铸造的类型及其过程工艺装备

合集下载

3 特种铸造

3 特种铸造

表2-9 浇注过程各阶段参数的变化
加压过程的各个阶段
参 数 O-A 升液阶段 A-B 充型阶段 B-C 增压阶段 C-D 保压阶段 D-E 卸压阶段
时间τ /s 压力p/MPa
速度v /MPa/s
τ
1
τ
2
τ
3
τ
4
τ 0
5
p1=H1ρ μ
p2=H2ρ μ
p3(根据工艺)
p4(根据工艺)

v1
p1
表2-10 低压铸造应用范围举例
应用的合金 应用的铸型 应用的产品 铝合金、铜合金、铸铁、球铁、铸钢 砂型、金属型、壳型、石膏型、石墨型 汽车、拖拉机、船舶、摩托车、汽油机、机车车辆、医疗机械、仪表等
应用的零件 举例
铝合金铸件:消毒缸、曲轴箱壳、气缸盖、活塞、飞轮、轮毂、座架、气缸体、叶轮等 铜合金铸件:螺旋浆、轴瓦、铜套、铜泵体等 铸铁件:柴油机缸套、球铁曲轴等 铸钢件:曲拐
2、工艺措施


表面喷刷涂料。 预热。预热温度200-350C。 及时开型。
3.特点
(1)优点: 可“一型多铸”,便于实现机械化和自动化生产, 可大大提高生产率; 铸件精度(IT16~12,CT6)和表面质量 (Ra12.5~6.3mm),比砂型铸造显著提高; 冷却速度快,铸件晶粒较细,力学性能提高。 劳动条件显著改善。 (2)缺点: 成本高,周期长; 易出现浇不足、冷隔、裂纹等缺陷; 铸件的形状、尺寸有一定的限制。尺寸限制在 300mm,重量8kg以下。
2 特点
(1)优点 1. 补缩条件好,铸件组织致密,力学性能好; 2. 可省去型芯浇注冒口。 (2)缺点 1. 对铸件形状有特殊要求; 2. 易形成密度偏析; 3. 铸件内孔表面较粗糙,聚有熔渣,其尺寸不易 正确控制; 4. 不适于小批量。

各种典型铸造技术的原理和方法

各种典型铸造技术的原理和方法

各种典型铸造技术的原理和方法根据铸型特点分类,有一次型铸造(砂型铸造、熔模铸造、石膏型铸造、实型铸造等)、半永久型铸造(陶瓷型铸造、石墨型铸造等)、永久型铸造(金属型铸造、压力铸造、挤压铸造、离心铸造等);根据浇注时金属液的驱动力及压力状态分类,有重力作用下的铸造和外力作用下的铸造。

金属液在重力驱动下完成浇注称自由浇注或常压浇注。

金属液在外力作用下实现充填和补缩,如压力铸造、挤压铸造、离心铸造和反重力铸造等。

本章介绍的铸造技术有:属于重力充型的有砂型铸造、金属型铸造和熔模铸造;属于外力充型的有压力铸造、离心铸造和挤压铸造;属于反重力铸造的有低压铸造和差压铸造/真空吸铸等。

铸造业中砂型铸造约占80%。

型砂中粘土砂、水玻璃砂和树脂砂等又占了90%的份额。

三种型砂间的比例视各国具体情况而异,平均来看,大致为5:3:2。

以型砂铸造与其它铸造方法相比,其缺点是:劳动条件较差,铸件外观质量欠佳;铸型只能使用一次,生产率低。

优点是:不受零件形状、大小、复杂程度及合金种类的限制;造型材料来源广,生产准备周期短,成本低。

因此,砂型铸造是铸造生产中应用最广泛的一种方法,世界各国用砂型铸造生产的铸件占总产量的80%~90%。

本章的重点在砂型铸造。

而铸造用砂型的种类及制造是重中之重。

第1节砂型铸造一、铸造用砂型的种类及制造(一)概述1.砂型铸造的特征及工艺流程配制型砂—造型—合型—浇注—冷却—落砂—清理—检查—热处理—检验—获得铸件特征:使用型砂构成铸型并进行浇注的方法,通常指在重力作用下的砂型铸造过程。

名词:型砂——将原砂或再生砂+粘结剂+其它附加物等所混制成的混合物;铸型——形成铸件外观轮廓的用型砂制成的空腔称为铸型;砂芯——形成铸件内腔的用芯砂制成的实体(用于制做砂芯的型砂称为芯砂);造型——制造砂型的工艺过程;制芯——制造砂芯的工艺过程。

造型(芯)方法按机械化程度可分为手工造型(芯)和机器造型(芯)两大类。

选择合适的造型(芯)方法和正确的造型(芯)工艺操作,对提高铸件质量、降低成本、提高生产率有极重要的意义。

铸造生产的工艺流程

铸造生产的工艺流程

铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序:1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图;2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备;3)造型与制芯;4)熔化与浇注;5)落砂清理与铸件检验等主要工序。

