奥氏体不锈钢的焊接技术
316l奥氏体不锈钢的焊接方法 -回复
316l奥氏体不锈钢的焊接方法-回复以下是一篇关于316L奥氏体不锈钢焊接方法的1500-2000字文章:316L奥氏体不锈钢是一种低碳型不锈钢,具有良好的耐蚀性和高抗拉强度,常用于化工、海洋、医疗和食品加工等领域。
在实际应用中,我们经常需要对316L奥氏体不锈钢进行焊接以满足特定的工程要求。
下面,我们将详细介绍316L奥氏体不锈钢的焊接方法。
焊接是将两个金属材料结合在一起的过程,其中包括热能输入、熔化和再凝固。
在焊接316L奥氏体不锈钢时,我们需要关注以下几个方面:选择适合的焊接方法、准备工作、焊接参数和后续处理。
首先,选择适合的焊接方法非常重要。
根据具体应用需求,我们可以选择手工电弧焊、TIG焊、MIG焊或激光焊等方法。
手工电弧焊通常适用于对焊缝的质量要求较低的场合;TIG焊和MIG焊适用于需要高质量和高焊缝性能的场合;而激光焊则适用于对焊缝质量要求极高的特殊工艺。
接下来,准备工作是确保焊接质量的关键。
首先,需要清洁并预热工件表面,以去除油脂、污垢和氧化物等杂质。
清洁剂的选择应避免含有氯化物和强酸,同时避免使用含有研磨颗粒的清洁剂,以防止产生划痕。
预热是为了降低焊接时的残余应力和保证焊缝质量,一般推荐在150-200摄氏度范围内进行预热。
确定了焊接方法和准备工作之后,我们需要关注焊接参数的选择。
对于316L奥氏体不锈钢的焊接,最常用的是TIG焊。
在进行TIG焊时,需要选择合适的气体(如氩气)作为保护气体,并调整合适的气体流量和焊接电流。
气体保护可以防止氧气和水分进入焊缝,从而保证焊缝质量。
同时,通过选择合适的焊接电流和焊接速度,可以控制熔池的温度和尺寸,从而达到理想的焊接效果。
最后,焊接完成后,我们需要进行后续处理以确保焊缝的完整性和质量。
对于某些应用需要高度致密的焊缝的情况,可以进行退火处理以消除残余应力。
此外,还可以进行打磨和抛光等表面处理,以提高焊缝的外观质量和腐蚀性能。
需要注意的是,退火处理的温度和时间应根据实际情况选择,以避免导致材料的相变或变形。
铁素体不锈钢和奥氏体不锈钢的焊接
铁素体不锈钢和奥氏体不锈钢的焊接引言:不锈钢作为一种常见的材料,在工业生产和日常生活中得到了广泛应用。
其中,铁素体不锈钢和奥氏体不锈钢是两种常见的不锈钢材料。
在实际应用中,这两种材料常常需要进行焊接,以满足各种需求。
本文将对铁素体不锈钢和奥氏体不锈钢的焊接进行详细介绍。
一、铁素体不锈钢的焊接铁素体不锈钢是一种含有铁素体结构的不锈钢,其主要成分是铁、铬和少量的碳、镍等元素。
由于其具有优异的耐腐蚀性和机械性能,被广泛应用于化工、航空航天、能源和食品加工等领域。
在铁素体不锈钢的焊接过程中,需要注意以下几点:1.选择合适的焊接方法:常见的铁素体不锈钢焊接方法包括手工电弧焊、氩弧焊和氩弧钨极焊。
根据具体应用场景和要求,选择合适的焊接方法。
2.选择合适的焊接材料:铁素体不锈钢的焊接材料通常选择铁素体不锈钢焊丝,以保证焊接接头的性能和耐腐蚀性。
3.控制焊接参数:焊接参数的选择对焊接接头的质量和性能至关重要。
包括焊接电流、焊接电压、焊接速度等。
4.预热和后热处理:对于厚度大于4mm的铁素体不锈钢,需要进行预热和后热处理,以减少焊接应力和提高焊接接头的性能。
二、奥氏体不锈钢的焊接奥氏体不锈钢是一种含有奥氏体结构的不锈钢,其主要成分是铬、镍和少量的碳、钼等元素。
奥氏体不锈钢具有较高的强度和耐腐蚀性,广泛应用于化工、海洋工程、医疗器械等领域。
在奥氏体不锈钢的焊接过程中,需要注意以下几点:1.选择合适的焊接方法:奥氏体不锈钢的焊接方法包括手工电弧焊、氩弧焊、氩弧钨极焊和激光焊等。
根据具体应用场景和要求,选择合适的焊接方法。
2.选择合适的焊接材料:奥氏体不锈钢的焊接材料选择奥氏体不锈钢焊丝,以保证焊接接头的性能和耐腐蚀性。
3.控制焊接参数:焊接参数的选择对焊接接头的质量和性能至关重要。
包括焊接电流、焊接电压、焊接速度等。
4.防止热裂纹的产生:奥氏体不锈钢焊接时容易产生热裂纹,因此需要采取措施,如降低焊接热输入、采用适当的焊接顺序等。
奥氏体不锈钢的焊接特点及焊接工艺
奥氏体不锈钢的焊接特点及焊接工艺【摘要】奥氏不锈钢的焊接技术在我国得到了广泛的使用,其虽然有很多的优点,但仍还存在许多的缺点,本文将从奥氏体不锈钢的化学成分、组织和性能,奥氏体不锈钢焊接方法,奥氏体不锈钢焊接问题及解决措施等方面去了解在这方面内容。
