个虚拟变量。
• 例2
• 研究居民住房消费函数时,考虑到城乡差异和不同 收入层次的影响将消费函数设定为:
Yt=b0+b1Xt+a1D1t+ a2D2t+ μt
Yt=居民住房消费支出
Xt=居民可支配收入
1城镇居民
2020/6/16
虚拟变量对截距的影响
y
有适龄子女
b0&#
o
图1 虚拟变量对截距的影响
x
2020/6/16
2、乘法方式引入虚拟变量
• 基本思想:以乘法方式引入虚拟解释变量
,是在所设定的计量经济模型中,将虚拟 解释变量与其他解释变量相乘作为新 的解释变量,以达到其调整模型斜率的
目的。 • 该方式引入虚拟变量主要作用:
D=
0 无适龄子女
将家庭教育费用支出函数写成:Yt=b0+b1Xt+aDt+μt 即以加法形式引入虚拟变量。
2020/6/16
子女年龄结构不同的家庭教育 费用支出函数为:
• 无适龄子女家庭的教育费用支出函数(D=0 ):Yt=b0+b1Xt+μt
• 有适龄子女家庭的教育费用支出函数(D=1 ):Yt=(b0+a)+b1Xt+μt

虚拟变量回归

虚拟变量回归

数据收集
收集不同市场细分群体的基本信息和 产品需求数据,如年龄、性别、收入、 消费习惯等。
变量设置
将市场细分变量转换为虚拟变量,并 引入到回归模型中。
结果分析
分析虚拟变量的系数和显著性,解释 其对产品需求的影响,为市场定位提 供依据。
案例三:教育程度与收入水平的关系研究
目的
研究教育程度对收入水平的影响,以及 不同教育程度对收入水平的差异。
虚拟变量可能依赖于某些自变量,需 要谨慎处理以避免多重共线性问题。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
虚拟变量回归的模型构 建
线性回归模型
线性回归模型是最常用的回归分析方法之一,用 于探索自变量与因变量之间的线性关系。
在线性回归模型中,虚拟变量可以作为自变量引 入,以解释和预测因变量的变化。
变量设置
将教育程度转换为虚拟变量,并引入 到回归模型中。
数据收集
收集受访者的教育程度和收入水平数 据。
结果分析
分析虚拟变量的系数和显著性,解释 其对收入水平的影响,为职业规划和 教育投资提供参考。
案例四:健康状况与生活习惯的关系研究
目的
数据收集
研究生活习惯对健康状况的影响,以及不 同生活习惯对健康状况的差异。
虚拟变量回归的应用场景
1 2
社会科学研究
在社会科学研究中,经常需要研究分类变量对连 续变量的影响。例如,研究不同教育程度或不同 职业对收入的影响。
生物统计学
在生物统计学中,虚拟变量回归可用于研究基因 型、物种或地理区域等因素对连续变量的影响。
3
市场分析
在市场分析中,虚拟变量回归可用于研究不同产 品类别、品牌或市场细分对销售或其他连续变量 的影响。

解释变量包含虚拟变量的回归模型

解释变量包含虚拟变量的回归模型
(3) 1=1 ,但22 ,即两个回归旳差别仅在其 斜率,称为汇合回归(Concurrent Regressions);
(4) 11,且22 ,即两个回归完全不同,称为 相异回归(Dissimilar Regressions)。
平行回归
汇合回归
相异回归
能够利用邹氏构造变化旳检验。这一问题 也可经过引入乘法形式旳虚拟变量来处理。
• 为了在模型中能够反应这些原因旳影响,并提 升模型旳精度,需要将它们“量化”。
这种“量化”一般是经过引入“虚拟变量” 来完毕旳。根据这些原因旳属性类型,构造只取 “0”或“1”旳人工变量,一般称为虚拟变量 (dummy variables),记为D。
• 例如,反应文化程度旳虚拟变量来自取为:1, 本科学历 D=
90年前 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
表 5.1.1
储蓄 281 399.5 523.7 675.4 892.5 1214.7 1622.6 2237.6 3073.3 3801.5 5146.9 7034.2
1979~2001 年中国居民储蓄与收入数据(亿元)
GNP
90年后
储蓄
4038.2
1991
9107
4517.8
1992
11545.4
4860.3
1993
14762.4
5301.8
1994
21518.8
5957.4
1995
29662.3
7206.7
1996
38520.8
8989.1
1997
46279.8
第五章 解释变量包括虚拟变量 旳回归模型