一、成形原理铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。

图1 铸造成形过程铸件一般作为毛坯经切削加工成为零件。

但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。

二、型砂的性能及组成1、型砂的性能型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。

2、型砂的组成型砂由原砂、粘接剂和附加物组成。

铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。

铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。

为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤粉、锯末、纸浆等。

型砂结构,如图2所示。

图2 型砂结构示意图三、工艺特点铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。

与其它加工方法相比,铸造工艺具有以下特点:1)铸件可以不受金属材料、尺寸大小和重量的限制。

铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。

2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。

铸造的分类

铸造的分类
成批中小件
劈箱造型
将模样和砂型分成几块分别造型,然后组装起来,使
造型、烘干、搬运、合箱、检验等工序操作方便,但
工装制造工作量大
成批的大型复杂铸件,如
机床床身
地坑造型
在车间的地坑中造型,不同砂箱或只用盖箱,操作较
麻烦,劳动量大,生产周期长
在无合适砂箱时单件生产
的中大型铸件
脱箱造型
造型后将砂箱取走,在无箱或加套箱的情况下浇
1~2件为宜
磁型铸造
用磁性材料(铁丸,钢丸)代替型
砂作造型材料,可重复使用,简化了
砂处理设备
铸件表面渗碳
钢铁合金为主
大批大量生产
中小型中等复杂
零件,生产率高
石墨型铸造
用石墨制成铸型,重力浇注成型,
铸型质脆,易碎
铸件尺寸精确,组
织致密
铜合金,钛合

成批生产不太
复杂的中小铸件
生产率高
石膏型铸造
用石膏加附加材料以浇灌法制成
铸型,可用熔模及拨模铸造
铸件表面粗糙度
低,尺寸精度高
以铝合金为主
批量生产的薄
壁复杂铸件




压力铸造
高压下液态金属高速充填金属型
并快速凝固。铸机、铸型投资高
铸件尺寸精度高,
组织细密
以铝合金,镁
合金,锌合金及
铜合金为主
大批、大量生
产中小型薄壁复
杂件,生产率很

挤压铸造
(冲压铸造)
先在铸型下浇入定量液态金
薄壁铸件
低压铸造
用金属型、石墨型,或砂型,在气
体压力下充型及结晶,设备简单
铸件致密,金属收
得率高

特种铸造简介

特种铸造简介

特种铸造特种铸造:铸型用砂较少或不用砂、采用特殊工艺装备进行铸造的方法,如熔模铸造、金属型铸造、压力铸造、低压铸造、离心铸造、陶瓷型铸造和实型铸造等。

特点:特种铸造具有铸件精度和表面质量高、铸件内在性能好、原材料消耗低、工作环境好等优点。

但铸件的结构、形状、尺寸、重量、材料种类往往受到一定限制。

一、熔模铸造(失蜡铸造)(一)熔模铸造的工艺过程1.制造蜡模蜡模材料常用50%石蜡和50%硬脂酸配制而成。

如图1-34a 所示。

为提高生产率,常把数个蜡模熔焊在蜡棒上,成为蜡模组,如图1-34b 所示。

2.制造型壳在蜡模组表面浸挂一层以水玻璃和石英粉配制的涂料,然后在上面撒一层较细的硅砂,并放入固化剂(如氯化铵水溶液等)中硬化。

使蜡模组外面形成由多层耐火材料组成的坚硬型壳(一般为4~10层),型壳的总厚度为5~7mm,如图1-34c所示。

3.熔化蜡模(脱蜡)通常将带有蜡模组的型壳放在80~90℃的热水中,使蜡料熔化后从浇注系统中流出。

4.型壳的焙烧把脱蜡后的型壳放入加热炉中,加热到800~950℃,保温0.5~2h,烧去型壳内的残蜡和水分,并使型壳强度进一步提高。

5.浇注将型壳从焙烧炉中取出后,周围堆放干砂,加固型壳,然后趁热(600~700℃)浇入合金液,并凝固冷却。

6.脱壳和清理用人工或机械方法去掉型壳、切除浇冒口,清理后即得铸件。

(二)熔摸铸造铸件的结构工艺性熔摸铸造铸件的结构,除应满足一般铸造工艺的要求外,还具有其特殊性:1.铸孔不能太小和太深否则涂料和砂粒很难进入腊模的空洞内,只有采用陶瓷芯或石英玻璃管芯,工艺复杂,清理困难。

一般铸孔应大于2mm.。

2.铸件壁厚不可太薄一般为2~8mm。

3.铸件的壁厚应尽量均匀熔摸铸造工艺一般不用冷铁,少用冒口,多用直浇口直接补缩,故不能有分散的热节。

(三)熔模铸造的特点和应用熔模铸造的特点是:(1)铸件精度高、表面质量好,是少、无切削加工工艺的重要方法之一,其尺寸精度可达IT11~IT14,表面粗糙度为Ra12.5~1.6μm。

铸造工艺流程介绍

铸造工艺流程介绍

铸造生产的工艺流程铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序:1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图;2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备;3)造型与制芯;4)熔化与浇注;5)落砂清理与铸件检验等主要工序。

