光学基础知识98149

合集下载

光学基础知识详细版.pptx

光学基础知识详细版.pptx

2. 物像关系基础公式
• 高斯公式:
p 为物距,q 为像距,f 为焦距
在一般摄影时像距其实与焦距非常接近, 但是在微距摄影时,像距则可能大于焦距,此 时放大率会超过 1。利用高斯公式其实也可以 导出放大率公式:
放大率 M﹦p/q
2. 色差
• 透镜最主要像差一般为色差,大家都知道三棱 镜会将白光分散为光谱,透镜的侧面看来其实 也像棱镜,所以会有色差,红光波长较长,结 果红光焦点就比蓝光焦点长,因此焦点不在同 一平面上,所以目镜看红光影像清晰,蓝光影 像就不清晰,反之亦然,用没有消色差的透镜 当物镜就会看到物体镶了红边或蓝边,不够清 晰。
称轴线 今后我们主要研究的是共轴球面系统和平面镜、
二、成像基本概念 1、透镜类型 正透镜:凸透镜,中心厚,边缘薄,使光线会聚,也叫会聚透镜
会聚:出射光线相对于入射光线向光轴方向折转
负透镜:凹透镜,中心薄,边缘厚,使光线发散,也叫发散透镜
发散:出射光线相对于入射光线向远离光轴方向折转
2、透镜作用---成像
1. 焦距
在单透镜而言,如果窗外景物够远,那么透镜到倒立影像之距离 可视为焦距。如要更确实的量测,可以对着太阳在地面呈像,再 量测透镜到影像的距离。
• 要知道真正的焦距,还有一个方法,就是用物距与像距来计算, 因为物距与像距的比与物高与像高的比值是一样的,物高可以找 一个已知高度的物体,像高可以量测,物距可以量测,像距就可 以计算出来,而物距超过焦距五十倍以上时,算出来的像距已经 极接近焦距的数值。
第五节 光学系统类别和成像的概念
各种各样的光学仪器 显微镜:观察细小的物体 望远镜:观察远距离的物体
各种光学零件——反射镜、透镜和棱镜
光学系统:把各种光学零件按一定方式组合起来,满足一定的要求