【stata代码模板】回归分析、回归系数的若干检验_regress_cnsreg_test

【stata代码模板】回归分析、回归系数的若干检验_regress_cnsreg_test

【stata代码模板】回归分析、回归系数的若干检验_regress_cnsreg_test(1)线性模型简易代码——————————————模板————————————————regress 被解释变量解释变量if var=value,noconstant beta level(#) ——————————————模板————————————————If用于筛选满足条件的数据,可缺省。

Noconstant要求没有截距项,可缺省。

Beta要求显示标准化后的系数,即beta系数,可缺省。

Level(#)要求显示系数估计值置信区间的置信度,置信度为#%,可缺省,缺省为95%置信度。

比如,用语文、数学成绩对英语成绩作回归,置信区间为90%:regress English Chinese Maths,level(90)(2)带虚拟变量的回归————————————————模板————————————————regress 被解释变量解释变量若干i.虚拟变量if var=value,noconstant beta level(#) ————————————————模板————————————————比如,想要用语文成绩、数学成绩、性别对英语成绩作回归:regress English Chinese Maths i.gender(3)带约束条件的回归有时候要求解释变量系数之间满足一定关系,比如两个被解释变量系数之和要求等于1等等,附加约束的回归为:————————————————模板————————————————constraint 约束编号约束方程cnsreg 被解释变量解释变量if var=value,constraint(约束编号) noconstant level(#) ————————————————模板————————————————比如,要用语文成绩、数学成绩对英语成绩,其中要求语文成绩系数和数学成绩系数之和为1constraint 1 Chinese+Maths=1cnsreg English Chinese Maths,constraint(1)以下是回归模型系数的若干检验,以回归模型regress y x1 x2 x3 x4来说明(4)检验约束条件是否成立比如检验x1+x2之和是否为1:regress y x1 x2 x3 x4test x1+x2=1(5)检验某几个回归系数是否一起为零比如,要检验x2,x3,x4是否一起为零:regress y x1 x2 x3 x4test x2 x3 x4(6)检验某几个回归系数是否相等比如,要检验x1是否等于x2 regress y x1 x2 x3 x4test x1=x2。

第六章 虚拟变量的回归模型

第六章   虚拟变量的回归模型
第六章 虚拟变量的回归模型
在一元回归和多元回归分析中,被解释变量主 要受一个或多个可以度量的解释变量的影响,如 收入、价格、FDI等。但在现实的经济社会中,影 响被解释变量的因素除了可度量的之外,还有可 能受一些不可度量的因素的影响,如性别、战争、 政策、学历、职称等因素。有时候这些不可度量 的因素对被解释变量的影响又不可忽略,这时我 们需要引入虚拟变量来代替不可量化的因素。
一、虚拟变量的概念

1.影响因素 定量因素——定量变量,可以直接测量的数值型因素。
定性因素——定性变量,不能直接测量的,用来说明
某种属性或状态的非数值型因素。
2.虚拟变量——(dummy variable)是人工构造的取值为0或1的、 作为定性变量的代表变量。简写为D或DUM。 3、形式 1 , 表示某种属性或状态出现或存在,是 D= 0 , 表示某种属性或状态出现或存在,否



男教授的平均收入=a+b 女教授的平均收入=a 在eviews中用OLS估计回归系数,确定a、b
wage=18+3.28sex (57.7) (7.44) R2 =0.87, F=55.34
从回归分析结果得出的结论:


