人教版七年级下册数学第四单元练习题
(整理)新人教版初中数学七年级下册单元同步练习试题全册
5.1.1-2相交线、垂线检测题一、填空1.如图,直线AB,CD 相交于O,OE 平分∠AOD,FO ⊥OD 于O,∠1=40°,则∠2=•___ __,∠4=______.421D CAB (5)OFE D C A B NM(6)O FE(第1题图) (第2题图)2.如图,AB ⊥CD 于O,EF 为过点O 的直线,MN 平分∠AOC,若∠EON=100•°,•那么 ∠EOB=________,∠BOM=________.3.如图,AB 是一直线,OM 为∠AOC 的角平分线,ON 为∠BOC 的角平分线,则OM,ON 的位置关系是_______.4.直线外一点与直线上各点连结的线段中,以_________为最短.5.从直线外一点到这条直线的________叫做这点到直线的距离.C AB NM(7)DCA B(8)O(第3题图) (第7题图) (第8题图)6.经过直线外或直线上一点,有且只有______直线与已知直线垂直.7.如图,要证BO ⊥OD,请完善证明过程,并在括号内填上相应依据:∵AO ⊥CO,∴∠AOC=__________(___________).又∵∠COD=40°(已知),∴∠AOD=_______.•∵∠BOC=∠AOD=50°(已知),∴∠BOD=_______, ∴_______⊥_______(__________).8. 如图,点B 到AC 的距离是线段_________的长度,_________是线段BC 到A 的距离二、选择9.下列语句正确的是( )A.相等的角为对顶角B.不相等的角一定不是对顶角C.不是对顶角的角都不相等D.有公共顶点且和为180°的两个角为邻补角10.两条相交直线与另外一条直线在同一平面内,它们的交点个数是( ) A.1 B.2 C.3或2 D.1或2或311.如图10,PO ⊥OR,OQ ⊥PR,能表示点到直线(或线段)的距离的线段有( ) A.1条 B.2条 C.3条 D.5条(10)PQDCAB(11)O D C AB(12)FE (第11题图) (第12题图) (第14题图)12.如图,OA ⊥OB,OC ⊥OD,则( )A.∠AOC=∠AODB.∠AOD=∠DOBC.∠AOC=∠BODD.以上结论都不对 13.下列说法正确的是( )A.在同一平面内,过已知直线外一点作这条直线的垂线有且只有一条B.连结直线外一点和直线上任一点,使这条线段垂直于已知直线C.作出点P 到直线的距离D.连结直线外一点和直线上任一点的线段长是点到直线的距离 14.如图,与∠C 是同旁内角的有( ). A.2 B.3 C.4 D.5 15.下列说法正确的是( ).A.两条直线相交成四个角,如果有三个角相等,那么这两条直线垂直.B.两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直.C.两条直线相交成四个角,如果有一对对顶角互余,那么这两条直线垂直.D.两条直线相交成四个角,如果有两个角互补,那么这两条直线垂直. 16.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是( )A. 12(∠1+∠2)B. 12∠1C. 12(∠1-∠2)D.12∠2三、作图题17、如图,按要求作出:(1)AE ⊥BC 于E; (2)AF ⊥CD 于F;(3)连结BD,作AG ⊥BD 于G.18、如下左图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 分别是位于公路AB 两侧的村庄,(1)现在公路AB 上修建一个超市C ,使得到M 、N 两村庄距离最短,请在图中画出点C (2)设汽车行驶到点P 位置时离村庄M 最近;行驶到点Q 位置时,距离村庄N 最近,请在图中公路AB 上分别画出P 、Q 两点的位置。
(新人教版)数学七年级下册:5.4《平移》教案和习题(含答案)
《平移》教案一、教学目标1.经历观察、分析、操作、欣赏以及抽象、归纳等过程,以及与他人合作交流探索的过程,进一步发展空间观念,增强审美意识,学会用运动的观点分析问题.2.通过实例,认识图形平移,了解平移的特征,理解平移的含义,会进行点的平移.3.理解平移前后两个图形对应点连线平行且相等的性质,能解决简单的平移问题.二、教学重点与难点重点:图形平移的特征和作平移图形.难点:平移的性质探索和理解.三、教学过程(一)创设情境,引入新课1.感受平移,体验新知你坐过公车和搭过电梯吗?它是一种什么样的运动?这样的运动在生活中还有哪些现象?(活动1:学生讨论)2.观察图形,形成印象生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案.观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,并回答问题.(1)它们有什么共同的特点?(2)能否根据其中的一部分绘制出整个图案?(活动2:师生交流.)这些美丽的图案是由若干个相同的图案组合而成的,每个图形都有“基本图形”,而“基本图形”是什么?如第一个图形是中间一个正方形,上、下有正立与倒立的正三角形,下排的左图中的“基本图形”是鸽子与橄榄枝;下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.3.实践探索,得出新知探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案如:引导学生找规律,发现平移特征,回答下面问题:1、图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.(填“改变”或“不改变”)2、经过平移,每一组对应点所连成的线段________.归纳 (活动3:分组讨论)平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. (2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点. (3)连接各组对应的线段平行且相等.图形的这种变换,叫做平移变换,简称平移简单归纳为两点:1.平移的方向. 2.平移的距离四、典例剖析,深化巩固1. 把鱼往左平移8cm.(假设每小格是1cm2)五、小结(学生回答):这节课你学了什么?知道了什么?学会了什么?六、课后作业必做题:教科书习题:3.6题《平移》习题1、决定平移的基本要素是____和____。
人教版初中数学七年级数学下册第四单元《二元一次方程组》测试题(含答案解析)
一、选择题1.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或5 2.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12aD .﹣12a 3.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( )A .6(1)5(211)y x x y =-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y x x y =⎧⎨+-=⎩D .65(21)y x x y =⎧⎨+=⎩4.两位同学在解方程组时,甲同学由278ax by x cx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C 写错了解得22x y =-⎧⎨=⎩,那么a 、b 、c 的正确的值应为 A .452a b c ===-,, B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,, 5.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( )A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=3 6.已知:关于x 、y 的方程组2423x y a x y a +=-+⎧⎨+=-⎩,则x-y 的值为( ) A .-1 B .a-1 C .0 D .17.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .452710320x y x y -=⎧⎨+=⎩C .452710320x y x y +=⎧⎨+=⎩D .427510203x y x y -=⎧⎨-=⎩8.下列四组值中,不是二元一次方程21x y -=的解的是( )A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .10=⎧⎨=⎩x y D .11x y =⎧⎨=⎩ 9.下列方程中,属于二元一次方程的是( )A .235x x -=+B .1xy y +=C .315x y -=-D .325x y += 10.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x 岁和y 岁,则可列方程组( )A .440x y x y x y -=-⎧⎨-=-⎩B .440x y x y -=⎧⎨+=⎩C .440x y y x -=⎧⎨-=⎩D .440x x y y x y -=-⎧⎨-=-⎩ 11.下列方程是二元一次方程的是( ). A .32x y -= B .1xy = C .2+3=x x D .153x y -= 12.下列说法正确的是( )A .二元一次方程2317x y +=的正整数解有2组B .若52x y =⎧⎨=⎩是232x y k -=的一组解,则k 的值是12 C .方程组23321y x x y =-⎧⎨+=⎩的解是11x y =⎧⎨=-⎩D .若3m n x +与22112m x y --是同类项,则2m =,1n = 二、填空题13.已知方程组278ax by cx y +=⎧⎨-=⎩,甲解对了,得32x y =⎧⎨=-⎩.乙看错了c ,得22x y =-⎧⎨=⎩.则abc 的值为_______.14.渝北区某学校将开启“阅读节”活动,为了充实学校书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去7690元;语文组购买了A 、B 两种文学书籍若干本,用去8330元,已知A 、B 两种书的数量分别与甲、乙两种书的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同,若甲种书的单价比乙种书的单价多8元,则乙种书籍比甲种书籍多买了______本. 15.若12x y =⎧⎨=-⎩是二元一次方程23ax y -=的解,则a 的值为________. 16.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______.17.甲、乙两人共同解方程组51542+=⎧⎨-=-⎩ax y x by ,由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=⎩,乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,则a 2020+ (10b )2021=________. 18.甲、乙两码头相距180km ,某轮船从甲码头顺流航行到乙码头需要5h ,返回时需要6h ,那么这条河的水流速度是________.19.单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并,则多项式4m-2n+(-m-n )2-2(n-2m )2的值是______. 20.如果关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是______. 三、解答题21.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A 种原料和2吨B 种原料,生产每件乙产品需要3吨A 种原料和1吨B 种原料,该厂现有A 种原料120吨,B 种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)去年每件甲产品售价为3万元,每件乙产品售价为5万元,根据市场调研情况,今年每件乙产品售价比去年下降10%,问每件甲产品应涨价多少万元,才能使甲乙产品全部出售后的总销售额达到144万元?22.解方程组(1)310518x y x y +=⎧⎨+=⎩(2)312491a b a b ⎧+=⎪⎨⎪-=-⎩ 23.元旦期间,甲、乙两个商场开展促销活动,甲商场实行“全场52折”的优惠;乙商场实行“满200元减100元”的优惠(如:某顾客购物320元,他需付款220元,购物420元,他也只需付款220元).(1)张丽想买商场标价都是850元的同一套衣服,她应该选择哪家商场?(2)李明发现在甲、乙商场购买一样标价六百多元的某商品,最后付款额是一样的,请问此商品的标价是多少元?(3)丙商场推出“先打折”,再“满200元减100元”的活动.李明发现在丙商场购买(2)中的商品,虽然标价一样但比在乙商场要多付25元钱,问丙商场先打了多少折后再参加活动?24.解方程组(1)()() 322 3553x yx y⎧-=+⎪⎨+=-⎪⎩.(2)1 32321 x yx y⎧-=-⎪⎨⎪-=⎩.25.解下列方程组:(1)137x yx y+=⎧⎨-=⎩(2)23151475x yx y+=⎧⎪++⎨=⎪⎩26.某班举行数学知识竞赛,下面是班长安排小明购买奖品后的对话情景小明:买了两种不同的笔记本共40本,单价分别是5元和8元,我从你处领了300元,现在找回68元班长:你肯定搞错了小明:哦!我把自己口袋里的13元一起当作找回的钱款了班长:这就对啦!(1)根据上述信息,求两种笔记本各买了多少本?(2)请你解释,小明为什么不可能找回68元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】∵2x+1·4y=128,27=128,∴x+1+2y=7,即x+2y=6.∵x,y均为正整数,∴22xy=⎧⎨=⎩或41xy=⎧⎨=⎩∴x+y=4或5. 2.A解析:A【分析】设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.3.A解析:A【分析】设原有树苗x 棵,公路长为y 米,由栽树问题“栽树的棵数=分得的段数+1”,建立方程组即可.【详解】设原有树苗x 棵,公路长为y 米,由题意,得6(1)5(211)y x x y =-⎧⎨+-=⎩, 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组.关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.4.A解析:A【分析】把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得,3223148a b c -=⎧⎨+=⎩由方程组中第二个式子可得:c=-2.用排除法,可以直接解答.【详解】解:把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得:3223148a b c -=⎧⎨+=⎩①②, 由②得:c 2=-,四个选项中行只有A 符合条件.故选择:A.【点睛】此题主要考查了二元一次方程组的解,做这类题目时要用代入法或排除法,这样可以提高做题效率.5.C解析:C【分析】根据二元一次方程的定义,列出关于m 、n 的方程组,然后解方程组即可.【详解】解:根据题意,得121m n m n -=⎧⎨+-=⎩, 解得21m n =⎧⎨=⎩. 故选:C .6.D解析:D【解析】分析:由x 、y 系数的特点和所求式子的关系,可确定让①-②即可求解.详解:2423x y a x y a +=-+⎧⎨+=-⎩①②, ①−②,得x−y=−a+4−3+a=1.故选:D.点睛:此题考查了解二元一次方程组,一般解法是用含有a 的代数式表示x 、y ,再计算,但也要注意能简便的则简便.此题中注意整体思想的渗透.7.C解析:C【分析】根据等量关系式“①4辆板车运货量+5辆卡车运货量=27吨;②10辆板车运货量+3辆卡车运货量=20吨”根据相等关系就可设未知数列出方程.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4x+5y=27;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10x+3y=20.可列方程组为452710320x y x y +⎧⎨+⎩==. 故选:C .【点睛】由关键性词语“4辆板车和5辆卡车一次能运27吨货”,“10辆板车和3车卡车一次能运货20吨”,找到等量关系是解决本题的关键.8.D解析:D【分析】将各项中x 与y 的值代入方程检验即可.【详解】解:x-2y=1,解得:x=2y+1,当y=-1时,x=-1,所以11x y =-⎧⎨=-⎩是方程21x y -=的解,选项A 不合题意, 当y=-0.5时,x=-1+1=0,所以00.5x y =⎧⎨=-⎩是方程21x y -=的解,选项B 不合题意; 当y=0时,x=1,所以10x y =⎧⎨=⎩是方程21x y -=的解,选项C 不合题意; 当y=1时,x=2+1=3,所以11x y =⎧⎨=⎩不是方程21x y -=的解,选项D 符合题意; 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 9.C解析:C【分析】根据二元一次方程的定义解答.【详解】解:A 、该方程中只含有1个未知数,不是二元一次方程,故本选项不符合题意; B 、该方程中含有未知数的项最高次数是2,不是二元一次方程,故本选项不符合题意; C 、该方程符合二元一次方程的定义,故本选项符合题意;D 、该方程不是整式方程,故本选项不符合题意;故选:C .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.10.A解析:A【分析】根据题设小亮和老师的岁数分别为x 岁和y 岁,根据题意列出方程组解答即可.【详解】解:设小亮和老师的岁数分别为x 岁和y 岁可得440x y x y x y -=-⎧⎨-=-⎩故选A【点睛】此题考查二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列出方程组求解.11.A解析:A【分析】根据二元一次方程的定义,对各个选项逐个分析,即可得到答案.【详解】32x y -=是二元一次方程,故选项A 正确;1xy =,含未知数的项的次数是2,故选项B 错误;2+3=x x 是一元一次方程,故选项C 错误;153x y-=,不是整式方程,故选项D 错误; 故选:A .【点睛】本题考查了二元一次方程的知识;解题的关键是熟练掌握二元一次方程的定义,从而完成求解.12.C解析:C【分析】求出方程的特殊解即可判断A ;代入得到关于k 的方程,求出即可;代入求出x ,把x 的值代入求出y 即可;根据同类项的定义求出即可.【详解】A 、1732y x -=,当y=1时,x=7,当y=3时,x=4,当y=5时,x=1,正整数解有3个,故本选项错误;B 、把x=5,y=2代入方程得:10-6=2k ,∴k=2,故本选项错误;C 、利用代入法解方程组得得:x=1,y=-1,故本选项正确;D 、根据同类项的定义得到m+n=2,2m-1=0,解得:12m =,32n =,故本选项错误. 故选:C .【点睛】 本题主要考查了同类项的概念,二元一次方程以及解二元一次方程组等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.二、填空题13.-40【分析】把甲的结果代入方程组求出c 的值得到关于a 与b 的方程将乙结果代入第一个方程得到a 与b 的方程联立求出a 与b 的值在计算abc 的值即可【详解】解:由甲运算结果得解得由乙运算结果得得解得=故答案解析:-40【分析】把甲的结果代入方程组求出c 的值,得到关于a 与b 的方程,将乙结果代入第一个方程得到a 与b 的方程,联立求出a 与b 的值,在计算abc 的值即可.【详解】解:由甲运算结果得322a b -=,3148c +=,解得2c =-,由乙运算结果得222a b -+=,得322222a b a b -=⎧⎨-+=⎩, 解得45a b =⎧⎨=⎩. ∴ abc =45(2)40⨯⨯-=-故答案为:-40【点睛】本题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.14.80【分析】先设甲种书的单价为x 元数量为y 本乙种书的数量为z 本根据数学组购买了甲乙两种自然科学书籍若干本用去7690元:语文组购买了AB 两种文学书籍若干本用去8330元列出方程组求出z-y 的值即可求解析:80【分析】先设甲种书的单价为x 元,数量为y 本,乙种书的数量为z 本,根据数学组购买了甲、乙两种自然科学书籍若干本,用去7690元:语文组购买了A 、B 两种文学书籍若干本,用去8330元列出方程组,求出z-y 的值即可求出答案.【详解】设甲种书的单价为x 元,数量为y 本,乙种书的数量为z 本,根据题意得:()()8769088330xy x z x y xz ⎧+-⎪⎨-+⎪⎩==,整理得:8769088330xy xz z xy y xz +-⎧⎨-+⎩=①=②, ②−①得:8z-8y =640,则z-y =80,故乙种书籍比甲种书籍多买了80本故答案为:80.【点睛】此题考查了三元二次方程组的应用,关键是读懂题意,根据题目中的数量关系列出方程组,在解方程组时要注意方程组的特点.15.【分析】把x 与y 的值代入方程计算即可求出a 的值【详解】把代入方程得:解得:故答案为:【点睛】本题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值解析:1-【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把12x y =⎧⎨=-⎩代入方程得:()223a -⨯-=, 解得:1a =-,故答案为:1-.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 16.45【分析】设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意列出方程组进行解答便可【详解】解:设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意得化 解析:45%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(140%)a b c a b c c a a b x c a b c ++=++⎧⎪=⨯⎨⎪+++++=+++⎩化简整理得:30350241311a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩, 解得:0.4545%x ==;故答案为:45%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.17.【分析】根据甲看错了方程①中的a②没有看错代入②得到一个方程求出b 的值乙看错了方程②中的b①没有看错代入①求出a 的值然后再把ab 的值代入代数式计算即可求解【详解】解:根据题意得4×(-3)-b=-2解析:0【分析】根据甲看错了方程①中的a ,②没有看错,代入②得到一个方程求出b 的值,乙看错了方程②中的b ,①没有看错,代入①求出a 的值,然后再把a 、b 的值代入代数式计算即可求解.【详解】解:根据题意得,4×(-3)-b=-2,5a+5×4=15,解得a=-1,b=-10,则a 2020+ (10b )2021=(-1)2020+(-110×10)2021=1-1=0 故答案是:0.【点睛】 本题考查了二元一次方程的解,根据题意列出方程式解题的关键.18.【分析】设水流速度为xkm/h 轮船静水中航行速度为ykm/h 根据题意列二元二次方程组并求解即可得到答案【详解】设水流速度为xkm/h 轮船静水中航行速度为ykm/h 根据题意得:即①-②得:∴即这条河的解析:3/km h【分析】设水流速度为xkm/h ,轮船静水中航行速度为ykm/h ,根据题意列二元二次方程组并求解,即可得到答案.【详解】设水流速度为xkm/h ,轮船静水中航行速度为ykm/h 根据题意得:18051806y x y x ⎧+=⎪⎪⎨⎪-=⎪⎩即3630y x y x +=⎧⎨-=⎩①② ①-②,得:23630x =-∴3x =即这条河的水流速度是3/km h故答案为:3/km h .【点睛】本题考查了二元二次方程组的知识;解题的关键是熟练掌握二元二次方程组的性质,并运用到实际问题中,从而完成求解.19.-3【分析】根据两个单项式可以合并求出mn 的值再化简多项式代入即可【详解】解:单项式-x2m-ny3与单项式可以合并∴2m-n=33=m+n 组成方程组解得:m=2n=1当m=2n=1时故答案为:【点解析:-3【分析】根据两个单项式可以合并,求出m 、n 的值,再化简多项式代入即可.【详解】解:单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并 ∴2m-n=3,3=m+n组成方程组解得:m=2,n=1当m=2,n=1时 ()()224222m n m n n m -+---- 82918=-+-3=-故答案为:3-.【点睛】本题考查同类项定义,以及代入多项式求值,值得注意的是本题代入求值时,可以直接代入,化简后代入反而繁缛了.20.【分析】先将所求的方程组变形为然后根据题意可得进一步即可求出答案【详解】解:由方程组可得∵关于xy 的二元一次方程组的解是∴解得故答案为【点睛】本题考查了二元一次方程组的解法正确理解题意合理变形得出是解析:105x y =⎧⎨=⎩【分析】先将所求的方程组变形为11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩,然后根据题意可得365225x y ⎧=⎪⎪⎨⎪=⎪⎩,进一步即可求出答案.【详解】解: 由方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可得11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩, ∵关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩, ∴365225x y ⎧=⎪⎪⎨⎪=⎪⎩,解得105x y =⎧⎨=⎩, 故答案为105x y =⎧⎨=⎩. 【点睛】 本题考查了二元一次方程组的解法,正确理解题意、合理变形、得出365225x y ⎧=⎪⎪⎨⎪=⎪⎩是解本题的关键.三、解答题21.