荧光分析法ppt课件
合集下载
荧光分析法ppt
当分子从激发态返回到基态时,会以释放光子的形式释放出多余的能 量,这种释放的光子就是荧光。
荧光分析法的化学基础
荧光物质的化学结构
荧光物质的化学结构决定了其荧光性质,如荧光量子产率、荧光 波长等。
荧光物质的激发态性质
荧光物质的激发态性质对其荧光性质也有重要影响,如激发态的 稳定性、激发态的能量转移等。
感谢您的观看
THANKS
详细描述
荧光分析法可用于检测生物样品中的肿瘤标志物、药物浓度、DNA等物质。通过荧光探针、荧光免疫 分析等方法,可实现对肿瘤标志物、药物浓度的快速检测,为肿瘤诊断、药物治疗监测等提供依据。 此外,荧光分析法还可用于DNA检测,为遗传病诊断、亲子鉴定等提供技术支持。
荧光分析法在食品安全中的应用
总结词
荧光分析法的缺点
易受干扰
荧光分析法可能会受到其他物质的干扰,影响检测结果的准确 性。
不稳定性
荧光物质的荧光光谱可能会随着环境条件的变化而发生变化, 导致分析结果不稳定。
成本高
荧光分析法所需的仪器设备相对昂贵,而且需要专业人员操作 和维护。
荧光分析法的改进与发展趋势
优化荧光探针
通过改进荧光探针的设计和合成方法,提高荧光分析法的灵敏度 和特异性。
02
荧光分析法的原理
荧光分析法的物理基础
01
分子能级
荧光分析法涉及分子的能级跃迁,即分子从基态跃迁到激发态,再从
激发态返回到基态的过程。
02 03
激发态与基态的能量差
荧光分析法利用了激发态与基态之间存在的能量差,当分子吸收特定 波长的光能后,会从基态跃迁到激发态,之后释放出特定波长的荧光 。
荧光的产生
荧光物质的基态性质
荧光物质的基态性质同样影响其荧光性质,如基态的稳定性、基 态与激发态之间的跃迁能量等。
荧光分析法的化学基础
荧光物质的化学结构
荧光物质的化学结构决定了其荧光性质,如荧光量子产率、荧光 波长等。
荧光物质的激发态性质
荧光物质的激发态性质对其荧光性质也有重要影响,如激发态的 稳定性、激发态的能量转移等。
感谢您的观看
THANKS
详细描述
荧光分析法可用于检测生物样品中的肿瘤标志物、药物浓度、DNA等物质。通过荧光探针、荧光免疫 分析等方法,可实现对肿瘤标志物、药物浓度的快速检测,为肿瘤诊断、药物治疗监测等提供依据。 此外,荧光分析法还可用于DNA检测,为遗传病诊断、亲子鉴定等提供技术支持。
荧光分析法在食品安全中的应用
总结词
荧光分析法的缺点
易受干扰
荧光分析法可能会受到其他物质的干扰,影响检测结果的准确 性。
不稳定性
荧光物质的荧光光谱可能会随着环境条件的变化而发生变化, 导致分析结果不稳定。
成本高
荧光分析法所需的仪器设备相对昂贵,而且需要专业人员操作 和维护。
荧光分析法的改进与发展趋势
优化荧光探针
通过改进荧光探针的设计和合成方法,提高荧光分析法的灵敏度 和特异性。
02
荧光分析法的原理
荧光分析法的物理基础
01
分子能级
荧光分析法涉及分子的能级跃迁,即分子从基态跃迁到激发态,再从
激发态返回到基态的过程。
02 03
激发态与基态的能量差
荧光分析法利用了激发态与基态之间存在的能量差,当分子吸收特定 波长的光能后,会从基态跃迁到激发态,之后释放出特定波长的荧光 。
荧光的产生
荧光物质的基态性质
荧光物质的基态性质同样影响其荧光性质,如基态的稳定性、基 态与激发态之间的跃迁能量等。
第十一章荧光分析法.ppt
散射光干扰及消除
散射光:当一束平行光投射在液体试样上,大部分 被吸收或透过,小部分由于光子和物质分子相碰撞, 使光子的运动方向改变,而向不同方向散射形成的 光。
散射光包括瑞利散射光和拉曼光
瑞利散射光:无能量的交换,λ散射≈λ激发
拉曼光: 有能量转移, λ散射> <λ激发
干扰的消除
1)改变激发光的波长;
单色器1
样品池
单色器2
垂直方向
放大 与
记录
检测器
荧光仪特点
与分光光度计的主要差别
① 垂直测量方式, 消除透射光影响 ② 两个单色器,激发和发射,常用光栅
1 光源 A、白炽灯:钨灯、卤钨灯 B、气体放电灯:氢、氙、汞,
常用氙灯(波长: 250-700nm) C、激光光源 2 单色器
闪耀光栅
3 检测器 光电倍增管
5.弱荧光的芳香族化合物也可与荧光试剂作用生成 强荧光衍生物以提高测量灵敏度。
故药物中的胺类、抗菌素、维生素、甾体类均可 用荧光法测定。该法在体内药物定量分析中应用甚 广。
思考题
• 1.荧光和磷光在产生机制上有什么不同?