光学体系知识点梳理总结

光学体系知识点梳理总结

光学体系知识点梳理总结一、光学基础知识1. 光的本质光是电磁波的一种,是一种由电场和磁场交替而成的波动现象。

光是由光源发出,经过介质传播,最终影响我们的视觉系统。

2. 光的特性(1)波动特性:光具有波动性,可以表现为干涉、衍射、偏振等现象。

(2)微粒特性:光也具有微粒性,可以用光子模型解释光电效应、康普顿效应等现象。

3. 光的传播(1)直线传播:在均匀介质中,光沿着直线传播,遵循光的直线传播定律。

(2)折射现象:当光线从一种介质进入另一种介质时,会发生折射现象,遵循折射定律。

(3)反射现象:当光线从介质表面反射时,遵循反射定律。

4. 光的颜色白光是由所有可见光波长组成的,当光通过色散介质时,不同波长的光会按不同程度发生偏折,从而产生色散现象。

5. 光学仪器(1)凸透镜:透镜是一种光学元件,可以将平行入射的光线聚焦或发散。

(2)凹透镜:凹透镜同样可以将平行入射的光线聚焦或发散,与凸透镜形成对称。

(3)棱镜:通过对光的折射和衍射,可以实现光的分光和复合。

二、光学成像1. 成像原理成像是光学系统中非常重要的一部分,成像原理是指当物体放在一定位置时,通过透镜、镜面等光学元件可以在另一位置产生与实物相似的像。

2. 透镜成像透镜成像是指通过透镜实现对物体的成像,分为凸透镜和凹透镜成像。

3. 成像公式成像公式是描述透镜成像的数学关系式,可以根据物距、像距、焦距等参数计算成像的位置和大小。

4. 像的性质像的性质包括实像与虚像、正像与负像、放大与缩小等,是成像过程中需要了解的重要内容。

5. 透镜组成像透镜组成像是指通过不同透镜的组合实现对物体的成像,常见的透镜组包括双凸透镜组、凹凸透镜组等。

6. 成像畸变(1)球差:由于透镜的非理想性,会出现球差现象,导致成像的模糊和色差。

(2)色差:不同波长的光经过透镜时折射角度不同,会导致色差现象,影响成像的清晰度。

三、光学仪器1. 望远镜望远镜是一种基于透镜或镜面的光学仪器,可以放大远处物体的像,包括折射望远镜和反射望远镜。

光学基础知识详细版

光学基础知识详细版

光学基础知识详细版一、光的本质光是一种电磁波,是自然界中的一种能量传递形式。

光的本质可以通过波动理论和粒子理论来解释。

波动理论认为光是一种波动现象,具有波长、频率、振幅等特性;粒子理论则认为光是由光子组成的,光子是光的能量载体。

二、光的传播光在真空中的传播速度是恒定的,约为299,792,458米/秒。

光在不同介质中的传播速度不同,这是由于介质的折射率不同所致。

当光从一种介质传播到另一种介质时,会发生折射现象,即光线方向发生改变。

三、光的反射和折射光的反射是指光线在遇到界面时,按照一定规律返回原介质的现象。

光的折射是指光线在通过两种不同介质的界面时,传播方向发生改变的现象。

光的反射和折射遵循斯涅尔定律,即入射角和折射角满足一定的关系。

四、光的干涉和衍射光的干涉是指两束或多束相干光波相遇时,由于光波的叠加,形成新的光强分布的现象。

光的衍射是指光波在遇到障碍物或通过狭缝时,发生弯曲并绕过障碍物传播的现象。

五、光的偏振光的偏振是指光波的振动方向具有一定的规律性。

自然光是由无数个振动方向不同的光波组成的,因此不具有偏振性。

当光波通过某些特殊材料或经过反射、折射等过程后,可以形成具有一定偏振性的光波。

六、光的吸收和发射光的吸收是指光波在传播过程中,能量被物质吸收的现象。

光的发射是指物质在吸收光能后,以光波的形式释放能量的现象。

光的吸收和发射遵循一定的规律,如光的吸收强度与光的频率有关,光的发射强度与物质的性质有关。

七、光的成像光的成像是指利用光学系统(如透镜、反射镜等)使物体发出的光波或反射的光波在另一位置形成实像或虚像的过程。

光的成像原理是光的折射和反射现象,通过光学系统可以实现对物体形状、大小、位置的观察和研究。

八、光的测量光的测量是光学研究中的重要内容,主要包括光强、光强分布、波长、频率、相位等参数的测量。

光的测量方法有直接测量和间接测量两种,直接测量是通过光学仪器直接测量光波参数,间接测量是通过测量光波与物质相互作用的结果来推算光波参数。

光学基础知识点总结

光学基础知识点总结

光学基础知识点总结一、光的基本特性光是电磁波的一种,具有波粒二象性,既具有波动性,也具有粒子性。

光的波长决定了它的颜色,波长越短,频率越高,颜色就越偏向紫色;波长越长,频率越低,颜色就越偏向红色。

媒质对光的传播起到了阻碍的作用,阻碍的程度由折射率决定。

在真空中,光速是最高的,为3.0×10^8m/s。

二、光的传播光在真空中的传播速度是最快的,当光通过不同介质时,光速会减慢,并且折射。

