北师大版数学八上一次函数图象的应用word说课教案2课时
一次函数的应用(第2 课时) 教学设计
一次函数的应用(第2课时)
一、教学目标
(一)知识与技能:1.理解一次函数与一元-次方程的关系;2.会用函数的方法求解一元一次方程.
(二)过程与方法:经历探索一元一次方程与一次函数的内在联系的过程,体会数形结合的数学思想.
(三)情感态度与价值观:通过教学活动,让学生学会从不同角度认识事物本质的方法,建立自信心,提高学生自主合作探究学习的意识和能力,激发学生学习的兴趣,让学生体验数学的价值.
二、教学重点、难点
重点:1.对一次函数与一元-次方程的关系的理解;2.应用函数求解一元一次方程.
难点:对一次函数与一元一次方程的关系的理解.
三、教学过程。
八年级数学上册4.4一次函数的应用第2课时单个一次函数图象的应用教学设计 (新版北师大版)
八年级数学上册4.4一次函数的应用第2课时单个一次函数图象的应用教学设计(新版北师大版)一. 教材分析《八年级数学上册4.4一次函数的应用》这一节内容,主要让学生掌握单个一次函数图象的应用。
通过前面的学习,学生已经掌握了了一次函数的定义、性质以及图象的绘制方法。
本节课内容是在此基础上,进一步引导学生利用一次函数图象解决实际问题,培养学生的数形结合思想,提高学生解决实际问题的能力。
二. 学情分析八年级的学生已经具备了一次函数的基础知识,对一次函数的图象也有了一定的了解。
但是,如何将一次函数图象应用于实际问题中,解决实际问题,对学生来说还较为陌生。
因此,在教学过程中,需要教师耐心引导,让学生逐步掌握一次函数图象在实际问题中的应用。
三. 教学目标1.让学生掌握一次函数图象在实际问题中的应用。
2.培养学生的数形结合思想,提高学生解决实际问题的能力。
3.激发学生的学习兴趣,培养学生的合作意识。
四. 教学重难点1.重点:一次函数图象在实际问题中的应用。
2.难点:如何将实际问题转化为一次函数问题,并利用一次函数图象解决。
五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生主动探究,提高学生解决实际问题的能力。
六. 教学准备1.准备相关的实际问题案例。
2.准备一次函数图象的绘制工具。
3.准备学生分组合作的材料。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考如何利用一次函数图象解决这些问题。
例如,商场搞促销活动,购买商品金额与优惠金额之间有何关系?2.呈现(10分钟)教师呈现一个实际问题案例,让学生尝试利用一次函数图象解决。
例如,某商场举行促销活动,购买商品金额x(x≥0)与优惠金额y之间的关系可以表示为:y = -2x + 100。
请绘制出这个函数的图象,并解释其含义。
3.操练(15分钟)学生分组合作,根据教师提供的实际问题,绘制一次函数图象,并解释其含义。
教师巡回指导,解答学生的疑问。
《 一次函数的图象》示范公开课教学设计【北师大版八年级数学上册】第2课时
第四章一次函数4.3 一次函数的图象第2课时教学设计一、教学目标1.经历一次函数图象的画图过程,初步了解画函数图象的一般步骤;经历一次函数图象变化情况的探索过程,发展数形结合的意识和能力.2.能熟练画出一次函数的图象;掌握一次函数及其图象的简单性质.二、教学重点及难点重点:用“两点法”画出一次函数图象是研究一次函数的性质的基础.难点:直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响.三、教学用具多媒体课件.四、相关资源《正比例函数y=-2x+1的图象的画法》动画或图片,《两点法画图象》的动画,《一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象的画法》动画或图片.五、教学过程【复习导入】师:1.什么叫函数?在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.2.函数的表示方法有哪几种?(1)解析法(2)列表法(3)图象法3.同学们,上节课我们学习了正比例函数的图象,请画出正比例函数y=-2x的图象。
【探究新知】1.师:正比例函数y=-2x的图象是过原点的一条直线,那你们知道一次函数y=-2x+1 的图象是什么形状吗?那就让我们一起做一做,看一看,如何作出一次函数?要回答这个问题,必须弄清楚以下几点:(1)函数的图象是由无数个点构成的.(2)这些点在坐标系中是一对一对的有序实数.(3)此解析式实际上是一个二元一次方程,它的一对一对的x、y值可看作是图象上的点的坐标.(4)要找出它的某个点,实际上就是求出这个二元一次方程的一组解.(5)把x的值作为横坐标,y的值作为纵坐标.(6)把函数作图问题转化为求方程的解的问题.例画出一次函数y =-2x +1的图象。
解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出对应的点。
连线:把这些点依次连接起来,得到y=-2x+1的图象,它是一条直线。
北师大版数学八年级上册5《一次函数图象的应用》教案2
北师大版数学八年级上册5《一次函数图象的应用》教案2一. 教材分析《一次函数图象的应用》是北师大版数学八年级上册第五章的内容。
本节课主要让学生掌握一次函数图象与实际问题的联系,学会利用一次函数图象解决生活中的问题。
教材通过实例引导学生理解一次函数图象在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一次函数的定义、性质和图象的一般形式。
但他们可能对如何将实际问题抽象成一次函数图象,以及如何利用一次函数图象解决实际问题还较为陌生。
因此,在教学过程中,教师需要引导学生将实际问题与一次函数图象联系起来,培养学生运用数学知识解决实际问题的能力。
三. 教学目标1.理解一次函数图象与实际问题的联系,学会利用一次函数图象解决生活中的问题。
2.提高学生运用数学知识解决实际问题的能力。
3.培养学生的团队合作精神和数学思维。
四. 教学重难点1.一次函数图象与实际问题的联系。
2.利用一次函数图象解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解一次函数图象与实际问题的联系。
2.小组合作学习:让学生在小组内讨论、探究,共同解决实际问题。
3.引导发现法:教师引导学生发现一次函数图象在解决实际问题时的作用,培养学生运用数学知识解决实际问题的能力。
六. 教学准备1.准备相关的实际问题,如购物、出行等。
2.准备一次函数图象的示例。
3.准备投影仪、幻灯片等教学设备。
七. 教学过程1.导入(5分钟)教师通过一个生活实例,如购物问题,引导学生思考如何用数学知识解决实际问题。
从而引出本节课的主题——一次函数图象的应用。
2.呈现(10分钟)教师展示一次函数图象的示例,让学生观察、分析一次函数图象与实际问题的联系。
引导学生发现一次函数图象在解决实际问题时的作用。
3.操练(10分钟)教师提出一系列实际问题,让学生分组讨论、探究,如何利用一次函数图象解决这些问题。
学生在小组内交流、分享解题过程,培养团队合作精神和数学思维。