1、统计检验 1)拟合优度检验 R2 =0.87,说明所建模型整体上对样本数据拟合较好,即解释 变量性别对被解释变量收入的87%的差异作出了解释。 2)t检验 t(b)=7.44, p=0.0001,则拒绝原假设,表明性别对教授收入有 显著影响。 3)F检验 F=55.34,p=0,则拒绝原假设,表明该回归方程整体显著, 通过检验。 2、经济意义
二、虚拟变量模型
1、概念:把含有虚拟变量的模型称为虚拟变量模型。 2、常见的虚拟变量模型的种类

虚拟变量回归

虚拟变量回归

虚拟变量回归
虚拟变量回归是指将一个分类变量转化为虚拟变量(也称为哑变量或指示变量),并将其作为解释变量在回归模型中使用。

虚拟变量是一种二元变量,其中一个变量用1表示某个类别,另一个变量用0表示不属于该类别。

例如,当一个分类变量有三个类别时,可以创建两个虚拟变量来表示这三个类别,分别是0-1变量A和0-1变量B,它们满足如下条件:
- 当分类变量属于A类时,变量A为1,变量B为0;
- 当分类变量属于B类时,变量A为0,变量B为1;
- 当分类变量属于C类时,变量A和变量B均为0。

在回归模型中使用虚拟变量可以使我们将分类变量的不同类别彼此对比,并推断它们对应的不同的回归系数,从而更好地解释和预测因变量。

虚拟变量回归在经济学、社会学、医疗保健等领域中很常见,可以用来研究诸如性别、种族、政治党派、行业等分类变量对某一因变量的影响。

第六章 虚拟变量回归模型

第六章 虚拟变量回归模型

ˆ 3176 Y .83 503.17Di i se ( 233.04) (329.57) t (13.63) ( 1.53) r 2 0.189
以上回归结果中,截距的估计值恰好等于男性 食品支出的平均值,而2674恰好等于女性的平 均值,所以虚拟变量回归式是用来对两组均值 是否不同进行判断的工具。 虚拟变量回归式中,取0的一类被称为基准类、 基础类或者参照类。 3.为什么不引入两个虚拟变量? 对模型(1)如果设置两个虚拟变量,则存在 完全共线性,无法估计。所以,如果定性变量 有m种分类,则只需引入m-1个虚拟变量。
B2 代表了东北和中 B1 代表了南部地区的平均接受率, 所以, 北部地区与南部地区的差异,B3 代表了西部地区与南部地区 的差异。
2.模型的估计与假设检验
包含多分定型变量模型的估计和假设检验与以前没有什么 不同。例如,研究生接受率一例,利用Eviews回归得到:
其回归方程为:
Accepi 44.54 10.68D2i 12.50 D3i
E(Yi | Di 0) B1
E(Yi | Di 1) B1 B2
B2 由以上两式可以看出,B1 表示男性平均食品支出, 表示女性平均食品支出与男性的差异。B1 B2 表示 女性平均食品支出。由此,B2 称为差别截距系数。 通过以上的分析也可知,虚拟变量系数的含义与定量 变量系数的含义有很大不同。它表示两组某个变量均 值的差距,而不是变化量的意思。 2.ANOVA模型的估计与假设检验 ANOVA模型的估计与假设检验同定量变量模型没有差 异。比如,对男女食品消费支出一例(例:6-1)进行 估计可得到:
t (14.38) P (0.00) ( 2.67) (0.010) ( 2.25) (0.028)

3-2虚拟变量的回归

3-2虚拟变量的回归

大学及其以上: E(Yi | X i , D1 0, D2 1) ( 0 3 ) 1 X i假定3>2>0
保健
其几何意义:
支出
3 2
0
大学教育 高中教育 低于高中教育
收入
3.模型中包含二个定性变量
• 例如,在上述职工薪金模型中,再引入代表学历的虚拟变量D2。
1 本科及以上学历
D2
0
本科以下学历
• 男职工的平均薪金为: E(Yi | Xi , Di 1) (0 2 ) 1Xi
• 假定2>0,则两个函数有相同的斜率,但有不同的截距。意即, 男女职工平均薪金对教龄的变化率是一样的,但两者的平均薪金 水平相差2。
• 可以通过传统的回归检验,对2的统计显著性进行检验,以判断 企业男女职工的平均薪金水平是否有显著差异。
• 斜率的变化可通过以乘法的方式引入虚拟变量来测度。
例:根据消费理论,消费水平(C)主要取决于收入水平(Y),但在一个较长的时
期,人们的边际消费倾向会发生变化,尤其是在自然灾害、战争等反常年份, 边际消费倾向往往出现变化。
这种边际消费倾向的变化可通过在收入的系数中引入虚拟变量来考察。
1 正常年份