光的折射是由于光速在不同介质中的差异导致的,根据折射定律,入射角和折射角之比等于两种介质的折射率之比。

当光从光密介质射向光疏介质时,入射角大于折射角;反之,当光从光疏介质射向光密介质时,入射角小于折射角。

这就是为什么水池里的东西看上去都有些歪的原因。

三、光的反射和折射光的反射是指光线从一种介质透过到另一种介质时,遇到界面时发生的现象。

根据反射定律,光线的入射角等于反射角,反射定律表明入射角和反射角是相等的。

光的折射是指光在通过两种介质的分界面时,由于介质折射率的不同,在两种介质中的传播方向发生改变的现象。

四、光的干涉和衍射光的干涉是光波相互叠加,在波峰与波谷相遇时叠加会增强,而在波峰与波峰相遇时叠加会减弱。

光的干涉现象有两种:一种是菲涅尔干涉,一种是朗伯干涉。

光的衍射是指光波通过一道障碍物,由于波的直线传播受到限制,在障碍物边缘处波前发生变形,这种现象就是衍射。

光的干涉和衍射是光学中非常重要的现象,也是很多光学仪器(如干涉仪、衍射光栅等)的原理基础。

五、光学成像光学成像是指通过光学器件将物体的形象投射到屏幕或者成像器件上的过程。

根据成像光学器件的不同,光学成像可以分为透镜成像和反射镜成像。

在透镜成像中,成像的原理是由于透镜对光的折射性质,使得光线汇聚或发散从而产生物体的形象。

在反射镜成像中,成像的原理是由于反射镜对光的反射性质,使得光线经过反射后,同样能够形成物体的形象。

光学成像技术在医学、军事、天文学、摄影等领域都有着非常重要的应用。

光学基础及眼球光学结构

光学基础及眼球光学结构

光学基础及眼球光学结构一、光学基础知识1、光与光线(1)光线:表示光的传播方向的理论线段散开光线:光源<5m,成虚焦点平行光线:光源≥5m,永不聚焦聚合光线:自然界无,成实焦点衍射光线:遇到障碍时转弯(2)光:电磁波的一种,具有波动性和粒子性不可见放射线:γ射线、x射线、紫外线可见光:380nm-780nm不可见热线:红外线、无线电波2、光的主要现象吸收:光能转化为热能透射:不变方向、无衰减反射:由界面返回原介质折射:通过界面并改变方向散射:部分光偏离主传播方向色散:复色光分解为单色光衍射:绕过障碍物继续传播能量守恒3、光的几何光学定律--光的传播规律直线传播定律:光在均匀介质中都直线传播独立传播定律:不同光束相遇后互不干扰光的反射定律:入射角=出射角光的衍射定律:n1sinl-n2simr光路可逆原理:光可在传播路径上逆向传播4、物理光学的描述(1)光的传播特征波动特征:具有周期性、频率、波长、速度、振幅、相位电磁波特征:速度、电场磁场、方向、干涉和偏振现象等(2)光的能量转移以振动形式在物质中转移依靠光子随波迁移能量5、光学系统(1)定义物理光学系统:由透镜、反射镜、棱镜及光阑等光学元件组成,具有光的折射、反射、衍射等作用眼球光学系统:由多组光学元件构成的复杂光学系统,负责将进入眼球的光折射并聚焦到视网膜上--屈光系统(2)屈光系统的组成按解剖结构:三屈光单元---角膜、晶状体、玻璃体按折射功能:两屈光体---角膜、晶状体按光路追迹:三透镜系统---房水、晶状体、玻璃体二、眼球光学结构眼球光学结构(光学元件)包括从角膜到视网膜的所有结构,它们都参与了人眼的折射成像过程从光学意义上讲,眼球可视为一台照相机,二者的结构能一一对应眼睑不参与屈光,但在限制外界光进入眼球,维护眼球表面结构与功能等方面有重大作用(一)、眼睑-----照相机镜头盖1、应用解剖眼球前可开合的帘状结构睑裂长28mm,宽7.5mm睑缘后唇有数十个睑板腺睑缘前后有一排睫毛2、主要功能(1)屏障功能眼帘:阻隔异物及强光,减少泪液蒸发睫毛:阻挡灰尘,减弱强光(2)瞬目作用主动性闭睑(保护性):视听刺激非随意瞬目(生理性):眼表刺激睫毛反射(保护性):睫毛刺激(3)非随意瞬目的生理意义泪液分布动力调节泪液蒸发速度促使睑板腺释放脂质,维持泪膜稳定性、保护眼表(4)脂质腺的作用参与构成泪膜脂质层,防止水分蒸发润滑眼表,利于眼球活动,防止损伤3、受损后果眼表泪液病斜、弱视屈光不正眼球意外伤害,最终光学性能下降(二)、泪液膜-----照相机镜头镀膜覆盖于角、结膜前表面的一层流动性液体1、主要功能维护眼表:供营养,防干燥,抵御理化伤害免疫防御:是人眼抗感染免疫第一道防线光学意义:折射率近视角膜,为眼屈光起点,填补角膜粗糙面,提高折射质量维持角膜透明2、受损后果眼表结构与功能损害----光学性能下降(三)、角膜---照相机镜头眼球最前端的透明纤维薄膜1、结构稳定极坚韧,保护眼球内容意义重大有弹性,有记忆,屈光力稳定2、透光性好透过率:近红外>可见>其他反射率<2.5%吸收率<1%--100%3、屈光性能(1)为薄膜透镜,屈光力主要来自前表面。