北师大版八年级数学上册《一次函数的应用》第2课时示范课教学设计
第四章一次函数4 一次函数的应用第2课时一、教学目标1.能通过函数图象获取信息,解决简单的实际问题.2.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;通过具体问题的解决,培养学生的数学应用能力.3.在解决问题过程中,初步体会方程与函数的关系,建立各种知识之间的联系.4.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.二、教学重难点重点:正确地根据图象获取信息,并解决现实生活中的有关问题.难点:在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【探究】【引例】由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少.蓄水量V(万m3)与干旱持续时间t(天)的关系如图所示,回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天,蓄水量是多少?干旱持续23天呢?(3)蓄水量小于400万m3时,将发出严重干旱警报.干旱持续多少天后将发出严重干旱警报?(4)按照这个规律,预计干旱持续多少天水库将干涸?预设答案:解:(1)水库干旱前的蓄水量是1200万m3.(2)干旱持续10天,蓄水量是1000万m3.干旱持续23天,蓄水量是约是750万m3. (3)干旱持续40天后将发出严重干旱警报. (4)预计干旱持续60天水库将干涸.教师活动:如何解答实际情境函数图象的信息?(1)理解横、纵坐标分别表示的的实际意义;(2)分析已知,通过作x轴或y轴的垂线,在图象上找到对应的点,由点的横坐标或者纵坐标的值读出要求的值;(3)利用数形结合的思想:将“数”转化为“形”由“形”定“数”.某种摩托车加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根学生小组讨论思考完成问题.同伴间进行交流,教师适时引导,让学生能对所用解决方法进行总结归纳,学生从被动学习到主动探究,激发学生的学习热情.据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?教师活动:当车未行驶时,油箱油量最多.解:(1)观察图象,得当x=0时,y=10.因此,油箱最多可储油10 L.(2)教师活动:当油箱油量为0时,即为摩托车行驶的最远路程.当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.(4)教师活动:令y=1,解得x的值即为摩托车自动报警油量值.当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.【做一做】下图是某一次函数的图象,根据图象填空:(1)当y =0时,x = ;(2)这个函数的表达式是.预设答案:-2,y =0.5x+1【议一议】一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?(1)从“数”的方面看,当一次函数y=0.5x+1的函数值y=0时,相应的自变量的值即为方程0.5x+1=0解;(2)从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标,即为方程0.5x+1=0的解.【典型例题】教师提出问题,学生先独立思考,然后再小组交流探讨.教师板书一道例题书写过程,其余题目可由学生代表板书完成,最终教师展示完整答题过程.例1某生物小组观察一植物生长,得到植物高度y(厘米)与观察时间x(天)之间的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).(1)该植物从开始观察时起,多少天以后停止长高?(2)求线段AC的表达式,并求该植物最高长到多少厘米?解:(1)该植物从开始观察时起,50天以后停止长高.教师活动:利用待定系数法即可求出直线AC的表达式;当x=50时,求出y的值即可得到植物最高长多少厘米.(2)设线段AC 的表达式为y =kx +b (k ≠0). ∵线段AC 经过点A (0,6),B (30,12), ∵b =6,30k +b =12,解得k = 15 . ∵线段AC 的表达式为165y x =+ (0≤x ≤50)当x =50时, 1506=165y =⨯+ , 即该植物最高长到16厘米.例2 如图,根据函数y =kx +b (k ,b 为常数,且k ≠0)的图象,求: (1)方程kx +b =0的解; (2)式子k +b 的值; (3)方程kx +b =-3的解.教师活动:看函数图象与x 轴的坐标可求方程kx +b =0的解.解:(1)由 图 可知,函数图象与x 轴的交点坐标为(2,0),∴方程kx +b =0的解为x =2.教师活动:利用待定系数法可求出k 、b 的值哦. 解:(2)根据函数图象可知,该直线经过点(2,0)和(0,-2),将(2,0)和(0,-2)代入y =kx +b 得: 2k +b =0 ①预设答案:806.如图,是生活委员小华带着钱去给班上购买某种奖品,所剩钱数y(元)与所买奖品x(个)之间的关系图,根据图象回答下列问题:(1)小华买奖品的钱共是多少元?(2)每个奖品多少元?(3)写出这个图象的函数关系式;(4)若买15个奖品,还剩多少元?预设答案:解:(1)根据题意知,小华买奖品的钱的总数就是没买奖品时所剩的钱数.∵由图可知小华买奖品的钱共是100元.(2)由图知小华一共花100元买了40个奖品.∵100÷40=2.5(元),∵每个奖品是2.5元.(3)设图象的函数关系式为y=kx+b.由图得,该函数图象经过点(0,100),(40,0),代入函数关系式得:b=100,40k+b=0解得b=100,k=-2.5.∵函数关系式为y=-2.5x+100.(4) 由(2)知每个奖品是2.5元,由题意得:100-15×2.5=62.5(元)∵若买15个奖品,还剩62.5元.思维导图的形式呈现本节课的主要内容:。
北师大版数学八上《一次函数的图象》word说课教案2课时
第六章一次函数3.一次函数的图象(一)一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。
第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.三、教学目标分析知识与技能目标1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.过程与方法目标1.经历函数图象的作图过程,初步了解作函数图象的一般步骤.2.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.情感、态度与价值观目标1.经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力.2.在探究活动中发展学生的合作意识和探究能力.教学重点1.熟练地作一次函数的图象.2.理解、归纳作函数图象的一般步骤:列表、描点、连线.3.理解一次函数的代数表达式与图象之间的一一对应关系.教学难点理解一次函数的代数表达式与图象之间的一一对应关系.四、教法学法1、教学方法讲、议、练相结合。