(1)生产甲种产品15件,乙种产品20件才能恰好使两种原料全部用完;(2)每件甲产品应涨价0.6万元.【分析】(1)首先设生产甲种产品x 件,生产乙种产品y 件,然后列出二元一次方程组即可求解; (2)设每件甲种产品涨价m 万元,根据甲的销售额+乙的销售额=总销售额列出方程,即可求解.【详解】设生产甲种产品x 件,生产乙种产品y 件,根据题意,得43120250x y x y +=⎧⎨+=⎩解得1520 xy=⎧⎨=⎩答:生产甲种产品15件,乙种产品20件才能恰好使两种原料全部用完.(2)设每件甲种产品涨价m万元,根据题意,得(3)15(110%)520144m+⨯+-⨯⨯=解得0.6m=答:每件甲产品应涨价0.6万元.【点睛】本题考查了一元一次方程的应用,二元一次方程组的应用,重点是根据题意找到等量关系,并根据等量关系列出方程.22.(1)42xy=⎧⎨=-⎩﹔(2)1213ab⎧=⎪⎪⎨⎪=⎪⎩【分析】(1)应用加减消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【详解】(1)310 518 x yx y+=⎧⎨+=⎩①②②-①,可得2x=8,解得x=4,把x=4代入①,解得y=-2,∴原方程组的解是4-2 xy=⎧⎨=⎩(2)312491 a ba b⎧+=⎪⎨⎪-=-⎩①②①×4,可得4a+6b=4③,③-②,可得15b=5,解得13b=.把13b=代入①,解得12a=,∴原方程组的解是1213ab⎧=⎪⎪⎨⎪=⎪⎩.【点睛】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.23.(1)甲;(2)625;(3)丙商场先打了8.8折后再参加活动.【分析】(1)分别计算在甲,乙商场的费用,比较后可得答案;(2)设商品的标价为x 元,判断:600<x <800,再根据最后付款额是一样的列方程,解方程可得答案;(3)先求解同种商品在丙商场付款350元,设丙商场先打y 折,再“满200元减100元”,且设减了n 个100,可得方程625100350,10y n ⨯-= 由n 为正整数,进行讨论并检验,从而得到答案.【详解】解:(1)张丽在甲商场购买所花:85052%442⨯=(元),在乙商场购买所花:8504100450-⨯=(元),由442<450,张丽应该选择甲商场购买.(2)设商品的标价为x 元,由题意可得:600<x <800,则 52%3100,x x =-⨯0.48300,x ∴=625x ∴=答:此商品的标价是625元.(3)由(2)得:625元的商品在乙商场付款6253100325-⨯=元,所以同种商品在丙商场付款325+25=350元,设丙商场先打y 折,再“满200元减100元”,且设减了n 个100,则 625100350,10y n ⨯-= 整理得:5828,y n -=8528,n y ∴=-5288y n -∴= , 又n 为正整数,当5288y -=时,7.2,1,y n == 经检验:7.2625=45010⨯元,此时2n =,不合题意,舍去, 当52816y -=时,8.8,2,y n == 经检验:8.862555010⨯=元,此时2n =,符合题意, 当52824y -=时,10.4,y = 此时不符合题意,故舍去,综上:丙商场先打了8.8折后再参加活动.【点睛】本题考查的是一元一次方程的应用,二元一次方程的正整数解的应用,分类讨论的数学思想,掌握以上知识是解题的关键.24.(1)57x y =⎧⎨=⎩;(2)34x y =⎧⎨=⎩. 【分析】(1)先将两个方程分别整理,再利用加减法解方程组;(2)先将方程①化简,再利用加减法解方程组.【详解】(1)3(2)2355(3)x y x y -=+⎧⎨+=-⎩①②, 整理得38x y -=③,3520x y -=-④,③-④,得7y =,将7y =代入③,得5x =,所以原方程的解是57x y =⎧⎨=⎩. (2)132321x y x y ⎧-=-⎪⎨⎪-=⎩①②,由①整理得236x y -=-③,23⨯-⨯②③,得4y =,将4y =代入②,得3x =,所以原方程的解是34x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法、加减法,根据二元一次方程组的特点选用恰当的解法是解题的关键.25.(1)21x y =⎧⎨=-⎩;(2)61x y =⎧⎨=⎩【分析】(1)方程组运用加减消元法求解即可;(2)方程组整理后,利用加减消元法求解即可.【详解】解:(1)137x y x y +=⎧⎨-=⎩①② ①+②得4x=8,解得,x=2把x=2代入①得,2+y=1,解得,y=-1所以,方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得,23155723x y x y +=⎧⎨-=⎩①② ①×7+②×3得,29x=174解得,x=6把x=6代入①得,y=1,所以,原方程组的解为61x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.26.(1)5元的笔记本买25本,8元的笔记本买15本;(2)见解析【分析】(1)设5元、8元的笔记本分别买x 本、y 本,根据题意列二元一次方程组解答;(2)根据(1)中求出的5元、8元笔记本的本数求出应找回的钱数,再与68比较即可得出结论.【详解】(1)设5元、8元的笔记本分别买x 本、y 本,由题意得405868313x y x y +=⎧⎨++=⎩,解得2515x y =⎧⎨=⎩, 答:5元的笔记本买25本,8元的笔记本买15本;(2)应找回的钱数为:3005258155568-⨯-⨯=≠,∴不能找回68元.【点睛】此题考查二元一次方程组的实际应用,有理数的混合运算,正确理解题意是解题的关键.。
人教版七年级下册数学重点知识点练习及答案解析——命题、定理及平移测试
人教版七年级下册数学重点知识点练习及答案解析——命题、定理及平移测试一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2019·江苏初一月考)在以下现象中:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上,瓶装饮料的移动,属于平移的是()A.①,②B.①,③C.②,③D.②,④【答案】D【解析】①温度计中液柱的上升或下降改变图形的大小,不属于平移;②打气筒打气时,活塞的运动属于平移;③钟摆的摆动是旋转,不属于平移;④传送带上瓶装饮料的移动符合平移的性质,属于平移,故选D.2.(2019·重庆市忠县拔山中学校初一期中)下列语句不是命题的是()A.熊猫没有翅膀B.点到直线的距离C.若|a|=|b| ,则a=b D.小明是七年级二班的学生【答案】B【解析】熊猫没有翅膀、若|a|=|b|,则a=b和小明是七年级(2)班的学生都是命题,而点到直线的距离为一个名称,它不是命题.故选B.3.(2019·浙江初一期中)如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()A.B.C.D.【答案】D【解析】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故答案选:D.4.(2019·邓州市张村乡中学初一期末)下面给出的结论中,说法正确的有()①最大的负整数是﹣1;②在同一个平面内,经过一个已知点只能画一条直线和已知直线垂直;③当a≤0时,|a|=﹣a;④若a2=9,则a一定等于3;⑤邻补角的两条角平分线构成一个直角;⑥同旁内角相等,两直线平行.A.2个B.3个C.4个D.5个【答案】C【解析】①最大的负整数是﹣1,正确;②在同一个平面内,经过一个已知点只能画一条直线和已知直线垂直,正确;③当a≤0时,|a|=﹣a,正确;④若a2=9,则a=±3,错误;⑤邻补角的两条角平分线构成一个直角,正确;⑥同旁内角互补,两直线平行,错误.故选C.5.(2019·嵊州市谷来镇中学初二期中)在下列命题中,为真命题的是()A.两个锐角的和是锐角B.相等的角是对顶角C.同旁内角互补D.同角的补角相等【答案】D【解析】解:A、错误.两个锐角的和可能是锐角或直角或钝角;B、错误.相等的角不一定是对顶角;C、错误,两直线平行时同旁内角互补;D、正确.故选:D.6.(2019·河北初三期中)在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D..【答案】D【解析】解:A.可以通过轴对称变换得到;B.不能通过平移变换得到;C. 可以通过旋转得到;D. 可以通过平移变换得到,故选:D.7.(2019·上海市江宁学校初一期中)一辆汽车在笔直的公路上,两次拐弯后,仍在原来的方向上平行前进,则这两次拐弯的角度应是()A.第一次向左拐40°,第二次向右拐40°B.第一次向右拐40°,第二次向左拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向右拐40°,第二次向右拐140°【答案】A【解析】如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,可以得到∠1=∠2.故选A.8.(2019·重庆市两江育才中学校初二开学考试)如图,已知直角△ABC中,∠B=90°,AB=8,BC=6,把斜边AC 分成n段,以每段为对角线作小长方形,则所有这些小长方形的周长的和是()A.14B.28C.14nD.28n【答案】B【解析】∵∠B=90°,AB=8,BC=6,且斜边AC平均分成n段,∴小矩形的长为ABn=8n,宽为BCn=6n,∴一个小矩形的周长为:2(86n n)=28n,∴这些小矩形的面积和是n•28n=28.故选:B.9.(2019·浙江初二期中)能说明命题“若|a|=|b|,则a=b”是假命题的反例为()A.a=2,b=-2B.a=1,b=0C.a=1,b=1D.a=-3,b= 1 3【答案】A【解析】解:若a,b互为相反数,则|a|=|b|,a≠b,命题“若|a|=|b|,则a=b”是假命题,则a ,b 互为相反数即可, a=2,b=-2时,a ,b 互为相反数,故答案为A.10.(2019·呼伦贝尔市海拉尔区铁路第三中学初一期末)将一副三角板按如图放置,则下列结论中,正确的有( ) ①∠1=∠3;②如果∠2=30°则有AC ∥DE ;③如果∠2=30°,则有BC ∥AD ;④如果∠2=30°,必有∠4=∠CA .①②③B .①②④C .③④D .①②③④【答案】B【解析】 解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,①正确;∵∠2=30°,∴∠1=60°,又∵∠E =60°,∴∠1=∠E ,∴AC ∥DE ,②正确;∵∠2=30°,∴∠1+∠2+∠3=150°,又∵∠C =45°,∴BC 与AD 不平行,③错误;∵∠2=30°∴AC ∥DE ,∴∠4=∠C ,④正确.故选:B .11.(2019·浙江初二期中)能说明命题“若22a b =,则a b =”是假命题的一个反例可以是( )A .2,2a b ==-B .2,3a b ==C .2,2a b =-=-D .2,3a b =-=-【答案】A【解析】若22a b =,则a=b”是假命题的一个反例可以是a=2,b=-2.故选A.12.(2019·昆明市呈贡区实验学校初二期末)某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知//AB CD ,87BAE ∠=︒,121DCE ∠=︒,则E ∠的度数是( )A .28︒B .34︒C .46︒D .56︒【答案】B【解析】解:如图,延长DC 交AE 于F ,//AB CD Q ,87BAE ∠=︒,87CFE ∴∠=︒,又121DCE ∠=︒Q ,1218734E DCE CFE ∴∠=∠-∠=︒-︒=︒,故选:B .13.(2017·内蒙古初一期末)如图,将半径为2cm 的半圆水平向左平移2cm ,则半圆所扫过的面积(阴影部分)为( ).A .2cm πB .24cmC .2ππ⎛⎫- ⎪⎝⎭ cm 2D .2ππ⎛⎫+ ⎪⎝⎭cm 2【答案】B【解析】 根据图形可知阴影面积为:2×2=4;故选B.14.(2019·浙江初二月考)某校八年级四个班的代表队准备举行篮球赛.甲、乙、丙三位同学预测比赛的结果如下:甲说:“802班得冠军,804班得第三”;乙说:“801班得第四,803班得亚军”;丙说:“803班得第三,804班得冠军”赛后得知,三人都只猜对了一半,则得冠军的是( )A .801班B .802班C .803班D .804班【答案】B【解析】解:假设甲说的“802班得冠军”是正确的,那么丙说的“804班得冠军”是错误的,“803班得第三”就是正确的,那么乙说的“803班得亚军”是错误的,“801班得第四”是正确的,这样三人都猜对了一半,且没矛盾.故猜测是正确的.故选:B.二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2018·浙江初二期中)把命题“在一个三角形中,等角对等边”改写成“如果……那么……”的形式为.【答案】如果在一个三角形中有两个角相等,那么这两个角所对的边也相等【解析】因为条件是:在同一个三角形中有两个角相等,结论为:这两个角所对的边也相等.所以改写后为:如果在同一个三角形中有两个角相等,那么这两个角所对的边也相等.16.(2019·上海尚德实验学校初一月考)如图,在长方形ABCD中,AB=7cm,BC=10cm,现将长方形ABCD向右平移3m,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E,A'D'交DC于点F,那么长方形A'ECF 的周长为_____cm.【答案】20【解析】解:由题意得到BE=3cm,DF=4cm,∵AB=DC=7cm,BC=10cm,∴EC=BC-BE=10cm-3cm=7cm,FC=DC-DF=7cm-4cm=3cm,∴长方形A'ECF的周长=2×(7+3)=20(cm),故答案为20.17.(2019·山东初二期末)如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1=_____.134【答案】0【解析】如图,过E作EF∥AB,根据平行于同一直线的两直线互相平行,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC=44°,∠BAE=∠FEA,求出∠BAE=90°-44°=46°,即可求出∠1=180°-46°=134°.18.(2018·辽宁初二期末)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC 沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是___.【答案】301.【解析】∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=12 BC,∴B′O=12AB,CO=12AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有3个,小等边三角形有4个,第3个图形中大等边三角形有4个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有n+1个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:100+1+2×100=301.故答案是301.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2019·全国初二课时练习)下列句子中哪些是命题?(1)动物需要水;(2)玫瑰花是动物;(3)美丽的天空;(4)相等的角是对顶角;(5)负数都小于0;(6)你的作业做完了吗?【答案】(1)(2)(4)(5)是命题【解析】根据命题的定义(1)(2)(4)(5)都对一件事情做出了判断,因此属于命题,(3)“美丽的天空”不是判断语句,因此不是命题,(6)是疑问句,因此不是命题。
人教版七年级数学下册名校课堂训练:期末复习(四)二元一次方程组
期末复习(四)二元一次方程组01知识结构图02重难点突破重难点1 二元一次方程组的解法【例1】解方程组:24, 215. x yy x+=⎧⎨+=⎩①②【思路点拨】解法一:将①变形为42y x=-,然后代入②,消去y,转化为一元一次方程求解;解法二:2⨯①-②,消去y,转化为一元一次方程求解.【解答】方法指导二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法,如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.变式训练1.(2018·天津)方程组10,216x yx y+=⎧⎨+=⎩的解是()A.64 xy=⎧⎨=⎩B.56 xy=⎧⎨=⎩C.36 xy=⎧⎨=⎩D.28 xy=⎧⎨=⎩2.解方程组:3419,4.x yx y+=⎧⎨-=⎩①②重难点2 二元一次方程组的应用【例2】某校组织“大手拉小手,义卖献爱心”活动,购买了黑、白两种颜色的文化衫共140件,进行手绘设计后出售,所获得利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:假设文化衫全部售出,共获利1860元,求购买黑、白两种文化衫各多少件?【思路点拔】根据等量关系“黑色文化衫件数十白色文化衫件数=140,黑色文化衫的利润十白色文化衫的利润=1860元”列方程组求解.【解答】方法指导列方程解决实际间题的解题步骤:①审题:弄清已知量和未知量;②设未知数,并根据等量关系列出符合题意的方程组;③解方程组;④验根并作答:检验方程的根是否符合题意,并写出完整的答.变式训练3.(2018·荆州)《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()A.5210258x y x y +=⎧⎨+=⎩B.5210258x y x y -=⎧⎨-=⎩C.5210258x y x y +=⎧⎨-=⎩D.5282510x y x y +=⎧⎨+=⎩ 4.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾? 思想方法 整体思想 【例3】若方程组2313,3530.9a b a b -=⎧⎨+=⎩的解为8.3,1.2,a b =⎧⎨=⎩则方程组2(2)3(1)13,3(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为( ) A.8.31.2x y =⎧⎨=⎩B.10.20.2x y =⎧⎨=⎩C.10.32.2x y =⎧⎨=⎩D. 6.32.2x y =⎧⎨=⎩ 方法指导所谓“整体思想”就是打破从局部常规解决问题的思路,要从整体的结构入手,观察要解决间题与已知条件之间的整体联系,找到解决问题的捷径. 变式训练5.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则a b -=( )A.1B.3C.14-D.7403复习自测一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x y y z +=-⎧⎨+=⎩B.53323x y y x -=⎧⎨=+⎩C.512x y xy -=⎧⎨=⎩ D.2371x y x y -=⎧⎨+=⎩2.方程529x y +=-与下列方程构成的方程组的解为2,12x y =-⎧⎪⎨=⎪⎩的是( )A.21x y +=B.543x y +=-C.348x y -=-D.328x y +=-3.方程组32,3211x y x y -=⎧⎨+=⎩①②的最优解法是( )A.由①,得32y x =-,再代入②B.由②,得3112x y =-,再代入①C.由②-①,消去xD.由2⨯+①②,消去y4.方程组24317x y x z x y z +=⎧⎪+=⎨⎪++=⎩的解是( )A.221x y z =⎧⎪=⎨⎪=⎩ B.211x y z =⎧⎪=⎨⎪=⎩ C.281x y z =-⎧⎪=⎨⎪=⎩ D.222x y z =⎧⎪=⎨⎪=⎩5.A ,B 两地相距6km ,甲、乙两人从A ,B 两地同时出发,若同向而行,甲3h 可追上乙;若相向而行,1h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为km /h x ,乙的速度为km /h y ,则得方程组为( ) A.6336x y x y +=⎧⎨+=⎩B.636x y x y +=⎧⎨-=⎩C.6336x y x y -=⎧⎨+=⎩D.6336x y x y +=⎧⎨-=⎩6.在等式y kx b =+中,当1x =-时,2y =-,当2x =时,7y =,则这个等式是()A.31y x=-+ B.31y x=+ C.23y x=+ D.31y x=--+2y=5k+2,7.关于,x y的二元一次方程组252,45x y kx y k+=+⎧⎨-=-⎩的解满足9x y+=,则k的值是()A.1B.2C.3D.48.小明在解关于,x y的二元一次方程组3,31x yx y+⊗=⎧⎨-⊗=⎩时,得到了正确结果,1,xy=⊕⎧⎨=⎩后来发现“⊗”“⊕”处被墨水污损了,请你帮他找出⊗、⊕处的值分别是()A.1,1⊗=⊕=B.2,1⊗=⊕=C.1,2⊗=⊕=D.2,2⊗=⊕=9.已知方程组53,54x yax y+=⎧⎨+=⎩和25,51x yx by-=⎧⎨+=⎩有相同的解,则,a b的值为()A.142 ab=⎧⎨=⎩B.46 ab=⎧⎨=-⎩C.62 ab=-⎧⎨=⎩D.12 ab=⎧⎨=⎩10.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?A.16B.19C.22D.25二、填空题(每小题4分,共20分)11.解二元一次方程组的基本思想方法是“消元”,那么解方程组422,325x yx y-=⎧⎨+=⎩宜用________法;解方程组2,23x yx y=⎧⎨-=⎩宜用________法.12.请写出一个以,x y为未知数的二元一次方程组,且同时满足下列两个条件:①由两个二元一次方程组成;②方程组的解为1,2.xy=⎧⎨=⎩这样的方程组可以是________.13.已知1,2xy=⎧⎨=-⎩是方程23x ay-=的一个解,则a的值是________.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为________.15.(2019·临沂)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A,B两种型号的钢板共________块.三、解答题(共50分)16.(12分)解方程组:(1)321,37;x yx y-=-⎧⎨+=⎩①②(2)325, 257;x yx y+=⎧⎨+=⎩①②(3)4(1)3(1)2,2.23x y yx y--=--⎧⎪⎨+=⎪⎩17.(8分)对于任意的实数,,,a b c d,我们规定:a bad bcc d=-,根据这一规定,解答以下问题:若,x y同时满足()3413,4(6)5()x yy x-==--,求xy的值.18.(10分)小明同学看了拼木块的魔术后,也找了8个样大小的长方形木块,第1次按如图1那样,恰好可以拼成一个大的长方形,第2次七拼八凑的拼成了如图2所示的正方形,可是中间留下了一个洞,经测量,发现刚好是一个边长为3cm的正方形.你知道小明同学用的小木块的长和宽分别是多少吗?19.(10分)(2019·盐城)体育器材室有,A B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?20.(10分)(教材P112复习题T10变式)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7000分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮亮妈妈的兑换方法.参考答案【例1】解:解法一:由①,得42y x =-,③ 代入②,得2(42)15x x -+=.解得1x = .把1x =代入③,得 2.y =∴原方程组的解为1,2.x y =⎧⎨=⎩解法二:①×2,得428x y +=③ -③②,得4185x x -=-.解得1x =.把1x =代入①,得 2.y =∴原方程组的解为1,2.x y =⎧⎨=⎩【例2】解:设购买黑色文化衫x 件,白色文化衫y 件.根据题意,得140,(2510)(208)1860,x y x y +=⎧⎨-+-=⎩解得60,80.x y =⎧⎨=⎩答:购买黑色文化衫60件,购买白色文化衫80件. 【例3】D 变式训练 1.A2.解:5,1.x y =⎧⎨=⎩3.A4.解:设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾.由题意,得70,120021800.x y x y +=⎧⎨⨯=⎩解得30,40.x y =⎧⎨=⎩,答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 5.D 复习自测1.B2.C3.C4.C5.D6.B7.B8.B9.A 10.A11.加减 代入 12答案不唯一,如:31x y x y +=⎧⎨-=-⎩ 13.12 14.35 15.1116.解:(1)1,2.x y =⎧⎨=⎩ (2)1,1.x y =⎧⎨=⎩ (3)2,3.x y =⎧⎨=⎩11 / 1117.解:根据题意,得5613,34 4.x y x y -=⎧⎨+=⎩解得2,11.2x xy y =⎧⎪∴=-⎨=-⎪⎩. 18.解:设小木块的长为x cm 、宽为y cm.根据两个拼图可知35,32,x y x y =⎧⎨+=⎩解得15,9.x y =⎧⎨=⎩答:小明同学用的小木块的长为15cm 、宽为9cm.19.解:(1)设每只A 型球、B 型球的质量分别是x 千克、y 千克,根据题意,得7,313,x y x y +=⎧⎨+=⎩,解得3,4,x y =⎧⎨=⎩答:每只A 型球的质量是3千克,B 型球的质量是4千克.(2)设A 型球有a 只,B 型球有b 只,根据题意,得1743417,3b a b a -+=∴=.又,a b 均为正整数,3,2.a b =⎧∴⎨=⎩答:A 型球有3只,B 型球有2只.20.解:①设亮亮妈妈兑换了x 个电茶壶和y 个书包.由题意,得200010007000,5,x y x y +=⎧⎨+=⎩解得2,3.x y =⎧⎨=⎩②设亮亮妈妈兑换了m 个榨汁机和n 个书包.由题意,得300010007000,5,m n m n +=⎧⎨+=⎩解得1,4.m n =⎧⎨=⎩.③设亮亮妈妈兑换了a 个榨汁机和b 个电茶壶.由题意,得300020007000,5,a b a b +=⎧⎨+=⎩解得3,8a b =-⎧⎨=⎩(不合题意,舍去).答:亮亮妈妈兑换了2个电茶壶和3个书包或1个榨汁机和4个书包.。
