中考数学知识点最全汇总
总结中考数学知识点
总结中考数学知识点一、整数1. 整数的概念2. 整数的比较大小3. 整数的加减法4. 整数的乘法5. 整数的除法6. 整数的混合运算二、有理数1. 有理数的概念2. 有理数的加减法3. 有理数的乘法4. 有理数的除法5. 有理数的混合运算三、代数式1. 代数式的概念2. 代数式的加减法3. 代数式的乘法4. 代数式的除法5. 代数式的混合运算四、多项式1. 多项式的概念2. 多项式的加减法3. 多项式的乘法4. 多项式的除法5. 多项式的因式分解五、方程1. 一元一次方程2. 一元一次方程的解法3. 一元一次方程的应用4. 一元一次方程组5. 二元一次方程六、不等式1. 一元一次不等式2. 一元一次不等式的解法3. 一元一次不等式的应用4. 一元一次不等式组5. 二元一次不等式七、函数1. 函数的概念2. 函数的性质3. 函数的表示4. 一次函数5. 二次函数八、平面几何1. 角的概念2. 同位角、内错角、逆错角3. 平行线4. 三角形5. 四边形九、空间几何1. 空间图形的概念2. 空间图形的计算3. 空间图形的投影4. 空间图形的旋转5. 空间图形的对称这些是中考数学知识点的主要内容,每一个知识点都对应着一系列的考点和解题方法。
学生在复习时应该充分了解每一个知识点的概念、性质、计算方法和应用,同时要掌握一定的解题技巧,这样才能在考试中取得好成绩。
希望学生们能够认真复习,踏实备考,取得理想的成绩。
中考数学必考知识点大全
中考数学必考知识点大全1.整数的加减乘除运算:掌握整数的加减乘除运算法则,包括加法、减法、乘法和除法。
2.分数的加减乘除运算:掌握分数的加减乘除运算法则,包括分数的加法、减法、乘法和除法。
3.百分数的计算:掌握百分数的计算方法,包括百分数的转化和百分数之间的比较。
4.小数的加减乘除运算:掌握小数的加减乘除运算法则,包括小数的加法、减法、乘法和除法。
5.整式的加减乘除运算:掌握整式的加减乘除运算法则,包括整式的加法、减法、乘法和除法。
6.一元一次方程与一元一次不等式:掌握一元一次方程和一元一次不等式的解法和问题的应用。
7.二次根式:掌握二次根式的定义和性质,包括二次根式的化简和运算。
8.平方根与立方根:掌握平方根和立方根的计算方法和性质,包括平方根和立方根的开放计算和化简。
9.平面图形的面积和周长:掌握各种平面图形的面积和周长的计算方法,包括矩形、正方形、三角形、梯形、圆等。
10.空间图形的体积和表面积:掌握各种空间图形的体积和表面积的计算方法,包括长方体、正方体、三棱锥、四棱锥、棱柱、棱台、球等。
11.初等概率与统计:掌握初等概率和统计的基本概念和计算方法,包括样本空间、事件、概率、频率、直方图等。
12.等比数列与等差数列:掌握等比数列和等差数列的定义和性质,包括等比数列和等差数列的通项公式和求和公式。
13.直角三角形的性质与应用:掌握直角三角形的性质和定理,包括勾股定理、正弦定理、余弦定理等。
14.平行线与相交线:掌握平行线和相交线的基本性质和判定方法,包括平行线的性质、相交线的性质和相交线的角度关系。
15.二次函数与二次方程:掌握二次函数和二次方程的定义和性质,包括二次函数的图像、二次方程的解法和二次函数和二次方程在实际问题中的应用。
中考数学知识点大集结
中考数学知识点大集结一、数与运算1.整数与有理数的概念、大小比较、相反数、绝对值、相加、相减、相乘、相除。
2.数轴的绘制和利用。
3.分数与小数的相互转换、比较大小。
4.分数的加减乘除运算。
5.小数的四舍五入、精确到一位或两位小数。
6.百分数的概念、百分数与分数、小数的相互转换、比较大小。
7.百分数的加减乘除运算。
二、代数式与方程式1.代数式的概念、合并同类项、加减乘除法则。
2.平方根与立方根的概念、简单运算。
3.一元一次方程的概念、解线性方程、列方程。
4.不等式的概念、解一元一次不等式、表示不等关系。
三、图形与几何1.基本图形的认识及性质:点、线、面、角。
2.直线的方程。
3.三角形的分类及性质:等边三角形、等腰三角形、直角三角形。
4.四边形的分类及性质:矩形、正方形、平行四边形、菱形。
5.圆的概念及性质:圆心、半径、直径、弧、弦。
6.数学常识与问题解决:计算长、体积、表面积、比例、相似、全等。
7.空间几何体的认识、面、棱、顶点、体积计算。
四、概率与统计1.概率的基本概念:事件、随机试验、样本空间、概率。
2.事件的概率及其性质:必然事件、不可能事件、互斥事件、对立事件、相互独立事件。
3.统计的基本概念:数据的收集与整理、频数、频率、频率分布表、直方图。
4.平均数的概念、算术平均数、中位数、众数、范围。
五、函数与图像1.函数的概念、函数的表示方式、函数的性质、函数图像。
2.一次函数的性质、函数图像与线段的关系、函数的应用。
3.二次函数的概念、函数值与自变量的关系、函数图像与抛物线的关系、一般式与顶点式方程。
4.一次函数与二次函数的比较、求解一次函数与二次函数的联立方程。
六、三角函数1.弧度制与角度制的互换。
2.正弦函数、余弦函数、正切函数的定义。
3.正弦定理、余弦定理的应用。
4.三角函数的应用。