2、课前准备教具:教材、多媒体课件。
学具:教材、铅笔、直尺、练习本。
五、教学过程本节课设计了七个教学环节: 第一环节:创设情境 引入课题; 第二环节:画一次函数的图象; 第三环节:动手操作,深化探索; 第四环节:巩固练习,深化理解; 第五环节:课时小结; 第六环节:拓展探究; 第七环节:作业布置.第一环节:创设情境 引入课题内容:一天,小明以80米/分的速度去上学,离家5分钟后,小明的父亲发现小明的语文书未带,立即以120米/分的速度去追小明,请问小明离家的距离S (米)与小明父亲出发的时间t (分)之间的函数关系式是怎样的?它是一次函数吗?S=80t+400(t ≥0)下面的图象能表示上面问题中的S 与t 的关系吗?我们说,上面的图象是函数S=80t+400(t ≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象。
北师大版数学八年级上册《一次函数的图象与性质》说课稿2
北师大版数学八年级上册《一次函数的图象与性质》说课稿2一. 教材分析《一次函数的图象与性质》是北师大版数学八年级上册第五章的内容,本节内容是在学生已经掌握了函数的概念、一次函数的定义和图象的基础知识上进行的。
本节内容的主要目的是让学生了解一次函数的图象与性质,会利用一次函数的图象解决一些实际问题。
本节内容共分为三个部分:一次函数的图象、一次函数的性质和一次函数图象的应用。
一次函数的图象主要让学生了解一次函数图象的形状和特点;一次函数的性质主要让学生了解一次函数的单调性、截距和斜率的关系等;一次函数图象的应用主要是让学生学会利用一次函数图象解决一些实际问题。
二. 学情分析学生在学习本节内容之前,已经掌握了函数的概念、一次函数的定义和图象的基础知识,对于这些基础知识的理解和运用已经比较熟练。
但是,对于一次函数的图象与性质的深入理解和运用还需要加强。
此外,学生对于数学知识的应用能力还需要进一步提高。
三. 说教学目标1.知识与技能:了解一次函数的图象与性质,学会利用一次函数的图象解决一些实际问题。
2.过程与方法:通过观察、分析、归纳等方法,探索一次函数的图象与性质,提高学生的逻辑思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:一次函数的图象与性质的理解和运用。
2.教学难点:一次函数图象的应用,学生的实际问题解决能力的培养。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入:通过复习函数的概念和一次函数的定义,引出一次函数的图象与性质的学习。
2.新课导入:介绍一次函数的图象,让学生观察和分析一次函数图象的形状和特点。
3.探索与交流:让学生通过小组合作学习,探索一次函数的性质,包括单调性、截距和斜率的关系等。
4.应用与拓展:让学生通过解决实际问题,学会利用一次函数的图象解决一些实际问题。
北师大版初中数学八年级上册 第六章《一次函数图象的应用》教案
课题:第六章第五节一次函数图像的应用(第二课时)课型:新授课教学目标:1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题(重点).2.从函数图象中正确“读”取信息(难点).3.解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识,培养学生学习数学的兴趣.教学重点一次函数图象的应用.教学难点从函数图象中正确读取信息.教法与学法指导:在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用.本节课为第2课时,采用“自主探究,合作训练”的教学模式,解决生活中涉及两个一次函数之间关系的有关问题,关注问题之间的递进与联系.教学中应注意体会.和前一课时一样,注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础.老师应多要求学生从图中“读”出结果,因此不应要求学生的结果与参考答案完全一致. 课前准备:制作课件,学生准备铅笔,直尺.教学过程:一、前情回顾师:请你看合作探究一(多媒体展示课件):一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.师:(1)农民自带的零钱是多少?生:5元.师:(2)试求降价前y与x之间的关系生:20-5=1515÷30=0.5y=0.5x+5师:(3)由表达式你能求出降价前每千克的土豆价格是多少?生:每千克0.5元.师:(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆? 生:6÷0.4=15(千克) 15+30=45(千克)师:很好,同学们做的很快也很正确,同上一节课一样,这也是解决一些生活中涉及一个一次函数关系的有关问题.继续学习,一些生活中涉及两个一次函数之间关系的有关问题,如何解决呢?这就是本节课要学习的内容.( 师写出课题)【设计意图】:通过与上一课时相似的问题,回顾旧知,导入新知学习.二、创境导入师:请你看合作探究二(多媒体展示课件):小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h .(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km ?师:当小聪追上小慧时,说明他们两个人的什么量是相同的?是否已经过了“草甸”该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析法?你是怎么想的?与同伴交流.生:设经过t 时,小聪与小慧离“古刹”的路程分别为S 1、S 2, 由题意得:S 1=36t , S 2=26t+10将这两个函数解析式画在同一个直角坐标系上,观察图象,得 ⑴两条直线S 1=36t , S 2=26t+10的交点坐标为(1,36)这说明当小聪追上小慧时,S 1=S 2=36 km ,即离“古刹”36km ,已超过35km ,也就是说,他们已经过了“草甸” ⑵当小聪到达“飞瀑”时,即S 1=45km ,此时S 2=42.5km .所以小慧离“飞瀑”还有45-42.5=2.5(km ) 师:用解析法如何求得这两个问题的结果?小聪、小慧运行时间与路程之间的关系式分别是什么?生:小聪的解析式为S 1=36t ,小慧的解析式为S 2=26t+10【设计意图】:培养学生的识图能力和探究能力,调动学生学习的自主意识.通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决这个问题.在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.说明:在这个环节的学习过程中,如果学生入手感到困难,可用以下问题串引导学生进行分析.⑴两个人是否同时起步? ⑵在两个人到达之前所用时间是否相同?所行驶的路程是否相同?出发地点是否相同?