材料科学基础史上最全名词解释 妈妈再也不用担心我的学习了 来源

合集下载

材料科学基础名词解释

材料科学基础名词解释

材料科学基础名词解释第二章1.定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?定性:对称轴、对称中心、晶系、点阵、晶胞定量:晶胞参数,晶向指数1.依据结合力的本质不同,晶体的键合作用分为哪几类?其特点是什么?共价键、离子键、金属键、范德华键、氢键。

离子键:没有方向性和饱和性,结合力很大。

共价键:具有方向性和饱和性,结合力也很大,一般大于离子键。

金属键:没有方向性和饱和性的共价键,结合力是原子实和电子云之间的库仑力。

范德华键:是通过分子力而产生的键合,结合力很弱氢键:是指氢原子与半径较小,电负性很大的原子相结合所形成的键。

2.等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?六方最密堆积、面心立方紧密堆积,8个四面体空隙,6个八面体空隙3.n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?2n个四面体空隙,n个八面体空隙。

不等径球堆积时,较大球体作等径球的紧密堆积,较小的球填充在大球紧密堆积形成的空隙中。

其中稍小的球体填充在四面体空隙,稍大的则填充在八面体空隙,如果更大,则会使堆积方式稍加改变,以产生较大的空隙满足填充的要求。

4.解释下列概念晶体:是内部质点在三维空间有周期性和对称性排列的固体。

晶系:晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系。

(六三四立方,单三斜正交)晶包:是从晶体取出反映其周期性和对称性的结构的最小重复单元。

晶胞参数:晶胞的形状和大小可以用6个参数来表示,此即晶胞参数,它们是三条棱边的长度a,b,c和三条棱边的夹角a,B,r.空间点阵:空间点阵是一种表示晶体内部质点排列规律的几何图形。

米勒指数:是晶体的常数之一,是晶面在3个结晶轴上的截距系数的倒数比,当化为最简单的整数比后,所得出的3个整数称为该晶面的米勒指数。

《材料科学基础》名词解释

《材料科学基础》名词解释

《材料科学基础》名词解释第一章材料结构的基本知识1、晶体材料的组织:指材料由几个相(或组织单元)组成,各个相的相对量、尺寸、形状及分布。

第二章材料的晶体结构1、空间点阵:将理想模型中每个原子或原子团抽象为纯几何点,无数几何点在三维空间规律排列的阵列2、同素异构:是指有些元素在温度和压力变化时,晶体结构发生变化的特性3、离子半径:从原子核中心到其最外层电子的平衡距离。

4、离子晶体配位数:在离子晶体中,与某一考察离子邻接的异号离子的数目称为该考察离子的配位数。

5、配位数:晶体结构中任一原子周围最近邻且等距离的原子数6、致密度:晶体结构中原子体积占总体积的百分数;第三章高分子材料的结构1、聚合度:高分子化合物的大分子链是出大量锥告连成的。

大分子链中链节的重复次数叫聚合度2、官能度:指在一个单体上能和别的单体发生键合的位置数目3、加聚反应:由一种或多种单体相互加成而连接成聚合物的反应;4、缩聚反应:由一种或多种单体相互混合而连接成聚合物,同时析出(缩去)某种低分子物质(如水、氨、醉、卤化氢等)的反应;5、共聚:由两种或两种以上的单休参加聚合而形成聚合物的反应。

第四章晶体缺陷1、晶体缺陷:实际晶体中与理想的点阵结构发生偏差的区域;2、位错密度:晶体中位错的数量,是单位体积晶体中所包含的位错线总长度;3、晶界:同一种相的晶粒与晶粒的边界;4、晶界内吸附:少量杂质或合金元素在晶体内部的分布是不均匀的,它们常偏聚于晶界,称这种现象为晶界内吸附;第五章材料的相结构及相图1、固溶体:当合金相的晶体结构保持溶剂组元的晶体结构时,这种相就称为一次固溶体或端际固溶体,简称固溶体。

2、拓扑密堆积:如两种不同大小的原子堆积,利用拓扑学的配合规律,可得到全部或主要由四面体堆垛的复合相结构,形成空间利用率很高、配位数较大(12、14、15、16等)一类的中间相,称为拓扑密堆积。

3、电子浓度:固溶体中价电子数目e与原子数目之比。

4、间隙相:两组元间电负性相差大,且/1≤0.59具有简单的晶体结构的中间相5、间隙化合物:两组元间电负性相差大,且/≥0.59所形成化合物具有复杂的晶体结构。

材料科学基础名词解释

材料科学基础名词解释

名词解释1.单晶体:是指样品中所含分子(原子和离子)在三维空间中呈规则、周期排列的一种固体状态。

2.退火孪晶:退火后形成的孪晶就是退火孪晶或由于相变过程中原子重新排列时发生错排而产生的;孪晶是两个晶体(或一个晶体的两个部分)沿一个公共晶面(即特定取向关系)构成镜面对称的位向关系,这就叫孪晶。