以上是中考数学知识点的大集结,包括数与运算、代数式与方程式、图形与几何、概率与统计、函数与图像、三角函数等内容。
中考数学的所有知识点归纳
中考数学的所有知识点归纳中考数学是初中阶段数学学习的重要总结,它涵盖了多个数学领域的知识点。
以下是中考数学所有知识点的归纳:一、数与代数1. 数的认识:包括自然数、整数、有理数、无理数、实数等。
2. 数的运算:四则运算、乘方、开方、绝对值、倒数等。
3. 代数式:代数式的基本运算、同类项、合并同类项、代数式的化简等。
4. 方程与不等式:一元一次方程、一元二次方程、不等式、方程组的解法等。
5. 函数:函数的概念、性质、图象、一次函数、二次函数等。
二、几何1. 平面图形:线段、角、三角形、四边形、圆等基本图形的性质。
2. 图形的变换:平移、旋转、反射等。
3. 相似与全等:相似三角形、全等三角形的判定与性质。
4. 圆的性质:圆周角、切线、弧长、扇形面积等。
5. 立体几何:立体图形的表面积、体积计算。
三、统计与概率1. 数据的收集与处理:数据的收集、整理、描述。
2. 统计图:条形统计图、折线统计图、饼图等。
3. 平均数、中位数、众数:计算方法及其意义。
4. 方差:衡量数据的离散程度。
5. 概率:事件的概率、概率的计算方法。
四、综合应用1. 数学建模:将实际问题转化为数学问题进行求解。
2. 问题解决:运用数学知识解决实际问题。
3. 创新思维:培养创新思维,解决新颖的数学问题。
结束语中考数学的知识点广泛,要求学生具备扎实的数学基础和灵活的解题能力。
通过系统地复习和练习,学生可以更好地掌握数学知识,为中考做好充分的准备。
希望以上的归纳能够帮助学生更好地理解和复习中考数学的知识点。
数学中考全部知识点总结
数学中考全部知识点总结一、整式与方程1.整式的基本概念2.整式的四则运算3.方程的基本概念4.整式方程的解法5.二次根式与分式方程二、一次函数与方程1.一次函数的基本概念2.一次函数的性质3.一次函数的图像与性质4.一次函数方程的解法5.简单的实际问题与一元一次方程6.解一元一次方程的应用题三、二次函数与方程1.二次函数的基本概念2.二次函数的图像与性质3.求解二次方程4.应用题四、不等式1.一元一次不等式的解法2.一元二次不等式的解法3.简单的实际问题与不等式五、函数基本概念1.函数的定义2.函数的性质3.函数的图像4.函数的应用六、平面向量1.平面向量的基本概念2.平面向量的运算3.向量的模4.向量的数量积5.向量的应用七、三角函数1.角和弧度2.任意角的三角函数3.三角函数的诱导公式4.三角函数的性质5.特殊角的三角函数6.解三角函数方程八、平面解析几何1.平面直角坐标系2.点和点的位置关系3.直线的方程4.直线与圆的位置关系5.圆的方程6.解析几何应用题九、空间解析几何1.空间直角坐标系2.点、直线、平面的位置关系3.直线的方程4.平面的方程5.解析几何应用题十、立体几何1.平行线与全等三角形2.相似三角形3.勾股定理与直角三角形4.平行四边形与梯形5.圆的性质6.棱柱与棱锥7.棱台与圆柱8.球与球面十一、统计与概率1.数据的收集与整理2.频数分布3.图表的制作与分析4.概率的基本概念5.概率的计算6.概率应用题十二、数列与数学归纳法1.数列的基本概念2.等差数列3.等比数列4.数学归纳法的基本概念5.数学归纳法的应用以上是数学中考的全部知识点总结,希望对大家的复习有所帮助。
祝大家考试顺利!。
(完整版)中考数学知识点总结(完整版)
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 —a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a(a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号. 4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示.实数和数轴上的点是一一对应的关系. 四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
初三数学知识点总结梳理
初三数学知识点总结梳理第一章:有理数与实数1. 整数的概念与性质- 整数的定义及其表示方法- 整数的比较、运算规则和性质- 整数的绝对值及其性质- 整数的约数与倍数- 整数的倒数的概念与性质2. 有理数的概念与性质- 有理数的定义及其表示方法- 有理数的比较、运算规则和性质- 有理数的绝对值及其性质- 有理数的相反数和倒数的概念与性质- 有理数的大小关系3. 实数的概念与性质- 实数的定义与分类- 实数的基本性质- 实数的大小关系- 实数的逼近性质第二章:代数式与方程式1. 代数式的概念与性质- 代数式的定义与表示方法- 同类项与同类项合并- 代数式的化简与展开2. 方程式的概念与性质- 方程式的定义与性质- 一元一次方程的解的存在与唯一性- 一元一次方程的变形与解法- 一元一次方程组的概念与解法- 一元二次方程的求解与判别式3. 不等式的概念与性质- 不等式的定义与性质- 不等式的解集的表示- 一元一次不等式与一元一次方程的联系与比较- 一元一次不等式组的概念与解法第三章:平面图形与空间图形1. 