细胞骨架课件

合集下载

细胞骨架课件

细胞骨架课件
2023
细胞骨架课件
contents
目录
• 细胞骨架的概述 • 微管在细胞中的角色 • 微丝在细胞中的角色 • 中间纤维在细胞中的角色 • 细胞骨架与疾病的关系 • 细胞骨架的研究方法
01
细胞骨架的概述
细胞骨架的定义
细胞骨架是由蛋白纤维组成的网架结构,主要分为微管、微 丝和中间纤维三种类型。
细胞骨架在细胞分裂、细胞生长、细胞物质运输以及细胞形 态维持等方面发挥着重要作用。
微丝在细胞运动中的功能
细胞运动是生命活动中的另一个重要环节,微丝在细胞运动 中也起着关键作用。
微丝可以与细胞膜连接,通过改变微丝的排列和聚合状态, 影响细胞形状和运动方向,从而参与细胞分裂、细胞迁移和 细胞物质运输等过程。
04
中间纤维在细胞中的角色
中间纤维的结构
结构组成
中间纤维是由3条相同的多肽链形成的三 股螺旋结构,通过二硫键交联形成二聚体 ,再组装形成原纤维,进而形成中间纤维 。
VS
类型
中间纤维分为6种类型,包括Ⅰ型、Ⅱ型 、Ⅲ型、Ⅳ型、Ⅴ型和Ⅵ型,每种类型都 有其特定的分布和功能。
中间纤维在细胞分化中的功能
维持细胞形态
中间纤维构成细胞骨架的主要 成分,与微管和微丝共同维持 细胞的形态和结构的稳定性。
参与细胞运动
中间纤维在细胞分裂、细胞生长 和细胞迁移中发挥重要作用,可 协助细胞运动。
抗癌药物靶点
许多抗癌药物通过影响细胞骨架的组装和功能发挥其抗癌作用,如紫杉醇类药物可以干扰微管的动态平衡。
细胞骨架与神经退行性疾病
要点一
神经元轴突运输
要点二
神经元突触可塑性
细胞骨架组成的轴突网络是神经元结 构和功能的基础,神经元轴突的运输 依赖于细胞骨架。

医学细胞生物学 细胞骨架精品PPT课件

医学细胞生物学 细胞骨架精品PPT课件
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
演讲人:XXXXXX 时 间:XX年XX月XX日
交联蛋白
单体
单体成核
单体聚合
膜结合蛋白
解聚
纤维切割蛋白
(二)微丝组装
▪ 多数非肌肉细胞中,微丝是一种动态结构。 ▪ 组装过程: 1)成核期、生长期(延长期)、平衡期 2)成核作用发生在质膜上 3)微丝组装的动力来自ATP
成核期-延长期-稳定期
▪ 微丝组装的动态调节: ▪ ATP是调节微丝组装的主要因素
负端
正端
2)微丝 球形-肌动蛋白形成的聚合体,也称纤 维状-肌动蛋白(F-actin)。
指向端
秃端
2、肌动蛋白结合蛋白
▪ 1)肌肉细胞中: ▪ 原肌球蛋白(tropomyosin ,Tm) ▪ 肌球蛋白(myosin) ▪ 肌钙蛋白(troponin ,Tn)
2)非肌细胞中:
单体隔离蛋白
末端阻断蛋白
细胞骨架(cytoskeleton)
二、微丝
(microfilament MF)
(一)微丝的结构
▪ 结构:由肌动蛋白纤维组成的实心纤维
▪ 分布: ▪ 肌肉细胞中,肌细胞的收缩单位、稳定 ▪ 非肌肉细胞中,分布均散、不稳定
成分: 1、肌动蛋白(actin):
1)单体为一个单链多肽、 哑铃形,称球形-肌动蛋 白(G-actin)。 有极性,含阳离子、 ATP(ADP)、肌球蛋白 的结合位点。
微丝遍及胞质各处,集中分布于质膜下,和其 结合蛋白形成网络结构,维持细胞形状和赋予 质膜机械强度,如哺乳动物红细胞膜骨架的作 用。

