酶活力的测定

合集下载

酶活力测定

酶活力测定

酶活力测定
酶是一种能够催化生物体内化学反应的蛋白质,广泛存在于动植物、微生物、真菌等
生物体内。

酶在生理代谢、免疫系统、消化系统等方面扮演着重要的角色。

因此,对于酶
的活力测定十分重要。

下面将详细介绍酶活力测定方法。

酶活力测定的基本原理是通过测定一个给定反应体系下酶所催化的底物转化速度来确
定酶的活力。

酶活力的测定通常采用标准曲线法、比色法、荧光法、放射性同位素标记法、酶电极法等多种方法。

其中,比色法和荧光法是最为常用的两种方法。

二、比色法
比色法是通过反应体系中某一底物和产物的比色反应来测定酶的活力。

常用的比色反
应有蛋白质和氨基酸比色法、尿素酶测定法等。

以蛋白质和氨基酸比色法为例,其测定步骤如下:
1. 选定底物,例如眼镜蛇毒素,反应物为酸性的巴氏液
2. 选定测定时点,例如反应20分钟之后
3. 加入颜色试剂,例如Folin验液,使反应产生深色络合体
4. 测定吸光度,根据标准曲线计算出反应深度,从而计算出酶的活力值
三、荧光法
荧光法是通过酶催化的底物转化产生的荧光信号来测定酶活力。

荧光法具有高灵敏度、高精度、高速度、低误差等优点,越来越受到人们的关注。

1. 选择荧光素为底物,荧光素在激发光的作用下会发出荧光信号
2. 酶催化荧光素转化为羟基荧光素,生产出更强的荧光信号
四、注意事项
酶活力测定的过程中需要注意以下几个方面:
1. 选择适当的反应体系、底物和试剂
2. 在测定前保持合适的反应条件(例如pH、温度等)
3. 为了获得比较准确的测定结果,需要进行多次测定
4. 保证测定设备和试剂的质量和准确性。

酶活性的测定

酶活性的测定

式中
A—对照KMnO4滴定毫升数; B—酶反应后KMnO4滴定毫升数;
VT—酶液总量(ml); V1—反应所用酶液量(ml);
W—样品鲜重(g);
1.7mg
1.7—1ml H2O2。
0.1mol/L旳KMnO4相当于
紫外分光光度法:
H化测2O氢量2在,吸2使光40反率nm应旳波溶变长液化下吸速有光度强度即烈可(吸A测2收40出),随过过反氧氧应化化时氢氢间酶酶而旳能降活分低性解。。过根氧据 以1min内A240降低0.1旳酶量为1个酶活单位(u)。
硫酸盐缓冲液,盐酸羟胺,黄嘌呤,黄嘌 呤氧化酶,醋酸等。
试验环节:
计算措施:
每毫升反应液中SOD 抑止率达50%时相应 旳SOD 量为一种SOD 活力单位(U),待测 样品中旳SOD 活力由下式计算:
SOD克制率(%)=(A2-A1)/A2×100% SOD 活力(U/ml)=(A2-A1)
据此,可根据H2O2旳消耗量或O2旳生成量测定该酶活力大小。 在反应系统中加入一定量(反应过量)旳H2O2溶液,经酶促反 应后,用原则高锰酸钾溶液(在酸性条件下)滴定多出旳H2O2

即可求出消耗旳H2O2旳量。
酶表活达性 :用每克鲜重样品1min内分解H2O2旳毫克数
酶活(mgH2O2/gFW·min)=
测定茶树鲜叶APX活性旳最佳条件
PVPP旳加入量为鲜叶重旳1.5倍,提取液pH 为7.8,反应液pH为7.0,底物AsA浓度为 0.5mmol/L。
注意事项:
(1)因为测定反应是经过加液量控制在60s内,使产生旳A290光值下 降呈良好旳线性关系。
1.试剂: 0.1mol/L Tris-HCl 缓冲液
(pH8.2

酶活性的测定方法

酶活性的测定方法

酶活性的测定方法
酶活性的测定方法有多种。

以下列举了常见的几种方法:
1. 酶动力学法:通过测定酶催化底物转化为产物的速率,来确定酶活性。

常用的酶动力学方法有初始速率法、双重倒数法、利用酶反应速率与底物浓度的关系等。

2. 比色法:利用酶与底物反应后产生的色素变化进行酶活性测定。

例如,过氧化物酶活性可通过测量其催化产生的有色产物浓度的变化来确定。

3. 荧光法:利用酶与底物反应后产生的荧光变化进行酶活性测定。

荧光法的灵敏度高,操作简便。

例如,酯酶活性可通过测量底物转化为产物后产生的荧光强度的变化来确定。

4. 放射性同位素法:将放射性同位素标记在底物上,通过测量酶催化底物与同位素的结合来确定酶活性。

例如,放射性同位素法可用于测定DNA聚合酶活性。

5. 电化学法:利用酶与底物反应后产生的电流变化进行酶活性测定。

常用的电化学方法包括循环伏安法和电化学阻抗法。

例如,葡萄糖氧化酶活性可通过测量产生的电流与葡萄糖浓度之间的关系来确定。

值得注意的是,不同酶具有不同的理化性质和催化机制,因此需要根据具体酶的
特性选择适合的测定方法。

ABTS法测酶活

ABTS法测酶活

ABTS 法测酶活
1、先配制0.1mol/L 的醋酸-醋酸钠缓冲液(pH =4.0);
2、再配制0.5mmol/L 的ABTS ;(0.5mmol/L ABTS :0.27434g ABTS 加入到1L 纯水中溶解即可。

(分子量为548.67))
3、在无菌的环境中提取1mL 的粗酶液,放入EP 管内;
4、用离心机对其离心(8000转2分钟),取上一定量的上清液,用醋酸-醋酸钠缓冲液进行稀释一定的倍数;
5、取一定量的ABTS 试剂,和稀释后的酶液分别在不同的试管内进行水浴(40℃,10min );也将比色皿冲洗干净放在干燥箱里,温度调到40℃;
6、尽量保持在40℃的温度下混合ABTS 和稀释后的酶液(比例1:1),当两种液体混合时开始计时,记录下第30s 和90s 两个时间点分光光度计的显示数(λ=420nm );
7、定义1 个酶活力单位用每分钟1μmol 的ABTS 被转化所需的酶量。