平面图形的概念与性质- 点、线、面的定义与性质- 角的定义、性质及其分类- 平行线与垂直线的判定条件- 三角形的定义及其分类- 三角形的内角和及其应用- 三角形的相似与全等的概念与判定条件2. 空间图形的概念与性质- 四面体、正四面体、正六面体的定义与性质- 柱、锥棱的定义与性质- 平面与空间图形的相交关系3. 图形的投影与观察- 立体图形的投影与观察方法- 投影的性质与应用- 平行线与投影的关系第四章:初等几何与解析几何1. 初等几何的基本概念与定理- 点、线、面、角的定义与性质- 垂线、平分线、中位线的概念与性质- 垂直、平行、全等三角形的判定条件- 三角形内角和的计算方法- 直角三角形、等腰三角形、等边三角形的定理2. 解析几何的基本概念与方法- 点、坐标系的定义与性质- 坐标的运算法则与性质- 直线、圆的方程与性质- 直线的稳定与相关性质- 圆的位置关系与性质3. 二次函数的概念与性质- 二次函数的定义与表示方法- 二次函数的图像与性质- 二次函数的最值与零点的求解方法- 二次函数与方程、不等式、直线的关系与应用第五章:数与变量1. 整式的概念与性质- 整式的定义与运算规则- 整式的因式分解与乘法公式- 整式的化简- 整式的值与单位问题2. 分式的概念与性质- 分式的定义与基本运算规则- 分式的化简与恒等式- 分式的值与解3. 幂与根的概念与性质- 幂的定义与运算规则- 根的定义与运算规则- 幂与根的化简- 幂与根的近似计算与应用。
中考数学重要知识点归纳
中考数学重要知识点归纳
一、数与式
1.整数与分数的运算
2.整式与分式的运算
3.代数式的加减乘除运算
4.矩形的面积与周长计算
二、代数式与方程
1.一元一次方程求解
2.一元二次方程求解
3.线性方程组求解
4.不等式的解集表示
三、几何
1.平面直角坐标系
2.直线与线段的性质
3.圆的性质与计算
4.三角形的性质与计算
5.平行线与角的性质
6.平面图形的对称性
四、函数
1.线性函数与线性方程的关系
2.幂函数与指数函数的计算与图像
3.函数的平移、翻折与对称
4.函数的最值与极值
五、统计与概率
1.统计数据的收集与整理
2.平均数、中位数、众数的计算
3.概率的计算与事件的排列组合
4.抽样调查的设计与分析
六、三角函数
1.直角三角形中的三角函数计算
2.任意角的三角函数计算
3.三角恒等式的证明与应用
4.根据图像判断三角函数与角度的关系
七、利益问题
1.简单利息与复利的计算
2.等额本息与等本等息的还款计算
3.百分数与比例的计算
以上是中考数学的重要知识点的归纳,考生可以根据这些知识点进行
系统地学习和总结,以提高数学考试成绩。
当然,除了掌握基础知识,考
生还需注重练习和思维能力的培养,通过多做题目、深入理解和独立思考,才能真正掌握数学知识,提升解题能力。
中考数学知识点归纳总结
中考数学知识点归纳总结一、代数与函数1.代数运算:四则运算及其混合运算,带分数的运算,分数的运算等。
2.代数式的计算:展开与因式分解、配方法进行提公因式、合并同类项等。
3.一次函数与二次函数:通过图像与函数式子之间的转化,解一元一次方程与一元二次方程。
4.等式与方程:含有未知数的等式,一元一次方程组,解方程组的方法,解一次方程,解带括号等。
5.函数关系:表达式、函数的定义域、值域、幂函数的性质。
6.值域以函数为规律的数列与函数的概念及表示法。
7.平面直角坐标系表示,直线的斜截式、截距等表示方式。
二、图形的认识与计算1.图形的位置与方位:平行线、直线、三角形的判定等。
2.直角三角形的性质:勾股定理、正弦定理、余弦定理等。
3.图形的面积与体积:长方体、正方体、圆锥等的面积、体积计算,物体表面积及物体表面积的计算。
4.图形的对称:轴对称与中心对称,最简单的拓扑关系。
5.平面直角坐标系下直线方程、两点间距离与平面图形的方程表示。
三、数据与统计1.统计指标与绘制:算术平均数,众数,中位数,极差,计算3种指标。
数据调查、讨论、记录、整理回答问题的能力,频率,百分数等。
2.抽样调查和反比例函数:抽样调查中的抽样方法,分析和处理已经抽今了的总体数据。
3.概率的计算:顺序与循环事件,相互独立与互斥,随机问题的计算等。
四、数与计算1.约数和倍数:整数的除法,能整除等概念,一般式。
2.数的性质:中位数、众数、四舍五入、求平方根、解具体应用问题等。
3.填表与运算:运算式的简化与计算、改写问题中的语句为计算式。
4.分数:分数间的大小比较,分数的加减乘除,容量单位和国际单位之间的换算。
5.数的应用:速度的计算、比与比例的应用、物体的相对布局以及市价等的计算等。
五、几何与证明1.分类与性质:图形的名称与分类、角的名称与分类、直线的名称与分类、线段的名称、划分区域。
2.相似与全等图形:相似三角形的基本比例式、相似四边形的判定条件、图形的平移、旋转、翻折、镜像与轴对称。
中考数学复习知识点归纳总结6篇
中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
中考数学知识点汇总
化归思想是将复杂问题转化为简单问题,类比思想是将未知问题转化为已知问题,数形结合思想 是将抽象问题转化为直观问题。