两个人的速度各是多少?⑶这个问题中的两个变量是什么?它们之间是什么函数关系?⑷如果用S 表示路程,t 表示时间,那么他们的函数解析式是一样?他们各自的解析式分别是什么? 深入探究师:请你看合作探究三(多媒体展示课件):我海 岸公 AB边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(如图),下图中l1,l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:师:(1)哪条线表示B到海岸的距离与时间之间的关系?生:观察图象,得当t=0时,B距海岸0海里,即S=0,故l1表示B到海岸的距离与追赶时间之间的关系;师:(2)A,B哪个速度快?生:从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10分内,A行驶了2海里,B行驶了5海里,所以B的速度快.师:(3)15分钟内B能否追上A?生:可以看出,当t=15时,l1上对应点在l2上对应点的下方,师:(4)如果一直追下去,那么B能否追上A?生:如图l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.师:(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?生:从图中可以看出,l1与l1交点P的纵坐标小于12,这说明在A逃入公海前,我边防快艇B能够追上A.师:大家兴趣都很高,如果咱们先来探究下面的问题,增强我们的技能后,相信都能完美的解答此问题.【设计意图】:培养学生良好的识图能力,进一步体会数与形的关系,建立良好的知识联系.三、情境问题师:请你看合作探究四(多媒体展示课件):观察甲、乙两图,解答下列问题师:1.填空:两图中的( )图比较符合传统寓言故事《龟免赛跑》中所描述的情节. 生:甲图生1:300÷40=760 (红线 ) 乌龟 35 760 760生2: 200÷5=40 300÷40=7.5(绿线) 兔子 40 40 7.5师:3.根据1中所填答案的图象求:乌龟经过多长时间追上了免子,追及地距起点有多远的路程? 生:23分钟.有200米的路程.师:4.请你根据另一幅图表,充分发挥你的想象,自编一则新的“龟免赛跑”的寓言故事,要求如下:(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量. 生:(很高兴的发挥想象,找一个回答)乌龟和兔子同时起跑,兔子很快5分钟跑了150米处.回头遥望,乌龟不跑了,正歇着喘气呢.赶快回去,问乌龟怎么回事?乌龟说:这几年,水质不好,食物也少,身体大不如以前啦,得歇会再跑. 兔子说:那就歇会吧.5分钟后,乌龟还是跑不动,兔子干脆驮着乌龟跑起来.这样经过25分钟一起跑到终点. 师:很好,回答的很好,掌声在哪里?没有提到的好多同学构思的也很巧妙,老师佩服这些同学的文采,提出表扬.【设计意图】:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整.练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心.四、巩固提高师:请你看合作探究四(多媒体展示课件):如右图,l 1反映了某公司产品的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系.根据图象填空 师:1. 横轴表示_______,纵轴表示________ 生:销售量(吨) 销售收入(元)师:2. 当销售量为2吨时,销售成本=______元 生:3000师:3.观察图象还有没有其它关键信息? 交点(4.4000)有什么实际含义? 生:能看出没有销售量时,成本是2000元. 生:当销售量大4吨时,该公司就会盈利.师:4.当销量_______时该公司盈利,当销量_______时该公司亏本. 生:大于4吨小于4吨时【设计意图】 (1)能通过函数图像获取信息,发展形象思维.(2)能利用函数图像解决简单的实际问题,发展学生的数学应用能力.五、达标检测师:比一比,赛一赛,看谁做得对又快(多媒体展示课件):1.某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y (微克)随时间x (时)的变化情况如图所示,当成人按规定剂量服药后, (1)服药后 时,血液中含药量最高,达每毫升微克,接着逐步衰减;(2)服药5时,血液中含药量为每毫升 微克;(3)当x ≤2时,y 与x 之间的函数关系式是 ; (4)当x ≥2时,y 与x 之间的函数关系式是 ;(5)如果每毫升血液中含药量3微克或3微克以上时,治疗疾病最有效,那么这个有效时间范围是 .2.如图,OB ,AB 分别表示甲、乙两人的运动图象,请根据图象回答下列问题: (1)如果用t 表示时间,s 表示路程,那么甲、乙两人各自的路程与时间的函数关系式是甲: ,乙: ;(2)甲的运动速度是 千米/时;(3)两人同时出发相遇时,甲比乙多走 千米. 学生:独立完成,并认真检查反思.教师:巡视指导,对提前完成的学生进行当堂批阅,予以鼓励表扬.师:展示优秀学生的答案,规范学生的结果.点拨:第一题答案:(1)2 (2)3 (3)y=3x(4)y=-x+8 (5)1≤x≤5第二题答案:(1)甲:y=4x 乙:y=3x+5(2)4 (3)5【设计意图】本检测题主要是进一步培养学生的识图能力,考查学生对本节课知识的掌握情况,了解学生存在的问题,针对出现的问题,查缺补漏,共同提高.知识拓展(学有余力的同学课下完成)个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x千米,应付给个体车主的月费用是y1元,应付给出公司的月租费用是y2元,y1,y2分别与x之间的函数关系图象如图,观察图象回答下列问题:(1)每月行驶路程在什么范围内时,租出租车公司的车合算?(2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪一家的车合算?知识拓展答案:解:(1)0千米≤x<1500千米(2)1500千米(3)租出租车公司的车合算.六、总结归纳(师生合作总结)师:本节课我们学习了哪些知识?你有什么收获呢?生1:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题.生2:也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题.生3:通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.生4:........【设计意图】让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结.引导学生自己归纳总结运用一次函数解决实际问题的主要方法,使学生进一步明确本课所学知识,同时使学生对本课的知识形成体系,便于学生掌握和应用.七、作业布置作业:习题6.7板书设计:教学反思:1.教学中的成功体验:本节课是在学生已经掌握了一次函数的图象和有关性质的基础上,对有关知识进行应用和拓展.在教学过程中,通过问题情境的创设,激发了学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生进行探究活动.在师生互动、生生互动的探究活动中,提高了学生解决实际问题的能力.2.需进一步探讨的地方:如何处理好课堂时间与教学计划之间的关系,也是我适时思考的问题.新课程要求让学生自主地去探究新知,如果探究的时间过长,那相应的教学计划就可能被打乱,甚至有些内容来不及完成.本节课在多要求学生从图中“读”出结果方面,比如考虑到学生的兴趣问题,在新编龟兔赛跑寓言时探究时间过长,以至有些内容来不及完成. 因此,这一问题还有待改进一下,进一步商榷.3.需进一步提高的能力:学生方面:在课堂上应学会如何与同学进行合作学习及社会知识的广阔性方面.教师方面:多关注学困生,进一步提高课堂应变机制.。