【关键词】奥氏体,不锈钢,焊接工艺,焊接特点一、前言不锈钢是一种广泛使用的金属材料,而且不锈钢使用的前景也是十分广阔的,我们应该深入的了解不锈钢焊接的本质和实在意义,为下一步发展打下坚实的基础。
本文的简单介绍和深入理解将会给读者带来全新的和全方位的视角去看待奥氏不锈钢的优缺点。
二、奥氏体不锈钢的化学成分、组织和性能奥氏体不锈钢基本成分为18%Cr、8%Ni,简称18- 8 型不锈钢。
为了调整耐腐蚀性、力学性能、工艺性能和降低成本,在奥氏体不锈钢中还常加入Mn、Cu、N、Mo、Ti、Nb 等合金元素,以此在18- 8 型不锈钢基础上发展了许多新钢种。
奥氏体不锈钢具有良好的焊接性、低温韧性和无磁性等性能,其特点是含碳量低于0.1%,利用Cr、Ni 配合获得单相奥氏体组织,具有良好的冷变形能力、较高的耐蚀性和塑性,可以冷拔成很细的钢丝、冷拔成很薄的钢带或钢管。
与此同时,经过大量变形后,钢的强度大为提高,这是因为除了冷作硬化效果外,还叠加了形变诱发马氏体转变。
奥氏体不锈钢具有良好的抗均匀腐蚀能力,但在抗局部腐蚀方面仍存在一些问题。
奥氏体不锈钢焊接的主要问题是:焊接接头晶间腐蚀、焊接接头应力腐蚀开裂、焊接接头热裂等。
三、奥氏体不锈钢焊接方法奥氏体不锈钢的焊接方法有很多,例如手工焊、气体保护焊,埋弧焊、等离子焊等等。
最常用的焊接方法是手工焊(MMA),其次是金属极气体保护焊(MIG/MAG)和钨极惰性气体保护焊(TIG)。
本文以石油化工行业管道安装施工中最常用的手工电弧焊及钨极氩气保护焊为例,简单描述其焊接施工中的注意事项。
1.手工焊条电弧焊,是焊接厚度在2 mm 以上的奥氏体不锈钢板最常用的焊接方法。
奥氏体不锈钢的焊接总结
奥氏体不锈钢的焊接总结奥氏体不锈钢是一种重要的金属材料,具有良好的耐腐蚀性和抗氧化性能,被广泛应用于工业制造中。
而焊接是连接金属材料的重要方式之一,也是生产过程中必不可少的环节。
在焊接奥氏体不锈钢时,需要考虑到合适的焊接方法、焊接工艺参数、焊接后的热处理等因素。
本文将从这些方面对奥氏体不锈钢的焊接进行总结。
一、焊接方法奥氏体不锈钢的焊接可以采用多种方法,常见的有手工电弧焊、氩弧焊、激光焊等。
1. 手工电弧焊:手工电弧焊是最常见的焊接方法之一。
其特点是操作简单,设备要求不高,适用于小型焊接作业。
但手工电弧焊的焊接效率较低,焊缝质量难以控制。
2. 氩弧焊:氩弧焊是目前最常用的奥氏体不锈钢焊接方法。
氩气的保护作用可以防止氧气和水分侵入焊缝,提高焊接质量。
氩弧焊还可以根据实际需要选择直流或交流。
3. 激光焊:激光焊是一种高能量密度的焊接方法,可以实现高速、高精度的焊接。
激光焊的热影响区较小,对焊接材料的变形和变质影响较小,适用于高要求的焊接作业。
但激光焊设备价格较高,操作要求较高。
二、焊接工艺参数在焊接奥氏体不锈钢时,需要合理选择和控制焊接工艺参数,以确保焊接质量。
1. 焊接电流:焊接电流直接影响熔深和焊缝质量。
对于不同规格的奥氏体不锈钢,需要根据材料的导电性和热导性选择适当的焊接电流。
2. 焊接电压:焊接电压影响焊缝形状和焊缝宽度。
一般来说,较高的焊接电压可以增加焊缝宽度,但焊接材料的变形和变质也会增加。
3. 焊接速度:焊接速度直接影响焊接效率和焊缝质量。
过高的焊接速度可能导致焊缝质量不稳定,过低的焊接速度则会影响生产效率。
4. 氩气流量:氩气是保护气体,在焊接过程中起到保护焊缝的作用。
合适的氩气流量可以防止氧气和水分污染焊缝。
三、焊接后的热处理在焊接奥氏体不锈钢后,还需要进行相应的热处理,以消除焊接过程中产生的应力和晶间腐蚀敏感性。
1. 固溶处理:奥氏体不锈钢在800-1100℃范围内进行固溶处理,可以解决焊缝和热影响区的晶间腐蚀敏感性。
奥氏体不锈钢的双人双面同步钨极氩弧焊
对不锈钢干燥器、储罐焊接的几点技术建议本焊接技术建议是通过其他项目验证后得出的,并且取的了良好的效果。
非焊接施工作业指导书,本技术建议仅作为技术交流使用。
1.双人双面氩弧焊原理。
原理见下图:双人双面氩弧焊示意图1.1两焊枪从焊缝正、反面同时对准同一熔池,以同样的速度沿同一个方向进行焊接。
实际上是利用正、反两面的两个电弧同时对同一熔池加热,已获得所需熔深,并起到相互保护的作用。
由于氩弧焊的明弧特点,反面焊工完全能够看清正面焊的熔池位置,并对准正面熔池进行保护,同时起到联合加热熔化的作用。
该工艺主要是利用双面焊枪的电弧作用形成一个向上、向中间的托力,并与熔池的表面张力共同对熔池起着支承作用,从而防止熔池金属下滴而获得完美的焊缝。