转化思想在解决数学问题时具有广泛的应用,如解方程、解不等式、解几何问题等。
解题技巧
选择题解题技巧
排除法:排除错误选项, 缩小选择范围
代入法:将选项代入题目, 验证是否符合题意
概率的应用:赌博、保险、 投资等
统计初步
统计数据的收集与 整理
统计数据的描述与 分析
统计数据的推断与 预测
统计数据的应用与 决策
数学思想方法
分类讨论思想
定义:将问题按照不同的情况、条件进行分类,分别讨论 应用:解决复杂问题,如几何问题、代数问题等 特点:逻辑清晰,条理分明,易于理解 注意事项:分类要全面,避免遗漏,讨论要深入,避免重复
数形结合思想
数形结合:将抽象的数学概念与具体的图形相结合,使问题更加直观、易于理解
应用范围:函数、几何、代数、概率等领域 优点:有助于理解抽象的数学概念,提高解题效率 实例:二次函数与抛物线、三角函数与正弦曲线、概率分布与直方图等
转化思想
转化思想是数学解题的重要思想之一,通过将问题转化为另一种形式,使问题变得简单易解。
添加项标题
方程:含有未知数的等式,如x+y=z
添加项标题
解方程:通过计算找到方程的解,如x=z-y
添加项标题
方程组:含有多个未知数的方程组,如x+y=z, x-y=w
添加项标题
解方程组:通过计算找到方程组的解,如x=(z+w)/2, y=(z-w)/2
函数
函数的定义:函数是一种特殊的映射,将定义域中的每个元素映射到值域中的唯一元素
数学中考知识点归纳2024
数学中考知识点归纳2024一、数与代数。
(一)有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 能准确区分有理数和无理数,无理数是无限不循环小数,如π、√(2)等。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
- 减法:减去一个数,等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。
- 除法:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n中,a 叫做底数,n叫做指数。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
- 运算顺序:先算乘方,再算乘除,最后算加减;有括号的先算括号里面的。
(二)实数。
1. 平方根、算术平方根、立方根。
- 平方根:如果x^2 = a(a≥slant0),那么x叫做a的平方根,记作x=±√(a)。
- 算术平方根:正数a的正的平方根叫做a的算术平方根,记作√(a),0的算术平方根是0。
- 立方根:如果x^3 = a,那么x叫做a的立方根,记作x = sqrt[3]{a}。
2. 实数的大小比较。
- 正数大于0,0大于负数,正数大于负数。
- 两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
- 还可以通过数轴比较实数大小,数轴上右边的数总比左边的数大。
(三)代数式。
1. 代数式的概念。
- 用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
中考数学知识点总结
中考数学知识点总结中考数学知识点总结(15篇)总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它是增长才干的一种好办法,为此我们要做好回顾,写好总结。
我们该怎么写总结呢?下面是店铺整理的中考数学知识点总结,欢迎大家分享。
中考数学知识点总结1一、代数式1. 概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。
单独的一个数或字母也是代数式。
2. 代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。
二、整式单项式和多项式统称为整式。
1. 单项式:1)数与字母的乘积这样的代数式叫做单项式。
单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2) 单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
3) 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2. 多项式:1)几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3. 多项式的排列:1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
三、整式的运算1. 同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。
同类项与系数无关,与字母排列的顺序也无关。
2. 合并同类项:把多项式中的同类项合并成一项叫做合并同类项。