《W10细胞骨架》课件

《W10细胞骨架》课件
《W10细胞骨架》PPT课 件
细胞骨架是细胞内由蛋白质纤维组成的结构,起到维持细胞形态、细胞内分 子定位和细胞运动的重要作用。
什么是细胞骨架
细胞骨架是一种由蛋白质纤维组成的网状结构,分布于细胞内的胞质中。 • 三种细胞骨架组成:微丝、中间纤维和微管。 • 细胞骨架的组成决定了细胞的形态和结构。
细胞骨架的功能
细胞骨架在肌肉细胞中起到支撑 和收缩作用,实现肌肉的运动。
动态变化
细胞骨架结构能够动态改变,在 细胞的运动和形态变化中发挥关 键作用。
细胞骨架的研究进展
1
发现微丝
1950年代,细胞骨架的主要组成部分——微丝被发现。
2
中间纤维的发现
1960年代,中间纤维作为细胞骨架的另一种组成部分被发现。3Fra bibliotek微管的发现
1970年代,微管作为细胞骨架的第三种组成部分被发现。
细胞骨架的临床应用
1 细胞骨架与癌症
癌细胞的细胞骨架异常,研究细胞骨架有助于癌症治疗的发展。
2 细胞骨架与药物研发
细胞骨架的研究为药物研发提供了新的靶点和策略。
3 细胞骨架与细胞再生
细胞骨架研究有助于理解细胞再生和组织修复的机制。
总结和展望
细胞骨架是细胞的基础结构之一,其功能和研究进展对于理解生命活动和疾病治疗具有重要意义。 未来的研究将继续深入,为细胞骨架的应用和药物研发提供更多可能性。
支撑和维持形态
细胞骨架使细胞能够保持特 定的形状和结构,并对外部 力量起到支撑作用。
细胞内分子定位
细胞骨架通过连接蛋白质和 细胞内器官,帮助分子在细 胞内进行动态定位。
细胞运动
细胞骨架参与细胞的运动和 肌肉的收缩。
细胞骨架与细胞运动的关系

细胞骨架ppt课件

细胞骨架ppt课件
细胞骨架 (Cytoskeleton)
—Bertha
1
细胞骨架
●细胞骨架的概述 ●细胞骨架的组成
2
第一节 细胞骨架的概述
◆细胞骨架概念
细胞骨架是指存在于真核细胞的细胞质中的蛋白 纤维网架结构体系
◆有狭义和广义两种涵义
在细胞质基质中包括微丝、微管和中间纤维。 在细胞核中存在核骨架-核纤层体系。核骨架、
排列形式,MF相互交错排列。
19
(六)微丝的功能
◆维持细胞形态,赋予质膜机械强度 ◆肌肉收缩(muscle contraction) ◆微绒毛(microvillus) ◆应力纤维(stress fiber) ◆与细胞质运动和细胞移动有关 ◆参与胞质分裂
20
1、维持细胞形态,赋予质膜机械强度 微丝遍及胞质各处,集中分布于质膜下, 和其结合蛋白形成网络结构,维持细胞 形状和赋予质膜机械强度,如哺乳动物 红细胞膜骨架的作用。
运动。 作为产生力的装置,将细胞从一个地方移至到
另一个地方。 作为锚定mRNA并促进其翻译成多肽的位点。 作为细胞分裂的必要组分。
5
第二节 细胞骨架的组成
●微管 (microtubules,MT) ●微丝 (microfilament, MF) ● 中间纤维 ( intermediate filament,IF)
近年来认为微丝是由一条肌动蛋白单体链形成的螺旋, 每个肌动蛋白单体周围都有四个亚基,呈上、下及两侧排 列。
12
(三)微丝的组装及动力学特性
◆MF是由G-actin单体形成的多聚体,肌动蛋白 单体具有极性,装配时呈头尾相接,故微丝具
有极性,既正极与负极之别。装配可分为成 核反应、纤维的延长和稳定期3个阶段。
6