光学基础知识

光学基础知识

光学基础知识1. 引言光学是一门研究光的传播、反射、折射和干涉现象的科学,它扮演着在现代科学和技术中非常重要的角色。

本文将介绍光学的基础知识,包括光的性质、光的传播方式、光的折射和光的干涉现象。

2. 光的性质光是一种电磁波,具有波粒二象性。

光的波动性体现在它的干涉、衍射和偏振现象上,而光的粒子性则体现在光子的概念上。

2.1 光的波动性光的波动性使得它能够发生干涉现象。

当两束光叠加时,它们的波峰和波谷可以相互加强或抵消,从而形成明暗的干涉条纹。

干涉现象在波导器件和干涉仪等光学设备中得到广泛应用。

光的波动性还体现在光的衍射现象中。

当光通过一个小孔或遇到障碍物时,会发生衍射现象,使光波转向并产生弯曲或扩散的效果。

衍射现象导致了很多实际应用,如衍射光栅和衍射成像等。

2.2 光的粒子性光的粒子性表现为光子。

光子是光的基本粒子,它具有能量和动量,可以与物质发生相互作用。

光子的能量和频率之间的关系由普朗克公式给出:E = hf,其中E为能量,h为普朗克常数,f为光的频率。

3. 光的传播方式光的传播方式分为直线传播和波动传播。

在光线传播中,光被视为沿直线传播的粒子,符合几何光学的规律。

而在波动传播中,光被视为电磁波,需要利用波动理论进行描述。

3.1 光线传播光线传播遵循几何光学的规律。

根据光的传播路径和光线的性质,可以使用折射定律和镜面反射定律来计算光的传播方向和路径。

光线传播可以用来解释光的直线传播、光的成像和透镜等光学现象。

3.2 波动传播在波动传播中,光以电磁波的形式传播。

光的传播速度取决于介质的折射率,当光从一种介质进入另一种介质时,会发生折射现象。

根据斯涅尔定律,入射角和折射角之间满足折射定律的关系。

4. 光的折射光的折射现象是光线从一个介质进入另一个介质时发生的偏向现象。

折射现象可以用斯涅尔定律进行描述,即入射角、折射角和介质折射率之间的关系。

当光从光密介质(如玻璃)进入光疏介质(如空气)时,折射角大于入射角;当光从光疏介质进入光密介质时,折射角小于入射角。

光学必备知识点总结图解

光学必备知识点总结图解

光学必备知识点总结图解光学是研究光的传播、反射、折射以及与物质相互作用的一门学科。

在现代科技中,光学应用广泛,包括光纤通信、激光技术、光学显微镜、望远镜、光学测量等方面。

因此,了解光学的基本知识对于我们理解现代科技、发展科学技术至关重要。

在本文中,将对光学的基本知识点进行总结,包括光的性质、光的传播、折射、反射、色散、光学仪器等方面的知识点,希望对读者有所帮助。

一、光的性质1. 光的波动性光具有波动性质,即光是以波的形式传播的。

光波的传播方式可以用波长、频率、波速来描述。

光的波长决定了光的颜色,不同波长的光对应不同的颜色。

波长和频率之间有着一定的关系,即速度等于波长乘以频率。

在真空中,光的波速是一个恒定值,即光速等于约299,792,458米/秒,记作c。

2. 光的粒子性光也具有粒子性质,即光是由一些微小的粒子组成的。

这些粒子被称为光子,是光的一个基本单位。

光的粒子性质可以用来解释一些光学现象,如光电效应、康普顿散射等。

3. 光的干涉和衍射干涉是指两束相干光叠加在一起时会产生明暗条纹的现象。

衍射是指光通过狭缝或物体边缘时会发生偏折的现象。

这两个现象是光的波动性质的重要体现。

二、光的传播1. 光的直线传播在均匀介质中,光沿着一条直线传播。

这是光学的一个基本原理,也是光学成像的基础。

2. 光的折射当光线从一种介质射入到另一种介质中时,光线会发生折射。

折射定律表明了入射角、折射角和介质折射率之间的关系。

这个定律对于理解光在介质中的传播有着重要的意义。

3. 光的反射当光线与界面垂直入射时,光线会发生反射。

反射定律规定了入射角和反射角之间的关系。

反射还可以产生镜面反射和漫反射两种形式。

三、光的折射1. 透镜透镜是一种光学器件,主要分为凸透镜和凹透镜两种。

透镜可以将平行光线汇聚成一个点,也可以将一点光源产生的光线汇聚成一个点。

透镜的焦距决定了透镜的成像性能。

2. 成像原理成像原理是指由透镜成像的规律。

通过透镜,可以将物体成像到焦平面上,形成实物像或虚物像。

光学基本知识点总结

光学基本知识点总结

光学基本知识点总结光学是一门研究光传播、控制和利用的学科,以光为研究对象,是物理学的重要分支之一。

在现代科学技术中,光学在激光、光电子技术、光通信、光存储、光制造等领域得到广泛应用。

本文将介绍光学的基本知识点,包括光的本质、光的传播、折射、反射、干涉、衍射等内容,帮助读者全面了解光学。

一、光的本质光是一种电磁波,具有波粒二象性。

光的波长决定了它的颜色,短波长的光呈蓝色,长波长的光呈红色。

光的速度约为每秒300000公里,在真空中传播速度不受模式、光源、光线方向等影响,光在介质中传播速度会发生变化,即出现光的折射现象。

二、光的传播光在空气中是直线传播的,在其他介质中会发生光的折射。