即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3. 整式的加减:有括号的先算括号里面的,然后再合并同类项。
初中数学知识点整理大全中考数学所有知识点总结
初中数学知识点整理大全中考数学所有知识点总结一、整数与有理数1.整数的概念与运算2.整数的加法与减法3.整数的乘法与除法4.整数的混合运算5.有理数的概念与运算6.有理数的加法与减法7.有理数的乘法与除法8.有理数的混合运算二、比例与消费税1.比例的概念与性质2.比例的等价性质3.比例的四则运算4.比例与图形5.比与比例6.相似形与比例7.比例的应用8.消费税的概念与计算三、代数基础1.代数式的概念与运算2.代数式的加减法与混合运算3.同类项与合并同类项4.代数式的乘法与乘法公式5.代数式的除法与除法公式6.代数式的开方与乘方7.代数方程的概念与解法8.代数方程的应用四、图形的认识1.平面图形的基本概念2.三角形的分类与性质3.三角形的周长与面积4.四边形的分类与性质5.矩形、正方形与平行四边形6.五边形、六边形与圆7.图形的变换8.图形的相似与全等五、分数与百分数1.分数的意义与表示2.分数的化简与约分3.分数的加法与减法4.分数的乘法与除法5.分数与整数的混合运算6.分数与小数的相互转换7.百分数的概念与表示8.百分数的相互转化与运算六、数据的分析1.统计图的认识与应用2.统计图的制作与解读3.数据的集中趋势与分散程度4.数据的描摹与预测5.概率的概念与计算6.概率的实际应用7.信息的收集与处理8.统计的思想与方法七、线性方程组1.一元一次方程和一元一次不等式2.一元一次方程和一元一次不等式的应用3.线性方程组的概念与解法4.线性方程组的应用5.二元一次方程组与不等式组的概念与解法6.二元一次方程组与不等式组的应用7.二元一次方程组与不等式组的图像与性质8.多个线性方程组与不等式组的解法和应用八、几何运动与不等式1.坐标系与平面直角坐标系2.二次函数与直线3.不等式的解法与应用4.不等式系统的解法与应用5.几何运动的基本概念与性质6.几何运动的应用7.速度与加速度8.解直线方程与几何运动的应用九、角与三角函数1.角的概念与度量2.角的几何关系3.角的平分线与垂直线4.角的合角与差角5.三角函数的概念与计算6.三角函数的应用7.三角恒等变换与证明8.三角函数的图象与性质十、平面向量与解析几何1.平面向量的概念与运算2.平面向量的线性运算3.平面向量的共线与垂直4.平面向量的坐标表示与加法5.平面向量与三角形的关系6.平面向量与中点、向量积7.解析几何基础知识8.解析几何的应用。
中考数学知识点归纳总结
中考数学知识点归纳总结一、数与代数1. 有理数- 有理数的定义- 有理数的分类(正数、负数、整数、分数)- 有理数的运算(加、减、乘、除、乘方、开方)2. 整数- 整数的性质- 整数的四则运算- 整数的比较和排序3. 分数与小数- 分数的基本性质- 分数与小数的互化- 分数的四则运算4. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘除运算5. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法(代入法、消元法)- 不等式的性质和解集表示- 一元一次不等式及其解集6. 函数- 函数的概念- 线性函数和二次函数的图像及性质- 函数的基本运算(函数的和、差、积、商)二、几何1. 平面几何- 点、线、面的基本性质- 角的定义和分类(邻角、对角、同位角等)- 三角形的性质(等边、等腰、直角三角形)- 四边形的性质(矩形、菱形、正方形、平行四边形、梯形) - 圆的基本性质和圆的有关计算2. 立体几何- 立体图形的基本概念(体积、表面积)- 常见立体图形的性质(长方体、正方体、圆柱、圆锥、球)3. 图形的变换- 平移、旋转、轴对称、中心对称- 相似图形和全等图形的性质三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制和解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 计算简单事件的概率- 用树状图解决概率问题四、解题技巧与策略1. 解题方法- 列方程解应用题- 利用图形解决几何问题- 分类讨论法2. 考试策略- 时间管理- 题目审题- 检查与复核五、重要公式与定理- 面积公式(三角形、四边形、圆、梯形等)- 体积公式(长方体、正方体、圆柱、圆锥、球)- 勾股定理及其应用- 相似三角形定理- 圆周角定理- 百分比和利润计算以上是中考数学的主要知识点归纳总结。
在实际应用中,学生应根据具体的教学大纲和考试要求,对每个知识点进行深入学习和练习,以确保在考试中能够熟练运用。
中考数学重要知识点归纳大全
中考数学重要知识点归纳大全
一、数与代数
1.自然数、整数、有理数、实数的概念及性质。
2.数字计算的初步技能,包括整数的加减乘除、分数的加减乘除、百分数的运算等。
3.基本的代数运算,包括代数表达式的计算、方程的求解、分式的运算等。
4.代数式的展开与因式分解。
5.利用等式解决问题。
二、几何与图形
1.平面内角的概念,直线与平面的位置关系。
2.常见图形的性质,如正方形、长方形、三角形、梯形等。