• 2.何谓荧光量子效率?哪些结构物质有较高荧光效率?
• 3.以下物质中可能有最强荧光的物质是( )。
6.()荧光光谱形状与激发光的波长无关。
7. 荧光光谱的特征?
1. 所谓荧光,即指某些物质经入射光照射后,吸收了入射光的能量,从而辐射 出比入射光( )。
A. 波长长的光线
B. 波长短的光线
C. 能量大的光线
D. 频率高的光线
2. 下列说法正确的是(
)
A 荧光发射波长永远大于激发波长
B 荧光发射波长永远小于激发波长
第十三章-荧光分析法PPT课件
内部能量转换
当两个电子激发态之间的能量相差较小以至其振动能级有重叠 时,受激分子由高电子能级转移至低电子能级的过程。
.
6
荧光和磷光产生示意图
关于荧光
荧光的产生需经历两个过程:
吸收 发射
第一激发单重态的最低振动能级
振动驰豫 内部能量转换
.
8
例题
1. 所谓荧光,即某些物质经入射光照射后, 吸收了入射光的能量,从而辐射出比入射 光: A 波长长的光线 B 波长短的光线 C 能量大的光线 D 频率高的光线
.
24
三、影响荧光强度的外部因素
温度 溶剂 酸度 散射光
学习目的: 提高荧光分析的灵敏度和选择性
.
25
1 溶剂对荧光的影响
萘在下列哪种溶剂中的荧光强度最强? A 1-氯丙烷 B 1-溴丙烷 C 1-碘丙烷 D 1,2-二氯丙烷
1. 一般情况下,荧光波长随着溶剂极性的增强而长移, 荧光强度也增强。
OH N
C H2
芴φf 1.0
O N Mg1/2
.
21
(三)分子的刚性和共平面性
CH3
SO3Na
N
CH3 CH3
SO3NaN CH3
H CCH
H CC H
结论:在相同的长共轭分子中,分子的刚性和共 平面性越强,荧光效率越大,荧光波长长移
(四)取代基效应
给电子基团 -NH2、 -OH、-OCH3、-NHR、-NR2荧 光效率提高、荧光波长长移
•
• • • •
cx
cs
.
34
二、定量分析方法
2、比例法(对照法)
Fs F0 KCs
FxF0KCx
Cx
Fx Fs
当两个电子激发态之间的能量相差较小以至其振动能级有重叠 时,受激分子由高电子能级转移至低电子能级的过程。
.
6
荧光和磷光产生示意图
关于荧光
荧光的产生需经历两个过程:
吸收 发射
第一激发单重态的最低振动能级
振动驰豫 内部能量转换
.
8
例题
1. 所谓荧光,即某些物质经入射光照射后, 吸收了入射光的能量,从而辐射出比入射 光: A 波长长的光线 B 波长短的光线 C 能量大的光线 D 频率高的光线
.
24
三、影响荧光强度的外部因素
温度 溶剂 酸度 散射光
学习目的: 提高荧光分析的灵敏度和选择性
.