光线的传播方向和传播速度都是沿着光线法线的垂直方向,在不同介质中光的速度不同,根据斯涅尔定律可以计算光线折射角度。

光的传播还可以遵循菲涅耳衍射规律,即光经过一个小孔、缝隙或边缘会形成衍射,这种现象称为菲涅耳衍射。

三、折射折射是指光线从一种介质进入另一种介质时,由于光速的不同而改变传播方向的现象,即光线偏离的现象。

在光线通过界面进入另一种介质时,会出现折射率不同,折射角度不同的现象,这个现象也可以被称之为光的折射现象。

根据斯涅尔定律,可以计算出光线折射的角度。

四、反射反射是光线遇到障碍物或界面时,发生方向改变的现象。

光线在遇到界面时可能会发生反射和折射两种现象,反射光线会遵守反射定律,即入射角等于反射角。

在反光镜、平面镜等物体上,反射光线起着重要作用,它可以形成影像,产生特定的影像效果。

五、干涉干涉是指两束光线相遇时,由于它们的波长、相位、方向、强度等参数不同,会出现相互作用的现象。

干涉分为光程差干涉和振幅干涉。

光程差干涉是指两束光线走过的路程不同,产生相位的差别,形成明纹和暗纹。

振幅干涉是指两束光线的干涉是由于它们的波长、强度和相对相位不同而产生的。

六、衍射衍射是指光线通过一个孔或缝隙时,光线经过弯曲、扩散等变化,从孔径周围发散出去,产生向不同方向辐射的现象。

光学基础知识

光学基础知识

光学基础知识光学,作为物理学的一个分支,研究光线的传播、反射、折射以及与物质的相互作用等现象。

它是现代科技与生活中不可或缺的一部分。

本文将从光的特性、光的传播、光的反射与折射以及光的色散等方面,对光学基础知识进行探讨和介绍。

一、光的特性光是一种电磁波,具有无质量、无电荷、无形状、无味道和无颜色等特性。

光的波动性和粒子性共同组成了光的本质。

根据波粒二象性理论,光既可被看作是一种电磁波,也可被看作是由光子组成的一种粒子。

光具有波长、频率、速度和能量等基本性质。

二、光的传播光在真空中的传播速度是一个常数,即光速。

根据实验测量,光速的数值约为每秒299,792,458米。

光在介质中的传播速度则会因介质的不同而有所变化。

光的传播满足直线传播的几何光学原理,光线在相同介质中的传播路径是沿着最短时间的路径传播,而在不同介质中会发生折射。

三、光的反射与折射当光线遇到一个光滑的表面时,一部分光线返回原来的介质中,这种现象称为光的反射。

光的反射符合反射定律,即入射角等于反射角。

根据反射定律可以解释镜子的成像原理以及光的反射现象。

光在从一种介质传播到另一种介质时,会发生偏转的现象,这种现象称为光的折射。

光的折射符合折射定律,即入射角的正弦与折射角的正弦之比等于两种介质的折射率之比。

不同介质的折射率不同,所以光在不同介质中的传播路径也不同。

四、光的色散光的色散是指光在透明介质中不同波长的光具有不同的折射率,因此沿着不同的路径传播,导致光的分离现象。

这是由介质的折射率与波长的关系所决定的。

对于自然光,其颜色是由不同波长的光波组成的。

当自然光经过介质时,不同波长的光波会发生不同程度的折射,造成光的分离。

这就是我们所熟知的光的折射现象,如光的折射在水中出现的折射率较大,使得看到的物体发生畸变。

五、光学应用光学作为一门应用广泛的科学,其在日常生活和科技领域中有着重要的应用。

在光学领域,光的折射原理被广泛用于镜片、透镜、眼镜等光学器件的设计与制造上。

第一章光学基础知识

第一章光学基础知识

第一章光学基础知识.doc1 第一章光学基础知识肉眼能感觉到的光称为可见光,它来自各种自然光源和人造光源。

光实质是电磁波,可见光的电磁波波长在380nm~760nm 之间。

研究可见光的物理现象有1、光是直线传播的人影、小孔成像、木工观察平面直不直时都是该现象的验证;2、光是独立传播的;3、光路是可逆的;4、光到达两个介质的介面时,光要产生反射和折射。

第一节光的反射和球面镜成像一、光的反射当光线投射到两种介质的分界面上时,一部分光线改变了传播方向,返回第一媒质里继续传播,这种现象称为光的反射。

自然界的反射分为漫反射(不规则反射)镜面反射(规则反射)当介质的分界面(反射面)粗糙凹凸不平时,即使入射光线是平行的,反射光线并不平行,这种反射称为漫反射(不规则反射)。

当介质的分界面(反射面)光滑平整时,入射光是平行的,反射光仍然平行的反射,称为镜面反射(规则反射)。

二、反射定律1、反射光线在入射光线与法线所决定的平面内,反射光与入射光线分居在法线两侧;2、反射角等于入射角i 1 =i 2 。

i 1 i 2 入射角法线反射角入射光线反射光线入射点2 三、平面镜成像像的性质①虚像②正立③等大根据等大的性质,可以证明AO=A′O 当验光室长度尺寸达不到国家规定的5米-6米的距离时,可以利用反射镜成像的原理,将长度尺寸压缩一半。

2.5 3 ~米2.5 3 ~米5 6 ~米四、球面镜成像镜的反射面为球面的一部分称做球面镜反射面为球形的凹面凹面镜反射面为球形有凸面凸面镜1、凹面镜的成像C F O r f 凸面镜凹面镜A′ A O3 镜面的几何中心点O,称镜面的顶点。