重合回归
平行回归
同截距回归
不同的回归
思考:当我们运用样本数据对金融危机前后两个消费模型进行回归后,如何界定所得结果在
统计意义上属于哪一种类型呢? • 这时可采用以乘法形式引入虚拟变量。例如,对于金融危机前后消费—收入模型,可设
定为:
• 假设: E(t)= 0,上述模型所表示的函数可化为:
2.交互效应分析
Yi 0 1 X i 2 D1 3 D2 i
在 E(i)=0 的初始假定下,高中以下、高中、大学及其以上教育水平

stata虚拟变量的回归命令

stata虚拟变量的回归命令

stata虚拟变量的回归命令虚拟变量是用来表示分类变量的一种方法,它可以将分类变量转换为一系列二进制变量,每个二进制变量表示分类变量的一个类别。

这样,就可以使用回归模型来分析分类变量对因变量的影响。

stata中有多个回归命令可以用于分析虚拟变量,包括:•regress:这是最基本的回归命令,可以用于分析连续因变量和分类自变量之间的关系。

•logit:这是一个非线性回归命令,可以用于分析二分类因变量和分类自变量之间的关系。

•probit:这是一个非线性回归命令,可以用于分析二分类因变量和分类自变量之间的关系。

•poisson:这是一个非线性回归命令,可以用于分析计数因变量和分类自变量之间的关系。

在stata中使用虚拟变量回归命令时,需要特别注意以下几点:•虚拟变量的个数:分类变量的类别数决定了虚拟变量的个数。

例如,一个有3个类别的分类变量需要创建2个虚拟变量。

•虚拟变量的取值:虚拟变量的取值为0或1,其中0表示分类变量不属于该类别,1表示分类变量属于该类别。

•虚拟变量的解释:虚拟变量的系数表示分类变量的每个类别对因变量的影响。

例如,一个虚拟变量的系数为正,表示该类别对因变量有正向影响;一个虚拟变量的系数为负,表示该类别对因变量有负向影响。

下面是一个stata虚拟变量回归命令的例子:regress y x1 x2 x3logistic y x1 x2 x3poisson y x1 x2 x3在这个例子中,y是因变量,x1、x2和x3是分类自变量。

regress命令用于分析y和x1、x2、x3之间的线性关系,logistic命令用于分析y和x1、x2、x3之间的非线性关系,poisson命令用于分析y和x1、x2、x3之间的非线性关系。

虚拟变量回归命令是stata中非常重要的一个工具,它可以用于分析分类变量对因变量的影响。

在使用虚拟变量回归命令时,需要特别注意虚拟变量的个数、虚拟变量的取值和虚拟变量的解释。

虚拟变量的回归分析

虚拟变量的回归分析

哑变量赋值的操作
所有EDU=0 EDU2=1,其他EDU=0 EDU3=1,其他EDU=0 EDU4=1,其他EDU=0 EDU5=1,其他EDU=0 AREA=1
AREA=0
精品课件
应用SPSS建立回归方程
回归结果:
精品课件
SPSS输出结果
M od e l Summary
Model 1
AdjustedStd. Err or of
6
3.098 32.759
Sig. .000a
Residual .851
9
.095
Total 19.438
15
a.Predictors: (Constant) , AREA, ED 3, 年 龄 , ED2, ED 4,
b.Dependent Var iable: 生 子 女 数
精品课件
SPSS输出结果
Coef fic ientas
Unstandardized Standardized Coefficients Coefficients
Mo de l
B) 1.409
.6 82
年龄
.0 68
.0 13
Be ta .5 69
ED2
-1 .1 27
.2 95
-. 39 9
R R SquareR Squartehe Estimate
.978a
.956
.927
.30751
a.Pr edict ors: ( Co nstant), AREA, ED3, 年 龄 , E ED5
ANOVbA
Sum of
Model
Squares
1
Regress1io8n.586