细胞骨架-医学课件

细胞骨架-医学课件

要点三
细胞骨架与干细胞治 疗
细胞骨架可以影响干细胞的迁移和黏 附,在干细胞治疗中具有潜在的应用 价值。同时,对干细胞中细胞骨架的 研究也将有助于深入探讨其生物学特 性及潜在应用前景。
THANKS
谢谢您的观看
物质运输
细胞骨架参与细胞内物质的运输,如微管和微丝 参与细胞器的移动和运输,中间纤维连接细胞膜 和细胞器,参与物质的跨膜运输。
参与细胞运动
细胞骨架参与细胞的移动和运动,如微管和微丝 参与细胞器的移动,中间纤维参与细胞的连接和 牵引。
信号转导
细胞骨架可以感受外界刺激,参与信号转导过程 ,如微丝和中间纤维在细胞内形成应力纤维,感 受力学信号刺激并参与信号转导。
细胞骨架在药物研发中的重要性
药物筛选
细胞骨架成分的异常表达与多种 疾病的发生有关,因此可作为药 物筛选的靶点。
药物传输
细胞骨架在药物传输中发挥重要 作用,可帮助药物在体内定向传 输,提高药物治疗效果。
药物作用机制
一些药物可通过影响细胞骨架的 成分和组装来发挥治疗作用,如 紫杉醇等抗癌药物可通过影响微 管蛋白的组装来抑制癌细胞的增 殖。
细胞骨架与细胞内信 息传递
细胞骨架通过与细胞内信息分子和信 号转导途径的相互作用,调节细胞增 殖、分化和凋亡等生物学过程。
细胞骨架在干细胞研究中的应用
要点一
细胞骨架与干细胞自 我更新
细胞骨架对干细胞的自我更新具有重 要作用,可以调节干细胞的增殖和分 化过程。
要点二
细胞骨架与干细胞分 化
细胞骨架可以影响干细胞的分化方向 和分化速度,通过调节细胞骨架的组 装和分布,可以诱导干细胞的定向分 化。
微丝与肌肉收缩
肌肉收缩
微丝是肌肉收缩的主要参与者之一。在肌肉收缩过程中,微丝通过与粗肌丝 的相互作用,产生力量并调节肌肉的收缩强度。

细胞骨架医学课件

细胞骨架医学课件

02
微管骨架
微管的组成
微管蛋白
微管是由微管蛋白组成的,这些 蛋白通过聚合形成微管的主体结 构。
微管蛋白的亚单位
微管蛋白的亚单位包括α-微管蛋 白和β-微管蛋白,它们在微管的 结构和功能中具有重要作用。
微管的极性
负极
微管的负极位于细胞的中心,是微管 组装和扩展的起点。
正极
微管的正极指向细胞的边缘,是微管 组装的终点。
细胞骨架参与了细胞的物质运输、胞质流动和细胞迁移等过程 ,对细胞的移动和迁徙起到关键作用。
细胞骨架在细胞分裂过程中起到了关键作用,如微管参与了纺 锤体的形成,中间纤维参与了染色体的排列和分配。
细胞骨架在细胞的分化过程中也起到了重要作用,如中间纤维 参与了细胞的形态维持和信息传递,影响细胞的分化方向。
FRET技术可用于研究细胞骨架蛋白质的动态变化和相互作 用,如肌动蛋白丝和微管蛋白的相互作用、蛋白质磷酸化 和去磷酸化的状态等。通过FRET技术可以获得细胞骨架蛋 白质的实时动态信息,从而更深入地了解细胞活动的调控 机制。
活细胞实时观察技术
原理
活细胞实时观察技术是一种在活细胞状态下实时观察细 胞活动的方法。通过将细胞接种在特殊的载玻片上,利 用显微镜对细胞进行观察和记录。
VS
药物筛选和优化
通过计算机模拟和实验室实验,研究者正 在筛选和优化一些能够干扰癌细胞骨架的 药物,以期开发出更有效的抗癌药物。
细胞骨架与医学研究的前沿领域
细胞骨架与基因表达
最新研究表明,细胞骨架的改变可以影响基 因的表达,从而影响细胞的功能和命运。这 一领域的研究将有望揭示更多关于细胞生物 学和疾病发生发展的奥秘。
肌丝在细胞内的分布和功能
分布
粗肌丝和细肌丝分别位于肌细胞的表面和内部,它们相互交织形成肌纤维。