镜面的曲率中心C,称镜面的球心。

过球心与顶点的连线称为主光轴,简称为主轴。

当一束平行于主轴的光线入射,经凹面镜反射后相交于镜前主轴上的一点F,F 点称为焦点。

焦距到顶点的距离FO 称为焦距,用f表示。

可以证明f r为曲率半径求凹面镜的成像问题(已知物体位置,求像的位置),可以用二种办法解决。

1.光学基础知识

1.光学基础知识

1.光学基础知识光,作为一种自然现象,对我们的生活至关重要。

它不仅是生物视觉的基础,也是我们周围许多事物的存在方式。

了解光学基础知识是理解我们周围世界的关键。

1、光的基本性质波动性:光作为一种电磁波,具有波动的性质。

这意味着光在传播时会像其他波一样,在空间中传播振荡的能量。

粒子性:尽管光具有波动性,但它也表现出粒子(或量子)的性质。

这种粒子被称为光子,是光的能量单位。

速度:光在真空中的速度是恒定的,约为3×10^8米/秒。

在其他介质中,光的速度会降低。

2、光学基础知识反射:当光遇到物体表面时,会按照入射角等于反射角的规律反射。

这就是为什么我们能看见物体。

折射:当光从一种介质进入另一种介质时,例如从空气进入水,其传播方向会发生改变。

这是因为光的速度在不同介质中是不同的。

散射:当光遇到微小颗粒时,它可能会向各个方向散射。

这种现象解释了为什么天空是蓝色的。

干涉和衍射:当两束或多束相干光波相遇时,它们会相互加强或抵消,形成明暗相间的干涉条纹。

衍射则是光绕过障碍物边缘传播的现象,例如光通过细缝时的弯曲。

颜色:我们看到的各种颜色是由不同波长的光引起的。

可见光的波长范围大约在400纳米(蓝色)到780纳米(红色)之间。

光学仪器:望远镜、显微镜、眼镜、相机等都是利用光学原理制造的设备。

它们帮助我们更好地观察和理解世界。

视觉:人类的视觉系统通过眼睛接收并处理来自周围的光信息,使我们能够看到周围的世界。

了解视觉过程对于理解光学原理至关重要。

3、应用光学在现代生活中有着广泛的应用,不仅在科学研究和工程领域,也涉及到日常生活的方方面面。

以下是一些光学应用:通信技术:光纤通信利用光的传输性质来实现高速、大容量的数据传输。

这是现代通信网络的基础。

医学诊断和治疗:光学仪器如显微镜、内窥镜和激光治疗设备等在医学领域有广泛应用。

它们帮助医生进行精确的诊断和治疗。

环境监测:光谱分析等光学技术用于检测空气、水和土壤中的污染物,有助于环境保护和治理。

光学必学知识点总结

光学必学知识点总结

光学必学知识点总结导言光学是研究光的传播、反射、折射、干涉、衍射和色散等规律的科学。

它是物理学的一个重要分支,也是一门应用广泛的学科,涉及到光学仪器、光学应用、光学材料等多个领域。

光学的发展对人类的生产生活以及科学研究起到了至关重要的作用。

本文将重点总结光学的一些必学知识点,包括光的性质、光的传播、光的反射和折射、光的干涉与衍射、光学仪器以及光学应用等内容。

一、光的性质1. 光的波动性和粒子性光既具有波动性,又具有粒子性。

根据光线和波动理论,光的波动性可以解释光的干涉、衍射等现象;而根据光子理论,光的粒子性可以解释光的能量传播和光的光电效应现象。

2. 光的频率和波长光是一种电磁波,其波长和频率是其两个最基本的特征。

波长决定了光的颜色,频率决定了光的能量。

不同波长的光对应了不同的可见光谱,而不同频率的光对应了不同的光子能量。

3. 光的速度光在真空中的速度为299792458米/秒,通常简写为c。

光在介质中的速度会随着介质的折射率而变化。

根据折射定律,光在不同介质中传播时会发生折射。

二、光的传播1. 光的直线传播在一定范围内,光线可以近似地看作直线传播。

这是光学成像的基础,也是光的反射和折射规律的基础。

2. 光的散射光在遇到粒子或不均匀介质时会发生散射。

散射是导致天空呈现蓝色的主要原因之一,也是光学成像中的一种干扰。

3. 光的色散色散是指光在通过不同介质或经过光学仪器时,由于介质折射率与频率的不同,导致不同波长的光被分散开来,形成光谱。

4. 光的吸收与透射介质对于光的能量有吸收和透射两种行为。

光在经过物质时,一部分能量会被物质吸收,一部分会被物质透射,这是理解光与物质相互作用的重要基础。

三、光的反射和折射1. 光的反射规律光线在与平面镜、曲面镜等物体接触时,会发生反射。

根据反射定律,入射角等于反射角。

这是镜子成像的基础。

2. 光的折射规律光在穿过介质表面时,会发生折射。

入射光线与法线的夹角和折射光线与法线的夹角之比等于介质的折射率。

光学基础知识

光学基础知识

光学基础知识光学是一门研究光的传播、反射、折射和干涉现象的科学。

它是物理学的一个分支,广泛应用于光学仪器、通信、显微镜等领域。

本文将介绍光的传播、反射、折射和干涉等基础知识。

光的传播是指光波在空间中的传输。

光是一种电磁波,其传播速度为每秒约30万千米。

光波在传播过程中会发生折射现象,即当光从一种介质进入另一种介质时,光线会产生弯曲。

这是因为不同介质的折射率不同,折射率大的介质光速度较慢,会使光线的传播方向发生改变。

光的反射是指光在遇到界面时发生的现象。

当光线垂直入射到界面上时,光线会发生反射,并以与入射角相等的角度反射回来。

这称为法线入射。

当光线不垂直入射时,会发生斜入射,根据斯涅尔定律,光线的入射角和反射角之间满足正弦定律。

折射是光线由一种介质进入另一种介质时的现象。

根据斯涅尔定律,入射光线和折射光线在入射面的法线上的入射角和折射角之间满足一个等式。

这个等式可以用来计算光在两种介质之间的传播方向。

干涉是光的波动性质造成的现象。

干涉现象是由于两束光波相遇而形成的明暗条纹。

当两束光波的波峰和波谷重叠时,它们会相互加强,形成亮纹。

当两束光波的波峰和波谷相互抵消时,它们会相互干涉,形成暗纹。

干涉现象在光学仪器,如显微镜和干涉仪中被广泛应用。

除了以上基础知识外,还有一些光学现象值得了解。

衍射是光线遇到障碍物或孔径时发生的现象。

光线通过小孔或障碍物后,会发生弯曲,使光的传播方向发生改变。