保护效果优于充氩保护,焊缝表面基本呈银白色或金黄色光泽。
1.2由于正反面同时焊接,电弧能量密度加大,能量更加集中,使受热面积和热影响区域小,相应减少了焊接应力,降低了热裂纹及在热裂纹倾向,焊后几乎未发现焊接变形和裂纹。
另外,正、反面双电弧加热熔化使接头不开坡口即可一次焊透成形。
提高了焊接速度,减少了焊缝金属填充量。
防止了氢脆和氧化的产生。
2.工艺与操作2.1 工艺特点:2.1.1 正、反面焊枪必须同步施焊,正面焊枪在前,反面焊枪稍落后于正面焊枪,并跟随正面焊枪同步移动,间距始终保持为一个熔池长度以起到保护作用,反面焊枪焊接速度由正面焊枪移动速度决定。
2.1.2 在正面焊枪单面加焊丝,并选用合适的焊接电流,反面焊枪可不加焊丝,只要能保证焊透和平滑的反面成形,尽量选用较小的焊接电流。
2.1.3 不论工件外形如何均使用,焊接位置特别适合立焊或横焊位置及少量倾斜的仰焊位置。
2.2 操作工艺:(以4mm板材为例,焊接方法:全氩)2.2.1 接头、坡口形式:I形坡口2.2.2 组对间隙:0-1.5(mm)错边量:≤0.5mm2.2.3 焊丝直径:φ1.6mm2.2.4 氩气纯度:≥99.99%2.2.5 钨极尺寸:φ2.4mm2.2.6 喷嘴直径:φ10mm喷出的氩气应保持稳定层流2.2.7 气体流量:正面:10-12(L/Min)反面:8-10(L/Min)2.2.8 钨极伸出的长度:4-7(mm)2.2.9 电流种类、极性:直流正接(DCEN)2.2.10 焊接电流:正面:35-50(A)反面:30-45(A)2.2.11 焊接速度:20-30(cm/min)2.2.12 引弧方式:高频开关引弧2.2.13 焊接层数:一次成型2.2.14 正面焊枪采用摇摆法焊接,反面焊枪根据实际情况可采用传统法焊接2.2.15焊枪与工件夹角:正面焊接时焊枪与工件表面呈80°-85°,填充焊丝与水平面夹角为角度5°-15°。
奥氏体-铁素体双相不锈钢的焊接
奥氏体—铁素体双相不锈钢的焊接双相不锈钢是在固溶体中铁素体相和奥氏体相各约占一半,一般较少相的含量至少也需要达到30%的不锈钢.这类钢综合了奥氏体不锈钢和铁素体不锈钢的优点,具有良好的韧性、强度及优良的耐抓化物应力腐蚀性能。
奥氏体一铁素体双相不锈钢的类型1.低台金型双相不锈钢00Cr23Ni4N钢是瑞典级先开发的一种低合金型的双相不锈钢,不含钼、铬和镍的含量也较低.由于钢中Cr含量23%,有很好的耐孔蚀、缝隙腐蚀和均匀腐蚀的性能,可代替308L和316L等常用奥氏体不锈钢.2.中合金型双相不锈钢典型的中合命型不锈钢有0Cr21Ni5Ti、1Cr21Ni5Ti。
这两种钢是为了节镍,分别代替0Cr18Ni9Ti和1Cr18Ni9Ti而设计的,但比后者具有更好的力学性能,尤其是强度更高。
00Cr18Ni5Mo3Si2、00Cr18Ni5Mo3Si2Nb双相不锈钢是目前合金元素含量最低、焊接性良好的耐应力腐蚀钢种,它在抓化物介质中的耐孔蚀性能同317L相当,耐中性氯化物应力腐蚀性能显著优于普通18—8型奥氏休不锈钢,具有较好的强度-韧性综合性能、冷加工工艺性能及焊接性能,适用作结构材料。
OOCr22Ni5Mo3N 属于第二代双相不锈钢,钢中加人适量的氮不仅改善了钢的耐孔蚀和耐SCC性能,而且由于奥氏体数量的提高有利于两相组织的稳定,在高温加热或焊接HAZ能确保一定数里的奥氏体存在,从而提高了焊接HAZ的耐蚀和力学性能。
这种钢焊接性良好,是目前应用最普遍的双相不锈钢材料。
3。
高合金双相不锈钢这类双相不锈钢铬的质量分数高达25%,在双相不锈钢系列中出现最早。
20世纪70年代以后发展了两相比例更加适宜的超低碳含氮双相不锈钢,除钳以外,有的牌号还加人了铜、钨等进一步提高耐腐蚀性的元素。
4.超级双相不锈钢这种类型的双相不锈钢是指PREN。
大于40,铬的质量分数为25%和钼含量高、氮含量高的钢.双相不锈钢的耐蚀性1.耐应力腐浊性能与奥氏体不锈钢相比,双相不锈钢具有强度高,对晶间腐蚀不敏感和较好的耐点腐蚀和耐缝隙腐蚀的能力,其中优良的耐应力腐蚀是开发这种钢的主要目的。
2024年奥氏体不锈钢的焊接总结模版(2篇)
2024年奥氏体不锈钢的焊接总结模版____年奥氏体不锈钢是一种常用的材料,用于各种工程领域的焊接应用。
在本文中,将对____年奥氏体不锈钢的焊接进行总结,包括其特点、焊接方法、常见焊缺陷及解决方法等。
一、____年奥氏体不锈钢的特点____年奥氏体不锈钢是一种具有良好的耐腐蚀性和强度的材料。