3.肖特基空位:离开平衡位置的原子迁移到晶体表面或内表面的正常结点位置上,而使晶体内部留下的空位。

4.弗仑克尔缺陷:离开平衡位置的原子挤入点阵的间隙位置,而在晶体中同时形成数目相等的空位和间隙原子。

5.单位位错:通常把伯氏矢量等于单位点阵矢量的位错称为单位位错。

6.刃型位错:在金属晶体中,由于某种原因,晶体的一部分相对另一部分出现一个多余的半原子面。

这个多余的半原子面有如切入晶体的刀片,刀片的刃口线即为位错线。

这种线缺陷称为刃型位错。

7.滑移:晶体中相邻两部分在切应力作用下沿着一定的晶面和晶向相对滑动。

8.孪生:是塑性变形的另一种重要形式,它常作为滑移不易进行时的补充。

9.滑移系:一个滑移面和此面上的一个滑移方向合起来叫作一个滑移系。

10.晶格畸变:点缺陷出来破坏了原子间的平衡状态,使晶格发生扭曲,称为晶格畸变。

11.固溶强化:溶质原子与位错的弹性交互作用。

12.弥散强化:指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段。

第二相强化,亚组织强化。

13.回复:是指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。

14.熔晶转变:是一个固相转变为另一个固相和一个液相的恒温转变。

之所以熔晶转变,是因为固相在温度下降时可以部分熔化。

15.过冷:结晶只有在T0 以下的实际结晶温度下才能进行,这种现象称为过冷。

16.过冷度:实际结晶温度与理论结晶温度之间的差值。

17.均匀形核:晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响。

18.平衡分配系数:平衡凝固时固相的溶质质量分数和夜相溶质质量分数之比。

19.伪共晶:非平衡凝固时,成分在共晶点附近的非共晶成分合金也可能得到100% 的共晶组织,这样的共晶组织称为伪共晶。

材料科学基础名词解释

材料科学基础名词解释

金属材料:以金属键结合为主的材料,如钢铁材料。

无机非金属材料:以离子键和共价键结合为主的材料,如陶瓷材料。

高分子材料:以共价键结合为主的材料,如塑料、橡胶。

复合材料:以界面特征结合为主的材料,如玻璃钢。

结构材料:利用它的力学性能,用于制造需承受一定载荷的设备、零部件、建筑结构等。

功能材料:利用它的特殊物理性能(电、热、光、磁等),用于制造各种电子器件、光敏元件、绝缘材料等。

高聚物:是由一种或几种简单低分子化合物经聚合而组成的分子量很大的化合物。

复合材料:是由两种或两种以上化学性质或组织结构不同的材料组合而成。

晶体:物质的质点(分子、原子或离子)在三维空间呈规则的周期性重复排列的物质。

空间点阵:把质点看成空间的几何点,点所形成的空间阵列。

晶格:用假想的空间直线,把这些点连接起来,所构成的三维空间格架。

晶胞:从晶格中取出具有代表性的最小几何单元。

晶格参数:描述晶胞的六个参数a、b、c、晶体中各种方位上的原子面叫晶面,表示晶面的符号叫晶面指数。

{hkl}代表原子排列完全相同,只是空间位向不同的各组晶面,称为晶面族。

晶体中各个方向上的原子列叫晶向,表示晶向的符号叫晶向指数。

<unw>代表原子排列完全相同,只是空间位向不同的各组晶向,称为晶向族所有平行或相交于某一直线的这些晶面构成一个晶带,此直线称为晶带轴。

属此晶带的晶面称为共带面。

晶胞原子数:指一个晶胞内所含的原子个数。

原子半径:指晶胞中原子密度最大方向上相邻两个原子之间距离的一半,与晶格常数有关。

配位数:指晶格中任一原子周围所具有的最近且等距的原子数。

致密度:合金:是指由两种或两种以上元素组成的具有金属特性的物质。

如:黄铜,Cu、Zn合金;碳钢,Fe、C合金。

组元:组成合金最基本的独立物质(组成合金的元素、稳定化合物)。

相:成分结构相同并以界面分开的均匀部分。

组织:在显微镜下所看到的相的分布形态。

固溶体:指溶质组元溶于溶剂晶格中,并保持溶剂组元晶格类型而形成的均匀固体。

材料科学基础名词解释

材料科学基础名词解释

材料科学基础名词解释材料科学基础名词解释第一章晶体学基础空间点阵晶体中原子或原子集团排列的周期性规律,可以用一些在空间有规律分布的几何点来表示,这样的几何点集合就构成空间点阵。

(每个几何点叫结点;每个结点周围的环境相同,则都是等同点。

)晶格在三维空间内表示原子或原子集团的排列规律的结点所构成的阵列,设想用直线将各结点连接起来,就形成空间网络,称为晶格。

晶胞空间点阵可以看成是由最小的单元——平行六面体沿三维方向重复堆积而成,这样的平行六面体就叫晶胞。

晶系按照晶胞的大小和形状的特点(点阵的对称性)对晶体进行的分类。

晶格常数(点阵常数)决定晶胞形状和大小的6个参数。

布拉维点阵结点都是等同点的点阵就叫布拉维点阵。

晶面穿过晶体的原子面称为晶面。

晶向连接晶体中任意原子列的直线方向称为晶向。

晶面(间)距两个相同晶面间的垂直距离。

晶面族在高度对称的晶体中,特别是在立方晶体中,往往存在一些位向不同、但原子排列情况完全相同的晶面,这些晶体学上等价的晶面就构成一个晶面族。

晶向族……晶体学上等价的晶向构成晶向族。

配位数晶体结构中一个原子周围的最近邻且等距离的原子数。

堆垛密度/紧密系数/致密度晶胞中各原子的体积之和与晶胞的体积之比。

晶体是具有点阵结构的,由长程有序排列的原子、离子、分子或配位离子等组成的固体。

非晶体是无点阵结构的和长程有序排列的结构基元组成的固体。

晶体结构指晶体中原子在三维空间排列情况。

*同素异构体化合物有相同的分子式,但有不同的结构和性质的现象。

原子半径包括共价半径:两原子之间以共价键键合时,两核间距离的一半,实际上核间距离是共价键的键长。

金属半径:金属晶体中相邻两金属原子核间距离的一半。

范德瓦尔斯半径:靠范德华力相互吸引的相邻不同分子中的两个相同原子核间距离的一半。

晶体原子数某一晶体结构的一个晶胞中所含有的原子个数。

第二章固体材料的结构结合键指由原子结合成分子或固体的方式和结合力的大小。

离子键当一正电性元素和一负电性元素相接触时,由于电子一得一失,使它们各自变成正离子和负离子,二者靠静电作用相互结合起来的化学键。

材料科学基础---名词解释

材料科学基础---名词解释

第一部分名词解释第二章晶体学基础1、晶体结构:反映晶体中全部基元之间关联特征的整体。

晶体结构有4种结构要素,质点、行列、面网、晶胞。

晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、|各向异性。

非晶体:原子没有长程的周期排列,无固定的熔点,各向同性等。

空间点阵:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶胞:在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点,阵的组成单元,称为晶胞。