人教版七年级数学下册第四章、第五章综合检测试卷及答案
人教版七年级数学下册第四章、第五章综合检测试卷(答案附后)一、选择题(共8个小题)1.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )2.一个三角形的两边长分别为4cm 和9cm ,则此三角形第三边长可能是( ) A .13cmB .8cmC .4cmD .5cm3.如图,在△ABC 中,AD 是高,AE 是角平分线,AF 是中线,则下列说法中错误的是( ) A .BF =CF B .∠C+∠CAD =90°C .∠BAF =∠CAFD .S △ABC =2S △ABF4.如图,△ABC 与△A ′B ′C ′关于直线l 对称,且∠A =105°,∠C ′=30°,则∠B =( ) A .45°B .25°C .30°D .20°5.如图,AB =AC ,若要使△ABE ≌△ACD .则添加的一个条件不能是( ) A .∠B =∠CB .∠ADC =∠AEBC .BD =CED .BE =CD6.如图为正方形网格,则∠1+∠2+∠3=( ) A .105°B .120°C .135°D .115°7.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=85°,则∠2的度数为( ) A .35° B .25° C .30° D .20°8.如图,分别以△ABC 的边AB ,AC 所在直线为对称轴作△ABC 的对称图形△ABD 和△ACE ,∠BAC =150°,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA ,有如下结论:①∠EAD =90°;②∠BOE =60°;③OA 平分∠BOC ;其中正确的结论个数是( )第3题图第6题图第5题图第4题图第7题图第8题图二、填空题(共5个小题)9.等腰三角形的一个角是80°,则它的底角的度数是 .10.如图所示,要测量池塘AB 宽度,在池塘外选取一点P ,连接AP ,BP 并分别延长,使PC =PA ,PD =PB , 连接CD .测得CD 长为10m ,则池塘宽AB 为 m ,理由是 .11.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为 .12.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°, 则∠P 的度数是 .13.如图,在锐角三角形ABC 中,AB =4,△ABC 的面积为8,BD 平分∠ABC .若M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 . 三、解答题(共3个小题)14.已知:如图,点A ,F ,C ,D 在同一直线上,AF =DC ,AB ∥DE ,AB =DE ,求证:BC ∥EF .15.如图,在△ABC 中,AB =AC ,DE 是边AB 的垂直平分线,交AB 于E 、交AC 于D ,连接BD . (1)若∠A =40°,求∠DBC 的度数;(2)若△BCD 的周长为16cm ,△ABC 的周长为26cm ,求BC 的长. 第14题图第15题图 第11题图第12题图第13题图第10题图16.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE =.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.答案见下页第16题图备用图备用图七下数学第四章、第五章综合检测卷参考答案一、选择题(共8个小题)1.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( D )2.一个三角形的两边长分别为4cm 和9cm ,则此三角形第三边长可能是( B ) A .13cmB .8cmC .4cmD .5cm3.如图,在△ABC 中,AD 是高,AE 是角平分线,AF 是中线,则下列说法中错误的是( C ) A .BF =CF B .∠C+∠CAD =90°C .∠BAF =∠CAFD .S △ABC =2S △ABF4.如图,△ABC 与△A ′B ′C ′关于直线l 对称,且∠A =105°,∠C ′=30°,则∠B =( A ) A .45°B .25°C .30°D .20°5.如图,AB =AC ,若要使△ABE ≌△ACD .则添加的一个条件不能是( D ) A .∠B =∠CB .∠ADC =∠AEBC .BD =CED .BE =CD6.如图为正方形网格,则∠1+∠2+∠3=( C ) A .105°B .120°C .135°D .115°7.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=85°,则∠2的度数为( A ) A .35° B .25° C .30° D .20°解:∵∠A =60°,∴∠AEF +∠AFE =180°﹣60°=120°, ∴∠FEB +∠EFC =360°﹣120°=240°,第3题图第6题图第5题图第4题图第7题图第8题图∴∠1+∠2=240°﹣120°=120°, ∵∠1=85°,∴∠2=120°﹣85°=35°, 故选:A .8.如图,分别以△ABC 的边AB ,AC 所在直线为对称轴作△ABC 的对称图形△ABD 和△ACE ,∠BAC =150°,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA ,有如下结论:①∠EAD =90°;②∠BOE =60°;③OA 平分∠BOC ;其中正确的结论个数是( B )A .0个B .3个C .2个D .1个解:∵△ABD 和△ACE 是△ABC 的轴对称图形,∴∠BAD =∠CAE =∠BAC ,∴∠EAD =3∠BAC ﹣360°=3×150°﹣360°=90°,故①正确. ∴∠BAE =∠BAD ﹣∠DAE =150°﹣90°=60°, 由翻折的性质得,∠AEC =∠ABD , 又∵∠EPO =∠BPA ,∴∠BOE =∠BAE =60°,故②正确. ∵△ACE ≌△ADB , ∴S △ACE =S △ADB ,BD =CE ,∴BD 边上的高与CE 边上的高相等, 即点A 到∠BOC 两边的距离相等, ∴OA 平分∠BOC ,故③正确. 故选:B .二、填空题(共5个小题)9.等腰三角形的一个角是80°,则它的底角的度数是 80°或50° .10.如图所示,要测量池塘AB 宽度,在池塘外选取一点P ,连接AP ,BP 并分别延长,使PC =PA ,PD =PB , 连接CD .测得CD 长为10m ,则池塘宽AB 为 10 m ,理由是 全等三角形的对应边相等 .第11题图第12题图第13题图第10题图第8题图12.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P 的度数是30°.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP =∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM﹣∠CBP=50°﹣20°=30°,故答案为:30°.13.如图,在锐角三角形ABC中,AB=4,△ABC的面积为8,BD平分∠ABC.若M、N分别是BD、BC上的动点,则CM+MN的最小值是4 .解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为8,AB=4,∴×4•CE=8,∴CE=4.即CM+MN的最小值为4.三、解答题(共3个小题)14.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,求证:BC∥EF.证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC即AC=DF,第14题图在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.15.如图,在△ABC 中,AB =AC ,DE 是边AB 的垂直平分线,交AB 于E 、交AC 于D ,连接BD . (1)若∠A =40°,求∠DBC 的度数;(2)若△BCD 的周长为16cm ,△ABC 的周长为26cm ,求BC 的长. 解:(1)∵AB =AC ,∠A =40°∴∠ABC =∠C ==70°,∵DE 是边AB 的垂直平分线, ∴DA =DB ,∴∠DBA =∠A =40°,∴∠DBC =∠ABC ﹣∠DBA =70°﹣40°=30°;(2)∵△BCD 的周长为16cm ,∴BC +CD +BD =16, ∴BC +CD +AD =16, ∴BC +CA =16,∵△ABC 的周长为26cm , ∴AB =26﹣BC ﹣CA =26﹣16=10, ∴AC =AB =10,∴BC =16﹣AC =16﹣10=6cm .16.在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一条边在AD 的右侧作△ADE ,使AE =AD ,∠DAE =∠BAC ,连接CE .(1)如图,当点D 在BC 延长线上移动时,若∠BAC =25°,则∠DCE = 25° . (2)设∠BAC =α,∠DCE =β.①当点D 在BC 延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D 在直线BC 上(不与B ,C 两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(1)解:∵∠DAE =∠BAC ,∴∠DAE +∠CAD =∠BAC +∠CAD , 即∠BAD =∠CAE , 第15题图第16题图备用图备用图,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=25°,∴∠DCE=25°,故答案为:25°;(2)解:当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;(3)解:当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.。
(人教版)济南市七年级数学下册第四单元《二元一次方程组》测试题(有答案解析)
一、选择题1.已知二元一次方程组2513377x y x y +=⎧⎨-=-⎩①②,用加减消元法解方程组正确的( ) A .①×5-②×7B .①×2+②×3C .①×7-②×5D .①×3-②×2 2.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( ) A .31t -= . B .33t -= C .93t =D .91t = 3.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( ) A .a =0,b =1 B .a =2,b =1 C .a =1,b =0D .a =0,b =2 4.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )A .6种B .7种C .8种D .9种 5.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .96.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1 C .14m ,n33==- D .14,33m n =-= 7.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A .2256x y x y +=⎧⎨=⎩B .2265x y x y +=⎧⎨=⎩C .22310x y x y +=⎧⎨=⎩D .22103x y x y +=⎧⎨=⎩8.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①② 9.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x 斗,买到行酒y 斗,根据题意可列方程组为( )A .5010302x y x y +=⎧⎨+=⎩B .5010302y x x y +=⎧⎨+=⎩C .5010230x y x y +=⎧⎨+=⎩D .5010230y x x y +=⎧⎨+=⎩10.已知关于x 、y 方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式4x ﹣3y =7成立,则m 的值为( )A .8B .0C .4D .﹣2 11.若方程组21322x y k x y +=-⎧⎨+=⎩的解满足0x y +=,则k 的值为( ) A .1- B .1 C .0 D .不能确定12.已知21x y =-⎧⎨=⎩是方程25mx y +=的解,则m 的值是( ) A .32- B .32C .2-D .2二、填空题 13.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % . 14.一天,小明从家出发匀速步行去学校上学,几分钟后,在家休假的爸爸发现小明忘带数学作业,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路回家(爸爸追上小明时交流时间忽略不计).小明拿到书后立即提速14赶往学校,并在从家出发后23分钟到校,两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为______米.15.若2a m b 2m +3n 与a 2n ﹣3b 8的和仍是一个单项式,则m =_____n =_____.16.已知方程组32223x y m x y m+=+⎧⎨+=⎩的解适合8x y +=,则m =_______. 17.如图,在两个形状、大小完全相同的大长方形内放入四个如图③的小长方形后得到如图①、②,已知大长方形的长为m ,则(1)若记小长方形的长为a ,宽为()b a b >,则a 和b 之间的数量关系是_________;(2)图①中阴影部分的周长与图②中阴影部分的周长的和是________(结果用含m 的代数式表示).18.单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并,则多项式4m-2n+(-m-n )2-2(n-2m )2的值是______. 19.若点(2,2)A m n m n ++在y 轴的负半轴上,且点A 到x 轴的距离为6,则m n +=___________.20.已知一个两位数,它的十位上的数字与个位上的数字和是3,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数是_____.三、解答题21.解方程(组)(1)21332x x x -+-= (2)3450529x y x y -+=⎧⎨+=⎩22.已知多项式21231365m x y xy x +-+-+是六次多项式,单项式3x 2n y 5-m 的次数也是六,求:(1)m ,n 的值;(2)[2()]m n m m n ---+的值.23.解方程或方程组:(1)7234(2)x x -=--;(2)2151136x x +--=;(按要求解方程并在括号里注明此步依据) 解:去分母,得____________________________.( )去括号,得_____________________________.( )移项,得______________________________.( )合并同类项,得_____________________________.系数化为“1”,得_____________________________. (3)52253415x y x y +=⎧⎨+=⎩24.如果(a ﹣2)x +(b +1)y =13是关于x ,y 的二元一次方程,则a ,b 满足什么条件? 25.解方程组:(1)421x y y x +=⎧⎨=+⎩; (2)4311213x y x y -=⎧⎨+=⎩26.张伯用100元钱从蔬菜批发市场批发了西红柿和豆角共70千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:(2)张伯当天卖完这些西红柿和豆角能赚多少钱?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】方程组利用加减消元法变形,判断即可.【详解】解:用加减消元法解方程组2513377x yx y+=⎧⎨-=-⎩①②,用①×3-②×2可以消去x,选项A,B, C无法消去方程组中的未知数,故选:D.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.2.C解析:C【分析】运用加减消元法求解即可.【详解】解:解方程组232261s ts t+=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1),即,9t=3,故选:C.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.C解析:C【分析】根据同类项的定义可得关于a、b的方程组,解方程组即得答案.【详解】解:由同类项的定义,得122a ba b-=⎧⎨+=⎩,解得:1ab=⎧⎨=⎩.故选:C.【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.4.A解析:A【解析】试题设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩. 因此兑换方案有6种,故选A .考点:二元一次方程的应用.5.C解析:C【分析】利用加减消元法解方程组即可.【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:3x+3y+3z=90.∴x+y+z=30 ④②-①得:y+z-2x=0 ⑤④-⑤得:3x=30∴x=10故答案选:C .【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.6.A解析:A【分析】根据二元一次方程的概念列出关于m 、n 的方程组,解之即可.【详解】∵关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,∴22111m n m n --=⎧⎨++=⎩即230m n m n -=⎧⎨+=⎩, 解得:11m n =⎧⎨=-⎩, 故选:A .【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.7.A解析:A【分析】设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x 、y 的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,根据题意得:2256x y x y +=⎧⎨=⎩. 故选:A .【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键. 8.A解析:A【分析】根据二元一次方程组的解法逐个判断即可.【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解 ∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+= 解得10k =,则结论②正确 解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数 x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③故选:A .【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键. 9.A解析:A【分析】设醇酒为x 斗,行酒为y 斗,根据两种酒共用30钱,共2斗的等量关系列出方程组即可.【详解】解:由题意,得2501030x y x y +=⎧⎨+=⎩, 故选A .【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键.10.A解析:A【分析】先利用加减消元法求出方程组734437x y x y +=⎧⎨-=⎩的解,再代入方程521x y m -=-即可得. 【详解】由题意得:方程组734437x y x y +=⎧⎨-=⎩①②的解能使等式521x y m -=-成立, 由①+②得:1111x =,解得1x =,将1x =代入①得:734y +=,解得1y =-,将1,1x y ==-代入521x y m -=-得:()5211m -⨯-=-,解得8m =,故选:A .【点睛】本题考查了利用加减消元法解二元一次方程组,熟练掌握方程组的解法是解题关键. 11.B解析:B【分析】方程组中两方程相加得到以k 为未知数的方程,解方程即可得答案.【详解】解:①+②,得3(x+y )=3-3k ,由x+y=0,得3-3k=0,解得k=1,故选:B .【点睛】本题考查了二元一次方程组的解,利用等式的性质是解题关键.12.A解析:A【分析】先根据二元一次方程的解的定义可得一个关于m 的一元一次方程,再解方程即可得.【详解】由题意得:2215m -+⨯=, 解得32m =-, 故选:A .【点睛】本题考查了二元一次方程的解,掌握理解方程的解的概念是解题关键. 二、填空题13.140【分析】设甲乙两筐苹果各有先求出从甲筐拿出20到乙筐后甲乙两筐分别为再求出从乙筐拿出25到甲筐后甲乙两筐分别为:列方程求出x 与y 的关系即可【详解】设甲乙两筐苹果各有从甲筐拿出20到乙筐后甲乙两解析:140【分析】设甲、乙两筐苹果各有x 、kg y ,先求出从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,再求出从乙筐拿出25%到甲筐后,甲、乙两筐分别为:171204x y +,33420y x +,列方程17133204420x y y x +=+,求出x 与y 的关系即可. 【详解】设甲、乙两筐苹果各有x 、kg y ,从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,从乙筐拿出25%到甲筐后,甲、乙两筐分别为:()17180%25%20%204x y x x y +⨯+=+, ()3375%20%420y x y x ⨯+=+, 由题可得:17133204420x y y x +=+,解得75y x =, 75y x =, 则原来乙筐苹果质量为甲筐的:7100%100%140%5y x ⨯=⨯=. 故答案为:140.【点睛】本题考查循环倒液类型问题,掌握循环倒液类型问题的解法,抓住经过两次循环两者质量相等构造等式(或方程)解决问题是关键. 14.2080【分析】设小明原速度为(米/分钟)爸爸行进速度为(米/分钟)则小明拿到书后的速度为(米/分钟)然后根据题意和图形列二元一次方程组解答即可【详解】解:设小明原速度为(米/分钟)爸爸行进速度为(解析:2080【分析】设小明原速度为x (米/分钟),爸爸行进速度为y (米/分钟),则小明拿到书后的速度为1.25x (米/分钟),然后根据题意和图形列二元一次方程组解答即可.【详解】解:设小明原速度为x (米/分钟),爸爸行进速度为y (米/分钟),则小明拿到书后的速度为1.25x (米/分钟),则家校距离为()112311 1.2526x x x +-⨯=.由题意及图形得:()()()1116111611 1.251380x y x y ⎧=-⎪⎨-⨯+=⎪⎩, 解得:80x =,176y =∴小明家到学校路程为:8011100122080⨯+⨯=(米).故答案为:2080.【点睛】本题主要考查了二元一次方程组的应用,审清题意、设出未知数、明确等量关系、列出二元一次方程组是解答本题的关键.15.2【分析】根据同类项的概念列出方程组解方程组得到答案【详解】根据题意可知2amb2m+3n 与a2n ﹣3b8的和仍是一个单项式∴解得:故答案为:12【点睛】本题考查了单项式和解二元一次方程组两个单项式解析:2【分析】根据同类项的概念列出方程组,解方程组得到答案.【详解】根据题意可知,2a m b 2m +3n 与a 2n ﹣3b 8的和仍是一个单项式,∴23238m n m n =-⎧⎨+=⎩, 解得:12m n =⎧⎨=⎩, 故答案为:1,2.【点睛】本题考查了单项式和解二元一次方程组.两个单项式的和为单项式,则这两个单项式是同类项,即所含字母相同,并且相同字母的指数也相同.16.19【分析】将m 看做已知数表示出x 与y 代入x+y=8中计算即可求出m 的值【详解】解:得5x=m+6即得:-5y=4-m 即代入x+y=8中得:去分母得:2m+2=40解得:m=19故答案为:19【点睛解析:19【分析】将m 看做已知数表示出x 与y ,代入x+y=8中计算即可求出m 的值.【详解】解:32223x y m x y m ++⎧⎨+⎩=①=② 32⨯-⨯①②得5x=m+6,即65m x += 23⨯-⨯①②得:-5y=4-m ,即45m y -=代入x+y=8中,得:64855m m +-+= 去分母得:2m+2=40,解得:m=19.故答案为:19【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.【分析】(1)根据图①可得两个小长方形的宽等于一个小长方形的长由此即可得;(2)先根据图①可得从而可得再分别求出图①与图②中阴影部分的周长然后根据整式的加法法则进行求和即可得【详解】(1)由图①得: 解析:2a b =112m 【分析】(1)根据图①可得两个小长方形的宽等于一个小长方形的长,由此即可得;(2)先根据图①可得2a b m +=,从而可得,24m m a b ==,再分别求出图①与图②中阴影部分的周长,然后根据整式的加法法则进行求和即可得.【详解】(1)由图①得:2a b =;(2)由图①得:22a b a b m =⎧⎨+=⎩, 解得24m a m b ⎧=⎪⎪⎨⎪=⎪⎩, 图①中阴影部分的周长为()52242m b m m m ⎛⎫+=+= ⎪⎝⎭, 图②中阴影部分的周长为()3223223244m m m m a b b m m ⎛⎫-++=-++= ⎪⎝⎭, 则图①中阴影部分的周长与图②中阴影部分的周长的和是511322m m m +=, 故答案为:2a b =,112m . 【点睛】 本题考查了二元一次方程组的应用、整式的加减应用,依据图形,正确建立方程组和列出整式是解题关键.18.