其主要特点如下:1. 良好的耐腐蚀性:____年奥氏体不锈钢具有很好的耐腐蚀性,特别是在高温和氯化物环境下表现出较好的耐腐蚀性。
2. 高强度:____年奥氏体不锈钢具有很高的强度,具有良好的耐热性和耐疲劳性。
3. 焊接性能良好:____年奥氏体不锈钢的焊接性能良好,可采用多种焊接方法进行焊接。
二、____年奥氏体不锈钢的焊接方法____年奥氏体不锈钢的焊接可以采用以下几种常见的方法:1. 气体保护焊接(TIG):气体保护焊接是一种常用的焊接方法,可保证焊缝的质量和外观。
在TIG焊接中,使用惰性气体(如氩气)保护气体,以防止氧气和其他杂质对焊缝的污染。
2. 电弧焊(MIG/MAG):电弧焊是一种高效的焊接方法,可用于快速焊接大尺寸的构件。
在MIG/MAG焊接中,使用带有保护剂的电弧,并通过电弧间隙产生的熔融金属填充焊缝。
3. 电阻焊接:电阻焊接是一种适用于特殊工况的焊接方法,可用于焊接薄板和排气系统等。
在电阻焊接中,通过施加电流使接触点产生热量,熔融金属填充焊缝。
三、常见焊缺陷及解决方法在焊接____年奥氏体不锈钢时,可能会出现一些常见的焊缺陷,如下所示:1. 气孔:气孔是焊接中常见的焊缺陷,可能会导致焊接接头的强度降低。
解决方法包括控制焊接参数、改善气体保护等。
2. 焊缝裂纹:焊缝裂纹是由于应力集中或焊接材料的热膨胀系数不匹配导致的。
解决方法包括降低焊接应力、合理设计焊缝形状等。
3. 焊接变形:焊接过程中,由于热量的作用,会导致金属变形。
解决方法包括采用适当的预热和后热处理方法、合理控制焊接参数等。
四、结论____年奥氏体不锈钢是一种常用的材料,其焊接性能良好。
摇摆焊接TP304奥氏体不锈钢管道操作技巧
摇摆焊接TP304奥氏体不锈钢管道操作技巧
焊接性分析
TP304奥氏体不锈钢管道焊接时具有熔点高、铁水流动性差、导热性差、焊缝易
氧化变色等焊接物理特性。
材料熔点高会导致钨极氩弧焊电弧在焊缝短时间内不
能形成熔池,铁水由于熔点高较为粘稠,流动性差,表现在焊接时电弧移动到那个位置,铁水跟随电弧流动到哪里,这就要求焊工手持焊枪移动、停顿电弧要稳、准。
同时不锈钢导热性差,焊缝极易氧化变色,特别是焊缝及热影响区呈暗灰氧
化色时,铁水流动发涩,造成焊纹凌乱,咬边严重,就为失败焊缝。
焊接准备
焊接电源:选用具有陡降外特性的直流逆变手工钨极氩弧焊机;焊枪型号
QQ-85°/300;喷嘴型号5~9号;试件规格Φ60mm×4mm×100mm;焊材牌号ER308(H08Gr21Ni10Si)规格为Φ2.4mm。
焊接工艺
焊接方法采用手工钨极氩弧焊,单面焊双面成形,背面充氩气保护,焊接工艺参数见附表。
附表焊接工艺参数。
奥氏体不锈钢薄板对接焊接工艺的制作流程
位置,调节完成后进行正式激光焊接,焊接时防止有外部气流影响焊接。
以上描述是对本技术的解释,不是对技术的限定,本技术所限定的范围参见权利要求,在不 违背本技术的基本结构的情况下,本技术可以作任何形式的修改。
b.打磨完需清理待焊接区域,用丙酮将焊接面彻底擦拭干净,焊缝区域5mm内的油污等也需
要清理干净;
(2)装夹:用夹具装夹压紧待焊接的0.3mm不锈钢薄板,具体拼接方式是两块不锈钢薄板平行 拼接,要求表面平整无错边,且焊缝处拼装间隙不得大于0.05mm;
(3)点固:在焊缝两端和焊缝中间各点固一个点,点固参数为点固功率300W、点固时间为 0.1s、离焦量为-3;
技术内容
本申请人针对以上缺点,进行了研究改进,提供一种奥氏体不锈钢薄板对接焊接工艺。
本技术所采用的技术方案如下:
一种奥氏体不锈钢薄板对接焊接工艺,包括以下步骤:
(1)焊接准备:
a.取不锈钢薄板,观察其待焊接面,要求平整无划伤,凹痕等缺陷;如果不满足要求需要用
砂纸打磨焊接面,且打磨时要注意焊接面的平行度,不可打磨成弧面;
要清理干净;
(2)装夹:用夹具装夹压紧待焊接的不锈钢薄板,具体拼接方式是两块不锈钢薄板平行拼 接,要求表面平整无错边,且焊缝处拼装间隙不得大于0.05mm;
(3)点固:在焊缝两端和焊缝中间各点固一个点,点固参数为点固功率300~500W、点固时 间为0.1~0.3s、离焦量为-3~+3;
(4)激光打底焊接:由于0.3-0.9mm的不锈钢比较薄,焊接时熔池中材料较少,略量为10L/min、保护气体方向是在焊接前进方向后面1mm的位
奥氏体不锈钢Super304H(A213-S30432)焊接工艺