色散是各种颜色的光波由于折射率与频率的关系不同而发生的现象。

这是为什么将白光经过三棱镜分解成不同颜色的光谱。

光学基础知识是研究和应用光学的基础。

了解光的传播、反射、折射和干涉等现象有助于我们更好地理解光学理论和应用。

通过光学的研究和应用,我们能够设计出更好的光学仪器,提高光通信的效果,以及深入研究光的波动性质。

《光学基本知识》课件

《光学基本知识》课件

04
光学应用
摄影
摄影是光学应用的一个重要领域 ,通过镜头和感光元件将光线聚 焦在胶片或数字传感器上,记录
下影像。
摄影技术不断发展,从传统的胶 片摄影到数字摄影,为我们提供 了更加丰富和便捷的摄影体验。
摄影在新闻报道、艺术创作、广 告宣传等领域广泛应用,成为现
代社会不可或缺的一部分。
照明设计
照明设计是利用光学原理对室内外环境进行照明规划和布置,创造舒适、美观和节 能的照明环境。
光学仪器
透镜
种类
凸透镜、凹透镜、平凸透镜、双凸透镜等。
作用
聚焦光线、改变光路等。
应用
照相机、望远镜、显微镜、眼镜等。
反射镜
种类
平面镜、凹面镜、凸面镜等。
作用
反射光线、改变光路等。
应用
汽车后视镜、化妆镜、路灯等。
分束器
种类
01
棱镜、光栅等。
作用
02
将一束光分成多束或改变光束的方向。
应用
03
光谱分析、光学实验等。
3
光子学应用
光子学在通信、传感、医疗、军事等领域有广泛 应用,如光纤通信、激光雷达、光学成像等。
量子光学
量子光学基础
量子光学是研究光的量子性质和光与物质相互作用的一门科学,涉 及到量子力学的基本原理。
量子光学现象
量子光学现象包括光的干涉、衍射、偏振等,以及光与物质的相互 作用产生的量子效应,如自发辐射、受激辐射等。
量子光学应用
量子光学在量子信息、量子计算、量子传感等领域有广泛应用,如量 子密钥分发、量子隐形传态、量子雷达等。
THANKS
感谢观看
光的分类
总结词
光的分类方式

光学基础知识详细版

光学基础知识详细版

光学基础知识详细版光学是一门研究光及其与物质相互作用的科学。

它不仅对科学研究和技术发展具有重要意义,而且在我们日常生活中也随处可见。

光学基础知识包括光的传播、光的反射、光的折射、光的干涉、光的衍射和光的偏振等方面。

1. 光的传播光是一种电磁波,它在真空中的传播速度约为每秒30万千米。

光在同一种均匀介质中沿直线传播,这是光学中的基本原理之一。

当光从一种介质传播到另一种介质时,会发生折射现象。

2. 光的反射光的反射是指光线遇到界面时改变传播方向的现象。

根据反射定律,入射角等于反射角。

光的反射可以分为镜面反射和漫反射两种。

镜面反射是指光线在光滑表面上的反射,反射光线方向明确;漫反射是指光线在粗糙表面上的反射,反射光线方向杂乱无章。

3. 光的折射光的折射是指光线从一种介质传播到另一种介质时,传播方向发生改变的现象。

根据折射定律,入射角、折射角和两种介质的折射率之间存在一定的关系。

光的折射现象在生活中非常普遍,如眼镜、放大镜、显微镜等光学仪器都是基于光的折射原理制成的。

4. 光的干涉光的干涉是指两束或多束光线相遇时产生的光强分布现象。

光的干涉可以分为相干干涉和非相干干涉两种。

相干干涉是指频率相同、相位差恒定的光线相遇时产生的干涉现象;非相干干涉是指频率不同或相位差不恒定的光线相遇时产生的干涉现象。

光的干涉现象在光学测量、光学成像等领域有着广泛的应用。

5. 光的衍射光的衍射是指光线通过狭缝或障碍物时,发生偏离直线传播的现象。

光的衍射现象在光学成像、光学检测等领域有着重要的应用。

6. 光的偏振光的偏振是指光波的电场矢量在某一特定方向上振动的现象。

光的偏振可以分为自然光、线偏振光、圆偏振光和椭圆偏振光等。

光的偏振现象在光学通信、光学测量等领域有着重要的应用。

光学基础知识点总结

光学基础知识点总结

光学基础知识点总结光学是研究光的传播、发射、吸收、衍射、干涉、折射和色散等现象及其与物体的相互作用关系的科学。

它是物理学的一部分,是现代科学技术中的重要组成部分。

下面将对光学的基础知识点进行总结。

1. 光的特性光是电磁波的一种,具有波动性和粒子性两个基本特性。

光电效应、康普顿效应等现象证明光具有粒子性;干涉、衍射等现象表明光具有波动性。

2. 光的传播光的传播速度为光速,约为每秒300,000公里,是真空中所有物质的极限速度。

光的传播路径为直线传播,遵循直线传播原理。

3. 光的发射与吸收光的发射是指物质在激发条件下释放光的过程,例如光源的发光。

光的吸收是指光通过物体时被物质吸收,光能转化为其他形式的能量。

4. 光的折射光在由一种介质进入另一种介质时,传播方向发生改变的现象称为光的折射。

根据斯涅尔定律,入射角、折射角及两介质的折射率之间存在一定的关系。

5. 光的色散光的色散是指光在介质中传播时,由于折射率随波长的不同而产生的色彩分离现象。

常见的色散现象包括光的分光、温度孔径色散等。

6. 光的干涉与衍射光的干涉是指两束或多束光波相互叠加产生明暗条纹的现象,常见的干涉现象有杨氏双缝干涉、牛顿环等。

光的衍射是指光通过小孔、缝隙或物体边缘时发生偏折的现象。

7. 光的反射光到达物体表面时,一部分光被物体表面反射回去,这种现象称为光的反射。

根据反射定律,入射光线、反射光线以及法线三者在同一平面内,并且反射角等于入射角。

8. 光学仪器光学仪器是基于光的特性和传播规律,用于研究光学现象、测量物体性质、改变光的传播方向等的工具。

常见的光学仪器包括显微镜、望远镜、投影仪等。

总结:光学基础知识点包括光的特性、光的传播、光的发射与吸收、光的折射、光的色散、光的干涉与衍射、光的反射以及光学仪器等内容。

了解和掌握这些知识点对于深入理解光学原理和应用具有重要意义。

通过学习和实践,我们可以运用光学原理解释许多自然现象和技术应用,并为相关领域的发展提供支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光学基础学习报告
一、教学内容:
光电镜头是用来作为光电接收器(CCD,CMOS)的光学传感器元件。