-3【分析】根据两个单项式可以合并求出mn 的值再化简多项式代入即可【详解】解:单项式-x2m-ny3与单项式可以合并∴2m-n=33=m+n 组成方程组解得:m=2n=1当m=2n=1时故答案为:【点解析:-3【分析】根据两个单项式可以合并,求出m 、n 的值,再化简多项式代入即可.【详解】解:单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并 ∴2m-n=3,3=m+n组成方程组解得:m=2,n=1当m=2,n=1时 ()()224222m n m n n m -+---- 82918=-+-3=-故答案为:3-.【点睛】本题考查同类项定义,以及代入多项式求值,值得注意的是本题代入求值时,可以直接代入,化简后代入反而繁缛了.19.-2【分析】根据题意列出方程组求得mn 的值即可求解【详解】根据题意得:①+②得:∴故答案为:【点睛】本题考查了坐标与图形坐标轴上点的坐标特征二元一次方程组的应用解此题的关键是列出关于的方程组解析:-2【分析】根据题意列出方程组,求得m 、n 的值,即可求解.【详解】根据题意,得:2026m n m n +=⎧⎨+=-⎩①②, ①+②得:336m n +=-,∴2m n +=-,故答案为:2-.【点睛】本题考查了坐标与图形,坐标轴上点的坐标特征,二元一次方程组的应用,解此题的关键是列出关于m 、n 的方程组.20.21【分析】设这个两位数十位数字为x 个位数字为y 根据题意可得:据此列方程组求解【详解】解:设这个两位数十位数字为x 个位数字为y 由题意得:解得:则这个两位数为21故答案为:21【点睛】本题主要考查了二 解析:21【分析】设这个两位数十位数字为x ,个位数字为y ,根据题意可得:10(10)93x y y x x y +-+=⎧⎨+=⎩据此列方程组求解.【详解】解:设这个两位数十位数字为x ,个位数字为y ,由题意得:10(10)93x y y x x y +-+=⎧⎨+=⎩解得:21x y =⎧⎨=⎩则这个两位数为21.故答案为:21.【点睛】本题主要考查了二元一次方程的应用,理解题意从中找出相应的等量关系列出二元一次方程组是解题的关键.三、解答题21.(1)x =-7;(2)12x y =⎧⎨=⎩【分析】(1)根据去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可; (2)方程整理后,利用加减消元法解方程即可.【详解】解:(1)去分母得 ()()622133x x x --=+去括号得 64239x x x -+=+移项得 64392x x x --=-合并同类项得 7x -=系数化为1得 7x =-(2)方程组整理得345529x y x y -=-⎧⎨+=⎩①② ②×2+①得1313x =解得1x =把1x =代入②得529y +=解得2y =∴方程组的解为12x y =⎧⎨=⎩【点睛】本题考查了解一元一次方程及解二元一次方程组.解二元一次方程组的思想是消元思想,常用方法是代入法和加减法.22.(1)m =3,n =2;(2)4m ,12【分析】(1)根据题意列出方程组求解即可;(2)先去括号,再合并同类项,代入求值即可.【详解】(1)由题意得:126526m m n =⎧⎨=⎩++-+ 解得:32m n =⎧⎨=⎩答:m ,n 的值分别为3,2.(3)原式=m -(n -2m -m -n )=m -n +2m +m +n=4m当m =3,n =2时,原式=4×3=12【点睛】本题考查了多项式和单项式的次数概念,掌握相关概念列出方程组是解题的关键. 23.(1)2x =;(2)3x =-;(3)50x y =⎧⎨=⎩ 【分析】(1)按一元一次方程解法,去分母,去括号,移项合并,系数化1即可;(2)根据等式性质2去分母,()()221516x x +--=,根据去括号法则或乘法分配律去括号42516x x +-+=,根据等式的基本性质移项45612x x -=--,合并,系数化1即可;(3)标号,利用加减消元法2⨯-①②,求出x ,将x 代入②求出y ,联立即可.【详解】(1)解:去括号,得72348x x -=-+.移项,得42387x x -=+-.合并同类项,得24=x .系数化为“1”,得2x =.(2)解:去分母,得()()221516x x +--=.(等式的基本性质2)去括号,得42516x x +-+=.(去括号法则或乘法分配律)移项,得45612x x -=--.(等式的基本性质1)合并同类项,得3x -=.系数化为“1”,得3x =-.故答案为:()()221516x x +--=.(等式的基本性质2);42516x x +-+=.(去括号法则或乘法分配律);45612x x -=--.(等式的基本性质1);3x -=;3x =- (3)解:5225,3415.x y x y +=⎧⎨+=⎩①②2⨯-①②,得735.x =解得 5.x =将5x =代入②,得0.y =∴原方程组的解为5,0.x y =⎧⎨=⎩【点睛】本题考查一元一次方程的解法与二元一次方程组的解法,掌握一元一次方程的变形依据,和解法,会用加减消元法或代入消元法解二元一次方程组是解题关键.24.a ≠2,b ≠﹣1【分析】根据二元一次方程含有两个未知数可知a ﹣2≠0,b+1≠0,即可求出a ,b 所满足的条件.【详解】解:∵(a ﹣2)x +(b +1)y =13是关于x ,y 的二元一次方程,∴a ﹣2≠0,b +1≠0,∴a≠2,b≠﹣1.【点睛】此题考查了二元一次方程的定义:即含有两个未知数的方程,根据定义求参数满足的条件,难度一般.25.(1)13xy=⎧⎨=⎩;(2)53xy=⎧⎨=⎩【分析】(1)利用代入消元法即可求解;(2)将②式适当变形得③式,再利用代入消元法即可求解.【详解】解:(1)x y4y2x1+=⎧⎨=+⎩①②,把②代入①得:x+2x+1=4,解得:x=1,把x=1代入② 得:y=3,∴原方程组的解为13 xy=⎧⎨=⎩;(2)4x-3y112x y13=⎧⎨+=⎩①②,解:由②得:y=13-2x③,把③代入①得:4x-3(13-2x)=11,解得x=5,把x=5代入③得:y=3,∴原方程组的解为53 xy=⎧⎨=⎩.【点睛】本题考查代入消元法解二元一次方程组.代入消元法解二元一次方程组的一般步骤:变:将其中一个方程变形,使一个未知数用含另一个未知数的代数式表示;代:用这个代数式代替另一个方程中的相应未知数,得到一个一元一次方程;解:解这个一元一次方程;求:把求得的未知数的值代入代数式,求得另一个未知数的值;写:写出方程组的解.26.(1)张伯当天批发西红柿30千克,豆角40千克;(2)张伯当天卖完这些西红柿和豆角能赚54元【分析】(1)设张伯当天批发西红柿x 千克,豆角y 千克,列二元一次方程组求解; (2)分别算出西红柿和豆角的单位利润,再根据(1)中的结果求出总利润.【详解】解:(1)设张伯当天批发西红柿x 千克,豆角y 千克,701.2 1.6100x y x y +=⎧⎨+=⎩,解得3040x y =⎧⎨=⎩, 答:张伯当天批发西红柿30千克,豆角40千克;(2)每千克西红柿的利润是:1.8 1.20.6-=(元),每千克豆角的利润是:2.5 1.60.9-=(元),0.6300.940183654⨯+⨯=+=(元),答:张伯当天卖完这些西红柿和豆角能赚54元.【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意列出方程组进行求解.。
最新人教版七年级数学下册全册单元测试(附答案)
人教版数学七年级下册第五章平行线与相交线单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线乙沿四的方向得到直线b若N『50° ,则N2的度数是()A.40°B.50°C.90°D.130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合, 含30。
角的直角三角板的斜边与纸条一边重合,含45。
角的三角板的一个顶点在纸条的另一边上,则N1的度数是(A. 30°B. 20°C.3.如图,Zl+Z2=180°90 a15° D. 14°\一 1,Z3=100° 则N4 等于()A. 70°B. 80°C.90°D. 100°4.如图々〃处等边△板的顶点£在直线r上,Zl= 20° ,则N2的度数为()上BA. 60°B. 45°5.如图,已知直线a〃8, N如131° oo o oC. 40°D.30°,则N2等于()则N2的度数是()7.如图,AB〃CD,EF交AB、CD于点E、F,EG平分NBEF,交CD于点G.若如1=40° , 则NEGF=()8.如图,4?是/见。
的平分线,AD//BC. ZB=30° ,则为()C. 70°D. 110°9.下列命题的逆命题不正确的是(A.平行四边形的对角线互相平分C.等腰三角形的两个底角相等C. 80°D. 120°)B.两直线平行,内错角相等D.对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等,则N2的度数是()NE=3(T ,则NA的度数为(A. 30°B. °C. 35°D. ° 二、填空题(共有8道小题)13.已知三条不同的直线左6、。
(新人教版)数学七年级下册:《不等式》习题精选(附解析)
不等式习题精选一、你能填对吗设x>y,用“>”或“<”号填空.x+2______y+2;x-1____y一1;3x_____3y;-3x______-3y;________________2.不等式>1的解集是_____3.当x________时,代数式2x-5的值不大于0;当x______时,代数式2x-5的值等于0.4.若2x-l<x+2,则x<3,变形的根据是______________.二、选一选5.下列不等式中一定成立的是().A.4a>3aB.3-a<4-aC.-a>-2aD.>6.若a<b,则成立的不等式为().A.d(-c)<b(-c)B.ac>bcC.ac<bcD.a-c<b-c7.如果d,a+1,-a,1-a四个数在数轴上所对应的点是按从左到右顺序排列的,那么满足下列各式的是().A.B.C.a>0D.a<08.a,b在数轴上的位置如图2所示,则,的值().A.>0B.<0C.=0D.≥0三、解答题9.按照下列条件,写出仍能成立的不等式,并说明根据.(1)a>b两边都加上-3;(2)-3a<b两边都除以-3;(3)a≥3b两边都乘以5;(4)d≤2b两边都加上c;(5)a>b两边都乘以c.10.说明下列不等式是怎样变形的,并指出变形的依据.(1)若3x-2y>0,则3x>2y;(2),则a<b+c.11.根据不等式的性质,把下列不等式化为x>a或x<a的形式(a为常数).(1)8x>7x+3;(2);(3)-5x>l0.四、能力提示12.根据不等式的性质,把下列不等式化为x>a或x<a的形式(a为常数).(1)(2)(3)-3x>2(4)一3x+2<2x+3五、拓展创新13.用不等式表示下列各式,并化为x>a或x<a的形式(a为常数).(1)a的是非负数;(2)m的相反数与1的和是正数.14.下列几组数字分别表示三个线段的长,每一组中三个线段能否组成三角形?为什么? (1)3,4,5(2)2,3,13(3)2,6,8(4)4,6,11六、中考热身15.(2005·安徽)根据图3所示,对a,b,c三种物体的重量判断正确的是().A.a<cB.0<bC.a>cD.b<c参考答案:1.> > < > < <2.x<-33.4.不等式的基本性质5.B6.D7.A8.B9.(1)a-3>b-3(不等式性质);(2)(不等式性质3);(3)5a≥15b(不等式性质2);(4)a+c≤2b+c(不等式性质1);(5)∵c表示的数有三种可能∴①当c>0时,ac>bc(不等式性质2),②当c<0时,ac<bc(不等式性质3),③当c=0时,ac=bc(0的特殊性).10.(1)根据不等式性质1,两边加上2y;(2)根据不等式性质3,两边乘以-3,得a-c<b,再根据不等式性质1,两边同时加上c.11.(1)x>3(2)x<27(3)x<-212.(1);x>-2;(2);x≤3;(3)(4)-3x-2x<3-2,-5x<1,.13.(1),a≥0.(2)-m+1>0,m<114.3,4,5查、可以作为三角形的三边,因为3+4>5,5-4<3,符合两边之各大于第三边,两边之差小于第三边的要求。
七年级数学下同步练习册答案人教版
七年级数学下同步练习册答案人教版七年级学生要仔细做人教版数学同步练习册的习题,出错要少,检查要多。
小编整理了关于人教版七年级数学下册同步练习册的答案,希望对大家有帮助!七年级数学下同步练习册答案人教版(一)平方根第2课时基础知识1、 2、 3、 4、B C B B5、47、±58、±11 13/8 ±13/10 -0.59、比较大小能力提升解得x=2 2x+5=2×2+5=9 所以2x+5的算数平方根为311、解:6.75÷1.2=5.625 5.625的算数平方根约等于2.37cm12、解:设宽是x(x>0),长为4x 则4x²=25解得x=2.5 所以4x=10七年级数学下同步练习册答案人教版(二)同位角、内错角、同旁内角基础知识1、B2、C3、∠1 ∠3 ∠2 ∠6 AB CD EF4、∠C 内错∠BAE5、AB 内错6、题目略(1)∠ADC ∠EBG ∠HEB ∠DCG(2)∠ADC ∠ABE ∠AEB ∠ACD能力提升7、题目略(1)AB CD BE(2)AD BC AB(3)AB CD BC(4)AB CD BE8、∠A和∠B ∠A和∠D ∠D和∠C ∠B和∠C 共4对9、题目略(1)∠DEA同位角是∠C,内错角是∠BDE,同旁内角是∠A、∠ADE(2)∠ADE同位角是∠B,内错角是∠CED,同旁内角是∠A、∠AED探索研究10、证明:∵∠2=∠4(互为对顶角)∴∠1=∠2∴∠1=∠4∵∠2+∠3=180° ∠1=∠2∴∠1+∠3=180°∴∠1和∠3互补七年级数学下同步练习册答案人教版(三)平行线的判定第2课时基础知识1、C2、C3、题目略(1)AB CD 同位角相等,两直线平行(2)∠C 内错角相等,两直线平行(3) ∠EFB 内错角相等,两直线平行4、108°5、同位角相等,两直线平行6、已知∠ABF ∠EFC 垂直的性质 AB 同位角相等,两直线平行已知 DC 内错角相等,两直线平行 AB CD 平行的传递性能力提升7、B 8、B9、平行已知∠CDB 垂直的性质同位角相等,两直线平行三角形内角和为180° 三角形内角和为180° ∠DCB 等量代换已知∠DCB 等量代换 DE BC 内错角相等,两直线平行10、证明:(1)∵CD是∠ACB的平分线(已知)∴∠ECD=∠BCD∵∠EDC=∠DCE=25°(已知)∴∠EDC=∠BCD=25°∴DE∥BC(内错角相等,两直线平行)(2)∵DE∥BC∴∠BDE+∠B=180° 即∠EBC+∠BDC+∠B=180°∵∠B=70° ∠EDC=25°∴∠BDC=180°-70°-25°=85°11、平行∵BD⊥BE∴∠DBE=90°∵∠1+∠2+∠DBE=180°∴∠1+∠2=90°∵∠1+∠C=90°∴∠2=∠C∴BE∥FC(同位角相等,两直线平行)探索研究12、证明:∵MN⊥AB EF⊥AB∴∠ANM=90° ∠EFB=90°∵∠ANM+∠MNF=180° ∠NFE+∠EFB=180°∴∠MNF=∠EFB=90°∴MN∥FE。
人教版七年级数学下册核心考点专题题型归纳04 平方根、立方根以及实数 (原卷版)
专题04 平方根、立方根以及实数【思维导图】◎考点题型1 求一个数的算术平方根例.(江苏·南师附中树人学校八年级期末)10的算术平方根是()A.10B C.D.10变式1.(江苏·扬州市江都区实验初级中学八年级阶段练习)下列说法正确的是() A.5-是25的平方根B.4±是16的算术平方根C.2是-4的算术平方根D.1的平方根是它本身)变式2.(江苏·A.3B.9±C.9-D.9变式3.(海南鑫源高级中学八年级期中)下列各数中,没有算术平方根的是( ) A .0.1 B .9 C .3(1)- D .0◎考点题型2 利用算术平方根的非负性解题例.(福建泉港·八年级期末)若实数x ,y 满足30x -=.则以x ,y 的值为两边长的等腰三角形的周长是( )A .9B .12C .15D .12或15变式1.(广东·40b -=,那么a b -=( )A .1B .-1C .-3D .-5变式2.(江苏兴化·八年级期中)已知实数x ,y 满足30x -,则以x ,y 的值为两边长的等腰三角形的周长为( )A .12B .15C .18D .12或15变式3.(云南·普洱市思茅区第四中学七年级期中)若1x -互为相反数,则xy 的值为( )A .6-B .5-C .5D .6◎考点题型3 估计算术平方根的取值范围例.(福建· )A .在1~2之间B .在2~3之间C .在3~4之间D .在4~5之间变式1.(安徽包河·最接近的整数是( )A .3B .4C .5D .7变式2.(重庆巴蜀中学一模)估计2的值应在( )A .4和5之间B .3和4之间C .2和3之间D .1和2之间变式3的运算结果应在哪两个连续自然数之间( ) A .1和2 B .2和3 C .3和4 D .4和5◎考点题型4 求算术平方根的整数部分和小数部分 2geti例.(北京朝阳·七年级期末)将边长分别1和2的长方形如图剪开,拼成一个与长方形面积相等的正方形,则该正方形的边长最接近整数( )A .4B .3C .1D .0变式.(北京·中考真题)已知2222431849,441936,452025,462116====.若n 为整数且1n n <<+,则n 的值为( )A .43B .44C .45D .46◎考点题型5 平方根的概念理解例.(山东·枣庄市台儿庄区教育局教研室八年级期中)下列说法错误的是( )A .1的平方根是±1B .1-的立方根是1-C .2的平方根D .3-变式1.(海南海口·八年级期中)下列说法正确的是( )A ±5B .﹣42的平方根是±4C .64的立方根是±4D )2=2变式2.(湖南·衡阳市华新实验中学八年级期中) 下列说法不正确的是( )A .3-是9的一个平方根B 8的立方根C .36的平方根是6±D .16的平方根是4变式3.(海南华侨中学八年级期中)下列说法中,其中不正确的是( )A .4的算术平方根是2B .2的一个平方根C .()21-的立方根是 1 D◎考点题型6 求一个数的平方根例.(江苏省无锡市经开区2021-2022学年八年级上学期期末数学试题)下列各式中,正确的是( )A .4± B 3=± C 3= D 4=-变式1.(广东大埔·八年级期末)9的平方根是( )A .3B .3±C .3-D .2±变式2.(四川巴中·八年级期末)下列说法正确的是( )A .1的平方根是1B .(﹣4)2的算术平方根是4C±3 D 是最简二次根式变式3(重庆万州·八年级期末)下列等式正确的是( ).A 8=±B .8=C .8±D 4=±◎考点题型7 求代数式的平方根例.(2019·浙江杭州·九年级)已知()24a -,则-a b 的平方根是( )A B C .D .变式1.(2019·河南兰考·八年级阶段练习)在实数范围内,|100|0b -=,则a 与b 的积的算术平方根是( )A .0B .10C .10-D .10±变式2.(2020·贵州·贵阳市白云区第九中学八年级阶段练习)若是169的算术平方根,是121的负的平方根,则(+)2的平方根为( )A .2B .4C .±2D .±4变式3.(2019·河南·南阳市第三中学八年级阶段练习)若3m =,代数式3m ( ) A .7 B .11 C .7- D .9±◎考点题型8 已知一个数的平方根,求这个数例.(全国·八年级)已知2m ﹣1和5﹣m 是a 的平方根,a 是( )A .9B .81C .9或81D .2变式1.(江苏·江阴市璜塘中学八年级阶段练习)如果一个正数a 的两个不同平方根是2x -2和6-3x ,则这个正数a 的值为( )A .4B .6C .12D .36变式2.(全国·八年级课时练习)若21x +和7x -是一个正数的平方根,则这个正数为( ) A .25 B .225 C .25或225 D .25±变式3.(湖南·长沙市北雅中学七年级阶段练习)一个正数的两个平方根分别是21a -与2a -+,则这个正数是( )A .1-B .3C .9D .3-◎考点题型9 利用平方根解方程例.(四川绵阳·七年级期末)已知2(23)4x -=,则x 的所有取值的和为( )A .0B .2C .52D .3变式1.(安徽无为·七年级期中)物体自由下落时,下落距离h (单位:米)可用公式25h t =来估算,其中t (t >0单位:秒)表示物体下落的时间.若一个篮球掉入80米深的山谷中,落入谷底前不与其他物体接触,则该篮球掉落到谷底需要的时间为( )A .2秒B .4秒C .16秒D .20秒变式2.(辽宁连山·九年级期末)方程x 2-9=0的解是( )A .x 1=3,x 2=-3B .x =0C .x 1=x 2=3D .x 1=x 2=-3变式3.(全国·九年级单元测试)若2(22)x +=,则x 的值是( )A4 B 2 C 2+2 D 2或2◎考点题型10 立方根的概念理解例.(重庆实验外国语学校七年级期末)下列运算中,正确的是( )A 2=B 2=-C .33=D 3=变式1.(贵州六盘水·八年级阶段练习)平方根和立方根都等于它本身的数是( ) A .±1 B .1 C .0 D .﹣1变式2.(浙江·九年级专题练习)下列各式中,错误的是( )A .B .(a ﹣b )2=(b ﹣a )2C .|﹣a |=aD .2a =变式3.(云南·昆明市实验中学七年级期中)下列计算正确的是( )A 2-B 3±C 3=-D .5=◎考点题型11 求一个数的立方根例.(福建洛江·八年级期末)−8 的立方根是( )A .−2B .2C .±D .64变式1.(广西港口·七年级期中)下列语句正确的是( )A .8的立方根是2B .﹣3是27的立方根C .125216的立方根是±56 D .(﹣1)2的立方根是﹣1变式2.(辽宁凌海·x ,27-的立方根是y ,则2x y -的值为( )A .7B .11C .1-或7D .11或5-变式3.(山东·( )A .28.72B .0.2872C .13.33D .0.1333◎考点题型12 已知一个数的立方根,求这个数例.(江西新余· 2.938 6.329=,=( ) A .632.9 B .293.8 C .2938 D .6329变式1.(河北· 6.882≈,68.82,则x 的值约为( )A .326000B .32600C .3.26D .0.326变式2.(甘肃·平川区四中七年级期中)已知x =6,y 3=-8,且0x y +<,则xy =( ) A .-8 B .-4 C .12 D .-12变式3.(2019·广东·佛山市南海区大沥镇许海初级中学八年级阶段练习)a+3的算术平方根是3,b-2的立方根是2, )A B .C .±6 D .6◎考点题型13 算术平方根和立方根的综合应用例.(山东薛城·八年级期中)已知x 为实数,=0,则x 2+x ﹣3的算术平方根为( )A .3B .2C .3和﹣3D .2和﹣2变式1.(2020·甘肃·武威第九中学七年级期中)若a,b ,则a+b 的值是( )A .4B .4或0C .6或2D .6变式2.(2020·河北·3270b -=,那么6()a b +的立方根是( )A .-1B .1C .3D .7变式3.(广东·连南瑶族自治县教师发展中心八年级期中)实数a ,b 在数轴上对应的点的位置如图||a b +化简的结果( )A .2a b +B .bC .2a b -D .3b◎考点题型14 无理数的概念理解例.(广东揭东·,2272π中无理数有( ) A .4个 B .3个 C .2个 D .1个变式1.(河南·郑州市第三中学八年级期末)下列各数:(每相邻两个3之间依次多一个1),2π,13无理数有( ) A .1个 B .2个C .3个D .4个 变式2.(湖南·株洲市天元区雷打石学校八年级期末)下列各数是无理数的是( )AB C .π D .227变式3.(江苏江都·2,72π-,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个◎考点题型15 实数的概念理解例.(全国·七年级课时练习)下列命题:①无理数都是实数;②实数都是无理数;③无限小数都是无理数:④带根号的数都是无理数;⑤不带根号的数都是有理数,其中错误的命题的个数是( )A .1B .2C .3D .4变式1.(福建·厦门双十中学八年级阶段练习)已知实数,m n 满足20n -=,则m n +的值为( )A .2B .1-C .1D .3变式2.(浙江·九年级专题练习)下列说法其中错误的个数( )①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③16的平方根是4±,用式子表示4=±;④负数没有立方根;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0. A .0 B .1 C .2 D .3变式3.(全国·七年级期末)下列说法中不正确的是( )A .0是绝对值最小的实数B 2=C .3是9的一个平方根D .负数没有立方根◎考点题型16 实数的分类例.(甘肃兰州·八年级期中)下列说法不正确的是( )A .有理数和无理数统称为实数B .实数是由正实数和负实数组成C .无限循环小数是有理数D .实数和数轴上的点一一对应变式1.(湖南·衡阳市华新实验中学八年级期中) 下列说法正确的是( )A .定理是真命题B .真命题是定理C .实数包括正实数和负实数D .无理数是实际不存在的数变式2.(广东普宁·八年级期中)下面说法中,正确的是( )A .实数分为正实数和负实数B .带根号的数都是无理数C .无限不循环小数都是无理数D .平方根等于本身的数是1和0变式3.(山东牡丹·八年级阶段练习)下列说法正确的是( ).A .实数分为正实数和负实数B .无理数与数轴上的点一一对应C .2-是4的平方根D .两个无理数的和一定是无理数◎考点题型17 实数的性质例.(江苏江阴·1的相反数是( )A .1+B .1C .1-+D .1-变式1.(2020·浙江省开化县第三初级中学七年级期中)下列说法正确的是( ) A .绝对值等于它本身的数一定是正数B .一个数的相反数一定比它本身小C .负数没有立方根D .实数与数轴上的点一一对应变式2.(2020·全国·八年级单元测试)化简3|的结果正确的是( )A 3B .3C 3D .3变式3.(全国·七年级单元测试)下列各组数中互为相反数的一组是( )A .2与12B .|2|-C .-2D .2◎考点题型18 实数与数轴例.(浙江海曙·七年级期末)如图,面积为5的正方形ABCD 的顶点A 在数轴上,且表示的数为1,若点E 在数轴上,(点E 在点A 的右侧)且AB AE =,则E 点所表示的数为( )A B .1 C D 2变式1.(重庆市实验学校八年级期中)如图,点C 所表示的数是( )A B C .1D 变式2.(北京·八年级期中)如图,数轴上的点A 表示的数是1-,点B 表示的数是1,CB AB ⊥于点B ,且2BC =,以点A 为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为( )A.2.8 B .C .1 D .1变式3.(上海市罗南中学七年级期中)如图,数轴上点A 表示的数可能是( )A B C D◎考点题型19 实数的大小比较例.(重庆·忠县花桥镇初级中学校九年级期中)在实数4-,0,3-,2-中,最小的数是( ) A .4- B .0 C .3- D .2-变式1.(浙江北仑·223,0,7--中,最小的是( )A B .3- C .0 D .227-变式2.(河南郑州·九年级期末)在实数|﹣3.14|,﹣3,﹣π中,最小的数是( )A B.﹣3C.|﹣3.14|D.﹣π变式3.(广东阳山·八年级期末)在﹣3,0,2,,最小的数是()A.B.﹣3C.0D.2◎考点题型20 程序设计与实数运算例.(山东张店·二模)在使用科学计算器时,依次按键的方法如图所示,显示的结果在数轴上对应的点可以是()A.点A B.点B C.点C D.点D变式1.(全国·七年级期中)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.B.2C D.变式2.(全国·七年级期中)按如图所示的程序计算,若开始输入的值为9,则最后输出的y值是()A B.C.3D.±3变式3(2020·福建惠安·八年级期中)有一个数值转换器,流程如下:当输入的x为256时,输出的y是()AB.CD◎考点题型21 新定义下的实数运算例.(河南南召·九年级期末)用※定义一种新运算:对于任意实数m 和n ,规定m ※n =m 2n -mn -3n ,如:1※2=12×2-1×2-3×2=-6.则(-2))A.B.-C.D.变式1.(广西·南宁二中七年级期末)规定一种新运算:b a b a a *=-,如2424412*=-=-.则()2*3-的值是( ).A .10- B .6- C .6 D .8变式2.(北京市第六十六中学七年级期中)a 为有理数,定义运算符号▽:当a >-2时,▽a =-a ;当a <-2时,▽a = a ;当a =-2时,▽a = 0.根据这种运算,则▽[4+▽(2-5)]的值为( ) A .1- B .7 C .7- D .1变式3.(贵州六盘水·九年级期中)对于任意实数a ,b ,定义一种新运算“☆”如下:22()()a b a a b a b ab b a b ⎧+≥=⎨+<⎩☆,若236m =☆,则实数m 等于( ) A .8.5 B .4 C .4或 4.5- D .4或 4.5-或8.5◎考点题型22 与实数运算的规律题例.(辽宁·阜新市第一中学七年级期中)如图五个正方形中各有四个数,各正方形中的四个数之间都有相同的规律,根据此规律,可推测出m 的值为( )A .0B .1C .4D .8变式1.(福建·厦门市集美区乐安中学八年级阶段练习)如图是一个按某种规律排列的数阵,根据数阵排列的规律,第2021行从左向右数第2020个数是( )A .2020B .2021 CD变式2.(湖南·雨花外国语学校八年级开学考试)观察下列运算(x ﹣1)(x +1)=x 2﹣1(x ﹣1)(x 2+x +1)=x 3﹣1(x ﹣1)(x 3+x 2+x +1)=x 4﹣1我们发现规律:(x ﹣1)(xn ﹣1+xn ﹣2+…+x 2+x +1)=xn ﹣1(n 为正整数):利用这个公式计算:32021+32020+…+33+32+3=( )A .32022﹣1B .2022312-C .2022312+D .2022332- 变式3.(辽宁连山·七年级期中)如图在表中填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .216B .147C .130D .442。