(原理是ABTS 被Lac 氧化,氧化产物的消光系数ε为3.6×104(mol/L )-1·cm -1),所以酶活的换算按照下列公式:
t 10
6.31043
∆∆⨯⨯⨯D 酶液总体积反应液总体积。

05-01-024常规测定酶活力的步骤(精)

05-01-024常规测定酶活力的步骤(精)

天津现代职业技术学院
常规测定酶活力的步骤
酶活力测定一般包括两个阶段:首先,在一定条件下将酶与底物混合反应一段时间;然后,测定反应液中底物或产物量的变化。

常规测定酶活力的步骤如下:
1)酶液的稀释
2)选择合适的底物
3)确定酶促反应的最适条件
根据资料或试验结果,确定酶促反应的最适条件,包括底物浓度、最适温度、最适pH、适当稀释的酶液和严格的反应时间,抑制剂不可有,辅助因子不可缺。

有些酶促反应,要求有激活剂等其它条件,应根据需要适量添加。

4)反应时间必须准确
反应体系必需预热至规定温度后,加入酶液并立即计时,达到反应时间后,应立即灭酶活性,终止反应的进行,并记录终了时间。

5)反应量的测定
测底物减少量或产物增加量均可。

因为酶促反应底物的浓度一般都很高,少量底物的消耗量较难测准;而产物则是从无到有,变化明显,测定较为灵敏准确,所以,一般大都测定产物的增加量即生成量。

1。

酶活性测量的方法有哪几种

酶活性测量的方法有哪几种

酶活性测量的方法有哪几种酶活性测量是评估酶在特定条件下,催化底物转化为产物的能力的一种方法。

根据不同的酶特性和底物/产物的特性,可以使用多种方法来测量酶的活性。

以下是常见的酶活性测量方法:1. 比色法:比色法是最常用的测量酶活性的方法之一。

在酶催化底物转化为产物之后,产生的有色化合物可以通过分光光度计来测量其吸光度。

比色法适用于各种酶的测量,包括氧化还原酶、氨基酸酶等。

2. 荧光法:荧光法是利用酶底物转化为产物之后所产生的荧光来测量酶活性的方法。

这种方法通常需要在底物或产物中引入荧光染料,通过测量荧光信号的强度来定量酶活性。

荧光法对于具有较高灵敏度要求的酶活性测量非常有用,例如蛋白酶、DNA酶等。

3. 发光法:发光法是利用酶催化底物转化为产物后所产生的光来测量酶活性的方法。

这种方法通常需要在底物或产物中引入发光底物或荧光染料,通过测量其发光强度来测量酶活性。

发光法对于对时间分辨率要求较高的酶活性测量非常有用,例如ATP酶、NADH酶等。

4. 放射性法:放射性法是利用酶催化底物转化为产物后所释放的放射性物质测量酶活性的方法。

该方法需要在底物或产物中引入放射性同位素,通过测量其放射性强度来定量酶活性。

放射性法对于具有极高灵敏度要求的酶活性测量非常有用,例如DNA聚合酶、RNA酶等。

5. 电化学法:电化学法是利用酶催化底物转化为产物后所产生的电流来测量酶活性的方法。

这种方法通常需要在底物或产物中引入可反应的电活性物质,通过测量电流来定量酶活性。

电化学法对于某些具有电催化酶活性的酶测量非常有用,例如葡萄糖氧化酶、酒精脱氢酶等。

6. 色谱法:色谱法是利用酶催化底物转化为产物后所产生的物质在色谱柱上的分离来测量酶活性的方法。

这种方法通常需要在底物或产物中引入特定的标记物质,通过测量标记物质在色谱图谱上的峰面积或峰高度来定量酶活性。

色谱法对于某些底物或产物具有特定的分离性质的酶活性测量非常有用,例如激酶、酮糖酶等。

酶活力测定实验报告

酶活力测定实验报告

酶活力测定实验报告一、实验目的酶活力测定实验的主要目的是了解酶的活性及其影响因素,掌握测定酶活力的基本方法和原理,以及学会使用相关仪器和试剂进行实验操作。

二、实验原理酶是生物体内具有催化作用的蛋白质或核酸。

酶活力是指酶催化一定化学反应的能力,通常用在一定条件下酶催化反应的速度来表示。

本实验采用分光光度法测定酶活力,其原理是基于酶催化反应所产生的产物在特定波长下具有光吸收特性,通过测定反应体系在该波长下吸光度的变化,可以计算出酶催化反应的速度,从而反映酶的活力。