25
1 溶剂对荧光的影响
萘在下列哪种溶剂中的荧光强度最强? A 1-氯丙烷 B 1-溴丙烷 C 1-碘丙烷 D 1,2-二氯丙烷
1. 一般情况下,荧光波长随着溶剂极性的增强而长移, 荧光强度也增强。
OH N
C H2
芴φf 1.0
O N Mg1/2
.
21
(三)分子的刚性和共平面性
CH3
SO3Na
N
CH3 CH3
SO3NaN CH3
H CCH
H CC H
结论:在相同的长共轭分子中,分子的刚性和共 平面性越强,荧光效率越大,荧光波长长移
(四)取代基效应
给电子基团 -NH2、 -OH、-OCH3、-NHR、-NR2荧 光效率提高、荧光波长长移
•
• • • •
cx
cs
.
34
二、定量分析方法
2、比例法(对照法)
Fs F0 KCs
FxF0KCx
Cx
Fx Fs
《荧光分析法》课件
通过改进技术手段,实现多组分的同步检 测,提高检测效率。
微型化与便携化
智能化与自动化
随着技术的进步,荧光分析仪器将更加微 型化和便携化,方便现场快速检测。
结合人工智能和自动化技术,实现荧光分 析的智能化和自动化,减少人为误差和操 作复杂度。
THANKS FOR WATCHING
感谢您的观看
成和含量。
荧光分析法的应用领域
环境监测
荧光分析法可以用于检测水体 、土壤和空气中的污染物,如
重金属、有机物和农药等。
生物医学研究
荧光分析法可以用于检测生物 体内的标记物、蛋白质、核酸 和细胞等,有助于生物医学研 究和诊断。
食品安全检测
荧光分析法可以用于检测食品 中的添加剂、农药残留和有害 物质等,保障食品安全。
高特异性
荧光分析法可以针对特定的化学物质 或生物分子,提供高度特异性的检测, 降低误报率。
可视化结果
荧光分析法的结果可以通过肉眼直接 观察或使用荧光显微镜进行观察,方 便快捷。
应用广泛
荧光分析法可以应用于多种领域,如 生物医学、环境监测、食品安全等。
荧光分析法的缺点
01
02
03
04
样品处理复杂
荧光分析法通常需要对待测样 品进行预处理,如提取、纯化
荧光寿命的测量
通过测量荧光物质在激发光停止后荧光强度随时间的变化,可以了解荧光物质从 激发态回到基态的速率常数和荧光寿命。
时间分辨荧光光谱的测量
通过测量不同时间点的荧光光谱,可以了解荧光物质在激发态的动态过程和能量 转移过程。
荧光量子产率的实验技术
荧光量子产率的测量
通过测量荧光物质在特定波长激发下的荧光发射光子数和激发光子数,可以计算出荧光量子产率,了 解荧光物质的光致发光效率。
分析化学课件-荧光分析法基本原理
仪器的校正
灵敏度 以能被检出的最低信号来表示
波长
在选定条件下用稳定荧光物质校正 用汞灯标准谱线校正
激发光谱和荧光光谱
双光束仪器时,误差可抵消
二、其他荧光分析技术简介
1.激光荧光分析 2.时间分辨荧光 3.同步荧光分析 4.胶束增敏荧光
谢谢
溶剂
水 乙醇 环己烷 CCl4 CHCl3
激 发 光(nm) 248 313 365 405 436 271 350 416 469 511 267 344 409 459 500 267 344 408 458 499 —— 320 375 418 450 —— 346 410 461 502
第二节 荧光定量分析方法
荧光分析法基本原理
一、分子荧光
(一)分子荧光的产生 1.分子的电子能级与激发过程
hc =
E
S0
S1*
T1*
电子能级的多重性 M=2s+1
振动驰豫