第7章细胞骨架ppt课件

第7章细胞骨架ppt课件
可能决定了微管结构和功能的差异
微管功能 ➢ 维持细胞形态
用秋水仙素处理细胞破坏微管,导致细胞变圆。 纤毛、鞭毛、轴突的形成和维持
➢ 细胞内物质的运输 ➢ 细胞器的定位 ➢ 鞭毛(flagella)运动和纤毛(cilia)运动 ➢ 纺锤体与染色体运动
三、中间纤维
10nm纤维,因其直径介于肌粗丝和细丝之间, 故被命名为中间纤维(intermediate filament,IF) 。IF几乎分布于所有动物细 胞,往往形成一个网络结构,特别是在需 要承受机械压力的细胞中含量相当丰富,如 上皮细胞中。
动力蛋白臂的dynein水解ATP作功,使相邻的二联微管相互滑动。
过程:Байду номын сангаас
➢ ①两个单体 形成超螺旋 二聚体(角 蛋白为异二 聚体);
➢ ②两个二聚 体反向平行 组装成四聚 体;
➢ ③四聚体组 成原纤维;
➢ ④8根原纤维 组成中间纤 维。
A current model of intermediate filament construction.
中间纤维蛋白单体呈纤维状
The domain organization of intermediate filament protein monomers. Most intermediate filament proteins share a similar rod domain that is usually about 310 amino acids long and forms an extended alpha helix. The amino-terminal and carboxylterminal domains are non-alpha-helical and vary greatly in size and sequence in different intermediate filaments.

13-14细胞骨架-PPT课件

13-14细胞骨架-PPT课件

• 化学组成:
•ቤተ መጻሕፍቲ ባይዱ
球形肌动蛋白(G-actin):哑
铃状
• α肌动蛋白:横纹肌,心肌与
血管
及肠壁平滑肌细
胞特有
• β肌动蛋白
• γ肌动蛋白 非肌细胞中
所有肌细胞与

微丝(microfilaments .MF)
• 组装(ATP供能)
几个聚合 核心结构 球形单体肌动蛋白
分子逐一地加到核心的二端
延长(有
极性)
B 微丝
(microfilament,MF)
C 中间纤维
(intermediate filament,IF)
A fluorescently stained image of cultured epithelial cells showing the nucleus (yellow) and microtubules (red)
真核细胞(80S): 四种rRNA: 5SrRNA,5.8SrRNA,18SrRNA,28SrRNA 约82种蛋白质
不同核糖体在大小和化学成分上是不同的:
起解聚(结合到位点,改变构象不能聚合)。
微管组装的过程
• 成核期(延迟期):和微管蛋白聚 合成短的寡聚体,核心形成。
微管组装的过程
• 成核期(延迟期):和微管蛋白聚 合成短的寡聚体,核心形成。
• 聚合期(延长期):微管蛋白聚合速度 大于解聚速度,为微管延长。
微管组装的过程
• 成核期(延迟期):和微管蛋白聚 合成短的寡聚体,核心形成。
微丝组装的过程
• 成核期(延迟期):G肌动蛋白先形成 核心,再形成F肌动蛋白。
• 生长期: F肌动蛋白聚合速度大于解聚 速度,为微丝延长。

【PPT课件】第八章 细胞骨架

【PPT课件】第八章  细胞骨架

纤毛、鞭毛和基体
基体
结构比较
Centriole: “9+0” pattern
cilia and flagella: “9+2” pattern
28
例:神经元轴突运输的类型及运输模式
色素颗粒的运输
微管的结构异常与疾病
24
在早老性痴呆患者(阿尔茨海默病)的脑神经元
内,tau蛋白的过磷酸化使其很容易从微管上解离
下来形成神经原纤维缠结。
25
微管依赖性马达蛋白 (motor protein)