以过氧化氢酶为例,过氧化氢酶能够催化过氧化氢分解为水和氧气。

在本实验中,通过加入一定量的过氧化氢溶液,使其与过氧化氢酶反应,然后使用高锰酸钾溶液滴定剩余的过氧化氢,根据高锰酸钾溶液的用量计算出过氧化氢酶的活力。

三、实验材料与仪器1、实验材料新鲜的猪肝或土豆等富含过氧化氢酶的组织。

过氧化氢溶液(3%)。

高锰酸钾溶液(002 mol/L)。

磷酸缓冲液(pH 70)。

2、实验仪器研钵。

离心机。

移液器。

分光光度计。

恒温水浴锅。

试管、量筒、容量瓶等玻璃仪器。

四、实验步骤1、酶液的制备称取新鲜的猪肝或土豆组织_____g,置于研钵中,加入适量的磷酸缓冲液(pH 70),研磨成匀浆。

将匀浆转移至离心管中,以_____rpm 的转速离心_____min,取上清液即为粗酶液。

2、酶活力的测定取_____支试管,分别标记为 1、2、3。

在 1 号试管中加入_____mL 磷酸缓冲液(pH 70)作为空白对照,在 2、3 号试管中分别加入_____mL 粗酶液。

向 1、2、3 号试管中分别加入_____mL 过氧化氢溶液(3%),立即摇匀,并同时开始计时。

在反应进行_____min 后,迅速向 1、2、3 号试管中分别加入_____mL 浓度为 2 mol/L 的硫酸溶液终止反应。

用移液器吸取_____mL 反应液,加入到另一支装有_____mL 高锰酸钾溶液(002 mol/L)的试管中,摇匀。

5酶类药物的分析检验

5酶类药物的分析检验

3.时间对照 若酶制剂不纯(含有产物)和底 物自发分解的情况并存,则必须做一个酶和底物 都加入但反应时间为零的对照,也即先用蛋白沉 淀剂或其它试剂停止反应,再加入底物。 在双底物反应时,对照管可以加入酶制剂和 两种底物中的一种,因缺乏另一种底物,不可能 生成产物,至于应加入两种底物中的哪一种可以 根据预实验决定。 测定管中的产物量必须减去对照管中的产物 才是真正由酶促反应所生成的产物量。
(二)酶活力测定的方法:
酶活力测定要符合两个原则: ①在零级反应期测定,即-〔s〕或〔p〕与 反应时间t成正比, ②反应速度与酶量成线性关系,即 〔E〕= k(-〔s〕/ t) = k〔p〕/ t k(k〔 常用的方法有: 1.定时法 2.连续检测法 3.平衡法
如何测定酶活力? 如何测定酶活力?
以产物浓度对反应时间作图, 以产物浓度对反应时间作图,可得到酶促反 应速度曲线
产 物 浓 度
注意:初速度的 注意: 测定是关键, 测定是关键,为 什么? 什么?
0
时间
可见,反应速度只在最初一段时间内保持恒定, 可见,反应速度只在最初一段时间内保持恒定, 随着时间的延长,反应速度逐渐下降 随着时间的延长,
国际单位的应用有利于比较同一样品中不同酶的活力。 但也有不少缺点,如 :①从惯用单位换算成国际单位比较麻 烦;②某些酶作用于Mr不明的大分子底物(如淀粉酶、胃蛋白 酶等),采用底物减少法来定量时,无法计算其底物减少的微 摩尔数;③ 同一种酶用不同的方法测定,换算成国际单位时, 其结果仍不相同。欧美各国由于地理条件及实验室内温度的 不同,常采用不同的测定温度,如25℃、30℃、37℃等,这 也导致即使用国际单位表示酶活力,其正常参考范围也是不 同的。
【重点掌握】 重点掌握】

酶活力的测定

酶活力的测定

4. 抑制剂和激活剂
抑制剂和激活剂是影 响酶活力的其他因素 。抑制剂会抑制酶的 活性,而激活剂则会 增强酶的活性。在测 定酶活力时,需要排 除抑制剂和激活剂的 影响,并进行适当的 样品处理和数据处理 以确保实验结果的准 确性
酶活力的测定
酶活力的测定
三、实验步骤与操作要点
酶活力测定的实验步骤包括样品准备、反应体系配制、温度控制、时间记录、产物或底物 浓度测定等。在操作过程中需要注意以下几点
酶活力是指酶催化特定化学反应的能力, 通常以单位时间内转换底物的摩尔数来 表示
通过测定酶活力,可以了解酶的性质、 作用机制以及底物特异性等方面的信息一、酶活力测 定的基本原理
酶活力测定的基本原 理是利用酶催化的化 学反应速率与酶浓度 成正比的性质,通过 测定反应速率来推算 酶的浓度和活力。常 用的方法有终点法、 动力学法和连续监测 法
酶活力测定结果受到多种因素 的影响,包括温度、pH值、底 物浓度、抑制剂和激活剂等。 为了获得准确的测定结果,需 要严格控制实验条件,并进行 适当的样品处理和数据处理
酶活力的测定
1. 温度
温度是影响酶活力的 重要因素之一。大多 数酶在一定的温度范 围内具有最佳活性, 温度过高或过低都会 影响酶的活性。因此 ,在测定酶活力时, 需要选择适当的温度 ,并进行温度控制以 确保实验结果的准确 性
酶活力的测定
四、时间记录
时间记录是酶活力测定的关键步骤之一。在酶促反应过程中,需要准确记录反应时间,以 便计算反应速率和产物生成量。在时间记录过程中,需要注意控制反应时间,避免过长或 过短的反应时间对实验结果的影响
酶活力的测定
五、产物或底物浓 度测定
产物或底物浓度的测定是酶活力 测定的关键步骤之一。通过测定 产物或底物的浓度,可以计算出 酶的活性。在浓度测定过程中, 需要注意选择适当的测定方法, 并进行准确的浓度计算。常用的 浓度测定方法有分光光度法、色 谱法等

酶活力及蛋白含量测定

酶活力及蛋白含量测定
E1、E2、E3酶活力及蛋白质浓度的测定
酶活力的测定:
1 . 样 品 前 处 理 : 测 定 E1 、 E2 、 E3 酶 活 时 , 用 pH4.6, 0.2mol/L的醋酸缓冲液进行稀释。(E1稀释5倍、10倍、 20倍;E2稀释50倍、100倍; E3稀释20倍,50倍)
取两支试管分别加入用 pH4.6,0.2mol/L 的醋酸缓冲液适 当稀释过的酶液2ml; 一支中加入0.5ml 1mol/L的NaOH,摇匀,使酶失活(对 照取E1 20倍稀释 1管即可); 另一支做测定管; 把两支试管和 5% 的蔗糖溶液放入 35 ℃水浴中预热恒温 (10min); 分别取 2ml 5% 的蔗糖加入上述两试管中,开始计时,准 确反应3分钟,于测定管中加入0.5ml 1mol/L的NaOH,摇 匀,终止反应。
蛋白含量的测定:
样品的测定:取两支试管(平行)各加入样品液(稀 成一定浓度的)1ml ,其他操作(反应和比色测定)同 工作曲线的制作。 蛋白质浓度的计算:
A650值对应的µ g数(Pr)×10-3 ×稀释倍数 Pr溶液的ml数
Pr (mg/ml)=
测定E1蛋白含量(大约稀释200、100倍),测定E2蛋白 含量(大约稀释50、20倍),测定E3蛋白含量(大约稀 释50、20、10倍),用去离子水稀释即可。
[E] = (葡萄糖mg数×(4.5/0.5)×E的稀释倍数/2ml)/2
蔗糖酶活力的规定:在本实验条件下,每3分钟释放1毫克 还原糖所需的酶量定义为一个活力单位。 注意:在测定E1、E2、E3酶活力和蛋白浓度时,应留取少许样 品(100μml左右),留作电泳实验。 注:在正交试验的测定中,共需稀释到50U/mL的E3约为12mL。
2. 酶活力的测定:从两个反应试管中各取出 0.5ml 溶液放入血 糖管中,加入 3ml 3,5 二硝基水扬酸试剂和 1.5ml 水,摇匀, 于沸水浴中准确反应 5min,立即用冷水冷却,加水稀释至 25ml,摇匀,于540nm的葡萄糖含量毫克数,按下面公式计算酶活力:

酶活测定方法

酶活测定方法

酶活测定方法还原法酶与底物在特定的条件下反应,酶可以促使底物释放出还原性的基团。

在此反应体系中添加化学试剂,酶促反应的产物可与该化学试剂发生反应,生成有色物质。

通过在特定的波长下比色,即可求出还原产物的含量,从而计算出酶活力的大小。

色原底物法通过底物与特定的可溶性生色基团物质结合,合成人工底物。

该底物与酶发生反应后,生色基团可被释放出来,用分光光度法即可测定颜色的深浅,在与已知标准酶所做的曲线比较后,即可求出待测酶的活力。

粘度法该法常用于测定纤维素酶、木聚糖酶和β-葡聚糖酶的活力。

木聚糖和β-葡聚糖溶液通常情况下可形成极高的粘度,当酶作用于粘性底物时木聚糖和β-葡聚糖会被切割成较小的分子使其粘度大为降低。

基于Poiseuille定律我们知道,只要测定一定条件下溶剂和样品溶液的运动粘度,便可计算特性粘数,并以此来判断酶的活力。

高压液相色谱法酶与其底物在特定的条件下充分反应后,在一定的色谱条件下从反应体系中提取溶液进行色谱分析,认真记录保留时间和色谱图,测量各个样的峰高和半峰高,计算出酶促反应生成物的含量,从而换算出酶活力的数值。

免疫学方法常用于酶活性分析的免疫学方法包括:免疫电泳法、免疫凝胶扩散法。

这两种方法都是根据酶与其抗体之间可发生特定的沉淀反应,通过待测酶和标准酶的比较,最终确定酶活力。

免疫学方法检侧度非常灵敏,可检侧出经过极度稀释后样品中的酶蛋白,但其缺点是不同厂家生产的酶产品需要有不同特定的抗体发生反应。

琼脂凝胶扩散法将酶作用的底物与琼脂混合熔融后,倒入培养皿中或载波片上制成琼脂平板。

用打孔器在琼脂平面上打出一个约4-5mm半径的小孔。

在点加酶样并培养24h以后,用染色剂显色或用展开剂展开显出水解区,利用水解直径和酶活力关系测定酶活力。

蛋白酶活力的测定随着生物技术的发展及环保要求的提高,越来越多的酶制剂应用于制革生产中。

比如浸水,脱毛,软化,脱脂等工序都用到大量的酶制剂,从酶的作用性质来看制革生产中用到的主要是蛋白酶和脂肪酶。

第6章酶化学 第五节 酶的活力测定

第6章酶化学 第五节 酶的活力测定
食品生物化学
第六章 酶化学
• 第一节 概述 • 第二节 酶的命名和分类 • 第三节 酶催化反应的机理 • 第四节 影响酶促反应速率的因素——酶促反应动力学 • 第五节 酶的活力测定 • 第六节 食品工业中重要的酶及其应用
食品生物化学
学习目标
1.掌握酶的化学本质及作用特点。 2.了解酶的命名及分类。 3.掌握酶催化反应的机理。 4.掌握温度、pH、酶浓度、底物浓度、竞争性抑制、非竞 性抑制物及激活剂对酶促反应速率的影响。 5.掌握酶活力的概念及测定酶活力的方法。 6.熟悉食品工业中重要的酶及其应用,了解固定化酶。
食品生物化学
第五节 酶的活力测定
一、酶的活力和活力单位
1.酶活力
通常用单位时间内酶催化某一化学反应的能力来表示酶的 催化能力,即用酶活力大小来表示酶的催化能力。酶活力的大 小可以用在一定条件下所催化的某一化学反应的反应速率来表 示,两者呈线性关系。酶催化的反应速率愈大,酶的活力愈高; 反应速率愈小,酶的活力就愈低。所以测定酶的活力就是测定 酶促反应的速率。由于酶催化某一反应的速度受多种因素限制, 故一般规定在某一条件下(恒温、使用缓冲溶液)用反应速率的 初速率来表示酶活力。
60 20 2% 1 1000 4800单位/ 克酶制剂
10
0.5
2.测定一定时间内所起的化学反应量
这是酶活力测定的主要方式,用测定反应量来计算酶活力。 主要是根据在一定条件下,酶反应速率与酶浓度成正比,测定 反应速率就可求出酶的浓度。
食品生物化学
测定结果的正确与否,即能否真实地反映酶活力,是和酶 反应的条件是否适宜密切有关。适宜的条件是使所有的酶分子 都能正常地发挥作用,反应条件中应使酶浓度是影响反应速率 的唯一因素,而其他条件如pH和温度应保持最适水平。此外测 定用的底物应当使用足够高的浓度,使酶催化的反应速率不受 底物浓度的限制。为了测定简便,选用的底物最好在物理或化 学性质上和产物有所区别。

各种酶活力测定方法及注意事项

各种酶活力测定方法及注意事项

各种酶活⼒测定⽅法及注意事项碱性蛋⽩酶及各种蛋⽩酶活⼒测定⽅法及测定有感因长期测定碱性蛋⽩酶酶活⼒与⾓蛋⽩酶活⼒与胶原酶活⼒和弹性蛋⽩酶活⼒,碱性蛋⽩酶活⼒测定还好,因有国家标准,测定按照国标来便可⼤⼤减少误差。

其余酶活⼒测定过程中因⽆统⼀标准且底物差异⼤,导致长期酶活⼒测定的混乱,各种酶活⼒测定⽅法与各种试剂添加,最后实际测定的酶活⼒只能仅作参考。

以下是各种蛋⽩酶活⼒测定⽅法及标曲绘制:碱性蛋⽩酶测定⽅法根据国标GB/T 23527-2009 附录B 蛋⽩酶活⼒测定福林法以下是⽅法碱性蛋⽩酶的测定⽅法参考 GB/T 23527-2009 附录 B 中福林酚法进⾏,即 1 个酶活⼒单位(U/mL)定义为 1 mL 酶液在40℃、pH= 10.5 条件下反应 1 min ⽔解酪蛋⽩产⽣ 1 µg 酪氨酸所需要的酶量,主要步骤如下。