成形原理铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。

图1 铸造成形过程铸件一般作为毛坯经切削加工成为零件。

但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。

型砂的性能及组成1、型砂的性能型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。

2、型砂的组成型砂由原砂、粘接剂和附加物组成。

铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。

铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。

为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤份、锯末、纸浆等。

型砂结构,如图2所示。

图2 型砂结构示意图工艺特点铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。

与其它加工方法相比,铸造工艺具有以下特点:1)铸件可以不受金属材料、尺寸大小和重量的限制。

铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。

2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。

黏土砂型铸造工艺过程及特点

黏土砂型铸造工艺过程及特点

黏土砂型铸造工艺过程及特点按生产工部分类,黏土砂型铸造又可分为造型工部、制芯工部、砂处理工部、熔化工部、清理工部五大部分。

每个工部所采用的工艺、材料、装备、控制方式等都会影响铸件的生产质量。

1.造型工部造型工部是铸造车间及生产的核心工部,典型的黏土砂造型工艺流程如图1-1所示。

图1-1 典型的黏土砂造型工艺流程造型工部的主要生产工序是造型、下芯、合箱、浇注、冷却和落砂。

在铸造生产过程中,由熔化工部、制芯工部和砂处理工部供给造型工部所需的液态金属、砂芯和型砂;造型工部将铸件和旧砂分别运送给清理工部和砂处理工部。

获得高精度和足够紧实度铸型是造型工部的主要任务,也是生产高表面质量和内在质量铸件的前提之一。

目前的实际生产中,除少量手工造型方法外,常用的机器造型有:震压式造型、多触头高压造型、射压造型、静压造型、气冲造型等。

不同的铸件产品、质量要求和生产率,可选择不同的造型方法及装备。

2.制芯工部制芯工部的任务是生产出合格的砂芯。

典型的制芯工部工艺流程如图1-2所示。

图1-2 典型的制芯工部工艺流程由于采用的黏结剂不同,芯砂的性能(流动性、硬化速度、强度、透气性等)都不相同,型芯的制造方法及其所用的设备也不相同。

根据黏结剂的硬化特点,制芯工艺有如下几种:1)型芯在芯盒中成形后,从芯盒中取出,再放进烘炉内烘干。

属于此类制芯工艺的芯砂有黏土砂、油砂、合脂砂等。

2)型芯的成形及加热硬化均在芯盒中完成。

属于这类制芯工艺的有热芯盒及壳芯制芯等。

3)型芯在芯盒里成形并通入气体而硬化。

属于这类制芯工艺的有水玻璃CO2法及气雾冷芯盒法等。

4)在芯盒中成形并在常温下自行硬化到形状稳定。

这类制芯工艺有自硬冷芯盒法、流态自硬砂法等。

在制芯工部中,制芯机是核心设备。

但砂芯的质量除与制芯机装备水平有直接关系外,还与芯砂种类、硬化方式、砂芯的形状结构等有关。

3.砂处理工部砂处理工部的任务是提供造型、制芯工部所需要的合乎一定技术要求的型砂及芯砂。

铸造的方法

铸造的方法

铸造的方法1. 铸造技术的方法选择铸造是将通过熔炼的金属液体浇注入铸型内,经冷却凝固获得所需形状和性能的零件的制作过程。

铸造是常用的制造方法,优点是:制造成本低,工艺灵活性大,可以获得复杂形状和大型的铸件,在机械制造中占有很大的比重,如机床占60~80%,汽车占25%拖拉机占50~60%。

铸件的质量直接影响着产品的质量,因此,铸造在机械制造业中占有重要的地位。

铸造是一种古老的制造方法,在我国可以追溯到6000年前。

随着工业技术的发展,铸造技术的发展也很迅速,特别是19世纪末和20世纪上半叶,出现了很多的新的铸造方法,如低压铸造、陶瓷铸造、连续铸造等,在20世纪下半叶得到完善和实用化。

由于现今对铸造质量、铸造精度、铸造成本和铸造自动化等要求的提高,铸造技术向着精密化、大型化、高质量、自动化和清洁化的方向发展,例如我国这几年在精密铸造技术、连续铸造技术、特种铸造技术、铸造自动化和铸造成型模拟技术等方面发展迅速。

铸造主要工艺过程包括:金属熔炼、模型制造、浇注凝固和脱模清理等。

铸造用的主要材料是铸钢、铸铁、铸造有色合金(铜、铝、锌、铅等)等。

铸造方法常用的是砂型铸造,其次是特种铸造方法,如:金属型铸造、熔模铸造、石膏型铸造......等。

而砂型铸造又可以分为粘土砂型、有机粘结剂砂型、树脂自硬砂型、消失模等等,如下图:铸造方法选择的原则:1.优先采用砂型铸造据统计,我国或是国际上,在全部铸件产量中,60~70%的铸件是用砂型生产的,而且其中70%左右是用粘土砂型生产的。

主要原因是砂型铸造较之其它铸造方法成本低、生产工艺简单、生产周期短。

所以象汽车的发动机气缸体、气缸盖、曲轴等铸件都是用粘土湿型砂工艺生产的。

当湿型不能满足要求时再考虑使用粘土砂表干砂型、干砂型或其它砂型。

粘土湿型砂铸造的铸件重量可从几公斤直到几十公斤,而粘土干型生产的铸件可重达几十吨。

一般来讲,对于中、大型铸件,铸铁件可以用树脂自硬砂型、铸钢件可以用水玻璃砂型来生产,可以获得尺寸精确、表面光洁的铸件,但成本较高。

《铸造工艺装备设计》课件

《铸造工艺装备设计》课件

制芯设备的性能和效率同样影 响着砂芯的质量和生产成本, 进而影响铸件的质量和性
效率和降低生产成本。
浇注设备
浇注设备是铸造工艺装备中的重要组成部分,用于将熔 融金属浇注入砂型中。
浇注设备的结构和性能直接影响着金属液的流动和充型 效果,进而影响铸件的质量和性能。
铸造工艺装备是实现铸造生产过 程自动化的基础,可以提高生产 效率、降低能耗和减少环境污染