数学北师大版八年级上册4.4.2一次函数应用第二课时说课稿
4.3.2《一次函数的图象和性质》第二课时说课稿一、设计理念新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
二、教材分析本节课选自北师大版八年级上册的第四章第三节《一次函数的图象》第2课时。
本节课在学生已经掌握了一次函数的概念以及表达式的基础之上,通过探究活动,进行一次函数的图象及性质的研究,这是本节课的一个重点和难点问题,学生在学习的过程中体会“数形结合”思想的重要性,也为后续函数相关知识的学习和经验的积累起到重要的引领作用。
三、学情分析学生在生活和课本知识上对变量之间的关系已经有了初步的了解,在上节课已经经历了正比例函数的图象绘制和性质探究过程,并初步具备利用类比的方法进行探究一次函数性质的能力基础。
我校八年级的学生思维已经从具体思维向抽象思维发展,具有初步的数形结合思想,学生具有一定的探索意识,敢于表达自己的观点和想法,这都为开展本次数学学习活动打下了基础。
但我校学生存在动手能力差,计算能力弱等特点,因此在本节课的教学中,将重难点进行了分解。
四、教法与学法(一)教法分析数学教学是数学活动的教学,是师生之间、学生之间的交往互动与共同发展的过程。
针对八年级学生的认知水平与心理特征,本节课选择由浅入深提出问题、分析问题、解决问题的流程进行教学。
引导全体学生自主探索,合作交流。
充分体现教师是教学活动的组织者,引导者,合作者,学生才是学习的主体。
基本的教学程序是:“引导激发----动手实践----合作探究----学以致用”几部分组成。
(二)学法分析本节课在对学生进行学法指导上,主要是引导学生主动探索发现新的数学结论,进而培养学生数学学习的良好习惯,培养学生们的创新精神,使他们体会到数学问题解决的严密性和规范性。
北师大版数学八年级上册5《一次函数图象的应用》说课稿2
北师大版数学八年级上册5《一次函数图象的应用》说课稿2一. 教材分析北师大版数学八年级上册5《一次函数图象的应用》是学生在掌握了函数图象的基本知识后,进一步学习一次函数图象的应用。
本节内容主要包括一次函数图象的斜率和截距的物理意义,一次函数图象的增减性和对称性,以及一次函数图象在实际问题中的应用。
教材通过丰富的实例和练习题,帮助学生理解和掌握一次函数图象的应用,培养学生的数学思维和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了函数图象的基本知识,包括函数图象的描点和连线,函数图象的平移和翻转等。
同时,学生也学习了不等式的解法和应用,对一次函数的基本概念和性质有一定的了解。
但是,学生对于一次函数图象在实际问题中的应用,可能还存在一定的困惑和困难。
因此,在教学过程中,需要结合学生的实际情况,通过实例和练习题,引导学生理解和掌握一次函数图象的应用。
三. 说教学目标1.知识与技能目标:学生能够理解一次函数图象的斜率和截距的物理意义,掌握一次函数图象的增减性和对称性,能够运用一次函数图象解决实际问题。
2.过程与方法目标:学生通过观察和分析实例,培养观察和分析问题的能力,通过绘制和分析一次函数图象,培养数形结合的思维方式。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对一次函数图象的应用产生兴趣,体验数学在生活中的应用,培养学生的数学素养。
四. 说教学重难点1.教学重点:一次函数图象的斜率和截距的物理意义,一次函数图象的增减性和对称性,一次函数图象在实际问题中的应用。
2.教学难点:一次函数图象在实际问题中的应用,特别是涉及到不等式和多变的实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过实例和练习题,引导学生观察和分析,培养学生的数形结合思维方式。
2.教学手段:利用多媒体课件,展示一次函数图象的动态变化,帮助学生直观理解一次函数图象的性质,利用练习题和实例,让学生动手实践,加深对一次函数图象应用的理解。
八年级数学上册4.3一次函数的图象第2课时一次函数的图象和性质说课稿 (新版北师大版)
八年级数学上册4.3一次函数的图象第2课时一次函数的图象和性质说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册4.3一次函数的图象第2课时,主要讲述了一次函数的图象和性质。
在这一课时中,学生将学习一次函数的图象特点,以及如何通过图象来判断一次函数的性质。
教材通过生动的例题和丰富的练习,帮助学生理解和掌握一次函数的图象和性质,为后续学习其他函数打下基础。
二. 学情分析在开展本课时,学生已经学习了代数基础知识,对函数有了初步的认识。
然而,对于一次函数的图象和性质,他们可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的认知水平,通过引导和启发,帮助他们理解和掌握一次函数的图象和性质。
三. 说教学目标1.知识与技能:使学生了解一次函数的图象特点,学会通过图象来判断一次函数的性质。
2.过程与方法:培养学生观察、分析、解决问题的能力,提高他们的数形结合思想。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.教学重点:一次函数的图象特点,一次函数的性质。
2.教学难点:如何引导学生从图象中判断一次函数的性质,以及如何运用数形结合思想解决实际问题。
五. 说教学方法与手段1.教学方法:采用引导发现法、讨论法、案例分析法等,让学生在实践中学习,提高他们的动手能力和思维能力。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合现代教育技术,为学生提供丰富的学习资源。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考一次函数的图象和性质,激发学生的学习兴趣。
2.讲解新课:讲解一次函数的图象特点,通过例题分析,让学生学会如何从图象中判断一次函数的性质。
3.实践操作:让学生动手绘制一次函数的图象,观察图象特点,进一步理解一次函数的性质。
4.课堂讨论:学生进行小组讨论,分享各自的学习心得,互相答疑解惑。