内转换 体系间跨越
磷光
吸收
荧光
外转换
(二)激发光谱与发射光谱
excitation spectrum
横坐标ex,纵坐标 发射光强度
fluorescence spectrum
一、荧光强度与物质浓度的关系
F=K’(I0-I) I=I010-ECL
F= K’I0(1-10-ECL) = K’I0(1-e-2.3ECL) 若c很小,Ecl ≤0.05 则
F=2.3K’I0Ecl=Kc
F=2.3K’I0ECL=KC
ECl≤0.05 F C ECl >0.05 F 与C不成正比
荧光分析法的灵敏度高于紫外-可见分光光度法
荧光法
F
分析化学课件 PPT讲义 荧光分析法
药物分析教研室
药物分析教研室
§1 荧光分析法的基本原理
§1.3 影响荧光强度的外部因素
▪ 温度 ▪ 溶剂 ▪ pH值 ▪ 荧光熄灭剂 ▪ 散射光
药物分析教研室
§1 荧光分析法的基本原理
§1.3 影响荧光强度的外部因素
硫酸奎宁在不同激发波长下的荧光(a)与拉曼光谱(b)
荧光光谱
激发 320nm
激发350nm
荧光448nm
§2.1 荧光强度与物质浓度的关系
荧光分析法与UV-vis定量测定时仪器校正的区别
UV-vis
0
100%
T=0,A=∞
T=100%,A=0
关闭光闸,光不透 空白溶液,光全透
过,全吸收
过,不吸收
荧光分析法
F=0 空白溶液,不发射
荧光
F=100% 对照品溶液Cmax
F=50%(Cmid)
药物分析教研室
的荧光强度降低到最大荧光强度的1/e所需的时间。用f表示。
• 荧光效率(fluorescence efficiemcy):又称荧光量子产率
(fluorescence quantum yield)是指激发态分子发射荧光的光子数 与基态分子吸收激发光的光子数之比。f
• 荧光寿命和荧光效率是荧光物质的重要参数!
分析化学 Analytical Chemistry
药物分析教研室
药物分析教研室
概述
• 发光(phosphorescence):物质受到一定波长的光照射后, 外层电子跃迁后返回基态时,以光辐射的形式释放能量,这 种现象称为发光。(荧光、磷光)
• 荧光(fluorescence):物质分子接受光子能量被激发后,从 激发态的最低振动能级返回基万言书时发射出的光。
药物分析教研室
§1 荧光分析法的基本原理
§1.3 影响荧光强度的外部因素
▪ 温度 ▪ 溶剂 ▪ pH值 ▪ 荧光熄灭剂 ▪ 散射光
药物分析教研室
§1 荧光分析法的基本原理
§1.3 影响荧光强度的外部因素
硫酸奎宁在不同激发波长下的荧光(a)与拉曼光谱(b)
荧光光谱
激发 320nm
激发350nm
荧光448nm
§2.1 荧光强度与物质浓度的关系
荧光分析法与UV-vis定量测定时仪器校正的区别
UV-vis
0
100%
T=0,A=∞
T=100%,A=0
关闭光闸,光不透 空白溶液,光全透
过,全吸收
过,不吸收
荧光分析法
F=0 空白溶液,不发射
荧光
F=100% 对照品溶液Cmax
F=50%(Cmid)
药物分析教研室
的荧光强度降低到最大荧光强度的1/e所需的时间。用f表示。
• 荧光效率(fluorescence efficiemcy):又称荧光量子产率
(fluorescence quantum yield)是指激发态分子发射荧光的光子数 与基态分子吸收激发光的光子数之比。f
• 荧光寿命和荧光效率是荧光物质的重要参数!