铸造工艺装备的质量直接影响着 铸件的质量和性能,因此对于提 高铸件质量和性能具有重要意义

铸造工艺装备的设计和制造需要 考虑到生产成本和经济效益,因 此对于降低生产成本和提高经济
效益也具有重要意义。
02
铸造工艺装备设计基础
02
它包括各种浇注系统设计、模具 设计、造型设备、制芯设备、落 砂设备等。
铸造工艺装备的分类
根据用途不同,铸造工艺装备 可分为两大类:造型设备和制 芯设备。
造型设备又可以分为砂型铸造 设备和特种铸造设备,如金属 型铸造设备、压力铸造设备等 。
制芯设备则可以分为冷芯盒制 芯设备和热芯盒制芯设备等。
铸造工艺装备的重要性
浇注设备的种类包括浇注机、浇口杯、流槽等。
优化浇注设备的结构和性能,提高金属液的充型效果和 减少浇注缺陷是浇注设备未来发展的重要方向。
06
铸造工艺装备设计案例 分析
案例一:某发动机缸体模具设计
总结词
复杂度高、精度要求高
详细描述
该案例主要介绍某发动机缸体模具的设计过程,涉及多方面复杂因素,如结构优化、材料选择、热处 理工艺等。同时,由于发动机缸体对精度要求极高,因此模具设计过程中需充分考虑加工工艺和装配 精度。
案例二:某汽车零件工装夹具设计

电子课件——机械制造工艺基础(第七版) 1第一章 铸造

电子课件——机械制造工艺基础(第七版) 1第一章  铸造
第一章 铸造
1 §1—1 概述 2 §1—2 砂型铸造 3 §1—3 特种铸造及铸造新技术
第一章 铸造
§1—1 铸造基础
一、 铸造及其分类
将熔融金属浇注、压射或吸入铸型型 腔中,凝固后获得具有一定形状、尺寸 和性能的毛坯或零件
砂型铸造
铸 造
特种铸造
熔模铸造 金属型铸造 压力铸造 离心铸造
§第1一—章1 铸铸造造基础
整模两箱造型
§第1—一2章 砂型铸铸造造
模样分成两 部分,分别 制造上型和 下型,型腔 则位于上型 和下型之间
分模两箱造型
§第1—一2章 砂型铸铸造造
2)脱箱造型 在可脱砂箱内造型,合型后浇注前脱去砂箱
§第1—一2章 砂型铸铸造造
3)挖沙造型 下型分型面挖成不平分型面(曲面、非平面)
§第1—一2章 砂型铸铸造造
气动微振压实造型机紧砂
§第1—一2章 砂型铸铸造造
3.造芯
制造型芯的过程称为造芯
手工造芯 机器造芯
芯盒造芯
§第1—一2章 砂型铸铸造造
4.合型
又称合箱,是将铸型的各个组元 组合成一个完整铸型的操作过程
5.熔炼
熔炼是使金属由固态转变为熔融状态的过程
§第1—一2章 砂型铸铸造造
6.浇注
(1)浇注工具
4.铸造圆角
相邻两表面的过渡圆角
§第1—一2章 砂型铸铸造造
5.芯头
在模样上:芯头是模样的凸出部分 在型芯上:芯头是型芯的外伸部分
§第1—一2章 砂型铸铸造造
6.浇注系统
(1)外浇口 (2)直浇道 (3)横浇道 (4)内浇道
7.冒口
§第1—一2章 砂型铸铸造造
三、砂型铸造的工艺过程
1.混砂

机械制造工艺基础课件第一章铸造

机械制造工艺基础课件第一章铸造

2.制造模样与芯盒的注意要点
(1)分型面——铸型组元间的接合面。
1—上型
2—分型面 3—型芯
4—支座型腔
5—芯头 6—下型
第十七页,共五十八页,2022年,8月28日
(2)收缩余量——为了补偿铸件收缩,模样比铸件图样尺 寸增大的数值。
(3)加工余量——为保证铸件加工面尺寸和零件精度, 在铸造工艺设计时预先增加而在机械加工时切去的金属层厚 度。
第十八页,共五十八页,2022年,8月28日
(4)起模斜度——为使模样容易从铸型中取出或型芯从芯盒
中脱出,在模样或芯盒上平行于起模方向所设的斜度。
一般α=0.5 ° ~3°
第十九页,共五十八页,2022年,8月28日
(5)铸造圆角——制造模样时,凡相邻两表面的交角,都 应做成圆角。
铸造圆角(r为铸造圆角半径)
第四十五页,共五十八页,2022年,8月28日
握包
抬包
吊包
第四十六页,共五十八页,2022年,8月28日
2.浇注温度与浇注速度
浇注温度(℃)——金属熔液浇入铸型时所测量到的温度 。
浇注速度(kg/s)——单位时间内浇入铸型中的金属熔液质量

第四十七页,共五十八页,2022年,8月28日
二、落砂和清理
四、 造芯 五、浇注系统及冒口 六、合型
第十页,共五十八页,2022年,8月28日
一、砂型和造型材料
1. 造型材料 2. 型砂和芯砂 3. 砂型
第十一页,共五十八页,2022年,8月28日
1.造型材料
造型材料——制造砂型和砂芯的材料。 1砂 2 黏土
3 黏结剂 4 附加物
第十二页,共五十八页,2022年,8月28日
第八页,共五十八页,2022年,8月28日