空间格子:为便于描述空间点阵的图形,可用许多平行的直线将所有阵点连接起来,于是就构成一个三维几何构架,称为空间格子。

2、晶带定律:晶带轴[uvw]与该晶带的晶面(hkl)之间存在以下关系:hu+kv+lw=0。

凡满足此关系的晶面都属于以[uvw]为晶带轴的晶带,故…该关系式也称为晶带定律。

布拉格定律:布拉格定律用公式表示为:2dsinx=nλ(d为平行原子平行平面的间距,λ为入射波长,x为入射光与晶面的夹角)。

晶面间距:两相邻平行晶面间的平行距离。

晶带轴:所有平行或相交于某一晶向直线的的晶面构成一个晶带,该直线称·为晶带轴,属此晶带的晶面称为共带面。

3、合金:两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。

固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

>固溶强化:由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

中间相:两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

&置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。

材料科学基础名词解释

材料科学基础名词解释

材料科学基础名词解释第一章固体结构1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

非晶体:原子没有长程的周期排列,无固定的熔点,各向同性等。

2、中间相:两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3、晶体点阵:由实际原子、离子、分子或各种原子集团,按一定几何规律的具体排列方式称为晶体结构或晶体点阵。

4、配位数:晶体结构中任一原子周围最近邻且等距离的原子数。

5、晶格:描述晶体中原子排列规律的空间格架称之为晶格。

6、晶胞:在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

7、空间点阵:由周围环境相同的阵点在空间排列的三维列阵成为空间点阵。

8、晶向:在晶格中,穿过两个以节点的任一直线,都代表晶体中一个原子列在空间的位向,称为晶向。

9、晶面:由节点组成的任一平面都代表晶体的原子平面,称为晶面。

10、晶向指数(晶面指数):为了确定晶面、晶向在晶体中的相对取向、就需要一种符号,这种符号称为晶面指数和晶向指数。

国际上通用的是密勒指数。

一个晶向指数并不是代表一个晶向,二十代表一组互相平行、位向相同的晶向。

11、晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族,以<uvw>表示。

12、晶面间距:相邻两个平行晶面之间的垂直距离。

低指数晶面的面间距较大,而高指数晶面的面间距较小。

晶面间距越大,则该晶面上原子排列越紧密,该原子密度越大。

13、配位数:每个原子周围最近邻且等距离的原子数目,称为配位数。

14、多晶型性:有些金属固态在不同温度或不同压力范围内具有不同的晶体结构,这种性质称为晶体的多晶型性。

15、多晶型性转变:具有多晶型性的金属在温度或压力变化时,由一种结构转变为另一种结构的过程称为多晶型性转变,也称为同素异构转变。

材料科学基础名词解释

材料科学基础名词解释

原子结构与结合键 + 材料的结构1、第一电离能气态原子失去一个电子成为气态一价正离子所需要的最低能量称为第一电离能。

2、第二电离能气态A+再失去一个电子成为气态二价正离子所需要的最低能量称为第二电离能。

3、结合键原子间的结合力,主要表现为原子间的吸引力和排斥力的合力结果。

4、离子键通过两个或多个原子失去或获得电子而成为离子后形成,本质上可以归结为静电吸引作用,主要存在于晶体化合物中。

5、共价键由两个或多个电负性相差不大的原子共用电子对所形成的化学键,有方向性、饱和性。

6、金属键金属正离子和自由电子之间的相互作用所构成的结合力,无方向性、饱和性7、范德华键由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键,属于分子间作用力,无方向性和饱和性。

8、氢键已经与电负性很强的原子形成共价键的氢原子与另一分子中电负性很强的原子之间的作用力,具有方向性和饱和性。

9、晶体指内部质点(原子、分子或离子)在三维空间按周期性重复排列的固体,即晶体是具有格子构造的固体。

10、晶胞能充分反映晶体的晶体结构特征的最小体积单位(平行六面体)。

11、阵胞在三维方向上两两平行且相等的六面体,是空间点阵中的体积单元。

12、晶格原子在晶体中排列规律的空间格架。

13、空间点阵由一系列在三维空间按周期性排列的几何点称为一个空间点阵。

空间点阵四要素:阵点、阵列、阵面、阵胞)14、晶族依据晶体中高次轴(n>2)的数目,将晶体分为低级(无高次轴),中级(一个高次轴)和高级(多于一个高次轴)晶族。

15、空间群晶体结构中所有对称要素的组合所构成的对称群,晶体微观结构中共存在230种空间群。

16、晶面/晶向在晶体内部构造中,由物质质点所组成的平面/穿过物质质点所组成的直线方向。

17、晶带所有相交于某一直线或平行于此直线的所有晶面的组合(此直线称为晶带轴)。

18、晶面间距一组平行晶面中,最近邻的两个晶面间距称为晶面间距。

晶面间距越大,晶面上原子排列的密度越大,反之越小。

材料科学基础名词解释

材料科学基础名词解释

材基名词解释:位错:是在晶体中某处有一列或若干列原子发生了有规律的错排现象,使长度达几百至几万原子间距、宽约几个原子间距范围内的原子离开其平衡位置,发生了有规律的错动。