分析化学 Analytical Chemistry
药物分析教研室
药物分析教研室
概述
• 发光(phosphorescence):物质受到一定波长的光照射后, 外层电子跃迁后返回基态时,以光辐射的形式释放能量,这 种现象称为发光。(荧光、磷光)
• 荧光(fluorescence):物质分子接受光子能量被激发后,从 激发态的最低振动能级返回基万言书时发射出的光。
第十二章荧光分析法(Fluorometry)
kF
+ kVR
+ kIC
kF + kISC
+ kEC
+ kP
❖ 凡使 kF 增加,使其它去活化常数降低的因素 均可增加荧光量子产率。
❖ kF通常由分子结构决定,而其它参数则由化学
环境和结构共同决定。
2020年7月11日星期六
16
※ 3、荧光产生的条件
❖ 产生并可观察到荧光的条件: 1)分子必须具有吸收一定频率紫外光的特定 结构; 2)物质吸收特征频率的辐射后,必须具有较 高的荧光效率
13
2020年7月11日星期六
14
二、荧光与分子结构的关系
1、荧光寿命:
❖ 去除激发光源后,分子荧光强度降低到最大荧光强度 的1/e所需的时间,用τf 表示。
❖ 根据指数衰减定律可求出荧光寿命:
Ft = F0e-Kt
若t = τ f ,则Ft = ( 1 / e )F0 ,K = 1 / τ f
2020年7月11日星期六
6
(3)外转换(External Conversion,EC)
❖ 受激分子与溶剂或其它分子相互作用发生能量转换而使 荧光或磷光强度减弱甚至消失的过程,也称“熄灭”或 “猝灭”。常发生在第一激发单重态或激发三重态的最 低振动能级向基态转换的过程中。
(4)系间跨跃(Intersystem Conversion,ISC)
基态:M=2S+1=1
激发态: S=0,M=2S+1=1 S=1,M=2S+1=3
S*1
T*1
2020年7月11日星期六
4
荧光和磷光产生示意图
2020年7月11日星期六
5
2. 去活化过程(Deactivation)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特点:发生在激发态的最低振动能级和基态之间;所需时间约 为10-7~10-9秒。
结果:导致荧光或磷光减弱,甚至熄灭
或
19
续前
返回2 返2回0
11.2.2 激发光谱与发射(荧光)光谱
——荧光物质分子的两个特征光谱
发射波长
激发波长
激发光谱(excitation spectrum): F~ ex 荧光光谱(fluorescence spectrum): F~ em
3
续前 荧光分析法分类:根据光源不同进行分类
激发光源
紫外-可见光
X射线
原子特征谱线
荧光分析法
分子荧光法(Molecular Fluorometry) X射线荧光法(X-ray Fluorometry) 原子荧光法(Atomic Fluorometry)
荧光分析法与可见紫外吸收光谱比较
相同点
本质
不同点
过程:当两个电子的能级非常靠近,以致其振动能级有重叠 时,电子常常由高电子能级以非辐射跃迁方式转移至低 电子能级,这种过程称为内部能量转换
特点:发生在非常靠近的两个电子能级间,他们的振动能级有 重叠;时间约10-1~10-13秒。
或
11
续前
注:
➢ 处于激发态的电子,通过振动弛豫和内部能量 转换,均回到第一激发态的最低振动能级
➢激发光谱与荧光光谱上的λmax是定性定量的依据
荧光
磷光
9
续前 1、振动弛豫(vibrational relexation)
过程:从电子激发态的某一振动能级以非辐射跃迁的方式, 回到同一电子激发态的最低振动能级的过程为振动驰豫
特点:发生在同一个电子能级内不同振动能级间的跃迁;时 间约10-12秒。
或
返回10
续前 2、内部能量转换(internal conversion)
13
续前 影响体系间跨越几率增大的因素:
➢含重原子的分子(如碘、溴等),体系间跨越最为常见。 原因:高原子序数的原子中,电子的自旋与轨道运 动之间的相互作用较大,有利于电子自旋反 转的发生。
➢在溶液中存在氧分子等,这些顺磁性物质也能增加体 系间跨越的发生几率。