5.巩固练习:布置一些具有代表性的练习题,让学生巩固所学知识,提高解题能力。
北师大版八年级数学上册:4.3《一次函数的图象》说课稿2
北师大版八年级数学上册:4.3《一次函数的图象》说课稿2一. 教材分析北师大版八年级数学上册4.3《一次函数的图象》这一节,是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行教学的。
本节课的主要内容是一次函数的图象,通过图象来研究一次函数的性质。
教材通过实例引入一次函数的图象,让学生通过观察、分析、归纳,理解并掌握一次函数图象的特点,从而提高学生的数学素养。
二. 学情分析八年级的学生已经具备了一定的函数知识,对一次函数的概念和性质有一定的了解。
但是,学生对一次函数图象的认识还不够深入,需要通过实例和活动来帮助学生理解和掌握。
此外,学生对图象的观察和分析能力还需要进一步提高。
三. 说教学目标1.知识与技能目标:理解一次函数图象的概念,掌握一次函数图象的性质,能够画出一次函数的图象。
2.过程与方法目标:通过观察、分析、归纳,培养学生的逻辑思维能力和数学素养。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和探究精神。
四. 说教学重难点1.教学重点:一次函数图象的概念和性质。
2.教学难点:一次函数图象的性质的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例分析法、小组合作法等。
2.教学手段:多媒体课件、黑板、粉笔、教学卡片等。
六. 说教学过程1.导入:通过一个实际问题,引入一次函数图象的概念。
2.新课:讲解一次函数图象的性质,通过实例和活动,让学生理解和掌握。
3.练习:让学生通过练习,巩固所学知识。
4.拓展:引导学生思考一次函数图象在实际生活中的应用。
5.小结:总结本节课的主要内容,强调一次函数图象的性质。
七. 说板书设计板书设计如下:一次函数的图象1.图象的概念2.图象的性质八. 说教学评价通过课堂表现、练习成绩、学生反馈等方式进行评价。
重点关注学生对一次函数图象的理解和应用能力。
九. 说教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
4.4第2课时单个一次函数图象的应用1-2021-2022学年八年级上册初二数学(教案)(北师大版)
4.结合坐标系,分析一次函数图象与坐标轴的交点、斜率等特性;
5.探索一次函数图象在生活中的实际案例,如温度变化、距离与速度关系等。
二、核心素养目标
1.培养学生运用一次函数图象分析和解决实际问题的能力,提高数学应用意识;
2.培养学生观察、猜想、验证、归纳等逻辑思维能力,提升数学抽象和推理素养;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数图象在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
总之,在今后的教学中,我会针对今天课堂上发现的问题进行改进,努力提高教学效果。同时,我也会继续关注学生的学习情况,及时调整教学方法和策略,让同学们在一次函数图象的学习过程中,能够更好地掌握知识,提高解决问题的能力。
五、教学反思
今天我们在课堂上学习了单个一次函数图象的应用,整体来看,同学们对一次函数图象的概念和应用有了更深入的理解。但在教学过程中,我也发现了一些需要改进的地方。
首先,我发现有些同学在绘制一次函数图象时,对于斜率和截距的理解还不够透彻。这可能是因为我在讲解这一部分内容时,举例不够具体,没有让学生充分体会到斜率和截距在实际问题中的意义。在今后的教学中,我需要加强这一点,多举一些生活中的实例,让学生更好地理解这些概念。
其次,在小组讨论环节,部分小组的讨论并没有达到预期的效果。我觉得这可能是因为我在引导讨论时,问题的设置不够明确,导致学生们在讨论过程中产生了困惑。为了改善这一现象,我计划在下次的教学中,提前设计好更具针对性和启发性的问题,并在讨论过程中给予学生更多的指导和帮助。
北师大版数学八上《一次函数》word说课教案
一次函数说课稿各位评委老师好!我是07号考生,说课的内容是八年级上册第六章第一节《一次函数》,下面我从教材分析、教法与学法、教学过程三个方面向大家汇报我的说课。
首先谈谈教材分析,我谈三条:(一)教材的地位和作用从数学自身的发展过程看,变量和函数的引入标志着数学从初等数学向变量数学的迈进。
而一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。
同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。
三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
(二)教学目标1.知识目标(1)理解一次函数和正比例函数的概念,以及它们之间的关系。
(2)能根据所给条件写出简单的一次函数表达式。
2.能力目标(1)经历一般规律的探索过程、发展学生的抽象思维能力。
(2)通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
3.情感目标(1)通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。
(2)经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
(三)教材重点、难点1、重点(1)一次函数、正比例函数的概念及关系。
(2)根据具体情境所给的信息确定一次函数的表达式2、难点根据具体情境所给的信息确定一次函数的表达式接下来我来谈谈第二方面:教法与学法:在本节课的教学中我准备采用的教学方法主要是指导——自学方式。
根据学生的理解能力和生理特征,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上,另一方面要创造条件和机会,让学生发表意见,发挥学生的主动性。
通过本节课的学习,教给学生从特殊到一般的认知规律去发现问题的解决方法,培养学生独立思考的能力和解决问题的能力。
下面是我说课的重点,也就是教学过程的设计、整节课我共设为四个环节:第一个环节是创设问题,引领导入:这一环节我通过设置两个问题引导学生概括出一次函数的概念。
北师大版数学八上《一次函数的图像》word教案
《一次函数的图象》教学设计一、 教学目标(一)知识目标:1、了解k 值对两个一次函数的图象位置关系的影响。
2、理解当k >0时,k 值对直线倾斜程度的影响。
3、结合图象,探究并掌握一次函数的性质。
4、能对一次函数的性质进行简单的应用。
(二)能力目标:1、经历由特殊到一般的研究过程,培养学生的观察分析,自主探索,合作交流的能力。
2 、结合图象探究性质,培养了学生数形结合的意识和能力。
(三)情感目标:1、体验数学活动,激发学生学习数学的兴趣二、 数学重难点重点:掌握一次函数图象的性质及其一次函数性质的简单应用。
难点:由一次函数的图象探究一次函数的性质。
三、 数学过程(一)、创设情境,回顾复习 1、播放动画视频《龟兔赛跑》的片段,利用兔子和乌龟的路程s 与时间t 的函数图象(如下图)引出对上一节知识的回顾,进行复习。