2.2.6.1 标准曲线的绘制(1)L-酪氨酸标准溶液:按表 2-6 配制。

表 2-6 L-酪氨酸标准溶液配置表Table 2-6 L-Tyrosine standard solution form管号酪氨酸标准溶液的浓度/(µg/mL)取 100 µg/mL 酪氨酸标准溶液的体积/(mL)取⽔的体积/(mL)0 0 0 101 10 1 92 20 2 83 30 3 74 40 4 65 50 5 5(2)分别取上述溶液各 1.00 mL,各加 0.4 mol/L 碳酸钠溶液 5.0 mL,福林试剂使⽤液 1.00 mL,置于 40 ℃±0.2 ℃⽔浴锅中显⾊ 20 min,⽤分光光度计于波长 680 nm,10mm ⽐⾊⽫,以不含酪氨酸的反应管作为空⽩,分别测定其吸光度值,以吸光度值 A 为纵坐标,酪氨酸浓度 C 为横坐标,绘制 L-酪氨酸标准曲线。

图 2-1 L-酪氨酸标准曲线Fig. 2-1 L-tyrosine standard curve根据作图或⽤回归⽅程计算出当吸光度为 1 时的酪氨酸的量(µg),既为吸光度常数 K 值。

酶活性测定

酶活性测定

实验一植物抗氧化酶活性的测定植物抗氧化酶包括超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)等。

它们普遍存在于植物的各种组织中,可以通过催化植物体内的活性氧,防止发生氧化反应。

所以抗氧化酶活性与植物的代谢强度及逆境适应能力有密切关系,经常被用来衡量植物的抗性强弱和衰老程度。

一、超氧化物岐化酶活性测定超氧物歧化酶(SOD)普遍存在于动、植物体内,是一种清除超氧阴离子自由基()的酶,它催化下列反应:2反应产物H2O2可被过氧化氢酶进一步分解或被过氧化物酶利用。

因此SOD有保护生物体免受活性氧伤害的能力。

已知此酶活力与植物抗逆性及衰老有密切关系,故成为植物逆境生理学的重要研究对象。

【原理】本实验依据超氧物歧化酶抑制氮蓝四唑(NBT)在光下的还原作用来确定酶活性大小。

在有可氧化物质存在下,核黄素可被光还原,被还原的核黄素在有氧条件下极易再氧化而产生,可将氮蓝四唑还原为蓝色的甲。

后者在560nm处有最大吸收,而SOD可清除从而抑制了甲的形成。

于是光还原反应后,反应液蓝色愈深,说明酶活性愈低,反之酶活性愈高。

一个酶活性单位定义为将NBT的还原抑制到对照一半(50%)时所需的酶量,据此可以计算出酶活性大小。

【仪器与用具】高速台式离心机;分光光度计;微量进样器;荧光灯(反应试管处光照强度为4000lx);试管数支;黑色硬纸套。

【试剂】1.50mmol/L磷酸缓冲液(pH7.8)。

2.提取介质50mmol/L pH7.8磷酸缓冲液(内含1%聚乙烯吡咯烷酮)。

3.130mmol/L甲硫氨酸(Met)溶液:称取1.9399g Met用磷酸缓冲液定容至100ml。

4.750μmol/L氮蓝四唑(NBT)溶液:称取61.33m g NBT用磷酸缓冲液定容至100ml,现配先用,避光保存。

5.100μmol/L EDTA-Na2溶液:取37.21m g EDTA-Na2用磷酸缓冲液定容至1000ml。

6.20μmol/L核黄素溶液:取7.53m g核黄素定容至1000ml避光保存。

酶活力测定的方法

酶活力测定的方法

酶活力测定的方法
酶活力测定的方法有多种,下面列举常用的几种方法:
1. 比色法:通过测定酶反应产生的可见光吸收或色素形成来间接测定酶活力。

常用的比色法有尼林蓝法、间苯二酚法、对苯二酚法等。

2. 发光法:利用酶催化的氧化还原反应产生的发光信号来测定酶活力。

常用的发光法有荧光发光法、葡萄糖氧化酶法等。

3. 毛细管电泳法:通过测定酶催化反应产生的电荷变化、离子浓度变化或pH 值的变化来测定酶活力。

4. 毛细管电泳法:通过测定酶催化反应产生的电荷变化、离子浓度变化或pH 值的变化来测定酶活力。

5. 凝胶电泳方法:通过观察酶在凝胶上的迁移距离或酶活性的带状图案的强度来测定酶活力。

6. 标记物法:利用酶催化与标记物反应产生的物质变化来测定酶活力,常用的标记物有放射性同位素、酶标记物等。

以上是常用的酶活力测定方法,不同方法适用于不同类型的酶和反应体系。

在实
际应用中,需要根据具体情况选择最合适的方法来测定酶活力。

酶活力测定的原理和方法

酶活力测定的原理和方法
酶的分析检测技术?酶促反应分析?酶活力测定方法酶活力测定方?常见酶类的活力测定方法維持酵素活性緩衝液?緩衝液可維持溶液的恆定酸鹼度及離子濃度兩者都會影響酵素的活性?經常在緩衝液中加入一些物質?經常在緩衝液中加入一些物質以增加酵素安定或保持活性?溫度的影響?濃度的影響以增加試劑的保存?避免潮解分裝凍藏?分裝凍藏
柱法测定:
• 将一定量的固定化酶装进具有恒温装置 的反应柱中,让条件适宜的底物溶液, 以一定的速率流过酶柱,收集流出的反 应液。按常规方法测定底物的消耗量或 产物的生成量。测定方法与游离酶反应 液的测定方法相同。
连续测定
• 利用连续分光光度法等方法可对固定化酶反应 液进行连续测定,从而连续测定酶活力。测定 时,可将振荡反应器中的反应液用泵连续引到 连续测定仪(例如,双束紫外分光光度计等) 的流动比色杯中进行连续分光测定。或者使固 定化酶柱流出的反应液连续流经流动比色杯进 行连续分光测定。
酶反应的中止
• 使酶停止作用常使用强酸、强碱、三氯 乙酸或过氯酸,亦可用SDS(十二烷基硫 酸钠)使酶失活,或迅速加热使酶变性 等。酶反应的底物或产物一般可用化学 法,放射性化学法,酶偶联法进行测定。
三、连续法测定酶活力
• 连续法测定酶活力,不需要取样中止反应,而 是基于反应过程中光谱吸收,气体体积、酸碱 度、温度、粘度等的变化用仪器跟踪监测反应 进行的过程,记录结果,算出酶活性。连续法 使用方便,一个样品可多次测定,且有利于动 力学研究,但很多酶反应还不能用该法测定。
酶反应速度和底物浓度的关系
V 反应速度
Vmax
1/2Vmax 混合级反应
零级反应
一级反应
Km
[S] 底物浓度
米氏方程
• v=Vmax[S]/(Km+[S]) • Km为酶反应速度达到最大反应速度一半 时的底物浓度,为酶的特征常数。 • 同一酶对不同底物Km不同。 • Km最小的底物为该酶的最适底物。