第五章-含虚拟变量的回归模型

第五章-含虚拟变量的回归模型

Econometrics第五章虚拟变量回归模型(教材第六章)第五章虚拟变量回归模型第一节虚拟变量的性质和引入的意义第二节虚拟变量的引入第三节交互作用效应第四节含虚拟变量的回归模型学习要点虚拟变量的性质,虚拟变量的设定5.1 虚拟变量的性质和引入的意义虚拟变量的性质f定性变量性别(男,女)婚姻状况(已婚,未婚)受教育程度(高等教育,其他)收入水平(高收入,中低收入)肤色(白人,有色人种)政治状况(和平时期,战争时期)f引入虚拟变量(Dummy Variables)1、分离异常因素的影响,例如分析我国GDP的时间序列,必须考虑“文革”因素对国民经济的破坏性影响,剔除不可比的“文革”因素。

2、检验不同属性类型对因变量的作用,例如工资模型中的文化程度、季节对销售额的影响。

3、提高模型的精度,相当与将不同属性的样本合并,扩大了样本量,从而提高了估计精度)。

5.1 虚拟变量的性质和引入的意义5.2 虚拟变量的引入虚变量引入的方式主要有两种f加法方式虚拟变量与其它解释变量在模型中是相加关系,称为虚拟变量的加法引入方式。

加法引入方式引起截距变动5.2 虚拟变量的引入f 虚拟变量的作用在于把定性变量“定量化”:通过赋值0和1,0表示变量不具备某种性质,1表示具备。

f 例,0代表男性,1代表女性;0代表未婚,1代表已婚;等等。

f 这类取值为0和1的变量称为虚拟变量(dummy variables ),通常用符号D 表示。

f 事实上,模型可以只包括虚拟变量(ANOVA 模型):其中,0,1,i i D D ==男性;女性。

12i i iY B B D u =++5.2 虚拟变量的引入虚拟变量的性质f 假定随机扰动项满足男性的期望:5.2 虚拟变量的引入虚拟变量的性质f 食品支出对性别虚拟变量(男=0,女=1)回归的结果:f 结果怎么解释?f 由于男性赋值为0,女性赋值为1,因此,截距项表示取值为0的一类(这里是男性)的均值。

古扎拉蒂《计量经济学基础》第9章

古扎拉蒂《计量经济学基础》第9章

虚拟变量数量的设置规则
1.若定性因素具有m(m≥2)个相互排斥
属性(或几个水平),当回归模型有截距项时, 只能引入m-1个虚拟变量;
2.当回归模型无截距项时,则可引入m个 虚拟变量;否则,就会陷入“虚拟变量陷阱”。 (为什么?)
若对两个相互排斥的属性 “性别属性”, 仍然引入m=2个虚拟变量,则有
E Yi | Di = 0 = 0
Yi ( 0 1) i 女 性
Yi 0 i
男性
(2)一个定性解释变量(两种属性)和一
个定量解释变量的情形
模型形式 Yi = f(Di,Xi )+μi 0 1Di
例如:Yi =0 1Di +Xi +μi
其中:Y-支出;X-收入;
Di
1 0
女性 支出
例:比较改革开放前、后我国居民(平 均)“储蓄-收入”总量关系是否发生了变 化?模型的设定形式为:
Yt 1 2 Dt 1X t 2 (Dt X t ) ut
其中 : Yt为储蓄总额,X t为收入总额。
D
1
0
改革开放后 改革开放前
回归方程:
改革开放后 EYt | Xt , D 1 (1 2)(1 2)Xt 改革开放前 EYt | Xt , D 0 1 1Xt
夏季、农村居民
E Yi | X i ,D1 = 1, D2 = 0 =( 0 + 1)+ X i
冬季、城市居民
E Yi | X i , D1 0, D2 1 (0 2 )+ X i
冬季、农村居民
E Yi | X i , D1 0, D2 0 0 X i
Y
D1 1,D2 1
基准:四季度
(4)两个定性解释变量(均为两种属性) 和一个定量解释变量的情形