奥氏体不锈钢 Super304H(A213-S30432 )焊接工艺关键词:Super304H (A213-S30432) ;焊接;裂纹1 Super304H的化学成分及力学性能1.1 Super304H的化学成分Super 304H 钢是一种改良自高碳18Cr-8Ni(TP304H)类不锈钢而开发出的新型奥氏体耐热钢。
与传统的TP304H 类钢种相比,其主要的合金化措施是在材料中加入了大约3%的铜、0.4 %的铌以及少量的氮元素,同时提高了碳的含量范围;其它的微合金化还包括微量的铝和硼元素的加入。
在高温服役条件下,Super 304H钢的显微组织中会析出非常细小并弥散分布于奥氏体基底中的碳化物、碳-氮化物,如M23C6、Nb(C,N)和NbCrN 等。
1.2 Super304H的力学性能这些弥散分布的析出相的共同作用,使材料的力学性能,特别是高温蠕变性能得到了显著的提高。
大量的性能试验表明该钢的组织和力学性能稳定,而且价格便宜,是超超临界锅炉过热器、再热器的首选材料。
表1 列出了Super 304H钢母材金属的成分范围,表2为该钢种的常温拉伸性能和最高硬度,表3 是在475℃~725℃温度范围内材料的最大许用应力。
表1 Super304H的化学成分(Wt%)表2 Super304H钢管的室温力学性能2 Super304H钢的焊接性能分析2.1 晶间腐蚀倾向晶间腐蚀是奥氏体耐热钢一种极其危险的破坏形式。
在碳质量分数高于0.02%的奥氏体不锈钢中,碳与铬能生成碳化物(Cr23C6)。
这些碳化物高温淬火时呈固溶态溶于奥氏体中,铬呈均匀分布,使合金各部分铬质量分数均在钝化所需值,即12%Cr以上。
如果加热到敏化温度范围(500~850 ℃)内,晶界上就会形成敏化组织即晶界上析出的连续的、网状的碳化物(Cr23C6),铬便从晶粒边界的固溶体中分离出来。
该情况下碳化铬和晶粒呈阴极,贫铬区呈阳极,迅速被侵蚀。
奥氏体不锈钢的焊接工艺及焊接材料
1、奥氏体不锈钢的焊接特点(1)容易出现热裂纹防止措施:(a)尽量使焊缝金属呈双相组织,铁素体的含量控制在3-5%以下。
因为铁素体能大量溶解有害的S、P杂质。
(b)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。
(2)晶间腐蚀根据贫铭理论,焊缝和热影响区在加热到450-850℃敏化温度区时在晶界上析出碳化络,造成贫铭的晶界,不足以抵抗腐蚀的程度。
防止措施:(a)采用低碳或超低碳的焊材,如A002等;采用含钛、铝等稳定化元素的焊条,如AI37、A132等。
(b)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制在4~12%)o(C)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度。
(d)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。
(3)应力腐蚀开裂应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。
奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。
防止措施:(a)合理制定成形加工和组装工艺,尽可能减小冷作变形度,避免强制组装,防止组装过程中造成各种伤痕(各种组装伤痕及电弧灼痕都会成为SCC的裂源,易造成腐蚀坑)。
(b)合理选择焊材:焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等。
(O采取合适的焊接工艺:保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平。
(d)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。
(e)生产管理措施:介质中杂质的控制,如液氨介质中的。
2、N2、等;液化石油气中的H2S;氯化物溶液中的。
2、Fe3÷,CM+等;防蚀处理:如涂层、衬里或阴极保护等;添加缓蚀剂。
(4)焊缝金属的低温脆化对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。
小议奥氏体不锈钢的焊接
1 焊 接 工 艺
1 . 1 焊 接 方 法
钨极伸 出长度 6 —8 m m. 焊条直径 d / , 2 . 0 a r m. 电流 7 O 一9 O A .