酶活性检测

酶活性检测

④分光光度法利用底物和产物光吸收性质的不同,可直接测定反应混合物中底物的减少量或产物的增加量。

几乎所有的氧化还原酶都使用该法测定。

如还原型辅酶Ⅰ(NADH2)和辅酶Ⅱ(NADPH2)在340nm有吸收,而NAD和NADP在该波长下无吸收,脱氢酶类可用该法测定。

该法测定迅速简便,自动扫描分光光度计的使用对酶活力的快速准确的测定提供的极大的方便。

酶在食品加工中的作用就像一把双刃剑,我们要趋利避害。

酶的积极作用我们要加强,在食品加工过程中添加酶制剂,使其作用充分发挥;消极作用我们要尽量避免,可以通过加热等方法将酶灭活,消除其不利影响。

为了将酶更好地应用于食品加工,研究酶的性质是十分必要的。

而紫外-可见分光光度法是研究酶性质的重要方法之一。

下面我们来介绍用-可见分光光度计测定酶活的具体方法。

紫外-可见分光光度法测定酶活:1. β一半乳糖苷酶β一半乳糖苷酶,又称乳糖酶(Lactase)。

能水解乳糖来降低乳制品的乳糖含量,从而提高乳制品的可消化性,用于低乳糖牛奶和非结晶型浓缩牛奶的生产及奶酪风味的改变,同时还可用于生产低聚半乳糖。

【酶活测定】以ONPG为底物测定β-半乳糖苷酶活力。

【酶活定义】以ONPG为底物,37℃保温酶解,每分钟释放lμmol/L邻硝基酚的酶量,定义为1个酶活力单位。

2. 超氧化物歧化酶超氧化物歧化酶(Superoxide Dismutase,简称SOD)是一种十分重要的生物体防止氧化损伤的酶类,是生物体内超氧阴离子清除剂,保护细胞免受损伤。

SOD广泛存在于各类生物体内,所有好氧微生物细胞中都含有SOD。

自1969年Mccord等人首次发现了SOD 生物活性后,医学界对其医疗作用做了许多研究,证明它具有抗衰老、抗肿瘤、抗辐射、抗缺血、提高人体免疫力等作用,被专家称为21世纪最有前途的药用酶。

欧美国家已开始将其应用于医疗、食品、保健、化妆品等领域。

【酶活测定】在25℃4.5ml 50mmol/L pH8.3的K2HPO4- KH2PO4缓冲液中加入待测SOD样液,再加入10ul 50mmol/L的连苯三酚,迅速摇匀,倒人光径lcm 的比色杯,在325nm波长下每隔30s测一次A值。

酶活的测定方法

酶活的测定方法

酶活测试及试剂1 木素过氧化物酶(Lip):3ml反应体系:①0.1mol/L酒石酸缓冲液(pH3.0) 1.5mL;②10mmol/L藜芦醇1.0mL;③粗酶液0.4mL;④10mmol/L H202 0.1mL启动反应,25℃反应3min。

于310nm测其光密度,以1.0mL缓冲液代替藜芦醇作空白对照,定义每分钟使1μmol的藜芦醇氧化成藜芦醛所需的酶量为一个酶活力单位(U),藜芦醛的摩尔吸光系数9 300 mol-1cm-1。

0.1mol/L酒石酸缓冲液(pH3.0):配0.1mol/L的酒石酸和酒石酸钠溶液各100mL,然后分别取出部分混合均匀至pH值为3.0。

(酒石酸:分子量75,0.1mol/L溶液为7.5g/L。

酒石酸钠:分子量230,0.1mol/L溶液为23g/L)10mmol/L藜芦醇:1.682g藜芦醇添加到1L水中即可(试剂藜芦(3,4-Dimethoxybenzyl alcohol)的分子量为168.19)10mmol/L H202(按1L计算):称取1.13g过氧化氢试剂加入到1L纯水中即可(原试剂含30% H202)2 锰过氧化物酶(MnP):3ml反应体系:① 0.05mol/L琥珀酸缓冲液(丁二酸)(pH4.5) 2.0mL;②15mmol/LMnSO4 0.5mL;③粗酶液0.4mL;④10mmol/L H202 0.1mL启动反应,37℃反应3min。

240nm测吸光值变化。

三价锰离子的吸光系数为8100 M−1 cm−1)0.05mol/L琥珀酸缓冲液(丁二酸)(pH4.5):配0.05mol/L的琥珀酸和琥珀酸钠溶液各100mL,然后分别取出部分混合均匀至pH值为4.5。

(琥珀酸:分子量118.09,0.05mol/L 溶液为5.9g/L。

琥珀酸钠:分子量270.15,0.05mol/L溶液为13.5g/L)15mmol/L MnSO4(按1L计算):2.535g硫酸锰加入到1L纯水中溶解即可。

酶活力测定方法

酶活力测定方法
浓度:A:0.575~.0585 N-苯甲酰-L-精氨酸乙酯 N-苯甲酰-L-精氨酸
NH
NH-CO-
H2N-C-NHCH2CH2CH2-CH-COOC2H5
253nm处的A随酶促反应递增, 根据酶活力单位定义计算酶活力。
酶活性单位:在最适的条件下,每分钟能 转化一个微摩尔底物的酶量定为一个活性 单位。 测定: 空白:底物溶液 + 0.001mol/L HCl
2。HPLC系统测试
HPLC系统测试标准物质进样后呈3个峰,12 次 重 复 进 样 3 个 峰 保 留 时 间 的 R S D 分 别 为 0. 4%,0 .6% 和 0. 8%, 峰 面 积 的 R S D 分 别 为 0 .7%,0 .8%和0 .8%。rhIL 11对照品 37℃酶切20h后于4℃温控自动进样器连续进 样5次,结果见图1。5个色谱图完全重叠在一起, 所产生21个峰的保留时间、峰高和峰面积的R SD均分别小于1 .0%,5 .4%和9. 8%,表明本系 统误差小,重复性好,可用于rhIL11的肽图分 析。
3批rhIL 11制品的RP HPLC图谱 完全一致,说明该厂rhIL 11的生产工艺是稳 定的;与GI公司生产的rhIL 11对照品比较 有20个峰与对照品一致,但第6 峰的峰高和峰面 积均明显较小,且在第9和第10 峰之间多一个峰, 说明该厂rhIL 11蛋白质结构与GI公司生 产的rhIL 11比较存在细小差别。
A1 - A2
0.003 : 1 =
:X
T
A1 - A2 0.003T
每mg供试品中含胰蛋白酶单位数为
A1 - A2
0.003TW
A1—A 2 P=
0.003 T W
重组人白细胞介素 11的胰蛋白酶切肽 图分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十八淀粉酶活力的测定一、目的学习和掌握测定淀粉酶(包括α-淀粉酶和β-淀粉酶)活力的原理和方法。