8-1-1虚拟变量的定义与含单个虚拟变量的回归

8-1-1虚拟变量的定义与含单个虚拟变量的回归

对外经济贸易大学计量经济学I n t r o d u c t i o n t o E c o n o m e t r i c s导论虚拟变量的定义与含单个虚拟变量的回归定性信息在前面的章节中,我们见到的变量都是用来描述定量信息的,比如考试分数,生师比,工资,股本回报率等等;然而,在经济学研究中,往往有很多的定性信息,比如性别,地域,种族,是否实施某项政策等等。

在模型中引入定性信息需要用到虚拟变量。

虚拟变量虚拟变量是值为0或1的变量例1:Male i= 1如果工人i为男性0如果工人i为女性例2:South i= 1如果国家i为南方国家0如果国家i为北方国家因此,虚拟变量也叫二元变量 (Binary Variable)或者哑元变量(Dummy Variable)。

带定性变量的数据名称应反映编码值二元变量的名称应反映变量的定义。

例如,名为“性别”的变量不清楚哪一个是1,而变量名称“Female”则更清楚。

不同的定义方式有不同的解释。

两个组别的定性变量可以使用一个二元变量,多个组别的定性变量应该使用一组二元变量。

含有一个虚拟自变量的回归例:工资的性别差异定义一个虚拟变量femalewage= β0+β1edu+δ0femaleE wage edu,female=0=β0+β1eduE wage edu,female=1=(β0+δ0)+β1edu工资的性别差异δ0可视为给定教育水平的情况下,女性与男性的平均工资之差。

含有一个虚拟自变量的回归一般地,考虑一个带有一个连续变量(x)和一个虚拟(d)的简单模型。

y = b0 + d0d + b1x + uE y x,d=0=β0+β1xE y x,d=1=(β0+δ0)+β1x因此δ0=E y x,d=1−E y x,d=0可以解释成为两个组别的均值之差,其中d =0的组为基准组。

基准组与比较组在上述例子中,female i= 1如果工人i为女性0如果工人i为男性男性是基准组,女性是比较组,δ0可视为给定教育水平的情况下,女性与男性的平均工资之差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17
显然,在研究房地产价格影响机理时,需要分 析那些不易量化的定性因素对房地产价格是否 真的有显著影响。 能否把定性的因素也引入计量经济模型中呢? 怎样才能在模型中有效地表示这些定性因素的 作用呢?
1
问题的一般性描述
在前面各章的分析中,被解释变量主要是受可以直 接度量的定量因素的影响,如收入、产出、商品需 求量、价格、成本、资金、人数等。但现实经济生 活中,影响被解释变量变动的因素,除了可以直接 观测数据的定量变量外,可能还包括一些本质上为 定性因素的影响,例如性别、种族、职业、季节、 文化程度、战争、自然灾害、政府经济政策的变动 等。
则对任一家庭都有: D1 + D2 = 1 D1 + D2 - 1 = 0 ,
即产生完全共线,陷入了“虚拟变量陷阱”。
“虚拟变量陷阱”的实质是:完全多重共线性。
15
综上可知: 1.引入虚拟变量的个数与两个因素有关;一是定性 变量的属性多少,一是有无截距项; 2.对虚拟变量的运用要谨慎,虚拟变量的使用得当 常能发挥积极的作用,但在模型中引入虚拟变量的 数量要适当,引入的虚拟变量的数量过度,则可能 带来负面的影响。
10
例如,比较收入时考察性别的作用。当研究男性收入是否 高于女性时,是将女性作为比较的基础(参照物),故有 男性为“1”,女性为“0”。
例1
(1)
D
=
1 0
男 女
(2)
D
=
1 0
改革开放以后 改革开放以前
(3)
D1
=
1 0
天气阴 (4) 其他
D2
=
1 0
天气雨 其他
问题:
为何只选0、1,选2、3、4行吗?为什么?
16
虚拟变量在回归模型中的角色
虚拟变量既可作为被解释变量,也可作为解释 变量,分别称其为虚拟被解释变量和虚拟解释变量。 虚拟被解释变量的研究是当前计量经济学研究的 前沿领域,如MacFadden、Heckmen等人的微观计 量经济学研究,大量涉及到虚拟被解释变量的分析。 本课程只是讨论虚拟解释变量的问题
的属性状态( m 2 ),故只设定一个虚拟变量。)
14
若对两个相互排斥的属性 “居民属性” ,仍然 引入 m 2 个虚拟变量,则有
1 城镇居民 D1i = 0 农村居民
1 农村居民 D2i = 0 城镇居民
则模型(1)为
Yi 0 1Xi 1D1 2D2 ui (3)
11
属性的状态(水平)数与虚拟变量 数量的关系
定性因素的属性既可能为两种状态,也可能为多种 状态。例如,性别(男、女两种)、季节(4种状 态),地理位置(东、中、西部),行业归属,所 有制,收入的分组等。
(1,0)
如:(D1,D2)=