返回14
续前 4、荧光(fluorescence)
一、分子能级与电子能级的多重性
分子的能级包括:电子能级(10ev)、振动能级(0.1ev) 及转动能级(0.001ev)
电子能级的多重性M:M=2S+1;S为总自旋量子数
单重态: singlet state
两电子自旋方向相反, 自旋量子数分别为 1 和 1 22
总自旋量子数 S 1 ( 1 ) 0 22
21
激发光谱:(与吸(收二光谱)类激似发)表光示谱不与同激荧发光波光长的谱辐射引起
物质发射某一波长荧光所得的光谱。 方法:固定发射光波长λem,依次改变激发波长λex,测
荧光强度F,以F-λex作图得荧光物质的激发光谱。
发射光谱:(荧光光谱)固定激发光波长λex,依次改变发射 波长λem,测荧光强度F,以F-λem作图得荧光光谱。
灵敏度
选择性
荧光 分子光谱 发射光谱 10-8~10-10g/ml
高
可见紫外 分子光谱 吸收光谱 10-5~10-7g/ml
一般
返回4
11.2 基本原理
11.2.1 分子荧光光谱的产生 11.2.2 激发光谱与发射光谱 11.2.3 分子结构与荧光的关系 11.2.4 影响荧光强度的外部因素
5
11.2.1 分子荧光光谱的产生
过程:振动弛豫→内部能量交换→振动弛豫
返回12
续前 3、体系间跨越(intersystem crossing)
过程:处于激发态的电子自旋方向发生改变,而使电子能级的 多重性发生变化的过程
特点:激发单重态与激发三重态振动能级重叠时,产生体系间 的跨越(S1*→T1 )。
结果:这种跨越会导致荧光强度减弱,甚至熄灭。
多重性 M自旋量子数分别为 1 和 1
22
triplet state
总自旋量子数 S 1 1 1 22
多重性 M 3
6
续前
基态单重态S0
能
π*
量
激发单重态S*
π* π*
激发三重态T
π
π
π
A
B
C
单重态和三重态电子分布
A:基态单重态 B:激发单重态 C:激发三重态 7
过程:电子由单重态的第一激发态最低振动能级跃迁到基态的 任一振动能级而发射的光量子为荧光
特点:发生在激发单重态最低振动能级与基态之间。时间约为 10-7~10-9 s。
注:
发射荧光的能量比吸收的能量小
1 > 0
即发射波长 > 激发波长
15
硫酸奎宁的激发光谱和荧光光谱
激发光谱 激发光谱
荧荧光光光光谱谱
返1回6
续前 5、磷光(phosporescence)
过程:电子由三重态的第一激发态最低振动能级跃迁到基态的 任一振动能级而发射的光量子为磷光
特点:发生在激发三重态最低振动能级与基态之间。分子在三 重态的最低振动能级上可以存活一段时间,发射时间约 为10-4~10 s。
注:
发射磷光的能量比荧光的能量小 2>1 > 0 即磷光波长 > 荧光波长 > 激发波长
分析化学Ⅱ
第十一章 荧光分析法
分析化学教研室
1
荧光分析法(Fluorometry)
概述 基本原理 荧光定量分析方法 荧光分析技术与应用 小结
2
11.1 概述
物质基 态
光照射
吸收
特定光
激发态
无辐射跃迁 放出热能或动能
光致发光 发射荧光和磷光
水溶性荧光黄
物质基 态
荧光分析法:基于对化合物的荧光测量建立起来的分析方法 荧光测量包括:荧光谱线位置及荧光强度
17
续前
跃迁 光电子能量
波长 发射时间
荧光与磷光的比较
荧光
激发单重态 最低振动能级→基态
磷光
激发三重态 最低振动能级→基态
E激发> E荧光>E磷光
λ激发< λ荧光< λ磷光
10-9~10-7秒
10-4~10秒
返回18
续前 6、外部能量转换(external conversion)
过程:如果分子在溶液中被激发,激发分子之间、分子与溶剂 之间会发生碰撞而失去能量,这种非辐射跃迁的过程称 为外部能量转换
续前
跃迁类型 所需能量 自旋方向 跃迁几率
跃迁类型的比较
基态→激发单重态S* 大
不变 接近于1
基态→激发三重态T* 小 改变
10-6(光学禁阻)
8
续前
二、荧光的产生
处于激发态的分子返回到基态共有以下几种途径:
回基态途径
无辐射跃迁
1
2 36
辐射跃迁 45
振动弛 豫
内部能量 转换
体系间跨越
