二次函数典型例题及练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
二次函数
专题一:二次函数的图象与性质
考点1.二次函数图象的对称轴和顶点坐标
例 1 已知,在同一直角坐标系中,反比例函数5
y x
=与二次函数22y x x c =-++的图像交于点(1)A m -,.
(1)求m 、c 的值;
(2)求二次函数图像的对称轴和顶点坐标.
考点2.抛物线与a 、b 、c 的关系
例2 已知2
y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限
考点3.二次函数的平移
例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一
1.对于抛物线y=13-x 2+
103x 163
-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4
D.抛物线与x 轴交点为(-1,0),(3,0)
3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移 2个单位长度后,所得图象的函数表达式是________.
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
4.小明从图2所示的二次函数2
y ax bx c =++的图象中,观察得出了
下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;
⑤40c b ->,你认为其中正确信息的个数有_______.(填序号) 5.函数Y=X 2
+2X-3(-2≦X ≦2)的最大值和最小值分别是_______. 6.已知二次函数y=-x 2
+bx-8的最大值为8,则b 的值为_______. 7、已知函数y=
2
1x 2
-x-12,当函数y 随x 的增大而减小时,x 的取值范围是_______ 专题二:二次函数表达式的确定
考点1.根据实际问题模型确定二次函数表达式
例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙
的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2
)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).
考点2.根据抛物线上点的坐标确定二次函数表达式
1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);
2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )
2+k (a ≠0);
3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.
例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二
1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )
图2
2- 1- 0
1
2 y x
1
3
x = A
B
C
D
图1
菜园
墙
A.y=2a (x-1)
B.y=2a (1-x )
C.y=a (1-x 2)
D.y=a (1-x )2 专题三:二次函数与一元二次方程的关系
考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围
一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.
例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )
A.6 6.17x <<
B.6.17 6.18x << C.6.18 6.19x <<
D.6.19 6.20x <<
考点2.根据二次函数的图象确定所对应的一元二次方程的根.
二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.
例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0
的解为________.
练习:已知抛物线y=
12x 2+x-52
. (1)用配方法求它的顶点坐标和对称轴.
(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.
考点3.抛物线的交点个数与一元二次方程的根的情况
例3 在平面直角坐标系中,抛物线2
1y x =-与
x 轴的交点的个数是( ) A.3
B.2
C.1
D.0
专项练习三
1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k
的取值范围是________. 2.已知二次函数2
2y x x m =-++的部分图象如图2所示,则关于x 的一元二次
方程2
20x x m -++=的解为 .
图2
图1