光学特性参数:
1、焦距EFL(学名f’)
是指主面到相应焦点的距离(如图1.1)
图1.1
每个镜片都有前后两个主面-前主面和后主面(放大率为1的共轭面)。

相应的也有两个焦点-前焦和后焦。

凸透镜:双凸;平凸;正弯月(如图1.1)
图1.2
凹透镜:双凹;平凹;负弯月
图1.3
折射率实际反映的是光在物质中传播速度与真空中速度的比值关系。

薄透镜:)]1()1[()1('12
1R R n f -⨯-==
Φ Φ—透镜光焦距;
f ’—焦距; n —折射率;
R 1,R 2-两球面曲率半径
厚透镜:2
1221)1()]1()1[()1('1R nR d
n R R n f -+
-⨯-==Φ d -中心厚度
干涉仪与光距座可以量测f ’,R1,R2,d →利用上述的公式可以计算出n 值,从而来确定所用材料。

A 、 EFL 增加,TOTR (光学总长)增加;要降低TOTR 就必须降低EFL ,但EFL 降低,
像高就要降低
B 、 EFL 与某些象差相关
C 、 EFL 上升将使F/NO 增大
D 、 EFL ,FOV (视场角)和IMA (像高)三者间有关系
tanFOV ⨯=EFL IMA -铁三角关系
EFL 的增大(减小)会使像高变大(小),为了保持像高,就必须要增大(减小)FOV ,然而FOV 的增大会使得REL (相对照度)的数值增大。

2、 BFL 后焦距(学名后截距)
图2.1
3、 F 数(F/NO )
D
f NO F '/=
f ’-FEL
D 入-入瞳直径
入瞳为光阑经其前方光学镜片所成的像,反映进入光学系统的光线 A 、 与MTF 相关,F/NO ↑,则MTF ↑;反之下降 B 、 与景深相关,F/NO ↑,则景深↑,反之下降
C、与象差相关,F/NO↑,则象差↓,反之增加
D、与光通量相关,F/NO↑,则光通量↓,反之增加
对于光电镜头,F/NO最大在2.8~3.5之间(经验值)允许有±5%的误差,在物方有照明时,F数可根据照明的照度情况来增大
4、视场角FOV(2ω),半视场角FOC/2(ω)
物镜在其接收元件上成像的空间范围称为视场角。

其一半为半视角,最佳在55°(经验值)左右。

y’=f’×tanω
A、FOV与象差相关,FOV↑,轴外象差↑,MTF↓(变得很差)
B、FOV与相对照度REL相关,FOV↑,相对照度REL↓
C、FOV与主光线角度相关,FOV↑,主光线角度要变大
D、FOV与EFL,TOTR和IMA相关
E、FOV与DIST畸变相关,FOV↑,畸变迅速增大
像高由sensor对角线的长度来决定(如图5.1)
OA=OB=IMA/2
AB=IMA
A、像高与EFL,FOV有关;sensor确定之后,IMA就确定
了,根据铁三角关系公式EFL和FOV只能给定一个,
如果SPEC图给定的数值不符合铁三角关系,工程师不
可能按SPEC完成设计工作,即使勉强完成结果也不理
想。

B、IMA与光线角度相关
C、IMA与TOTR相关
6、光学总长TOTR:
图6.1
光学系统的最佳光学总长:TOTR=25~35mm,TOTR越短越难控制,相差越大
手机:TOTR<7mm
DSC:TOTR<10~12mm
7、相对照度:
E=E轴×cos4ω=E轴×cos4(FOV/2)
A、REL与FOV相关
B、REL与主光线角度相关
C、REL与EFL,TOTR和IMA间接相关
要提高E 就要增大轴外相差从而使得光照均衡
主光线角:主光线是物发出经过孔径光阑轴心的光线,有无数条。

此光线与光轴的夹角即为主光线角。

如图7.1中是两条边缘主光线,θ为主光线角。

要求物边缘在象场与光轴夹角θ越小,为了达到这种目的,要将光学系统设计成为象方远心光路,即光阑前面是负透镜组,后面正透镜。

为了平衡正组的相差光阑放置在正组透镜的前焦点上。

8、 光学透镜结构(图8.1)
图8.1
孔径光阑:限制进入光学系统的光通量, 低通滤波片:低频光完全通过,高频光截止 IR :红外截止,一般采用晶体制作 需要指出的就是:对于非球面
1)
通过调节解决球差
2) 在一定条件下,解决象散
一定条件是指和光阑位置配合地好,近光阑解决轴上象差,远处光阑解决轴外象差 9、 新技术-技术发展趋势
1) 二元光学:可以消除色差和球差,相对照度在视场重100%,MTF 值也提高,不过制造
的成本比较高 2) 液体透镜:
通过对特殊材料做成地液体通电,使得液体外型发生改变,效果就实现类似眼睛的调节方式。

二、心得体会:
温故而知新,通过张教授生动的授课强化了我在学校中学习的光学基础知识,加上张教授联系实际深入浅出的解释,让我了解到了光学知识与现实之间的关系。

我本身虽学习过整个光学体系,但比较理论化,加上张教授的写实版授课,能帮助我更快的进入工作角色,更快地学以致用。

我的工作发展方向是模具设计,但光学理论可以帮助我更好地完成平时的工作。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档