砂型铸造工艺流程及所需材料

砂型铸造工艺流程及所需材料

2. 铸造工艺准备工作
2.3 铸造原材料的准备 铸造合金的种类:铸铁(灰口铸铁、白口铸铁)、铸钢(碳钢、低
合金钢、高合金钢)、铸造铝合金(铝硅合金、铝铜合金、铝镁合金、 铝锌合金、铝锂合金等)、铸造铜合金(铸造黄铜、铸造青铜等)、镁 合金、轴承合金、钛合金、高温合金等。
为了获得化学成分合格的铸造合金,减少有害元素的含量,所采用 的金属原材料必须满足一定技术需求。
铸造用型砂的种类可分为石英砂、镁砂、橄榄石砂、锆英石砂、石 灰石砂、黏土砂、水玻璃砂、树脂砂、油砂等。
为获得优质的铸件和良好的技术经济效果,型砂按一定比例混合后, 应具有以下性能:
a、良好的成型性;
b、足够的强度;
c、一定的透气性;
d、较小的吸湿性;
e、较低的发气量;
f、较高的耐火度;
g、较好的退让性、溃散性和耐用性。
3.6 落砂 人工落砂:主要用于单件小批生产,对于有色合金铸件,基本上都
采用手工落砂。 机械落砂:效率高,但机器易损坏,维修调整困难,且噪声大。 清除砂芯的方法主要有水力清砂除芯法、水爆清砂除芯法等。
3.7 清理 铸件浇注后必须除去浇注系统和冒口,并进行表面清理去除铸件内
外的黏砂、分型面和芯头处的披缝、毛刺、冒口切除痕迹。 3.8 表面处理
铸件在进行上述处理以后,还需进行表面处理,防止铸件在使用过 程中发生腐蚀。
4.铸件质量检验与缺陷修补
4.1 铸件质量检验方法 铸件质量包括铸件的内在质量、外表质量、使用质量等。为了保证
铸件质量,铸造生产的各个环节,特别是清理后,都要进行质量检验。 具体的检验方法有:
a、外观缺陷检验; b、表面缺陷检验; c、内部缺陷检验; 此外,还需要进行铸件质量进行射线检验。 4.2 铸件常见缺陷 铸造工艺过程复杂,影响铸件质量的因素很多,往往由于原料控制 不严,工艺方案不合理,生产操作不当,管理制度不完善等原因,会使 铸件产生各种铸造缺陷。

铸造工艺

铸造工艺

(二)铜合金铸件的生产
1. 铜合金种类 铸造铜合金按其成分不同可分为黄铜和青铜。 铸造铜合金按其成分不同可分为黄铜和青铜。 2. 铜合金的铸造工艺特点 (1)铸造黄铜熔点低、结晶温度窄(30℃-70℃),流 铸造黄铜熔点低、结晶温度窄(30℃-70℃),流 ), 动性好、对型砂耐火度要求不高,可用细砂造型, 动性好、对型砂耐火度要求不高,可用细砂造型,以减小 铸件表面粗糙度值、减小加工余量,并可浇注薄壁铸件。 铸件表面粗糙度值、减小加工余量,并可浇注薄壁铸件。 但其收缩率大、容易产生集中缩孔, 但其收缩率大、容易产生集中缩孔,铸造时应配置较大的 冒口。 冒口。 (2)锡青铜在液态下易氧化,在开设浇道时,应尽力使 锡青铜在液态下易氧化,在开设浇道时, 金属液流动平稳、防止飞溅, 金属液流动平稳、防止飞溅,故常用开放式及底注式浇注 系统。锡青铜的凝固温度宽(150℃-200℃), ),凝固收缩 系统。锡青铜的凝固温度宽(150℃-200℃),凝固收缩 和线收缩率小,虽不易产生大的集中缩孔, 和线收缩率小,虽不易产生大的集中缩孔,但常出现枝晶 偏析与缩松,降低铸件的致密度。 偏析与缩松,降低铸件的致密度。这种缩松便于储存润滑 油,适宜制造滑动轴承。壁厚不大的锡青铜铸件常采用同 适宜制造滑动轴承。
三、 影响合金收缩的因素
不同成分的合金其收缩率一般也不相同。 1. 化学成分 不同成分的合金其收缩率一般也不相同。在 常用铸造合金中铸钢的收缩最大,灰铸铁最小。 常用铸造合金中铸钢的收缩最大,灰铸铁最小。 合金浇注温度越高,过热度越大, 2. 浇注温度 合金浇注温度越高,过热度越大,液体收缩 越大。 越大。
流动性的影响因素: 2. 流动性的影响因素:
不同种类的合金, 1)合金的种类 :不同种类的合金,具有不同的螺旋线 长度,即具有不同的流动性。其中灰铸铁的流动性最好, 长度,即具有不同的流动性。其中灰铸铁的流动性最好, 硅黄铜、铝硅合金次之,而铸钢的流动性最差。 硅黄铜、铝硅合金次之,而铸钢的流动性最差。

铸 造 工 艺 及 设 备

铸 造 工 艺 及 设 备
干型——在合型和浇注前将整个砂型送入烘干窑中烘干。 表面烘干型——在浇注前对型腔表层用适当方法烘干一定深度。
2.湿型用湿型砂按造型时情况不同,可分为: 面砂——指特殊配制的在造型时铺覆在模样表面上构成型腔表面层的型砂。 背砂——指填充在面砂背面起填充作用的造型砂。 单一砂 ——指不分面砂和背砂,只有一种类型的造型砂。
水分测定法 手感判断法 紧实率法
2.流动性:型(芯)砂在外力或自重的作用下,沿模样(或芯盒 表面)和砂粒间相对移动的能力称为流动性。
3.强度:型砂、芯砂抵抗外力破坏的能力称为强度。
4.可塑性与韧性:可塑性是指型(芯)砂在外力作用下变形,外力去除 后仍保持所赋予形状的能力。
5.韧性:韧性是指型砂抵抗外力破坏的性能。
3.湿型铸造法 基本特点:砂型(芯)无需烘干,不存在硬化过程。 主要优点: 生产灵活性大,生产率高,生产周期短,便于组织流水生产; 易于实现生产过程的机械化和自动化; 材料成本低; 节省了烘干设备、燃料、电力及车间生产面积; 延长了砂箱使 用寿命; 容易落砂等。 主要缺点:采用湿型铸造,也容易使铸件产生一些铸造缺陷,例如夹砂结 疤、鼠尾、粘砂、气孔、砂眼、胀砂等。 应用范围:主要用于机械化流水生产和手工造型 500Kg以下的铸件。
基本概念: 造型材料——凡用来制作铸型的原材料以及由各种原材 料所混制成的混合物统称为造型材料。 芯砂——制作砂型的混合物称为型砂,制作砂芯的混合 物称为芯砂。 涂料——涂敷在型腔或砂芯表面的混合物称为涂料。
第一节 型(芯)砂的组成和性能要求 一、型(芯)砂的组成
型(芯)砂是由骨干材料、粘结材料和附加物等原材 料按一定比例配制而成。
缺点:1)工作环境粉尘多、温度高、劳动强度大; 2)废料、废气、废水处理任务繁重。