3.常见多面体和圆柱体的性质。
4.直线与曲线的位置关系。
5.平行线与平行四边形的性质。
6.相似与全等的判断。
7.平行线与平面的位置关系。
三、函数与方程
1.函数的概念与性质。
2.函数的图像和函数关系的表示。
3.线性函数的性质与图像。
4.二次函数的性质与图像。
5.函数的运算与复合函数。
6.一元一次方程与一元一次不等式。
7.二次方程及一元二次不等式的解法。
8.一元一次方程组的解法。
四、数据与概率
1.数据的收集和整理。
2.数据的统计和描述。
3.常见统计图表的制作与分析。
4.概率的概念与性质。
5.事件的概念与计算。
6.排列与组合的计算。
7.概率的计算与应用。
五、实际问题
1.实际问题中的数学模型建立。
2.实际问题解决中的数学计算与推理。
3.实际问题中的解释和表达能力。
中考数学知识点总结太全了
中考数学知识点总结太全了一、代数1. 有理数有理数包括正整数、负整数、零、分数和小数。
有理数之间的运算包括加减乘除,可以进行化简和约分。
2. 整式整式由系数、字母和指数构成,包括单项式和多项式。
整式之间的运算包括加减乘除和因式分解。
3. 方程与不等式方程是含有未知数的等式,不等式是含有未知数的不等式关系。
解方程和不等式的方法包括化简、去括号、消元、配方法和绝对值法等。
4. 函数函数包括一元函数和多元函数,函数的定义域、值域、图像和性质。
函数之间的运算包括加、减、乘、除和复合等。
5. 等比数列等比数列是指数列中相邻两项的比值相等的数列。
等比数列的通项公式以及前n项和公式的推导和应用。
6. 因式分解因式分解是将整式表示为一些因式的积的运算。
因式分解的方法包括公因式提取、配方法、乘法公式和分组分解等。
7. 二次函数二次函数的定义、图像和性质,二次函数的最值、零点和对称轴的求法。
二、几何1. 直线和角直线的性质和分类,角的种类和关系,平行线和角的关系,平行线与平行线、平行线与直线、直线与直线的夹角、直角、邻补角和同位角的关系。
2. 三角形三角形的分类、性质和判定,三角形的内角和外角、外心、内心、垂心和重心等特殊点的性质。
3. 四边形四边形的分类、特性和判定,平行四边形和其它特殊四边形的性质和判定,以及四边形的例题应用。
4. 圆与圆周角圆的性质和相关概念,弧长和扇形的面积,圆与直线、圆与圆的位置关系和切线定理。
5. 相似与全等相似三角形的性质和判定,全等三角形的性质和判定。
6. 三角函数正弦、余弦、正切、余切等三角函数的定义和性质,三角函数的分解、合成、增减性和应用。
三、统计与概率1. 统计统计的基本概念和方法,包括数据的收集、整理、分析和表达,以及频数、频率、众数、中位数、平均数和标准差的计算和应用。
2. 概率概率的基本概念和方法,包括概率的计算、事件的关系和独立性,概率分布、期望和方差的计算和应用。
以上是中考数学知识点的总结,希望对大家复习和备考有所帮助。
初三数学常考知识点
初三数学常考知识点一、实数与代数1.有理数:整数、分数、相反数、绝对值、有理数的乘方、平方根、算术平方根等。
2.实数:实数的定义、实数的分类、实数的性质、实数的运算等。
3.代数式:代数式的定义、代数式的分类、代数式的运算等。
4.一元一次方程:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。
5.不等式:不等式的定义、不等式的性质、不等式的解法、不等式的应用等。
6.二元一次方程组:二元一次方程组的定义、二元一次方程组的解法、二元一次方程组的应用等。
7.点、线、面:点的定义、线的定义、面的定义、点、线、面的关系等。
8.平面几何基本概念:邻补角、对顶角、同位角、内错角、同旁内角、平行线、相交线、垂直、平行的性质等。
9.三角形:三角形的定义、三角形的分类、三角形的性质、三角形的判定、三角形的计算等。
10.四边形:四边形的定义、四边形的分类、四边形的性质、四边形的判定、四边形的计算等。
11.圆:圆的定义、圆的性质、圆的方程、圆的计算、扇形、弧、弦等。
12.空间几何:长方体、正方体、球、棱柱、棱锥等空间几何图形的性质、计算和应用。
13.一次函数:一次函数的定义、一次函数的图像、一次函数的性质、一次函数的应用等。
14.二次函数:二次函数的定义、二次函数的图像、二次函数的性质、二次函数的应用等。
15.反比例函数:反比例函数的定义、反比例函数的图像、反比例函数的性质、反比例函数的应用等。
16.函数图像:函数图像的性质、函数图像的变换、函数图像的分析等。
四、统计与概率1.统计:统计的基本概念、统计的运算、数据的收集与处理、图表的制作等。
2.概率:概率的基本概念、概率的计算、概率的应用等。
五、解决问题的方法1.方程思想:列方程、求解方程、检验解等。
2.函数思想:建立函数关系、求解函数问题等。
3.几何思想:利用几何性质、定理解决问题等。
4.数形结合思想:利用数形结合的方法解决问题等。
以上是初三数学常考的知识点,希望对你有所帮助。
中考数学知识点总结(完整版)
中考数学知识点总结(完整版)中考数学知识点总结一、整数及其运算1. 整数的概念:包括正整数、负整数和零。
2. 整数的比较:根据绝对值的大小进行比较,绝对值越大的整数越小。