驱动蛋白(kinesin)
通过结合和水解ATP, 向着微管(+)极运输 小泡。

动力蛋白( dynein )
深绿:微管 浅兰:内质网 黄色:高尔基体
上图:内质网抗体染色 下图:微管抗体染色
上图:高尔基抗体染色 下图:微管抗体染色
containing -tubulin
The centrosome is the major MTOC of animal cells
影响微管组装的特异性药物
秋水仙素(colchicine) 阻断微管蛋白组 装成微管,可破坏纺锤体结构。
紫杉醇(taxol)、重水(D2O)能促进微管
的装配,并使已形成的微管稳定。但这
第八章
细胞骨架
(Cytoskeleton)
红色荧光显示微丝、绿色显示微管、蓝色显示细胞核
概 述
细胞骨架(Cytoskeleton) 是真核细胞中的蛋白质纤维网架体 系,它对于维持细胞的形状、细胞的运 动、细胞内的物质运输、染色体的分离 和细胞的分裂起着重要的作用。
细胞骨架由以下组分构成


细胞骨架课件

细胞骨架课件

γ-微管蛋白
γ-微管蛋白
γ-微管蛋白环状复合物 (the γ-tubulin ring complex,γTuRC)
组织形成微管,并使微管的负端稳定。
微管的存在形式: 单管(质膜下) 二联管(鞭毛和纤毛) 三联管(中心粒和基体)
基体
纤毛微管
中心体 细胞核
胞质 微管
• Microtubules are polarized polymers.
细胞的各种形态
中 性 粒 细
红 细 胞

精 卵 细 胞

成纤维细胞



与膜直接相关的细胞特性和行为:
细胞连接
细胞分裂
细胞黏附和迁移 膜表面微细结构
微管、微丝、中间丝三种 蛋白纤维构成的网络结构, 充满整个细胞质空间。
动态有序 参与细胞很多重
要的生命活动
Organizing the cell: the Cytoskeleton
第一节 微管(microtubule)
Microtubules are long,hollow cylinders made of the protein tubulin. With an outer diameter of 25 nm, they are much more rigid than actin filaments. Microtubules are long and straight and typically have one end attached to a single microtubule organizing center(MTOC) called a centrosome.
– The plus end is crowned by β-tubulin and assembles faster. The minus end is crowned by α-tubulin and assembles slower.