铸造工艺过程

铸造工艺过程
设作用在砂型表面S上的压力为F,则比压(压强)为:
q F (MPa) S
根据比压大小,机器造型方法可分为:
低压造型——q=0.13~0.4MPa; 中压造型——q=0.4~0.7MPa; 高压造型——q≥0.68MPa, 7大气压。 普通机器造型是最早的机器造型机械,比压通常在低压和中压 范围内。这类造型机组成的流水生产线,由于投资少,见效快,目 前仍在许多专业铸造厂应用。
铸铁 曲轴
变速器壳体
比率/%
70~90 60~80 50~70 40~70 20~30
第一篇 铸造工艺过程
第一篇 铸造工艺过程
第一章 造型 第二章 制芯 第三章 砂型(芯)的烘干、合箱与浇注 第四章 铸件的落砂与清理 第五节 铸件质量检验与缺陷修补
第一章 造 型
第一节 概 述
砂型铸造:利用型砂作铸型,将液态金属在重力下浇注
各种形式的芯骨
定位销棒
1、整体模造型 特点:模样是整体的,分型面是平面,铸型型腔全部在半个 铸型内,其造型简单,铸件不会产生错型缺陷。 应用:适用于铸件最大截面在一端,且为平面的铸件。
造下型
刮平
翻下型,造上型
敞箱,起模
合箱
整体模造型过程
带浇口铸件
整体模造型动画演示
2、两箱分开模造型 特点:是将模样沿最大截面处分成两半,型腔位于上、下 两个砂箱内,造型简单省工。 应用:常用于最大截面在中部的铸件。例如,圆柱体、套 筒类、管子类等。
10、地坑造型在地平面以下的沙坑中或特制的地坑中制造 下型的造型方法,特点是省掉了下砂箱,但造型操作麻烦。 应用:用于中型、大型铸件单件或小批量生产。
地坑造型示意图
11、漏模造型用漏模作起模工具的手工造型方法。在模板 与砂型分型面间,设置一层漏模板,起模时,模样随模底 板抽出,而分型面以上型砂被漏模板托住。砂型不会损坏, 不用修型,对造型操作要求低,生产率提高,但制作模板 费用高。