2 . 3 . 1 引 弧
ห้องสมุดไป่ตู้
采用 手工钨极氩弧焊打底 . 焊条 电弧焊填充和盖面。3层 6道焊 , 板材 为奥 氏体不锈钢 . 规格为 1 0 0 x 3 0 0 m m , 厚度 为 1 2 a r m 。氩气纯度不 低于 9 9 . 9 5 %.采用 N S A一 5 0 0 — 1型焊 机 ,焊 丝采用 T H T 4 9 — 1 ,直径 中2 . 0 am. r 焊条采用 E 3 4 7 -1 6 ( A 1 3 2 ) , 直径 中2 . 0 mm。 1 . 2 焊 前 准备 ( 1 ) 为 了保证焊 接质量 , 板材应开 v型坡 口 , 单 边坡 口 3 0 。 左右 , 钝边为 1 . 5 I T l m, ( 如图 1 )焊前应将坡 口及其两侧 2 0 - - - 3 0 mm范 围中焊
件表面清理干净 , 如有 油污 . 可用丙酮或酒精有机溶剂擦拭 。
t O ’
7
l , , , 、 、, , ^
引弧前应提前 5 一l O s 送气 , 引弧方法有两种 : 高频振荡 引弧和接 触引弧 . 最好采用非接触引弧 。 采用非接触引弧 时. 应先将钨极端头与 试件之间保持较短距离 . 然后接通引弧 电路 . 在高频 电流或高压脉 冲 电流 的作用下引燃 电弧 。这种方法 可以减少钨极烧损和 防止焊缝夹 钨 在无引弧设备施 焊时, 需采用接触引弧法。 即将 钨极末端与试件直 接短路 . 然后迅速抬起而引燃 电弧 为 了防止焊缝夹钨 , 可先在引弧板 上引燃电弧 , 然后再将 电弧移到焊缝起点处 。 采用何种 引弧方法 , 视工 厂 的设备而定。 2 _ 3 . 2 焊 接 . 焊接时 . 为了得到 良好 的气体保护效果 . 在不妨碍视线 的情况下 . 应尽量采用短弧焊。 要注意保持电弧一定高度和焊枪移动速度 的均匀 性. 以确保焊缝 的熔深 、 的均匀 , 防止产生气孔和夹 杂等缺 陷。填充焊 丝在熔池前均匀地 向熔池送人 . 切不可扰乱氩气气流。焊丝的端部应 始终置于氩气保护 区内. 以免氧化 ( 如图4 )
奥氏体不锈钢及镍基合金焊接特殊技术要求
奥氏体不锈钢及镍基合金焊接特殊技术要求
焊接奥氏体不锈钢及镍基合金宜采用钨极氩弧焊、焊条电弧焊、熔化极气保焊、埋弧焊等方法。
坡加工宜采用机械方式。
当采用等离子切割进行下料和坡加工时,应预留不少于5mm的加工余量。
奥氏体不锈钢和镍基合金应单独存放,不应与与碳钢或其他合金钢混放接触,以防止铁离子污染。
测量坡和焊缝尺寸应采用不锈钢材料或其他防止铁离子污染的专用焊检测工具。
坡清理、修整接头、清理焊渣和飞溅用的电动或手动打磨工具,宜选用无氯铝基无铁材料制成的砂布、砂轮片、电磨头,或选用不锈钢材料制成的錾头、钢丝刷或其他专用材料制成的器具。
钨极氩弧焊焊接时,焊机应具有高频引弧及保护气体提前和滞后功能。
焊接前宜采用酒精或丙酮等溶剂对焊接坡及其有热影响的相邻区域进行清洗。
当可以进行双面焊接时,最后一层焊缝宜安排在介质侧。
钨极氩弧焊时宜选用直径不大于2.5mm的焊丝,焊条电弧焊时宜选用直径为2.5mm〜3.2mm的焊条。
压力管道和耐腐蚀部件
异种材料焊接时宜选用镍基等焊丝。
压力管道和耐强腐蚀介质部件焊接时,应采取小线能量焊接,焊层厚度不宜大于焊条(丝)直径。
焊接宜采用多层多道焊,焊接过程中采用红外测温仪或其他测量器具测量层间温度,层间温度应控制在150°C以下。
当用水冷却时,宜采用纯净水。
钨极氩弧焊封底及次层的填充焊接,应采取背面充惰性保护气体或其他防止焊接区域与空气直接接触的措施。
当焊接小径管采用充惰性气体保护时,宜采用整根管子内部充气的方式。
不锈钢焊缝表面色泽不应出现灰色和黑色。
单一奥氏体钢焊缝金属的金相组织中不得有5铁素体存在。
奥氏体不锈钢焊接工艺
奥氏体不锈钢焊接工艺如下:
1.焊条的选择。
正确选用焊条是保证焊接接头使用性能的关键,
选用焊条的一般原则是,应使焊缝金属与母材具有相同的使用
性能。
2.焊接工艺要点。
奥氏体不锈钢焊接环境温度一般不应低于0℃,
否则,熔化情况不好,也容易产生裂纹,但不得对工件预热。
为防止产生晶间腐蚀和热裂纹,应采用快速焊、窄焊道。
3.进行固溶处理或均匀化热处理。
焊后把焊接接头加热到1050~
1100℃,使碳化物又重新溶解到奥氏体中,然后迅速冷却,形成
稳定的单相奥氏体组织。
另外,也可以进行850~900℃保温2h
的均匀化热处理,此时奥氏体晶粒内部的Cr扩散到晶界,晶界
处Cr量又重新达到了大于12%,这样就不会产生晶间腐蚀了。
奥氏体不锈钢钨极氩弧焊技术规范
1 目旳规范奥氏体不锈钢钨极氩弧焊(TIG焊)旳操作过程,保证焊接质量。
2 范围本规范规定了奥氏体不锈钢一般焊接接头旳钨极氩弧焊工艺以及工艺参数,合用于湖南奇思环境保护有限企业实行旳全过程。
产品中关键或有特殊规定旳焊缝旳焊接规范则按照详细旳关键工艺执行。
3 规范性引用文献下列文献对于本文献旳应用是必不可少旳。
但凡注日期旳引用文献,仅注日期旳版本合用于本文献。
但凡不注日期旳引用文献,其最新版本(包括所有旳修改单)合用于本文献。
YB/T 5092-2023 《焊接用不锈钢丝》GB985 《气焊、手工电弧焊及气体保护焊焊缝坡口旳基本形式与尺寸》WI-E60-H01 《二氧化碳气体保护焊通用技术规范》WI-E60-H03 《焊缝外观质量检查原则》4 焊工4.1施焊焊工必须持有对应项目旳焊工上岗证(安监部门颁发),从事钨极氩弧焊工作时间超过1年;4.2钨极氩弧焊焊工须具有如下技能:4.2.1能理解焊缝符号旳含义,按图纸、工艺、原则施焊;4.2.2能在工艺规定旳焊接工艺参数范围内调整参数,焊接出合格旳焊缝;4.2.3能操作和维护焊接设备;4.2.4能进行开坡口和不开坡口平对接旳钨极氩弧焊操作,能进行开坡口和不开坡口T型接头角焊缝旳钨极氩弧焊操作;4.3关键工序旳焊接,必须经工艺部门考核合格;5 焊接材料5.1 我司采用旳不锈钢焊丝型号为ER304,规格为φ1.6mm和φ3.2mm,应符合YB/T 5092-2023 《焊接用不锈钢丝》原则旳规定,合用于奥氏体不锈钢304之间旳焊接;焊接气体采用纯氩气;焊机采用脉冲钨极氩弧焊机。