人教版七年级数学下册平行线的判定同步练习题(含解析)
人教版七年级数学下册平行线的判定同步练习题(含解析)人教版七年级数学下册平行线的判定同步练习题(含解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,点E在线段AC的延长线上,下列条件中能判断的是(?)A.∠3=∠AB.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°2.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是(?)A.30°B.40°C.60°D.70°3.如图,直线a,b被直线c所截,下列条件不能判定直线a 与b平行的是()A.∠1=∠3B.∠2+∠3=180°C.∠1=∠4D.∠1+∠4=180°4.如图,点E在AC的延长线上,下列条件能判断ABCD的是(?)A.∠3=∠4B.∠D=∠DCEC.∠D+∠ACD=180°D.∠1=∠25.如图,下面条件不能判断的是(?)A.B.C.D.6.如图,要使,则需要添加的条件是(?)A .B.C.D.二、填空题7.如图,请你添加一个条件________,使AB∥CD.8.两条平行直线被第三条直线所截,内错角相等.简称:两直线平行,内错角_________.如图,因为a∥b (已知),所以∠1=_____(两直线平行,内错角相等). 9.如图所示,在下列条件中,不能判断的有___________.①.?②.③.?④.10.a、b、c是直线,且a∥b,b⊥c,则a与c的位置关系是________.11.如图,已知∠1=30°,∠2或∠3满足条件_________,则a∥b.三、解答题12.如图,在△ABC中,AD是BC边上的中线,F,E分别是AD及其延长线上的点.(1)如果CFBE,说明:△BDE≌△CDF;(2)若CF,BE是△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F,请猜想BF与CE的位置关系?并说明理由.13.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠A BC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)______(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是______(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.14.下列推理是否正确?为什么?(1)如图,∵,∴;(2)如图,∵,∴;(3)如图,∵,∴;(4)如图,∵,∴.15.如图,将绕点B顺时针旋转60度得到,点C的对应点E 恰好落在AB的延长线上,连接AD.(1)求证:;(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.16.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2(1)求角F的度数与DH的长;(2)求证:.17.如图,在四边形中,与有怎样的位置关系?为什么?与呢?18.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC//DE.19.请补全证明过程及推理依据.已知:如图,BC//ED,BD平分∠ABC,EF平分∠AED.求证:BD∥EF.证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=∠AED,∠2=∠ABC(______________)∵BC∥ED(________)∴∠AED=________(________________)∴∠AED=∠ABC∴∠1=________∴BD∥EF(________________).参考答案:1.B【分析】根据平行线的判定条件逐一判断即可.【详解】A.由∠3=∠A无法判断,故A不符合题意;B.由∠1=∠2能判断,故B符合题意;C.由∠D=∠DCE可以判断,不能判断,故C不符合题意;D.∠D+∠ACD=180°可以判断,不能判断,故D不符合题意.故选:B.【点睛】本题主要考查平行线的判定,熟知平行线的判定条件,是解题的关键.2.A【分析】过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得.【详解】解:如图,过点作,,,,,,,,,故选:A.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.3.D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意;∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;(同位角相等,两直线平行)故C不符合题意;∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.4.D【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由∠3=∠4,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;B、由∠D=∠DCE,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;C、由∠D+∠ACD=180°,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;D、由∠1=∠2,可以利用内错角相等,两直线平行得到得到,符合题意;故选D.【点睛】本题主要考查了平行线的判定,熟知内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.5.B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由∠1=∠2,可以判断(内错角相等,两直线平行),故此选项不符合题意;B、由∠1+∠3=180°,可以判断(同旁内角互补,两直线平行),不能判断,故此选项符合题意;C、由,可以判断(同位角相等,两直线平行),故此选项不符合题意;D、由,可以判断(同旁内角互补,两直线平行),故此选项不符合题意;故选B.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.6.A【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【详解】解:A.∵∠A=∠CBE,∴AD∥BC,符合题意;B.由∠A=∠C无法得到AD∥BC,不符合题意;C.由∠C=∠CBE,只能得到AB∥CD,无法得到AD∥BC,不符合题意;D.由∠A+∠D =180°,只能得到AB∥CD,无法得到AD∥BC,不符合题意;故选:A.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.∠1=∠5.【分析】根据平行线的判定进行解答,可以考虑同位角相等,或内错角相等,或同旁内角互补.【详解】添加∠1=∠5∵∠1=∠5,∴AB∥CD.故答案为∠1=∠5【点睛】本题属于开放题,主要考查了平行线的判定,解决问题的关键是掌握平行线的判定方法.8.相等 ∠2【解析】略9.②③##③②【分析】根据平行线的判定进行解答即可得.【详解】解:①∵,∴(内错角相等,两直线平行),说法正确,不符合题意;②∵和既不是同位角,也不是内错角,∴不能根据判定,说法错误,符合题意;③∵为同位角,∴不一定平行,符合题意;④∵,∴(同旁内角互补,两直线平行),说法正确,不符合题意;故答案为:②③.【点睛】本题考查了平行线的判定,解题的关键是熟记并理解平行线的判定.10.互相垂直【详解】且a∥b,b⊥c,a⊥c.故答案为互相垂直.11.∠2=150°或∠3=30°【解析】略12.(1)见解析(2)BFCE,证明见解析【分析】(1)根据已知条件,通过两角及其夹边对应相等即可证明△BDE≌△CDF;(2)先证CFBE,利用(1)中结论得△BDE≌△CDF,推出,利用SAS证明△BDF≌△CDE,推出,利用内错角相等,两直线平行,可得BFCE.(1)证明:∵CFBE,∴∠FCD﹦∠EBD.∵AD是BC边上的中线,∴.在△BDE和△CDF中,,∴△BDE≌△CDF.(2)解:BFCE.理由如下:如图,连接BF,CE.∵ C F⊥AD于F,BE⊥AD于E,∴CFBE.由(1)的结论可知△BDE≌△CDF,∴.∵AD是BC边上的中线,∴BD =CD.在△B DF和△CDE中,,∴△BDF≌△CDE.∴,∴BFCE.【点睛】本题考查全等三角形的判定与性质,平行线的性质与判定,三角形中线的定义等,熟练掌握全等三角形的判定方法、平行线的性质定理和判定定理是解题的关键.13.(1)①,SSS(2)见解析【分析】(1)根据SSS即可证明△ABC≌?DEF,即可解决问题;(2)根据全等三角形的性质可得可得∠A=∠EDF,再根据平行线的判定即可解决问题.(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.(注意:只需选一个条件,多选不得分)故答案为:①,SSS;(2)证明:∵△ABC ≌△DEF.∴∠A=∠EDF,∴AB∥DE.【点睛】本题考查了平行线的性质和全等三角形的性质,和判定定理,能熟记全等三角形的判定定理是解此题的关键.14.(1)正确;理由见解析;(2)不正确;理由见解析;(3)正确;理由见解析;(4)正确;理由见解析.【分析】(1)是被所截形成的同位角,再利用同位角相等,两直线平行可判断;(2)是被所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;(3)是被所截形成的内错角,再利用内错角相等,两直线平行可判断;(4)是被所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;【详解】解:(1)正确,理由:同位角相等,两直线平行;(2)不正确,因为由“”只能推出“”,推不出“”;(3)正确,理由:内错角相等,两直线平行;(4)正确,理由:同旁内角互补,两直线平行.【点睛】本题考查的是平行线的判定,掌握“平行线的判定方法”是解题的关键.15.(1)见解析;(2)【分析】(1)先利用旋转的性质证明△ABD为等边三角形,则可证,即再根据平行线的判定证明即可.(2)利用弧长公式分别计算路径,相加即可求解.【详解】(1)证明:由旋转性质得:是等边三角形所以∴;(2)依题意得:AB=BD=4,BC=BE=1,所以A,C两点经过的路径长之和为.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、平行线的判定、弧长公式等知识,熟练掌握这些知识点之间的联系及弧长公式是解答的关键.16.(1)35°;6(2)见解析【分析】(1)根据三角形内角和定理求出∠ACB,根据全等三角形的性质得出AB=DE,∠F=∠ACB,即可得出答案;(2)根据全等三角形的性质得出∠B=∠DEF,再根据平行线的判定即可证得结论.(1)解:∵∠A=85°,∠B=60°,∴∠ACB=180°-∠A-∠B=180°-85°-60°=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=DE-EH=8-2=6;(2)证明:∵△ABC≌△DEF,∴∠B=∠DEF,∴.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,平行线的判定的应用,解此题的关键是能根据全等三角形的性质得出AB=DE,∠B=∠DEF,∠ACB=∠F,注意:全等三角形的对应边相等,对应角相等.17.,见解析【分析】四边形ABCD内角和360°,即,因为,所以,所以,同理.【详解】四边形ABCD内角和360°同理可得:【点睛】本题主要考查了四边形内角和以及平行线的判定,掌握该性质判定是解题的关键.18.见解析【分析】由BE平分∠ABC,可得∠1=∠3,再利用等量代换可得到一对内错角相等,即∠2=∠3,即可证明结论.【详解】证明:∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴B C//DE.【点睛】本题主要利用了角平分线的性质以及内错角相等、两直线平行等知识点,灵活运用平行线的判定定理成为解答本题的关键.19.角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行【分析】根据角平分线的定义得出∠1=∠AED,∠2=∠ABC,根据平行线的性质定理得出∠AED=∠ABC,求出∠1=∠2,再根据平行线的判定定理推出即可.【详解】证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=∠AED,∠2=∠ABC(角平分线的定义)∵BC∥ED(已知)∴∠AED=∠ABC(两直线平行,同位角相等)∴∠AED=∠ABC∴∠1=∠2 ∴BD∥EF(同位角相等,两直线平行).故答案为:角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行.【点睛】本题考查了角平分线的定义,平行线的性质定理和判定定理等知识点,能熟记平行线的性质定理和判定定理是解此题的关键.答案第1页,共2页答案第1页,共2页试卷第1页,共3页试卷第1页,共3页。
(人教版)郑州市七年级数学下册第四单元《二元一次方程组》检测(有答案解析)
一、选择题1.对于任意实数,规定新运算:x y ax by xy =+-※,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知211=※,()322-=-※,则a b ※的值为( ) A .3B .4C .6D .7 2.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( )A .a =0,b =1B .a =2,b =1C .a =1,b =0D .a =0,b =23.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( ) A .﹣1B .1C .13D .﹣134.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=5.古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?若设乌鸦有x 只,树有y 棵,由题意可列方程组( )A .3551y x y x +=⎧⎨-=⎩B .3551y xy x -=⎧⎨=-⎩C .15355x y y x ⎧+=⎪⎨⎪=-⎩D .5315x y x y -⎧=⎪⎪⎨⎪=-⎪⎩6.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩7.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩8.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c-+=⎧⎨++=⎩的解是 ( )A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩9.由方程组223224x y m x y m -=+⎧⎨+=+⎩可得x 与y 的关系式是( )A .3x =7+3mB .5x ﹣2y =10C .﹣3x+6y =2D .3x ﹣6y =210.已知关于x ,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩的解适合方程x-y=4,则m 的值为( ) A .1B .2C .3D .411.下列四组值中,不是二元一次方程21x y -=的解的是( ) A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .1=⎧⎨=⎩x yD .11x y =⎧⎨=⎩ 12.方程组320x y x y +=⎧⎨-=⎩的解是( )A .11x y =⎧⎨=⎩ B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .3x y =⎧⎨=⎩ 二、填空题13.方程4x-5y=6,用含x 的代数式表示y 得______,用含y 的代数式表示x 得______. 14.若2a m b 2m +3n 与a 2n ﹣3b 8的和仍是一个单项式,则m =_____n =_____. 15.已知2(2)40x y x y +++--=,则yx的值是_______. 16.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为46x y =⎧⎨=⎩,则方程组111222435435a x b y c a x b y c +=⎧⎨+=⎩的解为______.17.单项式-x 2m-n y 3与单项式3m+n2x y 3可以合并,则多项式4m-2n+(-m-n )2-2(n-2m )2的值是______.18.为了节省空间,家里的饭碗一般是竖直摆放的,如果4只饭碗(形状、大小相同)竖直摆放的高度为11,8cm 只饭碗竖直摆放的高度为17cm .如图所示,小颖家的碗橱每格的高度为35,cm 则一摞碗竖直放人橱柜时,每格最多能放________________________.19.若方程2(3)31a a xy --+=是关于x ,y 的二元一次方程,则a 的值为_____.20.已知x y x x ++=,且490x y ,则5x y -的值为____________.三、解答题21.数字“6”由于谐音“六六大顺”深受人们喜爱.若一个正整数各数位上的数字之和为6的倍数,则称这个正整数为“六六大顺”数.例如:正整数24,因为246+=且661÷=,所以24是“六六大顺”数;正整数125,因为1258++=且86÷商1余2,所以125不是“六六大顺”数.(1)判断96和615是否是“六六大顺”数?请说明理由; (2)求出所有大于600且小于700的“六六大顺”数的个数.22.某环卫公司通过政府采购的方式计划购进一批A ,B 两种型号的新能源汽车据了解,2辆A 型汽车和3辆B 型汽车的进价共计80万元;3辆A 型汽车和2辆B 型汽车的进价共计95万元.(1)求A ,B 两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B 种型号的新能源汽车数量多于A 种型号的新能源汽车数量,请直接写出该公司的采购方案. 23.列方程解应用题《乌鸦喝水》的故事我们都听过,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,喝到了水.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高________cm ,放入一个大球水面升高________cm ; (2)如果放入10个球且使水面恰好上升到52厘米,应放入大球、小球各多少个? (3)若放入一个钢珠可以使液面上升k 厘米,当在玻璃桶内同时放入相同数量的小球和钢珠时,水面上升到41厘米,则k 的整数值为____________.(球和钢珠完全在水面以下)24.完成下列问题:(1)已知方程组321(2)4x y mx m y +=⎧⎨++=⎩的解x 、y 的值相等,求m 的值.(2)甲、乙两位同学在解方程组351x by ax by +=⎧⎨+=⎩时,甲看错了a ,解得32x y =⎧⎨=⎩;乙将一个方程中的b 写成了相反数,解得11x y =⎧⎨=-⎩,求a 、b 的值.25.甲、乙两人同时解方程组1542ax by x by +=⎧⎨=-⎩①②时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,解得54x y =⎧⎨=⎩.求原方程组的正确解. 26.学校为了提高绿化品位,美化环境,准备将一块周长为76m 的长方形草地,设计分成长和宽分别相等的9块小长方形,(放置位置如图所示),种上各种花卉.经市场预测,绿化每平方米造价约为108元. (1)求出每一个小长方形的长和宽.(2)请计算完成这项绿化工程预计投入资金多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据新定义运算,得到关于a ,b 的方程组,求出a ,b 的值,再代入求解,即可. 【详解】∵211=※,()322-=-※,∴221=1a b +-⨯,-32(3)22a b +--⨯=-, ∴a=2,b=-1,∴a b ※=2(1)22(1)(1)2(1)7-=⨯+-⨯--⨯-=※, 故选D .本题主要考查解二元一次方程组,理解新定义的运算以及加减消元法解二元一次方程组,是解题的关键.2.C解析:C【分析】根据同类项的定义可得关于a、b的方程组,解方程组即得答案.【详解】解:由同类项的定义,得122a ba b-=⎧⎨+=⎩,解得:1ab=⎧⎨=⎩.故选:C.【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.3.D解析:D【分析】已知等式利用题中的新定义化简得到方程组,两方程左右两边相加即可求出所求.【详解】解:根据题中的新定义得:22018 42019x yy x-=⎧⎨+=-⎩①②,①+②得:3x+3y=﹣1,则x+y=﹣13.故选:D.【点睛】本题主要考查的是定义新运算以及二元一次方程组的解法,掌握二元一次方程的解法是解题的关键.4.A解析:A【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11mn=⎧⎨=-⎩,【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.5.D解析:D 【分析】根据“三个坐一棵,五个地上落;五个坐一棵,闲了一棵树”,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】解:设乌鸦有x 只,树有y 棵,依题意,得:5315x y x y -⎧=⎪⎪⎨⎪=-⎪⎩.故选:D . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.B解析:B 【分析】将x 、y 的值分别代入x-2y 中,看结果是否等于1,判断x 、y 的值是否为方程x-2y=1的解. 【详解】 A 项,当0x =,12y 时,1202()12x y -=-⨯-=,所以0,12x y =⎧⎪⎨=-⎪⎩是方程21x y -=的解;B 项,当1x =,1y =时,21211y =-⨯=-,所以1,1x y =⎧⎨=⎩不是方程21x y -=的解;C 项,当1x =,0y =时,21201x y -=-⨯=,所以1,0x y =⎧⎨=⎩是方程21x y -=的解;D 项,当1x =-,1y =-时,212(1)1x y -=--⨯-=,所以1,1x y =-⎧⎨=-⎩是方程21x y -=的解, 故选B. 