(书)位错是晶格中的某处有一列或若干列原子发生了某些有规律的错排现象。

调质:习惯上将淬火和随后的高温回火相结合的热处理工艺成为调质处理合金:指两种或两种以上的金属,或金属与非金属,经熔炼或烧结,或用其他方法组合而成的具有金属特性的物质。

偏析:先结晶的的部分含高熔点组分较多,后结晶的部分含低熔点组分较多,在晶粒内部存在着浓度差别,这种在一个晶粒内部化学成分不均匀的现象称为晶内偏析,又称枝晶偏析。

过冷度:金属的理论结晶温度Tm与实际结晶温度Tn之差。

同素异构转变:具有多晶型性的金属,当温度或压强改变一定值时其结构会发生变化,从一种晶格转变为另一种晶格,(即原子排列方式发生变化)这叫同素异构转变,也叫多晶型性转变。

(PPT)当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。

(书)Ac3线:又称GS线,它是在冷却过程由奥氏体析出铁素体的开始线,或者说在加热过程中铁素体溶入奥氏体的终了线。

铁素体:碳溶于α-Fe中的间隙固溶体。

奥氏体:碳溶于γ-Fe中的间隙固溶体。

滑移变形:在切应力作用下,晶体的一部分相对于另一部分沿某些晶面和晶向发生滑动,而晶体结构未发生变化的塑性变形。

加工硬化:随着变形程度的增加,金属的强度、硬度显著提高,而塑性、韧性则显著下降,这种现象称为加工硬化或冷作强化固溶强化:随溶质含量增加,固溶体的强度、硬度提高,塑性、韧性下降,称固溶强化细晶强化:金属的晶粒越细,其强度和硬度越高。

(PPT)用细化晶粒来提高材料强度的方法。

(书)弥散强化:当在晶内呈颗粒状弥散分布时,第二相颗粒越细,分布越均匀,合金的强度、硬度越高,塑性、韧性略有下降,这种强化方法称弥散强化或沉淀强化再结晶:冷变形金属加热至较高温度时,将形成一些位向与变形晶粒不同的内部缺陷较少的无畸变等轴小晶粒,这些小晶粒不断向周围的变形金属中扩展长大,至到金属的冷变形组织完全被等轴的新晶粒所取代,这一过程就是金属的再结晶。

材料科学基础 名词解释

材料科学基础 名词解释

1、化学键:组成物质整体的质点(原子、分子或离子)间的相互作用力叫做化学键。

共价键:有些同类原子,例如周期表IV A、V A、VIA族中大多数元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键。

离子键:当两种电负性相差大的原子相互靠近时,其中电负性小的原子失去电子,成为正离子,电负性大的原子获得电子成为负离子,两种离子靠静电引力结合在一起形成离子键。

范德瓦尔键(分子键):分子的一部分往往带正电荷,而另一部分往往带负电荷,一个分子的正电荷部位和另一分子的负电荷部位间,以微弱静电力相吸引,使之结合在一起,称为范德瓦尔键,也叫分子键。

金属键:由金属正离子和自由电子之间互相作用而结合称为金属键。

2、晶体:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。

单晶体:由一个晶粒组成的晶体。

准晶:原子在晶体内部是长程有序的具有准周期性的具有五次对称轴的介于晶体与非晶体之间的一类晶体,叫做准晶。

玻璃体:液体冷却时,尚未转变为晶体就凝固了,它实质是一种过冷的液体结构,称为玻璃体。

非晶态金属(金属玻璃):在特殊的冷却条件下金属可能不经过结晶过程而凝固成保留液体短程有序结构的非晶态金属。

非晶态金属又称作金属玻璃。

微晶合金:晶粒尺寸达微米(μm)的超细晶粒合金材料,称为微晶合金。

纳晶合金:晶粒尺寸达纳米(nm)的超细晶粒合金材料,称为纳晶合金。

3、空间点阵(点阵):代表原子(分子或离子)中心的点的空间排列,称为空间点阵,简称点阵。

阵点:代表原子(分子或离子)中心的点。

晶格:将阵点用一系列平行直线连接起来,构成一空间格架叫晶格。

晶胞:点阵中能保持点阵特征的最基本单元叫晶胞。

晶体结构:是指晶体中实际质点(原子、分子或离子)的具体排列情况,它们能组成各种类型,因此实际存在的晶体结构是无限多的。

4、晶向:晶体中某些原子在空间排列的方向叫晶向。

(完整)材料科学基础-名词解释

(完整)材料科学基础-名词解释

材料科学基础名词解释(上海交大第二版)第一章原子结构结合键结合键分为化学键和物理键两大类,化学键包括金属键、离子键和共价键;物理键即范德华力。

化学键是指晶体内相邻原子(或离子)间强烈的相互作用.金属键金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。

离子键阴阳离子之间通过静电作用形成的化学键叫作离子键共价键由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

范德华力是借助临近原子的相互作用而形成的稳定的原子结构的原子或分子结合为一体的键合。

氢键氢与电负性大的原子(氟、氧、氮等)共价结合形成的键叫氢键.近程结构高分子重复单元的化学结构和立体结构合称为高分子的近程结构。

它是构成高分子聚合物最底层、最基本的结构。

又称为高分子的一级结构远程结构由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构第二章固体结构1、晶体:原子在空间中呈有规则的周期性重复排列的固体物质.晶体熔化时具固定的熔点,具有各向异性。