3. 整数的加法和减法:- 同号相加,取相同符号,数值相加;- 异号相加,取绝对值较大的符号,数值取较大的减去较小的;- 整数减法可以转换为加法运算。
二、分数及其运算1. 分数的概念:由分子和分母组成,表示部分与整体的比例关系。
2. 分数的比较:可以先通分,再比较分子的大小。
3. 分数的加法和减法:- 分母相同,分子相加或相减;- 分母不同,先通分,再进行加减运算。
4. 分数的乘法和除法:- 分子相乘,分母相乘;- 除法转换为乘法,将除数倒数乘以被除数。
三、代数式及其运算1. 代数式的概念:由数字、字母和算符组成,可表示一个或多个数的和、差、积、商。
2. 代数式的加法和减法:将同类项相加或相减,并合并同类项。
3. 代数式的乘法:使用分配律,将每一项与其他项相乘。
4. 代数式的除法:将除法转换为乘法,将除数的倒数乘以被除数。
四、方程与方程组1. 方程的概念:由等号连接的两个代数式构成,表示两个量相等的关系。
2. 解一元一次方程:通过逆运算,使得未知数单独在一边,求出未知数的值。
3. 解一元一次不等式:通过运算规则,求出不等式的解集。
4. 方程组的概念:由多个方程组成,表示多个变量之间的关系。
5. 解二元一次方程组:通过消元法或代入法,求出方程组的解。
五、几何图形与计算1. 平面图形:包括点、线、线段、射线、角、三角形、四边形等。
2. 空间图形:包括立体图形如球体、长方体、正方体等。
3. 相似与全等:相似图形的对应边比值相等,全等图形各边和角相等。
4. 长度、面积、体积的计算公式:根据几何图形的特点,计算对应的量。
六、统计与概率1. 统计图表的读取与分析:理解直方图、折线图、饼图等的含义。
2. 平均数的计算:包括算术平均数、加权平均数等。
2024中考数学知识点大全
2024中考数学知识点大全一、常见基础知识点:1.分数的加减乘除运算:分数的加法、减法、乘法、除法的计算方法和规律。
2.整数的加减乘除运算:整数的加法、减法、乘法、除法的计算方法和规律。
3.小数的加减乘除运算:小数的加法、减法、乘法、除法的计算方法和规律。
4.百分数与小数互化:百分数与小数的相互转化方法。
5.用比例解决问题:利用比例关系解决实际问题的方法。
6.连分数:连分数的计算和转化。
7.数值的比较:根据数的大小进行比较的方法。
8.分数及整数运算的扩展:如各种形式的加减乘除运算。
9.小数及整数运算的扩展:如各种形式的加减乘除运算。
10.有理数及其运算扩展:有理数的加法、减法、乘法、除法的计算方法和规律。
11.全体实数的分布:实数的有理数和无理数的分布情况。
12.正数、负数的加减运算:正数、负数的加法、减法运算方法和规律。
13.小数的表示和读法:小数的表示方法和相关读法。
14.整合性的应用题:综合性的数学问题解决方法。
二、图形与几何知识点:1.直线的性质:直线的定义、直线的相交关系、直线的平行关系。
2.线段的性质:线段的定义、线段的相等关系。
3.角的概念:角的定义、角的分类。
4.父子角、对顶角、同位角、内错角等概念。
5.三角形的性质:三角形的定义、三角形的分类、三角形的内角和外角性质。
6.圆的性质:圆的定义、圆的元素。
7.四边形的概念和性质:四边形的定义、四边形的分类、四边形的性质。
8.正方形、矩形、菱形和平行四边形的性质。
9.直角三角形的性质:直角三角形的定义、直角三角形的定理。
10.锐角三角形和钝角三角形的性质。
11.三角形中的角平分线和三角形的外心、内心、重心、垂心的性质。
12.周长和面积的计算:各种图形的周长和面积的计算方法。
13.体积的计算:各种立体图形的体积的计算方法。
14.直角坐标系与坐标计算:直角坐标系的基本概念和坐标计算方法。
15.平面镶嵌:平面上的几何图形的镶嵌和组合。
16.圆盘等分:平面上的圆盘等分和圆盘的中心角度的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学知识点最全汇总
复习数学时要抓住教材中的重点内容,让学生掌握分析方法,引导学生从不同角度出发思索问题,由此探索一题多解、一题多变和一题多用之法。
下面是为大家整理的有关中考数学知识点最全汇总,希望对你们有帮助!中考数学知识点最全汇总三角函数关系倒数关系tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系
sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系
sin (α)+cos (α)=11+tan (α)=sec (α)1+cot (α)=csc (α)同角三角函数关系六角形记忆法构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。
倒数关系对角线上两个函数互为倒数;商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。
)。
由此,可得商数关系式。