二、原理淀粉是植物最主要的贮藏多糖,也是人和动物的重要食物和发酵工业的基本原料。

淀粉经淀粉酶作用后生成葡萄糖、麦芽糖等小分子物质而被机体利用。

淀粉酶主要包括α-淀粉酶和β-淀粉酶两种。

α-淀粉酶可随机地作用于淀粉中的α-1,4-糖苷键,生成葡萄糖、麦芽糖、麦芽三糖、糊精等还原糖,同时使淀粉的粘度降低,因此又称为液化酶。

β-淀粉酶可从淀粉的非还原性末端进行水解,每次水解下一分子麦芽糖,又被称为糖化酶。

淀粉酶催化产生的这些还原糖能使3,5-二硝基水杨酸还原,生成棕红色的3-氨基-5-硝基水杨酸,其反应如下:淀粉酶活力的大小与产生的还原糖的量成正比。

用标准浓度的麦芽糖溶液制作标准曲线,用比色法测定淀粉酶作用于淀粉后生成的还原糖的量,以单位重量样品在一定时间内生成的麦芽糖的量表示酶活力。

淀粉酶存在于几乎所有植物中,特别是萌发后的禾谷类种子,淀粉酶活力最强,其中主要是α-淀粉酶和β-淀粉酶。

两种淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6以下迅速钝化。

β-淀粉酶不耐热,在70℃15min钝化。

根据它们的这种特性,在测定活力时钝化其中之一,就可测出另一种淀粉酶的活力。

本实验采用加热的方法钝化β-淀粉酶,测出α-淀粉酶的活力。

在非钝化条件下测定淀粉酶总活力(α-淀粉酶活力+β-淀粉酶活力),再减去α-淀粉酶的活力,就可求出β-淀粉酶的活力。

三、实验材料、主要仪器和试剂1.实验材料萌发的小麦种子(芽长约1cm)2.仪器(1)离心机(2)离心管(3)研钵(4)电炉(5)容量瓶:50mL×1, 100mL×1(6)恒温水浴(7)20mL具塞刻度试管×13(8)试管架(9)刻度吸管:2mL×3, 1mL×2, 10mL×1(10)分光光度计3.试剂(均为分析纯)(1)标准麦芽糖溶液(1mg/mL):精确称取100mg麦芽糖,用蒸馏水溶解并定容至100mL。

(2)3,5-二硝基水杨酸试剂:精确称取3,5-二硝基水杨酸1g,溶于20mL 2mol/L NaOH溶液中,加入50mL蒸馏水,再加入30g酒石酸钾钠,待溶解后用蒸馏水定容至100mL。

盖紧瓶塞,勿使CO2进入。

若溶液混浊可过滤后使用。

(3)0.1mol/L pH5.6的柠檬酸缓冲液A液:(0.1mol/L 柠檬酸):称取C6H8O7·H2O 21.01g,用蒸馏水溶解并定容至1L。

B液:(0.1mol/L柠檬酸钠):称取Na3C6H5O7·2H2O 29.41g,用蒸馏水溶解并定容至1L。

取A液55mL与B液145mL混匀,既为0.1mol/LpH5.6的柠檬酸缓冲液。

(4)1%淀粉溶液:称取1g淀粉溶于100mL 0.1mol/L pH5.6的柠檬酸缓冲液中。

四、操作步骤1.麦芽糖标准曲线的制作取7支干净的具塞刻度试管,编号,按表1加入试剂:表1 麦芽糖标准曲线制作试剂管号1 2 3 4 5 6 7麦芽糖标准液(mL)0 0.2 0.6 1.0 1.4 1.8 2.0 蒸馏水(mL) 2.0 1.8 1.4 1.0 0.6 0.2 0 麦芽糖含量(mg)0 0.2 0.6 1.0 1.4 1.8 2.03,5-二硝基水杨酸(mL) 2.0 2.0 2.0 2.0 2.0 2.0 2.0摇匀,置沸水浴中煮沸5min。

取出后流水冷却,加蒸馏水定容至20mL。

以1号管作为空白调零点,在540nm 波长下比色测定光密度。

以麦芽糖含量为横坐标,光密度为纵坐标,绘制标准曲线。

2.淀粉酶液的制备称取1g萌发3天的小麦种子(芽长约1cm),置于研钵中,加入少量石英砂和2mL蒸馏水,研磨匀浆。

将匀浆倒入离心管中,用6mL蒸馏水分次将残渣洗入离心管。

提取液在室温下放置提取15~20min,每隔数分钟搅动1次,使其充分提取。

然后在3 000r/min转速下离心10min,将上清液倒入100mL容量瓶中,加蒸馏水定容至刻度,摇匀,即为淀粉酶原液,用于α-淀粉酶活力测定。

吸取上述淀粉酶原液10mL,放入50mL容量瓶中,用蒸馏水定容至刻度,摇匀,即为淀粉酶稀释液,用于淀粉酶总活力的测定。

2.酶活力的测定:取6支干净的试管,编号,按表2进行操作。

表2 酶活力测定取样表操作项目α-淀粉酶活力测定β-淀粉酶活力测定Ⅰ- 1 Ⅰ- 2 Ⅰ- 3 Ⅱ- 4 Ⅱ- 5 Ⅱ- 6淀粉酶原液(mL) 1.0 1.0 1.0 0 0 0钝化β-淀粉酶置70℃水浴15min,冷却淀粉酶稀释液(mL) 0 0 0 1.0 1.0 1.03,5-二硝基水杨酸(mL) 2.0 0 0 2.0 0. 0预保温将各试管和淀粉溶液置于40℃恒温水浴中保温10min1%淀粉溶液(mL) 1.0 1.0 1.0 1.0 1.0 1.0保温在40℃恒温水浴中准确保温5min3,5-二硝基水杨酸(mL) 0 2.0 2.0 0 2.0 2.0将各试管摇匀,显色后进行比色测定光密度,记录测定结果,操作同标准曲线。