(0,1)
(0, 0)量数量的设置规则
1.若定性因素具有 m 个 (m 2) 相互排斥属性(或
几个水平),当回归模型有截距项时,只能引入 m -1个虚拟变量;
2.当回归模型无截距项时,则可引入 m 个虚拟变
量;否则,就会陷入“虚拟变量陷阱”。(为什 么?)
13
一个例子(虚拟变量陷阱)
研究居民住房消费支出 Yi 和居民可支配收入 Xi 之间的 数量关系。回归模型的设定为:Yi = 0 + 1Xi +ui (1)
数量的关系 3.虚拟变量在回归分析中的角色以及作用等
方面的问题
9
“0”和“1”选取原则
虚拟变量取“1”或“0”的原则,应从分析问 题的目的出发予以界定。
从理论上讲,虚拟变量取“0”值通常代表比较 的基础类型;而虚拟变量取“1”值通常代表被 比较的类型。 “0”代表基期(比较的基础,参照物); “1”代表报告期(被比较的效应)。
2
在实际的经济分析中,这些定性因素有时具有不可忽 视的重要作用。例如,研究居民收入水平时,职业、 性别、文化程度、就业的地域等因素,通常是值得考 虑的影响因素。 因此,在计量经济学的建模中有必要将定量因素和定 性因素同时纳入回归模型之内。
3
本章要研究的主要问题是: 1.如何将作为解释变量的定性因素引入回归模型? 2.这些定性解释变量在回归模型中有何特殊的作用?
现在要考虑城镇居民和农村居民之间的差异,如何办? 为了对 “城镇居民”、“农村居民”进行区分,分析
各自在住房消费支出 Yi上的差异,设 D1i = 1 为城镇;
D1i = 0 为农村,则模型为
Yi = 0 + 1Xi +1D1 + ui (2)
(模型有截距,“居民属性”定性变量只有两个相互排斥
4
第八章 虚拟变量回归
本章主要讨论:
●虚拟变量 ●虚拟解释变量的回归 ●虚拟被解释变量的回归(选讲,不包括)
5
第一节 虚拟变量
本节基本内容:
●基本概念 ●虚拟变量设置规则
6
一、基本概念
定量因素:可直接测度、数值性的因素。 定性因素:属性因素,表征某种属性存在与否的
非数值性的因素。
基本思想:
直接在回归模型中加入定性因素存在诸多的困难 (那些困难?),是否可将这些定性因素进行量 化,以达到定性因素能与定量因素有着相同作用 之目的。
7
虚拟变量的定义
计量经济学中,将取值为0和1的人工变量称为虚 拟变量。虚拟变量也称:哑元变量、定性变量等 等。通常用字母D或DUM加以表示(英文中虚拟 或者哑元Dummy的缩写)。 对定性变量的量化可采用虚拟变量的方式实现。
8
二、虚拟变量设置规则
虚拟变量的设置规则涉及三个方面: 1.“0”和“1”选取原则 2.属性(状态、水平)因素与设置虚拟变量
相关文档
最新文档