平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c余弦(cos)等于邻边比斜边;cosA=b/c正切(tan)等于对边比邻边;tanA=a/b余切(cot)等于邻边比对边;cotA=b/a正割(sec)等于斜边比邻边;secA=c/b余割(csc)等于斜边比对边。
cscA=c/a互余角的三角函数间的关系
sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα.平方关系:sin (α)+cos (α)=1tan (α)+1=sec (α)cot (α)+1=csc (α)积的
关系:
sinα=tanα·cosαcosα=cotα·sinαtanα=sinα·secαcotα=cosα·cscαsecα=tanα·cscαcscα=secα·cotα倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1圆的定理:1不在同一直线上的三点确定一个圆。
2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2圆的两条平行弦所夹的弧相等3圆是以圆心为对称中心的中心对称图形4圆是定点的距离等于定长的点的集合5圆的内部可以看作是圆心的距离小于半径的点
的集合6圆的外部可以看作是圆心的距离大于半径的点的集合7同圆或等圆的半径相等8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等中考数学知识点复习口诀
有理数的加法运算同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
合并同类项合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
平方差公式平方差公式有两项,
符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
单项式运算加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题步骤去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集大大取较大,小小取较小,小大、大小取中间,大小、小大无处找。
一元二次不等式、一元一次绝对值不等式的解集大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
分式方程的解法步骤同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍,别含糊。
最简根式的条件最简根式三条件,号内不把分母含,幂指数(根指数)要互质、幂指比根指小一点。
特殊点的坐标特征坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴。
象限角的平分线象限角的平分线,坐标特
征有特点,一、三横纵都相等,二、四横纵却相反。
平行某轴的直线平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧。
对称点的坐标对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称x相反;原点对称记,横纵坐标全变号。
自变量的取值范围分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律若把一次函数的解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.一次函数图象与性质口诀一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见;b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线;左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现;横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边。
特殊三角函数值记忆首
先记住30度、45度、60度的正弦值、余弦值的分母都是2,正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。
三角函数的增减性:正增余减平行四边形的判定要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。
梯形问题的辅助线移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌辅助线,怎么添?找出规律是关键.题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连;三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
圆的证明歌圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。
中考数学知识点最全汇总。