2、忆一忆⑴、一次函数的图象有什么特点?做一次函数的图象一般需要描出几个点?⑵、正比例函数的图象有什么特点?正比例函数图象经过的象限和增减性与k 的关系?乌龟 兔子时间t(分) 35 20 30 5 起点 0 终点路s(米(二)、情景再现,引入新课1、设置故事情节:小兔子输掉了比赛,非常不服气,于是就邀请乌龟进行第二次比赛,为了证明自己的实力,兔子决定让乌龟先跑200米 (如下图)。
2、 进入本节课主题:(到底谁会赢?让学生带着问题进入本节课的学习)(三)提出问题,归纳总结,层层闯关1、第一关:探讨直线y=kx+b 所经过的象限(1) 观察在同一个平面直角坐标系的函数y=x 、y=x+6、y=x-3、y=3x+3的图象。
问题1: 观察四条直线,他们之间的位置关系有几种?问题2: 观察平行直线与相交直线,它们的系数k 和b 有什么特点?问题3: 直线y=x 经过上下平移可以得到直线y=x+6和直线y=x-3吗? b 的符号能决定平移的方向吗?(2) 合作交流、得到猜想:规律: ①当k 值相同,b 值不同时,两直线平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章一次函数5.一次函数图象的应用(一)一、学生起点分析学生已学习了一次函数及其图象,认识了一次函数的性质.在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础.但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力.二、教学任务分析《一次函数图象的应用》是义务教育课程标准北师大版实验教科书数学八年级(上)第六章《一次函数》的第五节.本节内容安排了2个课时完成,本节为第一课时.主要是利用一次函数图象解决有关现实问题,与原传统教材相比,新教材更注重借助材料让学生在具体操作中获取一次函数图象的有关信息,从而回答和解决现实生活中的具体问题,也就是说,新教材注重在图象信息的识别与分析中,提高学生的识图能力,进一步培养学生的数形结合能力和数学应用能力,发展形象思维.三、教学目标分析知识与技能目标:1.能通过函数图象获取信息,解决简单的实际问题;2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。
过程与方法目标:1.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;2.通过具体问题的解决,培养学生的数学应用能力;3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.情感与态度目标:1.在具体的案例中,培养学生良好的环保意识和对生活的热爱等.●教学重点一次函数图象的应用.●教学难点正确地根据图象获取信息,并解决现实生活中的有关问题.四、课前准备有条件的学校可以准备多媒体课件,没有条件的可以准备投影片或者小黑板.五、教学过程本节课分为八个教学环节第一环节复习引入内容:在前几节课里,我们通过从生活中的实际问题情景出发,分别学习了一次函数,一次函数的图象,一次函数图象的性质,从中对一次函数在现实生活中的广泛应用有了一定的了解.怎样应用一次函数的图象和性质来解决现实生活中的实际问题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质?=+中在一次函数y kx bk>时,y随x的增大而增大,当0b>时,直线交y轴于正半轴,必过一、二、三象限;当0b<时,直线交y轴于负半轴,必过一、三、四象限.当0当0<k时,y随x的增大而减小,b>时,直线交y轴于正半轴,必过一、二、四象限;当0b<时,直线交y轴于负半轴,必过二、三、四象限.当0意图:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k、b的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.效果:学生通过知识回顾,再次明确一次函数图象和性质,为学习本节课在知识上作好准备.说明:如果学生一次函数的图象和性质掌握较好,也可以直接从下一环节(第二环节)开始,进入本课题的学习.第二环节初步探究内容:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t(天)与蓄水量V(万米3)的关系如下图所示,回答下列问题:(1)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(2)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(3)按照这个规律,预计持续干旱多少天水库将干涸?(根据图象回答问题,有困难的可以互相交流.)答案:(1)求干旱持续10天时的蓄水量,也就是求tt=时,V约为1000万米3.同理可知当t为23天时,等于10时所对应的V的值.当10V约为750万米3.(2)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V等于400万米3时,求所对应的t的值.当V等于400万米3时,所对应的t的值约为40天.(3)水库干涸也就是V为0,所以求函数图象与横轴交点的横坐标即为所求.当V为0时,所对应的t的值约为60天.·200 100020 t (天)S (户) 0意图:通过生动的现实情景引入一次函数图象的应用,目的是培养学生的识图能力. 效果:本题插图中干涸的河床势必给学生一个很强的视觉刺激,从而渗透环保教育. 说明:在具体的教学活动中,教师应注意学生对以上问题的掌握情况:如果学生掌握得好,进入下面的练习;如果学生掌握得不好,则可以再引导学生多练习一道类似的习题(见分层教学第1题).第三环节 反馈练习:内容:当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性.当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(1)活动开始当天,全校有多少户家庭参加了该活动? (2)全校师生共有多少户?该活动持续了几天? (3)你知道平均每天增加了多少户?(4)活动第几天时,参加该活动的家庭数达到800户?(5)写出参加活动的家庭数S 与活动时间t 之间的函数关系式 答案:(1)200户;(2)全校师生共有1000户,该活动持续了20天; (3)平均每天增加了40户;(4)第15天时,参加该活动的家庭数达到800户; (5)40200S t =+ .意图:通过创设情境,让学生进一步认识到一次函数图象的应用,倡导节约用水.同时,通过练习以检验学生对已学内容是否掌握.效果:通过练习,学生会运用一次函数的图象去分析现实生活中的问题,同时渗透环保意识,珍惜水资源.说明:在具体的教学活动中,教师应观察学生的表现,对知识是否掌握,如果学生掌握得好,进入下一个环节;如果学生掌握得不好,则可以再引导,以达到“过手”的目的.(视其情况,可以选用分层教学第2题)第四环节 深入探究内容:1.