砂型铸造工艺流程及所需材料

砂型铸造工艺流程及所需材料

2. 铸造工艺准备工作
2.3 铸造原材料的准备 铸造合金的种类:铸铁(灰口铸铁、白口铸铁)、铸钢(碳钢、低 合金钢、高合金钢)、铸造铝合金(铝硅合金、铝铜合金、铝镁合金、 铝锌合金、铝锂合金等)、铸造铜合金(铸造黄铜、铸造青铜等)、镁 合金、轴承合金、钛合金、高温合金等。 为了获得化学成分合格的铸造合金,减少有害元素的含量,所采用 的金属原材料必须满足一定技术需求。
d、泡沫塑料:密度小,重量轻,制造简便,但模样表面不够光滑,易撞 破,只能使用一次。
2. 铸造工艺准备工作
2.2 铸造工艺装备准备 模板一般有模底板、模样、浇冒口系统和定位销等装配而成。模板 主要用于在铸型中形成铸件外轮廓、浇冒口系统及芯头等部分的型腔和 分型面。常用的模底板材料有:铸造铝合金,铸铁,铸钢,木材,塑料 等。 砂箱是铸件生产中必备的工艺装备之一,在设计零件的铸造工艺是 就要考虑到砂箱的选用和设计。
4.铸件质量检验与缺陷修补
缺陷名称 气孔 缩孔与松孔 特征 在铸件内部或表面有大小不等的光滑孔洞 缩孔多分布在铸件厚断面处,形状不规则,孔内粗 糙
砂眼
黏砂 冷隔
在铸件内部或表面有型砂充塞的孔眼
铸件沿分型面有相对位置错移 铸件上有未完全融合的缝隙或坑洼,其交接处是圆 滑的
浇不足
裂纹 错型
铸件未被浇满
铸件开裂、开裂处金属表面有氧化膜 铸件沿分型面有相对位置错移
4.铸件质量检验与缺陷修补
4.3 铸件缺陷的修补
修补方法
矫正 电焊 气焊 钎焊 熔补 浸渗 用于校正变形的铸件 主要用于铸钢件,其次用于铸铁与非铁合金铸件 多用于铸铁与有色合金,铸钢件用得很少 修补铸铁件和有色合金铸件的孔洞与裂纹等,但零件使用温度不能过高 多用于熔补铸铁件的大孔洞与浇不到等局部缺陷 修补非加工面上的渗漏缺陷,用于承受水压检验压力不高的容器铸件, 或渗漏不很严重的铸件 修补不影响使用性能的孔洞、偏析等缺陷
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 液态成形
学习方法1:“纲举目张”
绪论
1.1 金属材料液态成形理论基础
1.2 砂型铸造工艺
1.3 常用合金铸件的生产特点
1.4 特种铸造与现代铸造技术简介
1.5 铸件结构工艺性与工艺设计
绪论
金属材料的铸造成形是将液态金属材料浇注到与零件的形状、 尺寸相适应的铸形空腔中,待其冷却凝固,以获得毛坯或零件的 生产方法。 以异口径 管为例介绍铸 件的大致生产 过程。
(薄壁)
把铸型预热到适当温度,可以减少铸型和液体合金之 间的温差,从而减缓合金冷却速度,提高合金流动性。
c.铸型透气性
高温液态合金浇入铸型时,巨大热量会使铸型中的气体 膨胀,型砂中的少量水分还会汽化,煤粉、木屑等有机物会 燃烧产生大量的气体,这些气体会使型腔中的压力急剧升高, 阻碍液态合金流动,降低合金流动性。因此,铸型需有良好 的透气性。
E S P C
L + F e 3C
D 1227 F
912
G
1148 A + Fe C 3 727
F
600 Q
K
F+A F + F e 3C
0
Fe 0.0218 0.77
2.11
4.3
6 . 6 9( F e 3 C )
Wc / %
简化后的Fe-Fe3C相图。
③铁碳合金的分类
a.工业纯铁 wC ≤0.0218%; b.钢 0.0218%< wC ≤ 2.11%; c.白口铸铁 2.11%< wC ≤ 6.69%。
图2.1.55 机械应力的形成
③铸造应力的减少与防止
机械应力、热应力起因:壁厚不匀、冷速不同;应力 集中,导致裂纹因此,按照铸造过程帮助分析 (操作过程分析法--学习方法4) 1、壁厚均匀、壁与壁过度均匀、热节小而分散; 2、改善砂型与砂芯的退让性(用变形释放应力); 3、尽量减小各部分温差。如:内浇口开在薄壁处, 厚处安放冷铁---同时凝固原则; 4、(有应力怎么办?)去应力退火(人工时效), 自然时效。
图2.1.49 缩松的形成过程示意图
5)防止缩孔与缩松的主要措施
缩孔和缩松都使铸件的力学性能下降,缩松还 可使铸件因渗漏而报废。因此,必须依据技术要求, 采取适当的工艺措施予以防止(铸件上不能有孔,但收缩大 的合金缩孔是客观存在的,怎么办?拿馍正吃着才发现手脏了咋办?) 。 实践证明,只要能使铸件实现“定向凝固”(即顺 序凝固),尽管合金的收缩较大,也可获得没有缩 孔的致密铸件,主要用于铸钢、可锻铸铁等易产生 缩孔的铸件(适合于收缩大或壁厚差大的合金)。
2)影响合金流动性的主要因素
①化学成分
(复习与思考) A、纯金属流动性好:一定温度下结晶,流动层表面
光滑,对液流阻力小;
B、共晶成分流动性好:一定…?……力小,且熔点
低,过热度可以较大;
C、非共晶成分流动性差: D、合金中若形成高熔点化合物如MnS,降低 流动,若形成低熔点化合物,提高流动(P可 形成低熔点磷共晶,但易引起铸铁冷脆)。
法比较两种材料流动性好坏?)
合金 的流动性 以浇注螺 旋试样的 长度来测 定。
a.浇不到 图2.1.44 b.冷隔 浇不到与冷隔
铁碳合金相图
T℃
在铁碳合 金中,当碳的 质量分数超过 6.69% 时 , 铁 碳合金没有实 用价值。铁碳 合金相图实际 是 Fe-Fe3C 相 图。
1 5 3 8A
L A L+A
模样制成与变形方向正好相反的形状以抵消其变形的 方法叫反变形法。适用于细长易变形铸件。
图2.1.58 床身导轨面的挠曲变形及反变形
⑤裂纹与防止
6)铸造应力、变形和裂纹
铸件在凝固之后的继续冷却过程中,其固 态收缩若受到阻碍,铸件内部将产生内应力, 这些内应力有时是在冷却过程中暂存的,有时 则一直保留到室温,后者称为残余内应力。铸 造内应力是铸件产生变形和裂纹的基本原因。
(1)铸造应力(收缩、热、相变应力)与变形 铸件的固态收缩受到阻碍而产生的应力叫铸造应 力。铸造应力分为热应力和机械(收缩)应力。(相变应
2)铸件收缩的三个阶段
①液态收缩
指合金从浇注温度冷却到液相线温度过程中的收缩。浇 注温度越高,液态收缩越大。
②凝固收缩
指合金在液相 线至固相线之间凝 固阶段的收缩。
①和②引起缩孔缩