细胞骨架 PPT课件

细胞骨架 PPT课件

2 微丝的装配
三个actin聚集成一个核心 随后actin分子向核心两端加合
第九章 细胞骨架
第一节 微丝 一 微丝的组成和装配
微丝极性
微丝具极性,肌动蛋白单体加到(+)极 的速度比加到(-)极的速度快十倍。
第九章 细胞骨架
第一节 微丝 一 微丝的组成和装配
Treadmilling
ATP-肌动蛋白浓度影响组装速度。当处于临界浓 度时,ATP-actin可能继续在(+)端添加、而在 (-)端分离,表现出一种“踏车”现象。
步行模型 水解一个ATP hand over hand 行走16nm 讨论5 驱动蛋白在微管上 是怎样行走的? “尺蠖”模型 水解一个ATP inchworm 行走8nm
第九章 细胞骨架
第二节 微管
五 微管的功能
动力蛋白
构成 两条相同的重链 种类繁多的轻链 结合蛋白
作用 推动染色体分离 驱动鞭毛运动 向微管(−)极运输小泡
动力蛋白臂
疾病
第九章 细胞骨架
第二节 微管
五 微管的功能
4 纺锤体与染色体运动
C 形成纺锤体,在细胞分裂中牵引染色体到达分裂极。 纺锤体是一 种微管构成
的动态结构, 其作用是在 分裂细胞中 牵引染色体 到达分裂极。
染色体运动机制
+ + + + + 染色体 动力蛋白 动粒 双极驱动蛋白四聚体 − + + + + + + + − + + + +
核化蛋白nucleatingprotein单体隐蔽蛋白monomersequesteringprotein封端蛋白endblockingprotein单体聚合蛋白monomerpolymerizingprotein微丝解聚蛋白actinfilamentdepolymerizingprotein交联蛋白crosslinkingprotein纤维切断蛋白filamentseveringprotein膜结合蛋白membranebindingprotein封端加帽交联封端加帽交联单体隔离微丝结合蛋白作用方式单体膜结合解聚切断成束长纤维成核成束蛋白将肌动蛋白纤丝交联成平行的一排成一束结构联成平行的一排成一束结构三微丝的功能形成细胞皮层形成应力纤维形成细胞皮层形成应力纤维细胞伪足形成与迁移运动物理功能强度韧性固定维持形状物理功能强度韧性固定维持形状细胞伪足形成与迁移运动形成微绒毛胞质分裂环肌细胞收缩运动物质运输顶体反应细胞器运动生物学功能细胞各种运动有关形成微绒毛胞质分裂环肌细胞收缩运动物质运输顶体反应细胞器运动生物学功能细胞各种运动有关第九章细胞骨架第一节微丝二微丝结合蛋白1形成细胞皮层cellcortex细胞内大部分微丝分布在紧贴质膜的细胞质区域由微丝结合蛋白交联形成细胞内大部分微丝分布在紧贴质膜的细胞质区域由微丝结合蛋白交联形成凝胶状三维网络结构称为细胞皮层
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粗肌丝
肌球蛋白(myosin)
微丝
• 形态:由轻链和重链组成。 豆芽状:两个椭圆形的头部,一根长杆状的尾 –头部:ATP酶活性位点, actin结合位点; –尾部:由两条重链相互盘绕形成一个双股 螺旋
肌球蛋白(myosin)
微丝
目前已知的唯一沿肌动蛋白进行运动的马达蛋白
马达蛋白 Motor proteins
3. 正极与负极都能生长,正极生长速度快, 负极生长速度慢;由于G-actin在正极端 装配,负极去装配,从而表现为踏车现象
1.3.2 微丝的体内组装
微丝
1. 成核期:没有固定的中心,根据细胞需要
2. 有结合蛋白参与
3. 具有动态不稳定性,并与细胞功能相适应
4. 特异性药物
动物细胞中主要的肌动蛋白结合蛋白及功能 微丝
在装配过程中,正极装配较负极快5~10倍。
1.3.1 微丝的体外组装
微丝
1.3.1.1 条件
• 一定的盐浓度(主要是Mg2+),一定的Gactin浓度,ATP,pH>7.0 。
Mg2+、高Na+、高K+
G-actin
F-actin
Ca2+、低Na+、低K+
1.3.1.2 过程
微丝
1.3.1.2 过程
为细胞内组分的运动 提供动力,使它们能够沿着肌 动蛋白纤维和微管朝向两极运 动。
目前已鉴定的马达蛋 白多达数十种。根据其结合的 骨架纤维以及运动方向和携带 的转运物不同而分为不同类型。
细肌丝
肌动蛋白(actin) 提供动力
原肌球蛋白(tropomyosin) 肌钙蛋白(troponin)
调控
微丝
微丝
由神经冲动诱发的肌肉收缩基本过程
1. 动作电位的产生 2. Ca2+的释放 3. 原肌球蛋白位移 4. 肌动蛋白丝与肌球蛋白丝的相对滑动 5. Ca2+的回收
The coupling of ATP hydrolysis to movement of myosin along an actin filament.