看图填空(1)当0y =时,______x =;(2)直线对应的函数表达式是________________.答案:(1)观察图象可知当0y =时,2x =-;(2)直线过(-2,0)和(0,1) 设表达式为y kx b =+,得20k b -+= ① 1b =②把②代入①得 0.5k =∴直线对应的函数表达式是0.51y x =+ 2.议一议一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?(请大家根据刚做的练习来进行解答.)答案: 一元一次方程0.510x +=的解为2x =-,一次函数0.51y x =+包括许多点.因此0.510x +=是0.51y x =+的特殊情况.当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解.函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解.意图:通过本题让学生认识到一次函数与一元一次方程的联系,从“数”的角度看,当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解;从“形”的角度看,函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解. 效果:通过练习,学生明晰了函数与方程的关系,能用函数关系解决方程问题,同时也能用方程的观点来看待函数.第五环节 反馈练习内容:全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?·200 100020 t (天)S (户)0 (2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2.解:(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50,故从现在开始,第50年底后,该地区将丧失土地资源.(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米2,实际每年改造面积2万千米2,由于(200176)212-÷=,故到第12年底,该地区的沙漠面积能减少到176万千米2.意图:通过土地沙漠化的问题进一步培养学生的识图能力,让学生能从图象中获取信息,建立相关的代数式,从而求解较复杂的问题;同时,通过土地沙漠化的问题情景引导学生关注自己身边的生存环境.效果:通过对较复杂的问题的探究,培养了学生分析问题和解决问题的能力,并渗透德育教育.第六环节 探究升级内容:(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(6)若每户每天节约用水0.1吨,那么活动第20天可节约多少吨水? (7)写出活动开展的第t 天节约的水量Y 与天数t 的函数关系. 答案:(6)第20天可节约100吨水;(7)420Y t =+.意图:通过问题的层层深入,引导学生的思维向纵深发展,进一步巩固用函数的思想解决生活中的问题.效果:学生通过合作交流,解决问题,在教师的引导下,逐步加深了对一次函数图象和性质的运用.说明:视学生的掌握情况,对学有余力的同学可以给出这个问题的第(8)问.(见分层教学第3题)第七环节课堂小结内容:本节课主要应掌握以下内容:1.能通过函数图象获取信息.2.能利用函数图象解决简单的实际问题.3.初步体会方程与函数的关系意图:引导学生自己小结本节课的知识要点及数学方法,使这节课知识系统化,感性认识上升为理性认识.效果:学生畅所欲言,相互进行补充,从小结中感知了一次函数的图象在生活中的应用.说明:教师视其情况,可以选择展示一些前面小节中用过的实际问题与一次函数图象的实例的图片,让学生体会到数学与生活的联系,激发学生的学习热情.第八环节布置作业内容:1.课外探究在生活中,你还遇到过哪些可以用一次函数关系来表示的实际问题?选择你感兴趣的问题,编制一道数学题与同学交流.2.课外作业习题5.6六、教学设计反思(1)设计理念一次函数是刻画现实世界变量间关系的最为简单的模型,其应用比比皆是.在教学设计中,争取选用最具有现实生活背景,与学生生活密切相关的问题,一方面力求让学生体会数学的广泛运用,另一方面,在学科教育中渗透德育教育.(2)评价方式在教学活动中教师应尊重学生的个体差异,满足多样化的学习需要,关注学生对图象的识图能力和解决问题的过程,应关注学生对基本知识技能的掌握情况和对一次函数与方程之间的关系的理解.教学过程中可通过学生对“议一议”、“想一想”的探究情况和学生对反馈练习的完成情况分析学生的认识状况,对于学生的回答,只要学生的方法有道理,教师应给予鼓励和恰当的评价,帮助学生认识自我,建立自信,真正在教学的过程中发挥评价的教育功能.(3)分层教学1.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示.根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:(1)函数图象与x轴交点的横坐标即为摩托车行驶的最长路程.·200100020 t/天S/户 0 (2)x 从0增加到100时,y 从10开始减少,减少的数量即为消耗的数量. (3)当y 小于1时,摩托车将自动报警. 答案:(1)观察图象,得当0y =时,500x =因此一箱汽油可供摩托车行驶500千米.(2)x 从0增加到100时,y 从10减少到8,减少了2,因此摩托车每行驶100千米消耗2升汽油.(3)当1y =时,450x =因此行驶了450千米后,摩托车将自动报警. 2.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程.盒内钱数y (元)与存钱月数x 之间的函数关系如图所示.观察图象回答下列问题:(1)盒内原来有多少元?2个月后盒内有多少元? (2)该同学经过几个月能存够200元?(3)该同学至少存几个月存款才能超过140元? 解:(1)40,80.(2)当200y =时,8x =,所以该同学经过8个月能存够200元.(3)观察图象可知,该同学经过5个月能超过140元.3.(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(8)写出活动开展到第5天时,全校师生共节约多少吨水?答案:(8)第5天时,全校师生共节约160吨水.意图:学生知识上有一定的分层,可更好地调动不同学生的学习热情.教师可根据学生的掌握情况,适当选择上述题目要求学生分层完成.效果:通过分层练习,调动了不同学生的学习热情,教师应留给学生充分的时间思考,在独立思考的基础上,鼓励学生相互讨论,得出结果. ●附:板书设计一次函数图象的应用(一)一、做一做(保留性板书) (暂时性板书)第六章 一次函数5.一次函数图象的应用(二)一、学生起点分析在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用.二、教学任务分析《一次函数图象的应用》是义务教育课程标准北师大版实验教科书八年级(上)第六章《一次函数》的第五节。