五、结果计算计算Ⅰ- 2、Ⅰ- 3光密度平均值与Ⅰ- 1光密度之差,在标准曲线上查出相应的麦芽糖含量(mg),按下列公式计算α- 淀粉酶的活力。

计算Ⅱ- 2、Ⅱ- 3光密度平均值与Ⅱ- 1光密度之差,在标准曲线上查出相应的麦芽糖含量(mg),按下式计算(α+β)淀粉酶总活力。

β-淀粉酶活力=(α+β)淀粉酶总活力-α-淀粉酶活力六、附注(1)样品提取液的定容体积和酶液稀释倍数可根据不同材料酶活性的大小而定。

(2)为了确保酶促反应时间的准确性,在进行保温这一步骤时,可以将各试管每隔一定时间依次放入恒温水浴,准确记录时间,到达5min时取出试管,立即加入3,5-二硝基水杨酸以终止酶反应,以便尽量减小因各试管保温时间不同而引起的误差。

同时恒温水浴温度变化应不超过±0.5℃。

(3)如果条件允许,各实验小组可采用不同材料,例如萌发1d、2d、3d、4d的小麦种子,比较测定结果,以了解萌发过程中这两种淀粉酶活性的变化。

七、思考题1.为什么要将Ⅰ- 1、Ⅰ- 2、Ⅰ- 3号试管中的淀粉酶原液置70℃水浴中保温15min?2.为什么要将各试管中的淀粉酶原液和1%淀粉溶液分别置于40℃水浴中保温?参考答案1.由于β-淀粉酶不耐热,70℃15min被钝化,所以将此3个试管中的溶液在70℃保温15min使其钝化,从而测得的淀粉酶活性即为α-淀粉酶活性。

2.酶反应需要适当的温度,只有在一定的温度条件下才表现出最大活性,40℃是淀粉酶的最适温度,所以应将酶液和底物(淀粉液)先分别保温至最适温度,然后再进行酶反应,这样才能使测得的数据更加准确。

(唐咏)/yuanxi/bylw/syzd/srdsyzdsy18.htm实验五双缩脲法测定蛋白质含量(考核实验)一、教学目的与要求:①加强对蛋白质的有关性质的认识;②掌握双缩脲法测定蛋白质含量的原理和方法;③对学生所学进行综合的测试。

二、教学实验原理:蛋白质含有两个以上的肽键,因此有双缩脲反应。

在碱性溶液中蛋白质与Cu2+形成紫红色络合物,其颜色的深浅与蛋白质的浓度成正比,而与蛋白质的分子量氨基酸成分无关,因此利用此进行比色测定蛋白质含量。

在一定条件下,未知样品的溶液与标准蛋白质溶液同时反应,并于540—560nm下比色,可以通过标准蛋白质的标准曲线求出未知的蛋白质浓度,标准蛋白溶液可以用结晶的牛(或人)血清白蛋白、卵清蛋白或酪蛋白粉末配制。

除-CONH-有此反应外,-CONH2-,-CH2-,NH2-,-CS-CS-NH2,等基团亦有此反应。

三、考核主要内容1、标准曲线的制作取6支干净的试管,按0→5编号,然后按下表依次加入试剂,充分混匀,在室温下放置半小时,以管为空白,在550nm波长处测定消光值(OD),以各管蛋白质含量(毫克)横坐标,OD值为坐标,画出标线。

2、样品测定:取样品液1.0 ml,同法进行,测其OD值,对照标准曲线求得未知液蛋白质浓度。

3、分光光度计的使用:规定每组在10min以内全部完成操作(共测6支管);同时注意操作是否规范。

4、成绩的计算:此次的实验占30%(包括平时的表现及实验报告的完成情况和完成质量),平时的五次实验共占70%,每次实验按总分为5分为满分进行打分,总评折合成百分制。

四、实验注意事项:①标准样品的浓度为:10μg/ml;②实验过程中不得过问他人,同组人可以配合进行;③实验报告在课堂上独立完成,同组人数据相同,不得抄袭他人数据,一旦发现以零分处理;④实验过程若出现失误应向老师汇报后再进行重做;⑤对实验结果进行简单的分析。

/yuanxi/bylw/syzd/syzdsy5.htm3.5 氨基酸态氮的测定(酸度计法)开始操作同总酸的测定,然后加入甲醛10ml,摇匀,继续用0.0500N氢氧化钠标准溶液滴定至PH9.2,记下加入甲醛后耗用0.0500N氢氧化钠标准溶液毫升数V。

用同一条件做一空白对照,记下耗用数V0。

按式(6)计算:(V-V0)×N×0.014氨基酸态氮(g/100g)= ━━━━━━━━━━×100 (6)W10×━━S式中:V——样品加入甲醛后,耗用0.0500氢氧化钠标准溶液毫升数;V0——空白加入甲醛后,耗用0.0500N氢氧化钠标准溶液毫升数;N——氢氧化钠标准溶液当量浓度;0.014——氮的毫克当量;W——样品重量;S——样品稀释液体积,ml。

/cgi-bin/topic.cgi?forum=12&topic=627&show=02.8.4 氨基酸态氮测定(酸度计法)2.8.4.1 氨基酸是蛋白质分解出来的产物,酱油中氨基酸有18种,其中以谷氨酸占比例最多。

因此氨基酸态氮的含量高低可表示鲜味的程度,是决定酱油质量及营养价值的重要指标。

一般含量在0.4——0.8%之间。

当酱油掺伪时,氨基酸态氮含量明显降低。

伪造酱油中根本不含氨基酸态氮。

2.8.4.2 原理利用氨基酸的两性作用,加甲醛固定氨基的碱性,使羧基的酸性显示,用氢氧化钠标准溶液滴定后定量,以酸度计测定终点。

2.8.4.3 试剂是36%甲醛溶液;0.05N氢氧化钠标准溶液。

2.8.4.4 仪器酸度计;磁力搅拌器;微量滴定管。

2.8.4.5 操作取样品5.0ml,置于100ml容量瓶中,加水至刻度,混匀后吸取20.0ml置于200ml烧杯中,加水60ml,开动磁力搅拌器,用0.05N氢氧化钠标准溶液滴定至酸度计指示P H8.2时加入10.0ml甲醛溶液,混匀后继续滴定至P H9.2,记下消耗0.05N氢氧化钠标准溶液的ml数。

相关文档
最新文档