调节蛋白
1.
2. 连接蛋白
原肌球蛋白 钙调蛋白
与肌动蛋白相连,调节肌动蛋白与肌球蛋白的结合。 与Ca2+结合,活化肌球蛋白轻链激酶
1. α-辅肌动蛋白 2. 纽带蛋白
参与微丝与质膜的结合 肌动蛋白纤维端点与细胞膜之间结合的中介
交联蛋白 1. 毛缘蛋白 2. 细丝蛋白 3. 血影蛋白 4. 锚定蛋白
第五章 细胞骨架
cytoskeleton
引言
概述
细胞骨架(Cytoskeleton)的概念
是指真核细胞中由蛋白纤维构成的网架结构体系
细胞骨架的功能
维持细胞形态;保持细胞内结构的有序性;与细胞运动、 物质运输、能量转换、信息传递、细胞分裂、基因表达、细 胞分化等生命活动密切相关。
细胞骨架
概述
1. 细胞质骨架
微丝
正极的肌动蛋 白聚合速率等 于负极的解聚 速率时,踏车 现象出现
由G-actin单 体的临界浓 度决定
1.3.1 微丝的体外组装
微丝
1. 条件:一定的盐浓度(主要是Mg2+),一定的Gactin浓度,ATP,pH>7.0
2. G-actin单体聚合成F-actin,F-actin组成肌动 蛋白微丝
在细胞质基质中,由微管、微丝和中间纤维组成。
2. 核骨架(核基质)
在细胞核中存在核骨架-核纤层体系。 由核纤层-核孔复合体、残存的核仁和 一个不溶的网络状结构组成。
核骨架-核纤层与中等纤维在结构上相互连接, 贯穿于细胞核和细胞质的网架体系。
概述
真核细胞中的蛋白 纤维网架体系
微丝 微管 中间纤维 细胞骨架与疾病
游离的可溶性球形单体
(Globular actin, G-actin)
聚合态纤维状多聚体
(Filamentous actin, Factin)
G-actin F-actin
ATP-G-actin ADP-G-actin ATP-F-actin ADP-F-actin
1.3 微丝的组装
微丝
微丝是由G-actin单体构成的螺旋状纤维, 肌动蛋白单体具有极性,装配时头尾相接,故微 丝也具有极性,结合ATP的一端为负极,另一端 为正极。
间隔蛋白
抑制蛋白
使纤维状多聚体肌动蛋白平行连接成束 与F-actin结合,使之形成三维网状结构 与锚蛋白结合,并与肌动蛋白交联 血影蛋白与膜上的带III蛋白相连的中介
结合于G-actin单体,可逆性抑制微丝聚合
切断和封端蛋白
1. 凝溶胶蛋白和绒毛蛋白 低Ca2+促进微丝装配成核心,高Ca2+将微丝切成片段
微丝
1.1 概念
微丝:microfilament,MF 又称肌动蛋白丝(actin filament, AF),指真核细胞中的直径约7nm的肌动蛋白 纤维
1.2 分子组成
肌动蛋白 (actin) 肌动蛋白单体串 联成一条肌动蛋 白链,两条肌动 蛋白链相互缠绕 形成微丝
微丝
肌动蛋白存在方式:
微丝
2. 封端蛋白
结合于微丝(+)端,阻止G-actin加上或脱落
微丝
微丝组装的动态不稳定性
微丝
微丝
微丝的动态变化与细胞生理功能变化相适应
微绒毛 收缩环
应力纤维
伪足
特异性药物
微丝
1. 细胞松弛素 B (cytochalasins B):可以结 合在微丝正极,阻抑肌动蛋白聚合, 导致微丝 解聚。
2. 鬼笔环肽(philloidin):只与F-actin结合以 稳定微丝防止微丝的解聚。
微丝
成核期(Nucleation phase) – 限速过程,又称延迟期。 二聚体(不稳定)
(延核长心期形(成El)ongation phase) – 正端快,为phase) –聚合速度=解聚速度。
1.3.1.2 过程
微丝
1.3.1.3 踏车现象(treadmilling)
肌肉收缩的滑动模型
微丝
微丝
The sliding-filament model of contraction in striated muscle.
1.4 微丝的生物学功能
1. 肌肉收缩 2. 维持细胞形态 3. 细胞运动 4. 参与细胞分裂
微丝
1.4.1 肌肉收缩
微丝
肌肉细胞利用肌动蛋白和肌球蛋白产 生有力的单向运动。
肌肉可以看作是一种特定的富含细胞 骨架的高效能量转换装置。
化学能转变为机械能
明带 明带
粗肌丝
暗带
微丝
细肌丝
肌小节结构示意图
相关文档
最新文档