2、非晶体:原子是无规则排列的固体物质。

熔化时没有固定熔点,存在一个软化温度范围,为各向同性.3、晶体结构:原子(或分子、离子)在三维空间呈周期性重复排列,即存在长程有序。

4、空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。

5、阵点:把实际晶体结构看成完整无缺的理想晶体,并将其中的每个质点抽象为规则排列于空间的几何点,称之为阵点。

6、晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单基本元(最小平行六面体)作为点阵的组成单元,称为晶胞。

7、晶系:根据六个点阵参数间的相互关系,将全部空间点阵归属于7中类型,即7个晶系,分别为三斜、单斜、正交、六方、菱方、四方和立方。

13、晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。

属于此晶带的晶面称为共带面.14、晶面间距:晶面间的距离.18、点群:点群是指一个晶体中所有点对称元素的集合。

材料科学基础名词解释(全)

材料科学基础名词解释(全)

材料科学基础名词解释(全)晶体:即内部质点在三维空间呈周期性重复排列的固体。

非晶体:原子没有长程的排列,无固定熔点、各向同性等。

晶体结构:指晶体中原子或分子的排列情况,由空间点阵和结构基元构成。

空间点整:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶面指数:结晶学中用来表示一组平行晶面的指数。

晶胞:从晶体结构中取出来的反映晶体周期性和对称性的重复单元。

晶胞参数:晶胞的形状和大小可用六个参数来表示,即晶胞参数。

离子晶体晶格能:1mol离子晶体中的正负离子,由相互远离的气态结合成离子晶体时所释放的能量。

原子半径:从原子核中心到核外电子的几率分布趋向于零的位置间的距离。

配位数:一个原子或离子周围同种原子或异号离子的数目。

极化:离子紧密堆积时,带电荷的离子所产生的电厂必然要对另一个离子的电子云产生吸引或排斥作用,使之发生变形,这种征象称为极化。

同质多晶:化学组成相同的物质在不同的热力学条件下形成结构不同的晶体的现象。

类质同晶:化学组成相似或相近的物质在相同的热力学条件下形成具有相同结构晶体的现象。

铁电体:指具有自发极化且在外电场作用下具有电滞回线的晶体。

正、反尖晶石:在尖晶石结构中,如果A离子占据四面体空隙,B离子占据八面体空隙,称为正尖晶石。

如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙则称为反尖晶石。

反萤石结构:正负离子位置刚好与萤石结构中的相反。

压电效应:由于晶体在外力作用下变形,正负电荷中心产生相对位移使晶体总电矩发生变化。

结构缺陷:通常把晶体点阵结构中周期性势场的畸变称为结构缺陷。

空位:指正常结点没有被质点占据,成为空结点。

间隙质点:质点进入正常晶格的间隙位置。

点缺陷:缺陷尺寸处于原子大小的数量级上,三维方向上的尺寸都很小。

线缺陷:指在一维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。

面缺陷:是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。

(完整版)整理后的材料科学基础名词解释

(完整版)整理后的材料科学基础名词解释

第二章固体结构1、晶体:是指原子(或分子)在三维空间按一定规律作周期性排列的固体。

非晶体:原子杂乱分布,或仅有局部区域为短程规则排列。

2、晶体结构(晶体点阵): 晶体中,实际原子、分子、离子或原子集团按一定几何规律的具体排列方式。

5、空间点阵:由周围环境相同的阵点在空间排列的三维阵列。

3、晶格:用直线将空间点阵的各阵点连接起来,构成一个三维空间格架。

这种用于描述晶体中原子排列规律的空间格架称为晶格。

4、晶胞:晶格中,能完全反映晶格特征的最小几何单元称为晶胞。

6、结构晶胞:如果在点阵晶胞的范围内,标出相应晶体结构中各原子的位置,这部分原子构成了晶体结构中有代表性额部分,含有这一附加信息的晶胞称为结构晶胞。

8、晶体结构与空间点阵的区别:空间点阵只有14种,晶体结构是无限多的;9、结构晶胞与点阵晶胞的区别:点阵晶胞—仅反映周期性最小的,体积最小,但不一定反映点阵的对称性,只含一个结点。

结构晶胞--具有较高对称性的最小重复单元,既反映周期性,也反映对称性,但不一定最小。

10、晶向:晶体中,穿过两个以上阵点的任意直线,都代表晶体中一个原子列的空间位向,称为晶向.晶面:晶体中,某些原子构成的原子平面,称为晶面.11、密勒指数: 国际通用、用以表示晶向和晶面空间位置的符号,分晶向指数和晶面指数.12、晶向族:原子排列相同但空间位向不同的所有晶向。

13、面心立方结构(A1) Al, 贵金属, α-Fe, Ni, Pb, Pd, Pt等体心立方结构(A2) 碱金属, V, Nb, Ta, Cr, Mo, W, -Fe等密排六方结构(A3) α-Ti, Be, Zn, Mg, Cd等14、配位数CN —晶体中,与任一原子最近邻且等距离的原子数致密度:晶体结构中原子体积占总体积的百分数。

k = nv/V n:晶胞原子数 v:单原子的体积 V:晶胞体积15、晶体的多晶型性(同素异构):化学组成相同的物质在不同温度或压力条件下具有不同的晶体结构的现象,称为多晶型性(同素异构)。

材料科学基础名词解释(40个)

材料科学基础名词解释(40个)

名词解释(40个)1 同质多晶:化学组成相同的物质,在不同的热力学条件下形成结构不同的晶体的现象,称为同质多晶现象。

类质同晶:化学组成相似或相近的物质,在相同的热力学条件下,形成相同结构晶体的现象,称为类质同晶现象。

反萤石结构:如果晶体的结构与萤石完全相同,但阴阳离子的位置与萤石刚好相反,这种结构称为反萤石结构。

铁电效应:压电效应:晶体在外力作用下发生变形,正负电荷中心产生相对位移,使晶体总电矩发生变化所表现的现象,称为压电效应。

四面体空隙:等径球体作最紧密堆积时,由其中四个球体球心连线而构成的正四面体所围成的空隙。

八面体空隙:等径球体作最紧密堆积时,由其中六个球体球心连线而构成的正八面体所围成的空隙。

位移性转变:在同质多晶中,两个变体之间由于结构差异小,转变时只是原子的位置发生少许位移,仅仅是键长和键角的调整,不涉及旧键的破坏和新键的产生,这类变体之间的转变称为位移性转变,其特点是转变速度很快。