【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.7.A解析:A【分析】方程组利用加减消元法求出解即可.【详解】解:7317x yx y+=⎧⎨+=⎩①②,②﹣①得:2x=10,解得:x=5,把x=5代入①得:y=2,则方程组的解为52 xy=⎧⎨=⎩.故选:A.【点睛】本题考查了二元一次方程组的解法以及二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.本题还可以利用代入法求解.8.B解析:B【分析】方程组232232316ax by a cax by a c-+=⎧⎨++=⎩可化为213231216a x by ca x by c+-=⎧⎨++=⎩()(),由方程组2323216ax by cax by c-=⎧⎨+=⎩的解是42xy=⎧⎨=⎩即可求得方程组232232316ax by a cax by a c-+=⎧⎨++=⎩的解为32xy=⎧⎨=⎩.【详解】方程组232232316ax by a cax by a c-+=⎧⎨++=⎩可化为213231216a x by ca x by c+-=⎧⎨++=⎩()(),∵方程组2323216ax by cax by c-=⎧⎨+=⎩的解是42xy=⎧⎨=⎩,∴142xy+=⎧⎨=⎩,即方程组232232316ax by a cax by a c-+=⎧⎨++=⎩的解为32xy=⎧⎨=⎩.故选B.【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a cax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 9.D解析:D 【分析】方程组消去m 即可得到x 与y 的关系式. 【详解】 解:223224x y m x y m -=+⎧⎨+=+⎩①②,①×2﹣②得:3x ﹣6y =2, 故选:D . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,本题用的是加减消元法.10.C解析:C 【分析】通过观察方程组可知第一个方程减去第二个方程可得22x y m -=-,再结合4x y -=即可求得答案. 【详解】 解:∵323223x y m x y m +=-⎧⎨+=⎩①②①-②得,22x y m -=- ∵4x y -= ∴224m -= ∴3m =. 故选:C 【点睛】本题考查了根据二元一次方程组的解满足一定的条件求参数问题,能根据题目特点灵活运用加减消元法、代入消元法是解题的关键.11.D解析:D 【分析】将各项中x 与y 的值代入方程检验即可. 【详解】 解:x-2y=1,解得:x=2y+1,当y=-1时,x=-1,所以11xy=-⎧⎨=-⎩是方程21x y-=的解,选项A不合题意,当y=-0.5时,x=-1+1=0,所以0.5xy=⎧⎨=-⎩是方程21x y-=的解,选项B不合题意;当y=0时,x=1,所以1xy=⎧⎨=⎩是方程21x y-=的解,选项C不合题意;当y=1时,x=2+1=3,所以11xy=⎧⎨=⎩不是方程21x y-=的解,选项D符合题意;故选:D.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.B解析:B【分析】二元一次方程组的求解方法有两种:(1)加减消元法;(2)代入消元法,此题用加减消元法求解更为简便;【详解】∵320x yx y+=⎧⎨-=⎩①②,①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为12xy=⎧⎨=⎩,故选:B.【点睛】本题考查了二元一次方程组的解法,正确利用加减消元法求解是解题的关键.二、填空题13.y=x=【分析】要用含x的代数式表示y或用含y的代数式表示x就要将二元一次方程变形用一个未知数表示另一个未知数先移项再将系数化为1即可【详解】解:用含x的代数式表示y移项得:﹣5y=﹣4x+6系数化解析:y=4655x-x=5342y+【分析】要用含x的代数式表示y,或用含y的代数式表示x,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.【详解】解:用含x的代数式表示y 移项得:﹣5y=﹣4x+6,系数化为1得:y=46 55x-;用含y的代数式表示x得移项得:4x=5y+6,系数化为1得:x=53 42y+.故答案为:y=4655x-;x=5342y+.【点睛】解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.14.2【分析】根据同类项的概念列出方程组解方程组得到答案【详解】根据题意可知2amb2m+3n与a2n﹣3b8的和仍是一个单项式∴解得:故答案为:12【点睛】本题考查了单项式和解二元一次方程组两个单项式解析:2【分析】根据同类项的概念列出方程组,解方程组得到答案.【详解】根据题意可知,2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,∴23 238 m nm n=-⎧⎨+=⎩,解得:12 mn=⎧⎨=⎩,故答案为:1,2.【点睛】本题考查了单项式和解二元一次方程组.两个单项式的和为单项式,则这两个单项式是同类项,即所含字母相同,并且相同字母的指数也相同.15.-3【分析】利用平方和算术平方根的非负性确定x+y+2=0且x−y−4=0建立二元一次方程组求出x和y的值再代入求值即可【详解】∵(x+y+2)2≥0≥0且∴(x+y+2)2=0=0即解得:∴=-3解析:-3【分析】利用平方和算术平方根的非负性,确定x+y+2=0且x−y−4=0,建立二元一次方程组求出x和y的值,再代入求值即可.【详解】∵(x +y +2)2≥0,且2(2)0x y ++=,∴(x +y +2)2=00,即2040x y x y ++=⎧⎨--=⎩, 解得:13x y =⎧⎨=-⎩, ∴y x=-3, 故答案为:-3.【点睛】本题重点考查偶次方和算术平方根的非负性,是一种典型的“0+0=0”的模式题型,需重点掌握;另外此题结合了二元一次方程组的运算,需熟练掌握“加减消元法”和“代入消元法”这两个基本的运算方法.16.【分析】利用换元法解二元一次方程组即可得【详解】方程组可变形为令则方程组可化为由题意得:此方程组的解为因此有解得即所求方程组的解为故答案为:【点睛】本题考查了二元一次方程组的特殊解法观察两个方程组正解析:510x y =⎧⎨=⎩【分析】利用换元法解二元一次方程组即可得.【详解】方程组111222435435a x b y c a x b y c +=⎧⎨+=⎩可变形为11122243554355a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩, 令43,55m x n y ==, 则方程组可化为111222a m b n c a m b n c +=⎧⎨+=⎩, 由题意得:此方程组的解为46m n =⎧⎨=⎩, 因此有445365x y ⎧=⎪⎪⎨⎪=⎪⎩,解得510x y =⎧⎨=⎩, 即所求方程组的解为510x y =⎧⎨=⎩, 故答案为:510x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的特殊解法,观察两个方程组,正确换元是解题关键. 17.-3【分析】根据两个单项式可以合并求出mn 的值再化简多项式代入即可【详解】解:单项式-x2m-ny3与单项式可以合并∴2m-n=33=m+n 组成方程组解得:m=2n=1当m=2n=1时故答案为:【点解析:-3【分析】根据两个单项式可以合并,求出m 、n 的值,再化简多项式代入即可.【详解】解:单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并 ∴2m-n=3,3=m+n组成方程组解得:m=2,n=1当m=2,n=1时 ()()224222m n m n n m -+---- 82918=-+-3=-故答案为:3-.【点睛】本题考查同类项定义,以及代入多项式求值,值得注意的是本题代入求值时,可以直接代入,化简后代入反而繁缛了.18.【分析】由题意得碗的高度和碗的个数的关系式为y=kx+b 然后代入题中的两种情况得根据每格橱柜最高35cm 即可求出答案【详解】设碗的个数为xcm 碗摞起来的高度为ycm 可得碗的高度和碗的个数的关系式为y解析:20【分析】由题意得,碗的高度和碗的个数的关系式为y=kx+b ,然后代入题中的两种情况得352y x =+, 根据每格橱柜最高35cm ,即可求出答案.【详解】设碗的个数为x cm ,碗摞起来的高度为y cm ,可得碗的高度和碗的个数的关系式为y=kx+b ,根据4只碗摞起来的高度为11cm ,8只碗摞起来的高度为17cm ,列方程组411817k b k b +=⎧⎨+=⎩ ,解得:325k b ⎧=⎪⎨⎪=⎩ , 352y x =+, 碗橱每格的高度为35cm ,33552x =+, 解得:20x ,所以每格最多能放20个碗,故答案为:20.【点睛】本题考查了二元一次方程的应用,关键是根据题意,找出合适的等量关系式,列出方程组求解.19.-3【分析】根据二元一次方程的定义:含有两个未知数并且含有未知数的项的次数都是1像这样的方程叫做二元一次方程可得|a|-2=1且a-3≠0再解即可【详解】解:由题得解得a=-3故答案为:-3【点睛】解析:-3【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程可得|a|-2=1,且a-3≠0,再解即可.【详解】 解:由题得,2130a a ⎧-⎨-≠⎩= ,解得a=-3,故答案为:-3.【点睛】本题考查了二元一次方程的定义.二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程. 20.18【分析】由第一个等式得到等号右边x 为非负进而得到|x|=x 化简为进而得到再结合即可求解【详解】解:由绝对值的非负性可知:中等号右边x 为非负数即|x|=x ∴可化简为:进一步得到∴解得∴故答案为:1解析:18【分析】由第一个等式得到等号右边x 为非负,进而得到|x|=x ,化简为x y x x ,进而得到0x y ,再结合490x y 即可求解.【详解】解:由绝对值的非负性可知:x y x x ++=中等号右边x 为非负数,即|x |=x , ∴x y x x ++=可化简为:x y x x , 进一步得到0x y ,∴0490x y x y +=⎧⎨+-=⎩,解得33x y =⎧⎨=-⎩, ∴515(3)18x y ,故答案为:18.【点睛】本题考查了绝对值的非负性及二元一次方程组的解法,本题的关键是能得到x 为非负数,即|x |=x 进而化简求解.三、解答题21.(1)96不是;615是;见解析;(2)15个【分析】(1)根据新定义.由9615+=,156÷商2余3即可判断96新特征“六六大顺”数.由61512++=,1262÷=,即可判断615新特征“六六大顺”数;(2)由N 为“六六大顺”数,满足定义6a b ++是6的倍数,由6,12,18a b +=,分类讨论不定方程①6a b +=时, ②12a b +=时, ③18a b +=时的非负整数解的个数即可.【详解】解:(1)96不是“六六大顺”数,615是“六六大顺”数,理由如下:∵9615+=,156÷商2余3,∴96不是“六六大顺”数;∵61512++=,1262÷=,∴615是“六六大顺”数;(2)∵ N 为“六六大顺”数,∴6a b ++是6的倍数,即+a b 是6的倍数.∴6,12,18a b +=①当6a b +=时,则有:0,1,2,3,4,5,6,6. 5. 4. 3. 2. 1.0.a a a a a a ab b b b b b b =======⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨=======⎩⎩⎩⎩⎩⎩⎩ 此时,满足条件的“六六大顺”数共7个;②当12a b +=时,则有:3,4,5,6,7,8,9,9.8.7. 6. 5. 4. 3.a a a a a a a b b b b b b b =======⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨=======⎩⎩⎩⎩⎩⎩⎩此时,满足条件的“六六大顺”数共7个;③当18a b +=时,则有:9,9.a b =⎧⎨=⎩ 此时,满足条件的“六六大顺”数共1个;∴77115++=(个).所以大于600且小于700的“六六大顺”数有15个.【点睛】本题考查新定义问题,认真阅读题目,掌握新定义的特征,会根据新定义的特征识别正整数的新特征,会根据新定义特征构造不定方程是解题关键.22.(1)A ,B 两种型号的汽车每辆进价分别为25万元,10万元;(2)购进A 型号的新能源汽车2台,B 型号的新能源汽车15台;购进A 型号的新能源汽车4台,B 型号的新能源汽车10台【分析】(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,根据“2辆A 型汽车、3辆B 型汽车的进价共计80万元, 3辆A 型汽车、2辆B 型汽车的进价共计95万元”,列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,根据总价=单价×数量,即可得出关于m ,n 的二元一次方程,结合m ,n 均为正整数即可得出各购买方案 .【详解】解:(1)设A ,B 两种型号的汽车每辆进价分别为x 万元,y 万元.依题意,列出的方程组为23803295x y x y +=⎧⎨+=⎩, 解这个方程组,得2510x y =⎧⎨=⎩. 答:A ,B 两种型号的汽车每辆进价分别为25万元,10万元.(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,m<n ,依题意,得:25m+ 10n=200,∴m=8-25n ∵m ,n 均为正整数,∴n 为5的倍数,∴m=6,n=5或m=4,n=10或m=2,n=15,∵m<n,∴m=6,n=5不合题意舍去,∴共2种购买方案方案一:购进A 型车4辆,B 型车10辆;方案二:购进A 型车2辆,B 型车15辆.答:购进A型号的新能源汽车2台,B型号的新能源汽车15台;购进A型号的新能源汽车4台,B型号的新能源汽车10台.【点睛】本题考查了二元一次方程组的运用以及二元一次方程的综合应用,解题的关键是找准等量关系,正确列出二元一次方程(组).23.(1)2, 3;(2)放入大球6个,小球4个;(3)13或3或1.【分析】(1)设一个小球使水面升高x厘米,根据题意列出方程,求出方程的解即可得到结果;(2)设放入大球m个,小球n个,根据题意列出关于m与n的方程组,求出方程组的解即可得到结果;(3)设在玻璃桶内同时放入z个小球和钢珠时,水面上升到41厘米,根据题意列出关系式,即可确定出k的整数解.【详解】解:(1)设一个小球使水面升高x厘米,由图形得:3x=32﹣26,解得:x=2,设一个大球使水面升高y厘米,由图形得:2y=32﹣26,解得:y=3,故答案为: 2, 3;(2)设放入大球m个,小球n个,根据题意得:10 325226m nm n+=⎧⎨+=-⎩,解得:64mn=⎧⎨=⎩,答:如果要使水面上升到52cm,应放入大球6个,小球4个;(3)设在玻璃桶内同时放入z个小球和钢珠时,水面上升到41厘米,根据题意得:zk+2z=41﹣26,∵z、k为正整数,∴当z=1时,k=13;当z=3时,k=3;当z=5时,k=1,则k的整数值为13或3或1.故答案为: 13或3或1.【点睛】本题考查了二元一次方程组的应用和二元方程的正整数解问题,准确把握题目提供的数量关系,列出方程是解题关键.24.(1)m=9;(2)a=3,b=-2【分析】(1)根据x、y的值相等得到x=y,结合3x+2y=1求出x和y的值,再代入(2)4mx m y ++=中求出m 值;(2)甲看错了第一个方程,把他解的答案代入第二个方程,乙将一个方程中的b 写成了相反数,把他解得答案代入方程,求a 、b 的值.【详解】解:(1)∵321(2)4x y mx m y +=⎧⎨++=⎩的解x 、y 的值相等, ∴x=y ,代入3x+2y=1中, ∴15x y ==,代入(2)4mx m y ++=中, 则(2)41155m m ++⨯=, 解得:m=9;(2)由题意得:把32x y =⎧⎨=⎩代入3x+by=5, 得:9+2b=5,解得:b=-2,因为乙将一个方程中的b 写成了相反数,所以把b=2代入方程组得:ax+2y=1,把11x y =⎧⎨=-⎩代入方程ax+2y=1得:a=3. 【点睛】此题考查的是二元一次方程组的解和解二元一次方程组,解答此题先要根据题意列出方程,然后求解.25.原方程组的正确解是135x y =-⎧⎨=-⎩【分析】把31x y =-⎧⎨=-⎩代入②,把54x y =⎧⎨=⎩代入①,求出a 和b 的值,再把a 和b 的值代入原方程组求解即可.【详解】解:把31x y =-⎧⎨=-⎩代入②,把54x y =⎧⎨=⎩代入①, 可得()5415432a b b +=⎧⎨⨯-=--⎩,解得510a b =-⎧⎨=⎩, 510154102x y x y -+=⎧∴⎨=-⎩①②,由②可得:4x-10y=-2③,①+③,得-x=13,x=-13,把x=-13代入①,得65+10y=15,y=-5,∴原方程组的正确解是135x y =-⎧⎨=-⎩. 【点睛】 本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键. 26.(1)每个小长方形的长和宽分别是10米、4米;(2)完成这块绿化工程预计投入资金为38880元.【分析】(1)弄清题意,找出等量关系:2[5个小长方形的宽+(一个小长方形的长+两个小长方形的宽)]=周长和5个长方形的宽等于2个长方形的长,列二元一次方程组解答. (2)直接求出每个小长方形的面积,然后求出答案即可.【详解】解:(1)设小长方形的宽为x 米,长为y 米.则2(25)7652y x x x y ++=⎧⎨=⎩, 解得:410x y =⎧⎨=⎩, 答:每个小长方形的长和宽分别是10米、4米;(2)104910838880⨯⨯⨯=(元),答:完成这块绿化工程预计投入资金为38880元.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.要弄清小长方形长、宽和大长方形周长之间的关系.。
2020年人教版数学七年级下册第8章 二元一次方程组单元测试卷(四)解析版
2020年人教版数学七年级下册第8章二元一次方程组单元测试卷(四)一.选择题(共10小题)1.下列方程中,是二元一次方程的是()A.B.C.3x﹣y2=0D.4xy=32.下列是二元一次方程2x+y=8的解的是()A.B.C.D.3.下列方程组中是二元一次方程组的是()A.B.C.D.4.解方程组时,①﹣②,得()A.﹣3t=1B.﹣3t=3C.9t=3D.9t=15.三元一次方程组的解是()A.B.C.D.6.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=4的解,则k的值为()A.B.C.2D.﹣27.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v 千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4B.x=v+4C.2x﹣u=4D.x﹣v=48.把一根11cm长的绳子截成1cm和3cm两种规格的绳子,要求每种规格的绳子至少1根,且无浪费,则有几种不同的截法()A.3种B.4种C.5种D.6种9.如图所示,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x,宽为y,则依据题意可得二元一次方程组为()A.B.C.D.10.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是()A.容易题和中档题共60道B.难题比容易题多20道C.难题比中档题多10道D.中档题比容易题多15道二.填空题(共8小题)11.若(a﹣2)+3y b﹣2=2是关于x,y的二元一次方程,则a﹣b=.12.如图,三个一样大小的小长方形沿“横﹣竖﹣横”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的面积等于.13.二元一次方程组的解是,则b﹣a=.14.将方程x+4y=2改写成用含y的式子表示x的形式.15.若,则(a2﹣2b2+c2)÷ac=.16.已知(x﹣y+3)2+=0,则x+y=.17.体育馆的环形跑道长400米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80秒乙追上甲一次;如果反向而行,他们每隔30秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x米/秒,乙的速度是y米/秒,所列方程组是18.某地突发地震,为了紧急安置30名地震灾民,需要搭建可容纳3人或2人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这30名灾民,则不同的搭建方案有种.三.解答题(共8小题)19.解方程组:(1)(2)20.解三元一次方程组:21.若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.22.如果关于x、y的二元一次方程组的解是,求关于x,y的方程组的解.23.某商场出售A、B两种型号的自行车,已知购买1辆A型号自行车比1辆B型号自行车少20元,购买2辆A 型号自行车与3辆B型号自行车共需560元,求A、B两种型号自行车的购买价各是多少元?24.现有学生若干人,分住若干宿舍.如果每间住4人,那么还余20人;如果每间住6人,那么有一间宿舍只住了2人.试求学生人数和宿舍间数.25.某电器商场销售进价分别为120元、190元的A、B两种型号的电风扇,如下表所示是近二周的销售情况(进价、售价均保持不变,利润=销售收入﹣进货成本):销售时段销售数量销售收入A种型号B种型号第一周562310第二周893540(1)求A、B两种型号的电风扇的销售单价(2)若商场再购进这两种型号的电风扇共120台,并且全部销售完,该商场能否实现这两批电风扇的总利润为8240元的目标?若能,请给出相应的采购方案:若不能,请说明理由.26.蚌埠云轨测试线自开工以来备受关注,据了解我市首期工程云轨线路约12千米,若该任务由甲、乙两工程队先后接力完成,甲工程队每天修建0.04千米,乙工程队每天修建0.02千米,两工程队共需修建500天,求甲、乙两工程队分别修建云轨多少千米?根据题意,小刚同学列出了一个尚不完整的方程(1)根据小刚同学所列的方程组,请你分别指出未知数x,y表示的意义.x表示;y表示;(2)小红同学“设甲工程队修建云轨x千米,乙工程队修建云轨y千米”,请你利用小红同学设的未知数解决问题.参考答案与试题解析一.选择题(共10小题)1.【解答】解:A、﹣y=6是二元一次方程,符合题意;B、+=1不是整式方程,不符合题意;C、3x﹣y2=0是二元二次方程,不符合题意;D、4xy=3是二元二次方程,不符合题意,故选:A.2.【解答】解:A、把x=1,y=5入方程,左边=7≠右边,所以不是方程的解;B、把x=2,y=3代入方程,左边=7≠右边,所以不是方程的解;C、把x=2,y=4代入方程,左边=8=右边,所以是方程的解;D、把x=4,y=2代入方程,左边=10≠右边,所以不是方程的解.故选:C.3.【解答】解:A、该方程组中含有3个未知数,属于三元一次方程组,故本选项不符合题意.B、该方程组符合二元一次方程组的定义,故本选项符合题意.C、该方程组属于二元二次方程组,故本选项不符合题意.D、该方程组中含有分式方程,故本选项不符合题意.故选:B.4.【解答】解:解方程组时,①﹣②,得:9t=3.故选:C.5.【解答】解:,①+②得:x﹣z=2④,③+④得:2x=8,解得:x=4,把x=4代入④得:z=2,把x=4代入①得:y=3,则方程组的解为,故选:D.6.【解答】解:由方程组,得,把x、y的值代入2x+3y=4中,得14k﹣6k=4,解得k=.故选:B.7.【解答】解:根据甲走的路程差4千米不到2x千米,得u=2x﹣4或2x﹣u=4.则C正确;根据乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.则B,D正确,A错误.故选:A.8.【解答】解:截下来的符合条件的绳子长度之和刚好等于总长11cm时,不造成浪费,设截成1cm长的绳子x根,3cm长的y根,由题意得,x+3y=11,因为x,y都是正整数,所以符合条件的解为:,则有3种不同的截法.故选:A.9.【解答】解:设每一个小长方形的长为x,宽为y,依题意,得:.故选:A.10.【解答】解:设容易题有a题,中档题有b题,难题有c题,依题意,得:,①×2﹣②,得:c﹣a=20,∴难题比容易题多20题.故选:B.二.填空题(共8小题)11.【解答】解:依题意得且a﹣2≠0,解得,则a﹣b=﹣2﹣3=﹣5.故答案为:﹣5.12.【解答】解:设小长方形的长为x,宽为y,根据题意得:,解得:,∴xy=4×2=8.故答案为:8.13.【解答】解:∵二元一次方程组的解是,∴,①+②,可得:2b﹣2a=4,∴b﹣a=4÷2=2.故答案为:2.14.【解答】解:方程x+4y=2,解得:x=﹣4y+2,故答案为:x=﹣4y+215.【解答】解:①﹣②得,2a+3c=0,即c=﹣a,①×2+②得,7a+6b=0,即b=﹣a,则(a2﹣2b2+c2)÷ac=[a2﹣2×(﹣a)2+(﹣a)2]÷a•(﹣a)=﹣a2÷(﹣a2)=.故答案为.16.【解答】解:∵(x﹣y+3)2+=0,∴,①+②得:3x=﹣3,即x=﹣1,将x=﹣1代入②得:y=2,则x+y=2﹣1=1.故答案为:117.【解答】解:根据题意,得.故答案为:.18.【解答】解:设3人的帐篷有x顶,2人的帐篷有y顶,依题意,有:3x+2y=30,整理得y=15﹣1.5x,因为x、y均为非负整数,所以15﹣1.5x≥0,解得:0≤x≤10,从0到10的偶数共有6个,所以x的取值共有6种可能.故答案是:6.三.解答题(共8小题)19.【解答】解:(1)原方程组可化为,①×3+②,得11x=22,即x=2,将x=2代入①,得6﹣y=3,即y=3,则方程组的解为;(2)方程组,①×2+②,得5x=10,即x=2,将x=2代入①,得2+2y=3,即y=,则方程组的解为20.【解答】解:①+②得:2y=﹣4,解得:y=﹣2,②+③得:2x=12,解得:x=6,把x=6,y=﹣2代入①得:﹣2+z﹣6=﹣3,解得:z=5,方程组的解为:.21.【解答】解:(1)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴这个相同的解为(2)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴m﹣n=3﹣2=1.答:m﹣n的值为1.22.【解答】解:由题意得,30﹣4a=6,20+4b=8.解得a=6,b=﹣3,代入第二个方程组得,整理得:,①﹣②×3得,﹣y=﹣12,解得y=12,把y=12代入①得,x=44,∴方程组的解为.23.【解答】解:设A型号自行车的购买价为x元,B型号自行车的购买价为y元,依题意,得:,解得:.答:A型号自行车的购买价为100元,B型号自行车的购买价为120元.24.【解答】解:设学生有x人,宿舍有y间,依题意,得:,解得:.答:学生有68人,宿舍有12间.25.【解答】解:(1)设A种型号的电风扇的销售单价为x元/台,B种型号的电风扇的销售单价为y元/台,依题意,得:,解得:.答:A种型号的电风扇的销售单价为150元/台,B种型号的电风扇的销售单价为260元/台.(2)设再购进A种型号的电风扇m台,则购进B种型号的电风扇(120﹣m)台,依题意,得:2310+3540+150m+260(120﹣m)﹣120(5+8+m)﹣190[6+9+(120﹣m)]=8240,解得:m=40,∴120﹣m=80.答:再购进A种型号的电风扇40台,B种型号的电风扇80台,就能实现这两批电风扇的总利润为8240元的目标.26.【解答】解:(1)x表示甲工程队工作的时间,y表示乙工程队工作的时间.故答案为:甲工程队工作的时间;乙工程队工作的时间.(2)依题意,得:,解得:.答:甲工程队修建云轨4千米,乙工程队修建云轨8千米.。