5.2 焊丝验收:5.2.1每批焊材入库,必须有供应商出具旳质量证明书和合格证。
5.2.2焊丝表面光滑平整、不应有毛刺、锈蚀、油污和氧化等。
5.3.3规格为φ1.6mm旳焊丝,容许偏差为0~-0.100。
规格为φ3.2mm旳焊丝,容许偏差为0~-0.124。
5.3焊丝寄存规范:5.3.1寄存焊丝旳仓库应具有干燥通风环境防止潮湿,拒绝水、酸、碱等液体极易挥发有腐蚀性旳物质存在,更不适宜与这些物质共存同一仓库。
奥氏体不锈钢焊接性分析与焊接工艺评定毕业论文
工业学院毕业设计(论文)题目0Cr18Ni9(304)奥氏体不锈钢焊接性分析与焊接工艺评定系别材料工程系专业焊接技术与自动化班级焊接技术与自动化11-2姓名何旺学号3指导教师(职称)胡春霞讲师日期 2014年3月工业学院毕业设计(论文)任务书材料工程系2014届焊接技术与自动化专业毕业设计(论文)任务书注:本任务书要求一式两份,一份系部留存,一份报教务处实践教学科。
摘要钢是我们现代社会中不可缺少的一种材料,它可以看作一个国家工业化水平的标志。
钢的产量越高就代表这个国家的工业化水平越高。
不锈钢是钢中非常重要的的一种,由于不锈钢具有特殊的使用性能和力学性能,在现代的各行各业中已经被越来越多的使用。
在不锈钢中奥氏体不锈钢又是其中非常重要的一种,在发达国家每年消耗的的钢有70%的是不锈钢,在我国也达到了65%左右。
因此开发和使用好奥氏体不锈钢对我国的工业化来说越来越重要了。
0Cr18Ni9就是奥氏体不锈钢,我做的这个课题就是探讨0Cr18Ni9在低温贮罐制造中的性能。
低温贮罐是用来储存液N液Ar液态的CO2等低温液体的容器,液态介质中的特殊性能就决定了制造材料需要特殊性能,而奥氏体不锈钢0Cr18Ni9就具有这样的性能。
低温贮罐在现代生活、生产中使用已越来越广泛,因此对0Cr18Ni9的探讨就显得越来越重要。
在这篇论文中我会着重为大家阐述0Cr18Ni9在低温压力容器制造中的焊接性能、力学性能、使用性能和焊接工艺。
在这篇论文中我会通过一个焊接性试验来探讨0Cr18Ni9在低温压力容器中的各项性能我的这个实验就是规格为8×50×100mm的两块0Cr18Ni9板水平对接焊接方法就是手工电弧焊。
针对这个实验做出完确的焊接工艺评定,并且根据评定要求对试样做相应的无损检验和力学性能的试验,从而来判定0Cr18Ni9的各项性能。
关键词:焊接性能 ;力学性能 ;使用性能 ;焊接工艺AbstractSteel our modern society is indispensable to a material,it can be seen as a sign of the level of industrialized countries.The higher the output of steel on behalf of this country the higher the level of industrialization .Stainless steel is a very important one,because of the use of stainless steel with special performance and mechanical properties,in all walks of life in the present have been increasingly used.Austenitic stainless steel in the stainless steel is a very important one,in the developed world consumption of stainless annually in 70% of the stainless steel is,I have also reached about percent.Thus the development and use of austenitic stainless steel good to me over the words of the the industry has become increasingly important.0Cr18Ni9 is austenitic stainless steel,I do on this subject is 0Cr18Ni9 in low-temperature storge tank manufacturer in the performance.Cryogenic storge tank is used to storge liquid N liquid Ar of liquid CO2 and other low-temperature liquid containers,liquid medium decision on the special properties of the material needs of a special performance and austenitic stainless steel 0Cr18Ni9 on with this performance.Cryogenic storge tank in the present life,has been used in the production of more extensive,therefore 0Cr18Ni9 of it is becoming increasingly