重建性转变::在同质多晶中,两个变体之间由于结构差异大,转变时必须破坏原子间的键,形成一个具有新键的结构,这类变体之间的转变称为重建性转变,其特点是转变速度很慢。

2 结构缺陷:通常把晶体点阵结构中周期性势场的畸变称为晶体的结构缺陷。

点缺陷:又称零维缺陷,缺陷尺寸处于原子大小数量级上,即三维方向上缺陷的尺寸都很小。

点缺陷包括空位、间隙质点、杂质质点和色心等。

线缺陷:指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维上很小,故又称二维缺陷。

如晶界、表面、堆积层错等,与材料的断裂韧性有关。

面缺陷:是指在二维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向上较长,另外二维方向上很短,故又称一维缺陷热缺陷:当晶体温度高于绝对0K时,由于晶格内原子热振动,使一部分能量较高的原子偏离平衡位置所造成的缺陷,称为热缺陷(又称本征缺陷)。

弗伦克尔缺陷:当晶格热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而在原来位置形成空位,这种缺陷称弗伦克尔缺陷。

材料科学基础名词解释

材料科学基础名词解释

晶带轴:同一晶带中所有晶带面的交线互相平行,其中通过坐标原点的那条平行直线称为晶带轴。
晶面间距:晶面间距是指两个相同晶面的垂直距离。
同素异构体:化合物有相同的分子式,但有不同的结构和性质的现象。
点阵常数:晶胞的三个棱,可以选作描写点阵的基本矢量,用a、b、c来表示。选择任一阵点做原点,点阵中任何一个阵点的矢径都可以用方程
柏氏矢量 :柏氏矢量(Burgers vector)是描述位错实质的重要物理量。反映出柏氏回路包含的位错所引起点阵畸变的总积累。 通常将柏氏矢量称为位错强度,位错的许多性质如位错的能量,所受的力,应力场,位错反应等均与其有关。它也表示出晶体滑移时原子移动的大小和方向。
割阶:晶体内位错发育时,与滑移面倾斜的额外线段称割阶。因线段不在滑移面内,位错额外线段很难发生移动。
晶体:晶体即是内部质点在三维空间呈周期性重复排列的固体。
非晶体:非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。
晶体结构:晶体以其内部原子、离子、分子在空间作三维周期性的规则排列为其最基本的结构特征。
空间点阵:组成晶体的粒子(原子、离子或分子)在三维空间中形成有规律的某种对称排列,如果我们用点来代表组成晶体的粒子,这些点的总体就称为空间点阵。
位错密度:错密度定义为单位体积晶体中所含的位错线的总长度。位错密度的另一个定义是:穿过单位截面积的位错线数目,单位也是1/平方厘米。
位错塞积:位错塞积是指晶体塑性变形时往往在一滑移面上许多位错被迫堆积在某种障碍物前,形成位错群的堆聚。这些位错来自同一位错源,因此具相同的伯格斯矢量。
堆垛层错:堆垛层错(stacking fault)是广义的层状结构晶格中常见的一种面缺陷。它是晶体结构层正常的周期性重复堆垛顺序在某二层间出现了错误,从而导致的沿该层间平面(称为层错面)两侧附近原子的错误排布。

材料科学基础名词解释(全)讲课教案

材料科学基础名词解释(全)讲课教案

材料科学基础名词解释(全)晶体:即内部质点在三维空间呈周期性重复排列的固体。

非晶体:原子没有长程的排列,无固定熔点、各向同性等。

晶体结构:指晶体中原子或分子的排列情况,由空间点阵和结构基元构成。

空间点整:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶面指数:结晶学中用来表示一组平行晶面的指数。

晶胞:从晶体结构中取出来的反映晶体周期性和对称性的重复单元。

晶胞参数:晶胞的形状和大小可用六个参数来表示,即晶胞参数。

离子晶体晶格能:1mol离子晶体中的正负离子,由相互远离的气态结合成离子晶体时所释放的能量。

原子半径:从原子核中心到核外电子的几率分布趋向于零的位置间的距离。

配位数:一个原子或离子周围同种原子或异号离子的数目。

极化:离子紧密堆积时,带电荷的离子所产生的电厂必然要对另一个离子的电子云产生吸引或排斥作用,使之发生变形,这种现象称为极化。

同质多晶:化学组成相同的物质在不同的热力学条件下形成结构不同的晶体的现象。

类质同晶:化学组成相似或相近的物质在相同的热力学条件下形成具有相同结构晶体的现象。

铁电体:指具有自发极化且在外电场作用下具有电滞回线的晶体。

正、反尖晶石:在尖晶石结构中,如果A离子占据四面体空隙,B离子占据八面体空隙,称为正尖晶石。

如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙则称为反尖晶石。

反萤石结构:正负离子位置刚好与萤石结构中的相反。

压电效应:由于晶体在外力作用下变形,正负电荷中心产生相对位移使晶体总电矩发生变化。

结构缺陷:通常把晶体点阵结构中周期性势场的畸变称为结构缺陷。

空位:指正常结点没有被质点占据,成为空结点。

间隙质点:质点进入正常晶格的间隙位置。

点缺陷:缺陷尺寸处于原子大小的数量级上,三维方向上的尺寸都很小。

线缺陷:指在一维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。

面缺陷:是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。

材料科学基础

材料科学基础

材料科学基础史上最全名词解释妈妈再也不用担心我的学习了来源:翟昆的日志1、晶体原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