③固态收缩
指合金从固相 线温度冷却到室温 时的收缩(应力变 形裂纹)。
图2.1.47 铸件收缩的三个阶段
3)影响收缩的主要因素
液态成形理论基础
合金的铸造性能是指合金在铸造成形的过 程中获得外形正确,内部无缺陷铸件的能力。 合金的铸造性能通常用合金的流动性、收缩性 等指标来衡量。 (1)合金的流动性 1)基本概念 合金的流动性是指液态合金充满型腔,形成 轮廓清晰,形状完整的铸件的能力,它是合金本 身固有属性,受外界条件的影响。如果合金的流 动性较差,就会产生浇不到与冷隔,如图2.1.44 所示;也不利于气体和非金属夹杂物上浮。(有何办
铸件的凝固方式
在铸件的凝固过程中,其断面上一般存在三个区域,即 固相区、凝固区和液相区,其中,对铸件质量影响较大的主 要是液相和固相并存的凝固区的宽窄。铸件的“凝固方式” 就是依据凝固区的宽窄(图2—3b中S)来划分的。
1.逐层凝固 纯金属或共晶成分合金在凝固过程中因不存在液、固并 存的凝固区(书中图1—2a),故断面上外层的固体和内层的液 体由一条界限(凝固前沿)清楚地分开。随着温度的下降,固 体层不断加厚、液体层不断减少,直达铸件的中心,这种凝 固方式称为逐层凝固。
(3*) 设备投资少,原材料来源广泛,价格 低,因此、铸件的成本低廉。 (4) 铸件的形状尺寸与零件非常接近,切 削量小,特别是精密铸件无需再加工,可直接 使用,降低了制造成本。 由于上述优点使得铸造成形成为现代工业 的基础。铸件在机械产品中占有很大的比例, 按质量计在汽车中约占40%~60%,在机床中约 占60%~80%。 缺点:机械性能差,质量不稳定,工序多, 易产生许多缺陷,影响因素复杂。
措施:①选用收缩小的合金,如普通灰铸铁; ② 选用结晶温度区间小的合金防止缩松; ③安放冒口、 加冷铁等实现顺序凝固。
①采用冒口、冷铁的顺序凝固 采用顺序凝固是生产中防止 铸件产生缩孔的有效方法。 顺序凝固是指铸件按规定方向 从一部分到另一部分逐渐凝固的过 程。如图2.1.50所示(书图1-6、 1-7)。
(下边1—4和这里的顺序有所不同,但按照铸造过程帮助分 析的办法,更易记忆。模样-准备造型材料-造型制芯-合 型浇注)
③铸造应力的减少与防止
a.采用同时凝固方法(为什么尽量减少铸件各部分的温差)
图2.1.56
同时凝固过程示意图
• b.改善砂型和砂芯的退让性 木屑、焦炭 末等附加物,控制舂砂紧实度,合理设置浇 冒口。 c. 尽量避免牵制收缩的铸件结构 如壁厚要 均匀、过渡要平滑、热节要小等。 d.去应力退火 将铸件加热到塑性状态,人 工时效或自然时效。一般在机械粗加工之 后,以便将铸造应力和粗加工应力一并消 除。
4)缩孔与缩松的形成
(1)缩孔
铸件最后凝固 部位形成的空洞, 容积较大的空洞叫 缩孔 。 缩孔多呈倒锥 形,内表面粗糙, 一般隐藏在铸件的 内部。缩孔形成的 过程如图所示。
图2.1.48 缩孔形成过程示意图
(2)缩松
指铸件最后 凝固的区域没有 得到液态金属的 补缩而形成的分 散、细小的孔洞, 如图所示。 形成缩松的 基本原因和缩孔 相同,但是形成 的条件却不同, 它主要出现在结 晶温度区间大的 合金中。
(a)圆柱铸件心部产生拉应力,表层产生 应力;

(b)当外表面被加工掉一层后,铸件变短; (c) 当在心部钻孔,铸件变 ; (d)从侧面切去一层,产生弯曲变形;

④铸件的变形与防止
a.变形是由应力引起的,如何防止变形?(防应力) b.铸件壁厚尽量均匀、对称
图2.1.57
不同截面件的变形
c.反变形法
铸造成形是金属材料主要的成形方法之一。 铸造成形方法之所以被广泛应用,是因为铸造成 形方法与其它金属成形方法相比,具有以下一些 优点:
(1***) 能够制造各种形状的铸件,尤其是内
腔复杂的铸件。铸件的轮廓尺寸大至十几米,小 至几毫米;质量大至数百吨,小至几克。
(2**)能够制造各种尺寸的零件,各种金属材 料都可以铸造成形,尤其是脆性材料,只能用铸 造方法成形,如铸铁等。
生产上常采用在远离浇口的最高部位开设出气口的办法 来提高铸型透气性。
d.铸型(件)的结构(复杂简单壁厚薄大小)
当铸件壁厚过小,有大的水平面等结构时都使金属 液的流动阻力增大。图2.1.46为盖类铸件的三种浇注方 案。
பைடு நூலகம்
图2.1.46 盖类铸件的不同浇注位置
(2)铸件的收缩
1)铸件合金收缩的概念
铸造合金的收缩是指液态合金从浇入铸 型、凝固、直至冷却到室温的过程中,其体 积或尺寸的缩减现象。 铸件的收缩是一种物理属性,是形成缩 孔、缩松、变形和裂纹等缺陷的根本原因。
成分、温度、相变(影响流动性是压力)、铸型。
从上面的讨论可知,浇注温度越高,液态收缩越大; 材料的结晶温度范围越大,凝固收缩越大;材料收缩率 越大,铸件的收缩也越大。
表2.1.3铁碳合金的收缩率(%)
合金种类
碳素铸钢
体积收缩率
10~14.5
线收缩率
~2
白口铸铁
12~14
~2
~1
灰铸铁 5~8 共晶成分的灰铸铁铸造性能好
图2.1.54
铸件变形示意图
预防热应力的基本途径是尽量减少铸件各个部位间的温 度差,使其均匀地冷却。
②机械应力(收缩应力)
它是铸件固态收缩时受到铸型阻碍所产生的应力,如图 2.1.55所示。机械应力使铸件产生暂时性的正应力或剪切应 力,这种内应力在铸件落砂之后便可自行消除(属临时应 力)。但它在铸件冷却过程中可与热应力共同起作用,增大 了某些部位的应力,促进了铸件的裂纹倾向。
相关文档
最新文档