important.In this paper I will focus on as we set out in the cold 0Cr18Ni9 pressure vessel manufacture of welding performance,mechanical properties,the use of performance and welding technology.In this paper I will pass a welding test to explore 0Cr18Ni9 in low-temperature pressure vessel in the performance.This is my test specifications for the 8×50×100mm two 0Cr18Ni9 pull the butt welding method is the level of manual are welding.For the pilot to complete the welding technology assessment and assessed in accordance with the requirements of the design accordingly mechanical properties of non-destructive testing and inspection,to determine 0Cr18Ni9 the performance.Key word: Welding performance ;Mechanics performance ;Welding craft Operational performance目录1、绪论01.1 奥氏体不锈钢化学成分01.2奥氏体不锈钢的性能21.2.1奥氏体不锈钢的物理性能 (2)1.2.2奥氏体不锈钢的化学性能 (3)1.2.3奥氏体不锈钢的腐蚀性能 (4)1.3奥氏体不锈钢的焊接性61.3.1焊接热裂纹 (6)1.3.2焊接接头的晶间腐蚀 (8)1.3.3应力腐蚀开裂 (11)1.4奥氏体不锈钢的焊接 (12)1.4.1奥氏体不锈钢的焊接工艺 (12)1.4.2焊接顺序 (13)2、实验过程142.1 实验材料与工艺设备142.2实验方案与检测方法162.3金相实验 (17)2.4金相组织分析 (22)结论 (25)致 (26)参考文献 (27)英文文献 (27)1、绪论在金属加工工艺领域中,焊接属于连接方法之一。
不锈钢奥氏体中厚板焊接方法
不锈钢奥氏体中厚板焊接方法随着不锈钢奥氏体中厚板的广泛应用,焊接技术也逐渐成为不锈钢生产工艺的一个重要部分。
不锈钢奥氏体中厚板的焊接方法对于不锈钢的质量、性能,以及使用寿命起着至关重要的作用。
本文将从不锈钢奥氏体中厚板的特点出发,介绍几种常用的焊接方法,并对其优缺点进行比较。
不锈钢奥氏体中厚板是由铬、镍和钼等元素组成的合金,具有高强度、耐腐蚀性和耐高温性等特点,广泛应用于化工、电子、机械、航空航天等行业。
不锈钢奥氏体中厚板一般有以下几种特点:1.抗拉强度高不锈钢奥氏体中厚板材料的抗拉强度相对较高,常常被用作承受较大负荷的零件。
2.抗腐蚀性强不锈钢奥氏体中厚板可以在具有一定腐蚀性的环境中工作,如工业酸、碱、盐水等环境。
3.耐高温性好不锈钢奥氏体中厚板可在高温下工作,最高使用温度可达到800℃。
4.成型性好不锈钢奥氏体中厚板可以通过多种方法进行成型,如热轧、冷轧、拉制、锻压等,因此广泛应用于制造钢板、钢管等。
1.手工电弧焊手工电弧焊是一种常用的不锈钢奥氏体中厚板焊接方法。
这种方法需要通过手动点焊枪,使电弧在接头处产生熔融金属,从而将接头的两部分焊接起来。
手工电弧焊的优点是成本较低,易于操作,但缺点是需要较高的技术水平,焊接质量受到人工操作的影响,这种方法仅适用于小规模的焊接作业,大规模的生产需要其他焊接方法来替代。
2.氩弧焊氩弧焊是一种高端的不锈钢奥氏体中厚板焊接方法。
这种方法利用氩气作为保护气,将两个接头进行熔融,然后加入焊丝并进行焊接。
通过高温加热和高能量焊接,可以获得优良的焊接质量和强度。
氩弧焊的优点是具有较高的焊接强度和耐腐蚀性,缺点是需要专业技能和较高的设备成本,并且焊接速度较慢。
氩弧钨极焊,也称为TIG焊,是一种精密、低温的不锈钢奥氏体中厚板焊接方法。
这种方法利用钨极产生的电弧用于加热和熔化金属,焊接时加入焊丝。
与其他焊接方法相比,TIG焊的优点是能够在薄厚板中进行高质量、无漏焊接,并能够焊接小型或者复杂形状的接头。
奥氏体不锈钢焊接工艺
奥氏体不锈钢焊接工艺
奥氏体不锈钢焊接工艺可以分为以下几个步骤:
1. 准备工作:首先需要准备好焊接设备和工具,包括焊接机、电极、磨具、钢刷等。
同时,需要清洁焊接表面,去除各种污物和氧化物。
2. 预热:在焊接之前,需要对奥氏体不锈钢进行预热,目的是提高焊接效果和减少变形。
预热温度根据具体材质和厚度来确定。
3. 选择合适的焊接电极:奥氏体不锈钢焊接需要选择合适的焊接电极,常用的有E308、E309、E316等电极。
同时,根据具
体要求和工艺选择合适的焊接方法,如手工电弧焊、氩弧焊等。
4. 确定焊接位置和顺序:根据焊接要求和结构形状,确定焊接位置和顺序,确保焊缝均匀、牢固。
5. 进行焊接:根据预定的焊接方法和电极,进行焊接操作。
在焊接过程中,要控制好电流和焊接速度,保证焊缝的质量和强度。
6. 修整和清理焊缝:焊接完成后,对焊缝进行修整和清理,去除焊渣和氧化物,使焊缝表面光滑。
7. 善后处理:焊接完成后,需要对焊接部位进行冷却和处理,防止产生应力和变形。
根据需要进行后续的抛光、打磨等处理。
需要注意的是,奥氏体不锈钢焊接过程中要注意保护氩气环境,防止氧化和污染。
同时,要选择合适的焊接参数和工艺,根据具体情况进行调整和优化。