2、中间相两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3、亚稳相亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

4、配位数晶体结构中任一原子周围最近邻且等距离的原子数。

5、再结晶冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。

(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)6、伪共晶非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。

7、交滑移当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

8、过时效铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ ”,θ ’,和θ。

在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ ’,这时材料的硬度强度将下降,这种现象称为过时效。

9、形变强化金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。

10、固溶强化由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

11、弥散强化许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。

12、不全位错柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

13、扩展位错通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。

经过精心整理的材料科学基础名词解释

经过精心整理的材料科学基础名词解释
5. 固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。而如果组成合金相的异类原子有固定的比例,所形成的固相的晶体结构与所有组元均不同,且这种相的成分多数处在A在B中溶解限度和B在A中的溶解限度之间,即落在相图的中间部位,故称它为中间相。
57. 扩散系数):相当于质量浓度为一时,单位时间内的扩散通量。
58. 互扩散系数):在互扩散当中,用来代替两种原子的方向相反的扩散系数D1、D2。
59. 柯肯达尔效应):对于置换型溶质原子的扩散,由于溶剂与溶质原子的半径相差不会很大,原子扩散时必须与相邻原子间作置换,两者的可动性大致趋于同一数量级,因此,必须考虑溶质和溶剂原子不同的扩散速率!
67. 能量起伏:是指体系中每个微小体积所实际具有的能量,会偏离体系平均能量水平而瞬时涨落的现象。
68. 过冷度:凝固过程中冷却到熔点以下某个温度后发生Байду номын сангаас变,熔点与该实际凝固温度之差称过冷度。
69. 均匀形核:新相晶核是在母相中均匀地生成的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响。
48. 扩散:在固体中,其原子或分子由于热运动从一个位置不断迁移到另一个位置的现象。
49. 自扩散:不依赖于浓度梯度,而仅由热振动而产生的扩散。【(solid-state physics ) The spontaneous movement of an atom to a new site in a crystal of its own species.】
42. 相界):由结构不同或结构相同而点阵参数不同的两块晶体相交接而形成的界面。沉淀相与基体间、外延层与衬底间、马氏体与母相间的界面均为相界。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料科学基础史上最全名词解释妈妈再也不用担心我的学习了来源:翟昆的日志1、晶体原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

2、中间相两组元A和B组成合金时,除了形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A,B两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3、亚稳相亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

4、配位数晶体结构中任一原子周围最近邻且等距离的原子数。

5、再结晶冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。

(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)6、伪共晶非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。

7、交滑移当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

8、过时效铝合金经固溶处理后,在加热保温过程中将先后析出GP区,θ”,θ’,和θ。

在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ’,这时材料的硬度强度将下降,这种现象称为过时效。

9、形变强化金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。

10、固溶强化由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

11、弥散强化许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。

12、不全位错柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

13、扩展位错通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。

14、螺型位错位错线附近的原子按螺旋形排列的位错称为螺型位错。

15、包晶转变在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。

16、共晶转变由一个液相生成两个不同固相的转变。

17、共析转变由一种固相分解得到其他两个不同固相的转变。

18、上坡扩散溶质原子从低浓度向高浓度处扩散的过程称为上坡扩散。

表明扩散的驱动力是化学位梯度而非浓度梯度。

19、间隙扩散这是原子扩散的一种机制,对于间隙原子来说,由于其尺寸较小,处于晶格间隙中,在扩散时,间隙原子从一个间隙位置跳到相邻的另一个间隙位置,形成原子的移动。

20、成分过冷界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷。

21、一级相变凡新旧两相的化学位相等,化学位的一次偏导不相等的相变。

22、二级相变:从相变热力学上讲,相变前后两相的自由能(焓)相等,自由能(焓)的一阶偏导数相等,但二阶偏导数不等的相变称为二级相变,如磁性转变,有序-无序转变,常导-超导转变等。