人教版 七年级下册数学 第5-6章 综合性训练题(含解析)
人教版2022年七年级下册第5-6章综合性训练题一.选择题1.如图,1∠和2∠是同位角的是( )A .B .C .D .2.81的平方根是( )A .81B .3±C .3-D .33.在数学课上,同学们在练习过点B 作线段AC 所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )A .1个B .2个C .3个D .4个4.下列判断中,错误的是( )A .1-的平方根是1±B .1-的倒数是1-C .1-的绝对值是1D .1-的平方的相反数是1-5.如图,BD 平分ABC ∠,若12∠=∠,则( )A .AD BC =B .AB CD =C .//AB CD D .//AD BC6.下列各式成立的是( )A 93=±B 2(9)81-=C 2(3)3--D 2(3)3-=7.若24m -与31m -是同一个数的平方根,则m 的值是( )A .3-B .1-C .1D .3-或18.已知29.9799.4009=,29.9899.6004=,29.9999.8001=,求997000之值的个位数字为何?( )A .0B .4C .6D .89.如图,将ABC ∆沿着点B 到C 的方向平移到DEF ∆的位置,10AB =,4DH =,平移距离为6,则阴影部分面积为( )A .96B .48C .24D .1210.如图,直线//AB CD ,44C ∠=︒,E ∠为直角,则1∠等于( )A .132︒B .134︒C .136︒D .138︒二.填空题11.如图所示,想在河的两岸搭建一座桥,沿线段 搭建最短,理由是 .12.比较大小:5- 2-(填“>”、“ =”或“<” ).13.如图是一把剪刀的示意图,手柄15AOB ∠=︒,要想使刀口的角度COD ∠达到40︒,那么手柄AOB ∠应增加的度数是 .14.在227,2π,0,223-380.9- 个. 15a 2±,那么a = .16.如图,点C 在直线AB 上(A 、C 、B 三点在一条直线上),若CE CD ⊥,已知150∠=︒,则2∠= ︒.17.若10的值在两个整数a 与1a +之间,则a = .三.解答题18.一个正数的x 的平方根是23a -与5a -,求a 和x 的值.19.已知:如图,A F ∠=∠,C D ∠=∠.求证://BD CE .20.光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图,光线a 从空气中射入水中,再从水中射入空气中,形成光线b ,根据光学知识有12∠=∠,34∠=∠,请判断光线a 与光线b 是否平行,并说明理由.21.求符合下列各条件中的x 的值.(1)2(4)4x -= (2)21(3)903x +-=.22.已知:如图所示,ABD ∠和BDC ∠的平分线交于E ,BE 交CD 于点F ,1290∠+∠=︒.(1)求证://AB CD ;(2)试探究2∠与3∠的数量关系.23.阅读下面的文字,解答问题.现规定:分别用[]x 和x 〈〉表示实数x 的整数部分和小数部分,如实数 3.14的整数部分是[3.14]3=,小数部分是3.140.14〈〉=;实数7的整数部分是[7]2=,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即72-就是7的小数部分,所以772〈〉=-.(1)[2]= ,2〈〉= ;[11]= ,11〈〉= .(2)如果5a 〈〉=,[101]b =,求5a b +-的立方根.24.如图,已知直线AB 和CD 相交于点O ,90COE ∠=︒,OF 平分AOE ∠,37COF ∠=︒.(1)求EOB ∠的度数.(2)若射线OF 、OD 分别绕着点O 按顺时针方向转动,两射线同时出发,射线OF 每分钟转动6︒,射线OD 每分钟转动0.5︒,多少分钟后,射线OF 与射线OD 第一次重合.(3)在(2)的条件下,假设转动时间不超过60分钟,若33FOD ∠=︒,则两射线同时出发 分钟.25.先观察下列等式,再回答问题: ①2211111111121112++=+-=+; ②2211111111232216++=+-=+; ③22111111113433112++=+-=+ (1)根据上面三个等式提供的信息,请猜想2211145++的结果,并进行验证; (2)根据上面的规律,可得22111910++= . (3)请按照上面各等式反映的规律,试写出用(n n 为正整数)表示的等式,并加以验证.26.(1)如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数;(2)如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B ,D 两点之间运动时,请写出APC ∠与α,β之间的数量关系,并说明理由;(3)在(2)的条件下,如果点P 在B ,D 两点外侧运动时(点P 与点O ,B ,D 三点不重合),请直接写出APC ∠与α,β之间的数量关系.参考答案一.选择题(共10小题)1.【解答】解:根据同位角的定义,观察上图可知,A 、1∠和2∠是同位角,故此选项符合题意;B 、1∠和2∠不是同位角,故此选项不符合题意;C 、1∠和2∠不是同位角,故此选项不符合题意;D 、1∠和2∠不是同位角,故此选项不合题意;故选:A .2.【解答】解:9=,而29(3)=±,∴3±. 故选:B .3.【解答】解:从左向右第一个图形中,垂线段是线段,图中画的是射线,故错误; 第二个图形中,BE 不垂直AC ,所以错误;第三个图形中,是过点A 作的AC 的垂线,所以错误;第四个图形中,过点B 作的BC 的垂线,也错误.故选:D .4.【解答】解:A 、负数没有平方根,故A 说法不正确;B 、1-的倒数是1-,故选项正确;C 、1-的绝对值是1,故选项正确;D 、1-的平方的相反数是1-,故选项正确.故选:A .5.【解答】解:BD 平分ABC ∠,13∴∠=∠,又12∠=∠,23∴∠=∠,//AD BC ∴(内错角相等,两直线平行). 故选:D .6.【解答】解:A 、原式3=,不符合题意;B 、原式|9|9=-=,不符合题意;C 、原式|3|3=-=,不符合题意;D 、原式|3|3=-=,符合题意,故选:D .7.【解答】解:当2431m m -=-时,3m =-, 当24310m m -+-=时,1m =.故选:D .8.【解答】解:29.9799.4009=,29.9899.6004=,29.9999.8001=, ∴99.600499.799.8001<<,9.9899.79.99∴<<,998997000999∴<<,即其个位数字为8.故选:D .9.【解答】解:由平移的性质知,6BE =,10DE AB ==, 1046HE DE DH ∴=-=-=,()()1110664822HDFC ABEH S S AB HE BE ∴==+⋅=+⨯=四边形梯形. 故选:B .10.【解答】解:过E 作//EF AB ,//AB CD ,////AB CD EF ∴,C FEC ∴∠=∠,BAE FEA ∠=∠,44C ∠=︒,AEC ∠为直角, 44FEC ∴∠=︒,904446BAE AEF ∠=∠=︒-︒=︒, 118018046134BAE ∴∠=︒-∠=︒-︒=︒,故选:B .二.填空题(共7小题)11.【解答】解:PM MN ⊥,∴由垂线段最短可知PM 是最短的, 故答案为:PM ,垂线段最短.12.【解答】解:, 故答案为:<.13.【解答】解:由于40COD AOB ∠=∠=︒, 所以手柄AOB ∠应增加的度数是401525︒-︒=︒, 故答案为:25︒.14.【解答】解:227,233-是分数,属于有理数;02,是整数,属于有理数;无理数有2π,2个.故答案为:2.15.【解答】解:2(2)4±=,∴4,216a ∴==.故答案为:16.16.【解答】解:CE CD ⊥,90ECD ∴∠=︒,150∠=︒,21801180905040ECD ∴∠=︒-∠-∠=︒-︒-︒=︒, 故答案为:40︒.17.【解答】解:a 与1a +之间,34<,3a ∴=. 故答案为:3.三.解答题(共9小题)18.【解答】解:一个正数的x 的平方根是23a -与5a -, 2350a a ∴-+-=或235a a -=-解得:2a =-或83a =, 237a ∴-=-或7233a -=. 2(7)49x ∴=-=或499x =. 19.【解答】证明:A F ∠=∠, //AC DF ∴,C FEC ∴∠=∠,C D ∠=∠,D FEC ∴∠=∠,//BD CE ∴. 20.【解答】解:平行.理由如下:如图,34∠=∠,56∴∠=∠,12∠=∠,1526∴∠+∠=∠+∠,//a b ∴.21.【解答】解:(1)2(4)4x -=, 42x ∴-=±.解得:12x =,26x =.(2)移项得:21(3)93x +=, 两边同时乘以3得:2(3)27x +=,3x ∴+=±.13x ∴=,23x =-.22.【解答】证明:(1)BE 、DE 平分ABD ∠、BDC ∠,112ABD ∴∠=∠,122BDC ∠=∠; 1290∠+∠=︒,180ABD BDC ∴∠+∠=︒;//AB CD ∴;(同旁内角互补,两直线平行)解:(2)DE 平分BDC ∠,2FDE ∴∠=∠;1290∠+∠=︒,180(12)9090BED DEF ∴∠=-∠+∠=︒=∠=︒; 390FDE ∴∠+∠=︒;2390∴∠+∠=︒.23.【解答】解:(1)122<<,∴11-,即1=,1=,3114<<,∴33,即3=,3=,故答案为:11,33;(2)的整数部分是2的整数部分是10,∴2a ==,10b ==,∴2108a b +=+=, 又8的立方根为2,∴a b +2.24.【解答】解:(1)90COE ∠=︒,37COF ∠=︒, 903753EOF ∴∠=︒-︒=︒. OF 平分AOE ∠,532106AOE ∴∠=︒⨯=︒.18010674EOB ∴∠=︒-︒=︒.(2)180COD ∠=︒,90COE ∠=︒,90EOD ∴∠=︒.9053143FOD ∴∠=︒+︒=︒.设x 分钟后射线OF 与射线OD 第一次重合,依题意得:60.5143x x -=, 解得:26x =.答:26分钟后,射线OF 与射线OD 第一次重合.(3)由(2)可知,开始时143FOD ∠=︒,设两射线同时出发t 分钟后,33FOD ∠=︒,当射线OF 与射线OD 第一次重合前,由题意得6331430.5t t +=+, 解得20t =;当射线OF 与射线OD 第一次重合后,由题意得6143330.5t t =++, 解得32t =,综上,两条射线同时出发20或32分钟后,33FOD ∠=︒. 故答案为:20或32.25.【解答】解:(11111144120=+-=+21112020==(21111191090+-=(3211n n++=222222(1)21(1)n n n n n n n +++++=+ 2222(1)2(1)1(1)n n n n n n ++++=+ 2222(1)(1)n n n n ++=+ 21(1)n n n n ++=+ 2221n n n n n n+=+++ 211n n=++ 26.【解答】解:(1)过点P 作//PE AB , //AB CD ,////PE AB CD ∴,180A APE ∴∠+∠=︒,180C CPE ∠+∠=︒, 130PAB ∠=︒,120PCD ∠=︒, 50APE ∴∠=︒,60CPE ∠=︒, 110APC APE CPE ∴∠=∠+∠=︒.(2)APC αβ∠=∠+∠,理由:如图2,过P 作//PE AB 交AC 于E ,//AB CD ,////AB PE CD ∴,APE α∴∠=∠,CPE β∠=∠, APC APE CPE αβ∴∠=∠+∠=∠+∠;(3)①如图所示,当P 在BD 延长线上时, CPA αβ∠=∠-∠;②如图所示,当P在DB延长线上时,∠=∠-∠;CPAβα∠=∠-∠.CPAαβ∴∠=∠-∠或者CPAβα。
2024年人教版七年级下册数学第四单元课后练习题(含答案和概念)
2024年人教版七年级下册数学第四单元课后练习题(含答案和概念)试题部分一、选择题:1. 在下列各数中,3的相反数是()A. 3B. 3C. 0D. (3)2. 如果a<0,那么a()A. 大于0B. 小于0C. 等于0D. 无法确定3. 下列各数中,有理数是()A. √2B. √1C. 3.14D. π4. 下列各数中,2的倍数是()A. 3.5B. 4.8C. 5.6D. 6.95. 下列各数中,既是有理数又是无理数的是()A. 0B. 1C. 2D. 36. 下列各数中,不是2的倍数的是()A. 14B. 16C. 18D. 207. 下列各数中,2的绝对值是()A. 2B. 2C. 0D. (2)8. 如果a>0,那么a()A. 大于0B. 小于0C. 等于0D. 无法确定9. 下列各数中,既不是正数也不是负数的是()A. 0B. 1C. 1D. 210. 下列各数中,最小的数是()A. 5B. 3C. 1D. 0二、判断题:1. 相反数的和为0。
()2. 绝对值等于0的数是0。
()3. 有理数和无理数统称为实数。
()4. 任何数乘以0都等于0。
()5. 两个负数相乘得到正数。
()6. 两个正数相加得到负数。
()7. 0除以任何非0的数都等于0。
()8. 任何数的平方都是正数。
()9. 任何数的平方根都是正数。
()10. 负数的绝对值等于它的相反数。
()三、计算题:1. 计算:(3) + 7 = ?2. 计算:5 (2) = ?3. 计算:4 × 6 = ?4. 计算:24 ÷ (3) = ?5. 计算:| 5 | = ?6. 计算:3^2 = ?7. 计算:√(49) = ?8. 计算:2^3 × 3^2 = ?9. 计算:(4 3)^2 = ?10. 计算:(2 + 3) × (5 2) = ?11. 计算:4.8 ÷ 1.2 = ?12. 计算:3.14 × 2.5 = ?13. 计算:10 3.5 = ?14. 计算:| 7.2 | = ?15. 计算:5 × (6 2) = ?16. 计算:(8 ÷ 2) + 4 = ?17. 计算:9 + (3) 2 = ?18. 计算:7 × (4) ÷ 2 = ?19. 计算:12 ÷ (2 + 3) = ?20. 计算:2^4 ÷ 4 = ?四、应用题:1. 小华有5个苹果,他吃掉了其中的3个,请问他还剩下几个苹果?2. 一个长方形的长是8厘米,宽是4厘米,请计算它的面积。
《名校课堂》(人教版)七年级(下册)数学
《名校课堂》(人教版)七年级(下册)数学湖北世纪华章文化传播有限公司公司简介湖北世纪华章文化传播有限公司创建于2001年,是一家以中小学教育辅导类图书开发为重点,集内容策划、出版发行于一体的民营股份制企业,是全国一流的基础教育图书供应商。
公司成功研发出版的《名校课堂》、《火线100天》等系列图书已经成为全国中小学教育类图书的一线品牌,每年有2000余万人次中小学生、98万余人次的教师、超过4.8万所学校使用本公司的图书,产品畅销不衰。
目前,公司拥有4项注册商标、一项国家专利,并与广西师范大学出版社、黑龙江教育出版社、北京市海淀区教师进修学校、黄冈市教育科学研究院等全国知名出版社、教育研发机构深度合作,重点研发教育类图书、报刊、网站等项目。
公司宗旨:服务教师、服务教学、服务教育公司使命:以图书出版推动教育进步公司愿景:让每一位学生以较小的成本分享到高品质的教育七年级(下册)数学(人教版)Word 版习题教学资源包导学案第五章相交线与平行线第六章实数第七章平面直角坐标系第八章二元一次方程组第九章不等式与不等式组第十章数据的收集、整理与描述期末复习第五章相交线与平行线5.1 相交线5.2 平行线及其判定周周练(5.1~5.2)5.3 平行线的性质小专题(一)平行线的性质与判定5.4 平移周周练(5.3~5.4)单元测试(一)相交线与平行线第六章实数6.1 平方根6.2 立方根6.3实数单元测试(二)实数第七章平面直角坐标系7.1 平面直角坐标系7.2 坐标方法的简单应用单元测试(三)平面直角坐标系期中测试第八章二元一次方程组8.1 二元一次方程组8.2 消元——解二元一次方程组小专题(二)二元一次方程组的解法8.3 实际问题与二元一次方程组小专题(三)二元一次方程组的实际应用周周练(8.1~8.3)8.4 三元一次方程组的解法单元测试(四)二元一次方程组第九章不等式与不等式组9.1 不等式9.2 一元一次不等式周周练(9.1~9.2)9.3 一元一次不等式组小专题(四)解一元一次不等式(组)单元测试(五) 不等式与不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图小专题(五)从图表中获取信息单元测试(六)数据的收集、整理与描述期末测试期末复习期末复习(一) 相交线与平行线期末复习(二) 实数期末复习(三) 平面直角坐标系期末复习(四) 二元一次方程组期末复习(五) 不等式与不等式组期末复习(六) 数据的收集、整理与描述第五章相交线与平行线5.1 相交线5.1.1相交线5.1.2垂线5.1.3同位角、内错角、同旁内角第五章相交线与平行线5.2 平行线及其判定5.2.1平行线5.2.2平行线的判定第五章相交线与平行线5.3 平行线的性质5.3.1平行线的性质5.3.2命题、定理、证明第六章实数6.1 平方根第1课时算术平方根第2课时平方根第七章平面直角坐标系7.1 平面直角坐标系7.1.1有序数对7.1.2平面直角坐标系第七章平面直角坐标系7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2用坐标表示平移第八章二元一次方程组8.2 消元——解二元一次方程组第1课时用代入消元法解方程组第2课时用加减消元法解方程组第九章不等式与不等式组9.1 不等式9.1.1不等式及其解集9.1.2不等式的性质第九章不等式与不等式组9.2 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用。
最新人教版初中七年级下册数学期末复习(四)《二元一次方程组》练习题
期末复习(四) 二元一次方程组考点一二元一次方程(组)的解的概念【例1】已知2,1xy==⎧⎨⎩是二元一次方程组8,1mx nynx my+=-=⎧⎨⎩的解,则2m-n的算术平方根为( )A.4B.2D.±2【解析】把2,1xy==⎧⎨⎩代入方程组8,1mx nynx my+=-=⎧⎨⎩得28,2 1.m nn m+=-=⎧⎨⎩解得3,2.mn==⎧⎨⎩所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y bx by a+=-=⎧⎨⎩的解是1,1.xy==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二二元一次方程组的解法【例2】解方程组:1 28. x yx y=++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2. xy==⎧⎨⎩方法二:1, 28. x yx y=++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2.x y ==⎧⎨⎩ 【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________.3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( ) A.a<4 B.a>4 C.a<-4 D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________. 考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩ 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a ”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y 的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x y y z +=-+=⎧⎨⎩B.53323x y y x -==+⎧⎨⎩C.512x y xy -==⎧⎨⎩D.2371x y x y -=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x yx y-=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21xy==⎧⎨⎩,是方程组4,ax byax by+=--=⎧⎨⎩的解,那么a,b的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A、B两地相距6 km,甲、乙两人从A、B两地同时出发,若同向而行,甲3 h可追上乙;若相向而行,1 h相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h,乙的速度为y km/h,则得方程组为( )A.6336x yx y+=+=⎧⎨⎩B.636x yx y+=-=⎧⎨⎩C.6336x yx y-=+=⎧⎨⎩D.6 336 x yx y+=-=⎧⎨⎩6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.已知a、b满足方程组22,26,a ba b-=+=⎧⎨⎩则3a+b的值为( )A.8B.4C.-4D.-88.方程组24,31,7x yx zx y z+=+=++=⎧⎪⎨⎪⎩的解是( )A.221xyz===⎧⎪⎨⎪⎩B.211xyz===⎧⎪⎨⎪⎩C.281xyz⎧=-==⎪⎨⎪⎩D.222xyz===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、b是有理数,观察下表中的运算,并在空格内填上相应的数.12.已知2,1xy==⎧⎨⎩是二元一次方程组7,1mx nynx my+=-=⎧⎨⎩的解,则m+3n的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B 两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1xy==⎧⎨⎩代入方程组,ax y bx by a+=-=⎧⎨⎩,得1,1.a bb a+=-=⎧⎨⎩整理,得1,1.a ba b-=-+=⎧⎨⎩∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13 xy==-⎧⎨⎩,3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1. 把y=1代入③,得x=4+1=5.∴原方程组的解为51. xy==⎧⎨⎩,4.15.根据题意,得25,5 1.x yx y-=-=+⎧⎨⎩解得3,1.xy==⎧⎨⎩6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 14 3415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨, 答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台.③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。
最新人教版初中数学七年级数学下册第四单元《二元一次方程组》测试题(含答案解析)