23、共格相界如果两相界面上的所有原子均成一一对应的完全匹配关系,即界面上的原子同时处于两相晶格的结点上,为相邻两晶体所共有,这种相界就称为共格相界。

24、调幅分解过饱和固溶体在一定温度下分解成结构相同、成分不同的两个相的过程。

25、回火脆性淬火钢在回火过程中,一般情况下随回火温度的提高,其塑性、韧性提高,但在特定的回火温度范围内,反而形成韧性下降的现象称为回火脆性。

对于钢铁材料存在第一类和第二类回火脆性。

他们的温度范围、影响因素和特征不同。

26、再结晶退火所谓再结晶退火工艺,一般是指将冷变形后的金属加热到再结晶温度以上,保温一段时间后,缓慢冷却至室温的过程。

27、回火索氏体淬火刚在加热到400-600℃温度回火后形成的回火组织,其由等轴状的铁素体和细小的颗粒状(蠕虫状)渗碳体构成。

28、有序固溶体当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列。

29、非均匀形核新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外来表面形核。

30、马氏体相变钢中加热至奥氏体后快速淬火所形成的高硬度的针片状组织的相变过程。

31、贝氏体相变钢在珠光体转变温度以下,马氏体转变温度以上范围内(550℃-230℃)的转变称为贝氏体转变。

32、铝合金的时效经淬火后的铝合金强度、硬度随时间延长而发生显著提高的现象称之为时效,也称铝合金的时效。

33、热弹性马氏体马氏体相变造成弹性应变,而当外加弹性变性后可以使马氏体相变产生逆转变,这种马氏体称为热弹性马氏体。

或马氏体相变由弹性变性来协调。

这种马氏体称为热弹性马氏体。

34、柯肯达尔效应反映了置换原子的扩散机制,两个纯组元构成扩散偶,在扩散的过程中,界面将向扩散速率快的组元一侧移动。

35、热弹性马氏体相变当马氏体相变的形状变化是通过弹性变形来协调时,称为热弹性马氏体相变。

36、非晶体原子没有长程的周期排列,无固定的熔点,各向同性等。

37、致密度晶体结构中原子体积占总体积的百分数。

38、多滑移当外力在几个滑移系上的分切应力相等并同时达到了临界分切应力时,产生同时滑移的现象。

39、过冷度相变过程中冷却到相变点以下某个温度后发生转变,平衡相变温度与该实际转变温度之差称过冷度。

40、间隙相当非金属(X)和金属(M)原子半径的比值rX/rM<0.59时,形成的具有简单晶体结构的相,称为间隙相。

41、全位错把柏氏矢量等于点阵矢量或其整数倍的位错称为全位错。

42、滑移系晶体中一个滑移面及该面上一个滑移方向的组合称一个滑移系。

43、离异共晶共晶体中的α相依附于初生α相生长,将共晶体中另一相β推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特点消失,这种两相分离的共晶体称为离异共晶。

44、均匀形核新相晶核是在母相中存在均匀地生长的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响。

45、刃型位错晶体中的某一晶面,在其上半部有多余的半排原子面,好像一把刀刃插入晶体中,使这一晶面上下两部分晶体之间产生了原子错排,称为刃型位错。

46、细晶强化晶粒愈细小,晶界总长度愈长,对位错滑移的阻碍愈大,材料的屈服强度愈高。

晶粒细化导致晶界的增加,位错的滑移受阻,因此提高了材料的强度。

47、双交滑移如果交滑移后的位错再转回和原滑移面平行的滑移面上继续运动,则称为双交滑移。

48、单位位错把柏氏矢量等于单位点阵矢量的位错称为单位位错。

49、反应扩散伴随有化学反应而形成新相的扩散称为反应扩散。

50、晶界偏聚由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上的富集现象。

51、柯氏气团通常把溶质原子与位错交互作用后,在位错周围偏聚的现象称为气团,是由柯垂尔首先提出,又称柯氏气团。

52、形变织构多晶体形变过程中出现的晶体学取向择优的现象叫形变织构。

53、点阵畸变在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变。

54、稳态扩散在稳态扩散过程中,扩散组元的浓度只随距离变化,而不随时间变化。

55、包析反应由两个固相反应得到一个固相的过程为包析反应。

56、非共格晶界当两相在相界处的原子排列相差很大时,即错配度δ很大时形成非共格晶界。

同大角度晶界相似,可看成由原子不规则排列的很薄的过渡层构成。

57、置换固溶体当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。

58、间隙固溶体溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。

59、二次再结晶再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。

60、伪共析转变非平衡转变过程中,处在共析成分点附近的亚共析、过共析合金,转变终了组织全部呈共析组织形态。

61、肖脱基空位在个体中晶体中,当某一原子具有足够大的振动能而使振幅增大到一定程度时,就可能克服周围原子对它的制约作用,跳离其原来位置,迁移到晶体表面或内表面的正常结点位置上而使晶体内部留下空位,称为肖脱基空位。

62、弗兰克尔空位离开平衡位置的原子挤入点阵中的间隙位置,而在晶体中同时形成相等数目的空位和间隙原子。

63、非稳态扩散扩散组元的浓度不仅随距离x变化,也随时间变化的扩散称为非稳态扩散。

64、时效过饱和固溶体后续在室温或高于室温的溶质原子脱溶过程。

65、回复指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。

66、相律相律给出了平衡状态下体系中存在的相数与组元数及温度、压力之间的关系,可表示为:f=C+P-2,f为体系的自由度数,C为体系的组元数,P为相数。

67、合金两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。

68、孪晶孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为孪晶,此公共晶面就称孪晶面。

69、相图描述各相平衡存在条件或共存关系的图解,也可称为平衡时热力学参量的几何轨迹。

70、孪生晶体受力后,以产生孪晶的方式进行的切变过程叫孪生。

71、晶界晶界是成分结构相同的同种晶粒间的界面。

72、晶胞在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

73、位错是晶体内的一种线缺陷,其特点是沿一条线方向原子有规律地发生错排;这种缺陷用一线方向和一个柏氏矢量共同描述。

74、偏析合金中化学成分的不均匀性。

75、金属键自由电子与原子核之间静电作用产生的键合力。

76、固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

77、亚晶粒一个晶粒中若干个位相稍有差异的晶粒称为亚晶粒。

78、亚晶界相邻亚晶粒间的界面称为亚晶界。

79、晶界能不论是小角度晶界或大角度晶界,这里的原子或多或少地偏离了平衡位置,所以相对于晶体内部,晶界处于较高的能量状态,高出的那部分能量称为晶界能,或称晶界自由能。

80、表面能表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。

81、界面能界面上的原子处在断键状态,具有超额能量。

平均在界面单位面积上的超额能量叫界面能。

82、淬透性淬透性指合金淬成马氏体的能力,主要与临界冷速有关,大小用淬透层深度表示。

83、淬硬性淬硬性指钢淬火后能达到的最高硬度,主要与钢的含碳量有关。

84、惯习面固态相变时,新相往往在母相的一定晶面开始形成,这个晶面称为惯习面。

85、索氏体中温段珠光体转变产物,由片状铁素体渗碳体组成,层片间距较小,片层较薄。

86、珠光体铁碳合金共析转变的产物,是共析铁素体和共析渗碳体的层片状混合物。

相关文档
最新文档