一、选择题1.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( ) A .3 B .4 C .2 D .12.如图,周长为78cm 的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为( )A .232cmB .235cmC .236cmD .240cm 3.若a 为方程250x x +-=的解,则22015a a ++的值为( )A .2010B .2020C .2025D .20194.下列四组数值中,方程组02534a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩5.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩ 6.下列各方程中,是二元一次方程的是( ) A .253x y x y -=+ B .x+y=1 C .2115x y =+ D .3x+1=2xy7.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A.2256x yx y+=⎧⎨=⎩B.2265x yx y+=⎧⎨=⎩C.22310x yx y+=⎧⎨=⎩D.22103x yx y+=⎧⎨=⎩8.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付()小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A.10元B.11元C.12元D.13元9.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为()A.19分B.20分C.21分D.22分10.已知xyz≠0,且4520430x y zx y z-+=⎧⎨+-=⎩,则 x:y:z 等于()A.3:2:1 B.1:2:3 C.4:5:3 D.3:4:5 11.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩12.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a ”的数是( ) y a2y 4x -92x - 11 B .7 C .8 D .9二、填空题13.已知关于x 的方程a(x-3)+b(3x+1)=5(x+1)有无穷多个解,则a+b=______________. 14.已知关于x 、y 的方程组2326324x y k x y k +=+⎧⎨+=+⎩的解满足2x y +=,则k 的值为__. 15.若12x y =⎧⎨=-⎩是二元一次方程23ax y -=的解,则a 的值为________. 16.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______.17.单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并,则多项式4m-2n+(-m-n )2-2(n-2m )2的值是______. 18.已知方程组 2629x y x y +=⎧⎨+=⎩,则x-y=_________. 19.若方程2(3)31a a x y --+=是关于x ,y 的二元一次方程,则a 的值为_____. 20.若2|327|(521)0a b a b +++-+=,则a b +=______.三、解答题21.已知多项式21231365m x y xy x +-+-+是六次多项式,单项式3x 2n y 5-m 的次数也是六,求:(1)m ,n 的值;(2)[2()]m n m m n ---+的值.22.对于平面直角坐标系xoy 中的点(),P a b ,若点P'的坐标为(),a kb ka b ++(其中k 为常数,0k ≠)则称点P'为点P 的“k 属派生点”,例如:()1,4P 的“2属派生点”为()'124,214P +⨯⨯+,即()'9,6P .(1)点()2,3P -的“3属派生点”的坐标为________;(2)若点P 的“5属派生点”的坐标为()3,9-,求点P 的坐标.23.在解方程组85ax y bx cy +=-⎧⎨-=⎩时,小聪正确的解得31x y =⎧⎨=⎩,小虎因看错a 而解得71x y =⎧⎨=-⎩,若两人的计算过程均没错误,求a ,b ,c 的值. 24.学校准备租用客车外出活动.现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车送330名师生集体外出活动(无空座),最节省的租车费用是多少?25.解下列方程组(1)362x y y x +=⎧⎨=-⎩ (2)3510236x y x y -=⎧⎨+=-⎩ (3)45321x y x y +=⎧⎨-=⎩ (4)()31511212x y x y ⎧-=+⎪⎨+=-⎪⎩ 26.若关于,x y 的方程组37x y ax y b -=⎧⎨+=⎩和关于,x y 的方程组28x by a x y +=⎧⎨+=⎩有相同的解,求,a b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题解析:A【分析】两个方程相加即可求出a+b 的值.【详解】解:a 2b 43a 2b 8+=⎧⎨+=⎩①②①+②得,4a+4b=12∴a+b=3故选:A .【点睛】此题主要考查了解二元一次方程组,熟练、灵活运用解题方法是解答此题的关键. 2.C解析:C【分析】设小长方形的长为x ,宽为y ,列出二元一次方程组并求解,即可得出结论.【详解】解:设小长方形的长为x ,宽为y ,根据图形可得:45678x y x y =⎧⎨+=⎩, 解得123x y =⎧⎨=⎩, ∴一个小长方形的面积为212336cm ⨯=,故选:C .【点睛】本题考查二元一次方程组的实际应用,根据图形找出等量关系是解题的关键.3.B解析:B【分析】先根据a 为方程250x x +-=的解得到25a a +=,然后整体代入即可解答.【详解】解:∵a 为方程250x x +-=的解∴250a a +-=,即25a a +=∴22015a a ++=5+2015=2020.故答案为B .【点睛】本题考查了一元二次方程的解和整体法的应用,正确理解并灵活应用一元二次方程的解解答问题是解答本题的关键.解析:B【解析】分析:首先利用②-①和②+③得出关于a和b的二元一次方程组,从而求出a和b的值,然后将a和b代入任何一个式子得出c的值,从而得出方程组的解.详解:0?25?34?a b ca b ca b c++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a-2b=-5 ④,②+③可得:5a-2b=-9⑤,④-⑤可得:-4a=4,解得:a=-1,将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121abc=-⎧⎪=⎨⎪=-⎩,故选B.点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.5.D解析:D【分析】根据方程组的解的定义,只要检验12xy=⎧⎨=⎩是否是选项中方程的解即可.【详解】A、把12xy=⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12xy=⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B、把12xy=⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C、把12xy=⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D、把12xy=⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12xy=⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D.【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.6.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A、分母中含有未知数,是分式方程,故本选项错误;B、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C、D、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误.故选B.7.A解析:A【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:22 56x yx y+=⎧⎨=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.C解析:C【分析】设购买1支签字笔应付x元,1本笔记本应付y元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y的值.【详解】设购买1支签字笔应付x元,1本笔记本应付y元,根据题意得5352 3544 x yx y+⎧⎨+⎩==,解得8x+8y=96,即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付12元,故选C.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.9.A解析:A【分析】设投中外环得x分,投中内环得y分,根据所给图信息列一个二元一次方程组,解出即可得出答案.【详解】解:设投中外环得x 分,投中内环得y 分,根据题意得2321417x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩, 32332519x y ∴+=⨯+⨯=分即小颖得分为19分,故选A .【点睛】本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键. 10.B解析:B【分析】由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可.【详解】∵4520430x y z x y z -+⎧⎨+-⎩=①=②, ∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z ,∴x :y :z=x :2x :3x=1:2:3,故选B .【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键. 11.A解析:A【分析】图2中,第一个方程x 的系数为2,y 的系数为1,相加为11;第二个方程x 的系数为4,y 的系数为3,相加为27,据此解答即可.【详解】解:图2所示的算筹图所表示的方程组是2114327x y x y +=⎧⎨+=⎩. 故选:A .【点睛】本题考查了二元一次方程组的应用,读懂题意、明确图1表示方程组的方法是解题关键.12.B解析:B【分析】根据第一列、第三行、对角线建立关于x 、y 的方程组,解方程组求出x 、y 的值,由此即可得.【详解】由题意得:29411299211y y y x y y x ++=-+⎧⎨++=-+⎩, 整理得:4222311x y x y +=⎧⎨+=⎩, 解得25x y =-⎧⎨=⎩, 则2949y y a x ++=-+,即()5259429a +⨯+=-⨯-+,解得7a =,故选:B .【点睛】本题考查了二元一次方程组的应用,依据题意,正确建立方程组是解题关键.二、填空题13.【分析】根据题意移项去括号将原方程整理成关于x 的方程最后根据题干所给条件列出方程组得出结果即可【详解】解:移项得:a (x−3)+b (3x +1)−5(x +1)=0去括号得:ax−3a +3bx +b−5x解析:【分析】根据题意移项、去括号、将原方程整理成关于x 的方程,最后根据题干所给条件列出方程组得出结果即可.【详解】解:移项,得:a (x−3)+b (3x +1)−5(x +1)=0,去括号,得:ax−3a +3bx +b−5x−5=0,整理关于x 的方程,得:(a +3b−5)x−(3a−b +5)=0,∵方程有无穷多解,∴350350a b a b +-⎧⎨-+⎩== , 解得:12a b -⎧⎨⎩== .则a +b =1. 故答案为:1.【点睛】本题主要考查了解一元一次方程及解二元一次方程组,需要把握好题干条件,根据条件列出相应方程组.14.0【分析】根据x+y=2求出5x+5y=10方程组的两方程的两边分别相加得出5x+5y=3k+10得出方程3k+10=10求出方程的解即可【详解】解:①②得:故答案为:0【点睛】本题考查了二元一次方解析:0【分析】根据x+y=2求出5x+5y=10,方程组的两方程的两边分别相加得出5x+5y=3k+10,得出方程3k+10=10,求出方程的解即可.【详解】解:2326324x y k x y k +=+⎧⎨+=+⎩①②, ①+②得:55310x y k +=+,2x y +=,5510x y ∴+=,31010k ∴+=,0k ∴=,故答案为:0.【点睛】本题考查了二元一次方程组的解,解一元一次方程和解二元一次方程组等知识点,能得出关于k 的一元一次方程是解此题的关键.15.【分析】把x 与y 的值代入方程计算即可求出a 的值【详解】把代入方程得:解得:故答案为:【点睛】本题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值解析:1-【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把12x y =⎧⎨=-⎩代入方程得:()223a -⨯-=, 解得:1a =-,故答案为:1-.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 16.45【分析】设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意列出方程组进行解答便可【详解】解:设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意得化 解析:45%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(140%)a b c a b c c a a b x c a b c ++=++⎧⎪=⨯⎨⎪+++++=+++⎩化简整理得:30350241311a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩, 解得:0.4545%x ==;故答案为:45%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.17.-3【分析】根据两个单项式可以合并求出mn 的值再化简多项式代入即可【详解】解:单项式-x2m-ny3与单项式可以合并∴2m-n=33=m+n 组成方程组解得:m=2n=1当m=2n=1时故答案为:【点解析:-3【分析】根据两个单项式可以合并,求出m 、n 的值,再化简多项式代入即可.【详解】解:单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并 ∴2m-n=3,3=m+n组成方程组解得:m=2,n=1当m=2,n=1时 ()()224222m n m n n m -+---- 82918=-+-3=-故答案为:3-.【点睛】本题考查同类项定义,以及代入多项式求值,值得注意的是本题代入求值时,可以直接代入,化简后代入反而繁缛了.18.【分析】用和作差即可解答【详解】解:∵∴②-①得x-y=3故答案为3【点睛】本题考查了方程组的应用掌握整体思想是解答本题的关键解析:【分析】用29x y +=和26x y +=作差即可解答.【详解】解:∵2629x y x y +=⎧⎨+=⎩①② ∴②-①得x-y=3.故答案为3.【点睛】本题考查了方程组的应用,掌握整体思想是解答本题的关键.19.-3【分析】根据二元一次方程的定义:含有两个未知数并且含有未知数的项的次数都是1像这样的方程叫做二元一次方程可得|a|-2=1且a-3≠0再解即可【详解】解:由题得解得a=-3故答案为:-3【点睛】解析:-3【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程可得|a|-2=1,且a-3≠0,再解即可.【详解】 解:由题得,2130a a ⎧-⎨-≠⎩= , 解得a=-3,故答案为:-3.【点睛】本题考查了二元一次方程的定义.二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程. 20.-3【分析】由|3a+2b+7|+(5a-2b+1)2=0可得:3a+2b+7=0和5a-2b+1=0联立成方程组后解方程组可得a 和b 的值问题得解【详解】解:由题意得解方程组得所以【点睛】本题考查非解析:-3【分析】由|3a+2b+7|+(5a-2b+1)2=0,可得:3a+2b+7=0和5a-2b+1=0,联立成方程组后解方程组可得a 和b 的值,问题得解.【详解】解:由题意,得3270,5210,a b a b ++=⎧⎨-+=⎩解方程组得1,2,a b =-⎧⎨=-⎩所以3a b +=-.【点睛】本题考查非负数的性质,利用其特殊的性质:非负数≥0,将问题转化为解方程或解方程组.这是解答此类题的规律,要求掌握.三、解答题21.(1)m =3,n =2;(2)4m ,12【分析】(1)根据题意列出方程组求解即可;(2)先去括号,再合并同类项,代入求值即可.【详解】(1)由题意得:126526m m n =⎧⎨=⎩++-+ 解得:32m n =⎧⎨=⎩ 答:m ,n 的值分别为3,2.(3)原式=m -(n -2m -m -n )=m -n +2m +m +n=4m当m =3,n =2时,原式=4×3=12【点睛】本题考查了多项式和单项式的次数概念,掌握相关概念列出方程组是解题的关键. 22.(1)(7,-3);(2)点P 的坐标为(-2,1)【分析】(1)根据公式直接代入计算即可;(2)设点P 的坐标为(a ,b ),根据题意列得5359a b a b +=⎧⎨+=-⎩,求解即可. 【详解】(1)由题意得点()2,3P -的“3属派生点”的横坐标为233-+⨯=7,点()2,3P -的“3属派生点”的纵坐标为3(2)3⨯-+=-3,点()2,3P -的“3属派生点”的坐标为(7,-3),故答案为:(7,-3);(2)设点P 的坐标为(a ,b ),由题意得5359a b a b +=⎧⎨+=-⎩,解得21a b =-⎧⎨=⎩,∴点P 的坐标为(-2,1).【点睛】此题考查新定义,列方程组解决实际问题,有理数的混合运算,正确理解题中的计算公式是解题的关键.23.a=-3,b=1,c=-2【分析】将31x y =⎧⎨=⎩代入85ax y bx cy +=-⎧⎨-=⎩求得335a b c =-⎧⎨-=⎩,将71x y =⎧⎨=-⎩代入bx-cy=5中,求得7b+c=5,再解方程组7535b c b c +=⎧⎨-=⎩求得12b c =⎧⎨=-⎩即可. 【详解】将31x y =⎧⎨=⎩代入85ax y bx cy +=-⎧⎨-=⎩,得335a b c =-⎧⎨-=⎩, 将71x y =⎧⎨=-⎩代入bx-cy=5中,得7b+c=5, 解方程组7535b c b c +=⎧⎨-=⎩,解得12b c =⎧⎨=-⎩, ∴a=-3,b=1,c=-2.【点睛】此题考查解二元一次方程组,正确理解题意,将解代入正确的方程进行计算是解题的关键.24.(1)1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)2960元.【分析】(1)可设1辆甲种客车的租金是x 元,1辆乙种客车的租金是y 元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【详解】解:(1)设1辆甲种客车的租金是x 元,1辆乙种客车的租金是y 元,依题意有 31240321760x y x y +=⎧⎨+=⎩, 解得:400280x y =⎧⎨=⎩. ∴1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)根据题意,∵3303011÷=,∴当全部租用乙种客车11辆,则费用为:280113080⨯=(元);∵456302330⨯+⨯=,∴当租用甲种客车6辆,乙种客车2辆时,费用为:400628022960⨯+⨯=(元);∵454305330⨯+⨯=,∴当租用甲种客车4辆,乙种客车5辆时,费用为:400428053000⨯+⨯=(元);∵452308330⨯+⨯=,当租用甲种客车2辆,乙种客车8辆时,费用为400228083040⨯+⨯=(元);综合上述,则当租用甲种客车6辆,乙种客车2辆时,费用最少,费用为2960元.【点睛】本题考查二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.25.(1)2xy=⎧⎨=⎩,(2)2xy=⎧⎨=-⎩,(3)11xy=⎧⎨=⎩,(4)317137xy⎧=⎪⎪⎨⎪=⎪⎩【分析】(1)根据代入法解二元一次方程组即可;(2)根据加减法解二元一次方程组即可;(3)根据加减法解二元一次方程组即可;(4)先化简方程,再用加减法解二元一次方程组即可.【详解】解:(1)362x yy x+=⎧⎨=-⎩①②把方程②代入方程①得,326x x+-=48x=2x=把x=2代入②得,y=0∴原方程组的解为20 xy=⎧⎨=⎩(2)3510 236 x yx y-=⎧⎨+=-⎩①②方程①×3+方程②×5得,19x=0x=0把x=0代入①得,-5y=10y=-2∴原方程组的解为2 xy=⎧⎨=-⎩(3)45 321 x yx y+=⎧⎨-=⎩①②方程①×2+方程②×5,11x=11x=1把x=1代入①得,4+y=5y=1∴原方程组的解为11 xy=⎧⎨=⎩(4)()31511212x yxy⎧-=+⎪⎨+=-⎪⎩化简得,35443 x yx y-=⎧⎨-=-⎩①②方程②×3-方程①得,-7y=-13137y=把137y=代入②得,5237x-=-317x=∴原方程组的解为317137 xy⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了二元一次方程组的解法,关键是根据方程组的特征选择代入法或加减法解二元一次方程组.26.75a=-,115b=-.【分析】首先把3x-y=7和2x+y=8联立方程组,求得x、y的数值,再进一步代入原方程组的另一个方程,再进一步联立关于a、b的方程组,进一步解方程组求得答案即可.【详解】解:由题意得37 28 x yx y-=⎧⎨+=⎩,解得32 xy=⎧⎨=⎩,把32xy=⎧⎨=⎩代入原方程组+yax bx by a=⎧⎨+=⎩,得,3+232a bb a=⎧⎨+=⎩,解得75115ab⎧=-⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.。
人教版七年级下册数学各单元练习题含答案
123(第三题)ABCD 1234(第2题)12345678(第4题)ab c人教版七年级下册数学各单元练习题第一章《相交线与平行线》一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( )A 、90°B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( ) A 、①② B 、①③ C 、①④ D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )A B CDE (第10题)ABCD E F G H第13题ABCD(第7题)BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xxxXXXXX学校XXXX年学年度第二学期第二次月考
XXX年级xx班级
姓名:_______________班级:_______________考号:_______________
一、计算题
(每空?分,共?
分)
1
、2、
3、解二元一次方程组
4、某通信运营商的短信收费标准如下:发送网内短信0.1元/条,发送网际短信0.15元/条,该通信运营商的用户小王某月发送以上两种短信共计150条,依照
该收费标准共支出短信费用19元,问小王该月发送网内、网际短信各多少条?
5、解方程组:
6、解方程组:
7、已知是方程组的解,求和的值。
8、“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%,该专业户去年计划生产小麦、玉米各多少吨?
9、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加元.求:
(1
)房间每天的入住量(间)关于(元)的函数关系式.
(2)该宾馆每天的房间收费(3)该宾馆客房部每天的利润值?最大值是多少?(元)关于(元)的函数关系式.(元)的函数关系式;当每个房间的定价为每天多少元时,有最大(元)关于10、李晖到“宇泉牌”服装专卖店做社会调查,了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息.
假设月销售件数为件,月总收入为y元,销售每件奖励元,营业员月基本工资为元.
(1)求a、b的值;
(2)若营业员小俐某月总收入不低于1800元,那么小俐当月至少要卖服装多少件?
11、今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失。
“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:
吴老师统计时不小心把墨水滴到了其中两个班级的捐款数额上,但他知道下面三条信息:
信息一:这三个班的捐款总金额是7700元;
信息二:(2)班的捐款金额比(3)班的捐款金额多300元;
信息三:(1)班学生平均每人捐款的金额大于48元,小于51元。
请根据以上信息,帮助吴老师解决下列问题:
(1)求出(2)班与(3)班的捐款金额各是多少元;
(2)求出(1)班的学生人数。
12、解方程组:
13、温州皮鞋畅销世界,享誉全球.某皮鞋专卖店老板对第一季度男女皮鞋的销售收入进行统计,并绘制了扇形统计图(如图).由于三月份开展促销活动,男、女皮鞋的销售收入分别比二月份增长了40%,60%.已知第一季度男女皮鞋的销售总收入为200万元.
(1)一月份销售收入______________万元,二月份销售收入_____________万元,三月份销售收入__________万元;
(2)二月份男、女皮鞋的销售收入各是多少万元?
参考答案
一、计算题
1、
2、将三个方程左,右两边分别相加,得4x-4y+4z=8,故x-y+z=2
然后用加、减消元法即可求得x、z
的值.【答案】④,把④分别与第一、二个方程联立,3
、解:∵
由②得,③
将③代入①,得
.解得
.代入③,得.
∴原方程组的解为
条、网际短信y条.
4、解:法1:设小王该月发送网内短信
根据题意,得
解这个方程组,得
答:小王该月发送网内短信70条、网际短信80条.
法2:设小王该月发送网内短信条,则发送网际短信()条.
根据题意,得.解这个方程,得=70.所以150一=80.答:小王该月发送网内短信70条、网际短信80条.5、
6、
7
、解:将
代入方程组,得
解关于、
的方程组得
所以,
8、解:设原计划生产小麦吨,生产玉米y吨,根据题意,得
解得:
所以该专业户去年实际生产小麦10吨,玉米8吨.
9、(1)
(2)
(3)
当时,有最大值。
此时,,就是说,当每个房间的定价为每天410元时,有最大值,且最大值是15210元
10、(1)=3,b=800;(2)334件
11、解:(1)设(2)班的捐款金额为元,(3
)班的捐款金额为元,
则依题意,得
解得
答:(2)班的捐款金额为3000元,(3)班的捐款金额为2700元。
(2)设(1)班的学生人数为人,
则依题意,得
解得,∵是正整数,∴40或41。
答:(1)班的学生人数为40人或41人。
12
、解:①+②,得
∴把
代入②,得
∴
∴原方程组的解是
13、解:(1)50;60;90.
(2)设二月份男、女皮鞋的销售收入分别为
万元,万元,
根据题意,得
,解得.答:二月份男、女皮鞋的销售收入分别为35万元、25万元.。