外部能量转 换
结果:导致荧光或磷光减弱,甚至熄灭
或
19
续前
返回2 返2回0
11.2.2 激发光谱与发射(荧光)光谱
——荧光物质分子的两个特征光谱
发射波长
激发波长
激发光谱(excitation spectrum): F~ ex 荧光光谱(fluorescence spectrum): F~ em
3
续前 荧光分析法分类:根据光源不同进行分类
激发光源
紫外-可见光
X射线
原子特征谱线
荧光分析法
分子荧光法(Molecular Fluorometry) X射线荧光法(X-ray Fluorometry) 原子荧光法(Atomic Fluorometry)
荧光分析法与可见紫外吸收光谱比较
相同点
本质
不同点
过程:当两个电子的能级非常靠近,以致其振动能级有重叠 时,电子常常由高电子能级以非辐射跃迁方式转移至低 电子能级,这种过程称为内部能量转换
特点:发生在非常靠近的两个电子能级间,他们的振动能级有 重叠;时间约10-1~10-13秒。
或
11
续前
注:
➢ 处于激发态的电子,通过振动弛豫和内部能量 转换,均回到第一激发态的最低振动能级
➢激发光谱与荧光光谱上的λmax是定性定量的依据
荧光
磷光
9
续前 1、振动弛豫(vibrational relexation)
过程:从电子激发态的某一振动能级以非辐射跃迁的方式, 回到同一电子激发态的最低振动能级的过程为振动驰豫
特点:发生在同一个电子能级内不同振动能级间的跃迁;时 间约10-12秒。
或
返回10
续前 2、内部能量转换(internal conversion)
13
续前 影响体系间跨越几率增大的因素:
➢含重原子的分子(如碘、溴等),体系间跨越最为常见。 原因:高原子序数的原子中,电子的自旋与轨道运 动之间的相互作用较大,有利于电子自旋反 转的发生。
➢在溶液中存在氧分子等,这些顺磁性物质也能增加体 系间跨越的发生几率。
返回14
续前 4、荧光(fluorescence)
一、分子能级与电子能级的多重性
分子的能级包括:电子能级(10ev)、振动能级(0.1ev) 及转动能级(0.001ev)
电子能级的多重性M:M=2S+1;S为总自旋量子数
单重态: singlet state
两电子自旋方向相反, 自旋量子数分别为 1 和 1 22
总自旋量子数 S 1 ( 1 ) 0 22
21
激发光谱:(与吸(收二光谱)类激似发)表光示谱不与同激荧发光波光长的谱辐射引起
物质发射某一波长荧光所得的光谱。 方法:固定发射光波长λem,依次改变激发波长λex,测
荧光强度F,以F-λex作图得荧光物质的激发光谱。
发射光谱:(荧光光谱)固定激发光波长λex,依次改变发射 波长λem,测荧光强度F,以F-λem作图得荧光光谱。
灵敏度
选择性
荧光 分子光谱 发射光谱 10-8~10-10g/ml
高
可见紫外 分子光谱 吸收光谱 10-5~10-7g/ml
一般
返回4
11.2 基本原理
11.2.1 分子荧光光谱的产生 11.2.2 激发光谱与发射光谱 11.2.3 分子结构与荧光的关系 11.2.4 影响荧光强度的外部因素
5
11.2.1 分子荧光光谱的产生
过程:振动弛豫→内部能量交换→振动弛豫
返回12
续前 3、体系间跨越(intersystem crossing)
过程:处于激发态的电子自旋方向发生改变,而使电子能级的 多重性发生变化的过程
特点:激发单重态与激发三重态振动能级重叠时,产生体系间 的跨越(S1*→T1 )。
结果:这种跨越会导致荧光强度减弱,甚至熄灭。
多重性 M自旋量子数分别为 1 和 1
22
triplet state
总自旋量子数 S 1 1 1 22
多重性 M 3
6
续前
基态单重态S0
能
π*
量
激发单重态S*
π* π*
激发三重态T
π
π
π
A
B
C
单重态和三重态电子分布
A:基态单重态 B:激发单重态 C:激发三重态 7
过程:电子由单重态的第一激发态最低振动能级跃迁到基态的 任一振动能级而发射的光量子为荧光
特点:发生在激发单重态最低振动能级与基态之间。时间约为 10-7~10-9 s。
注:
发射荧光的能量比吸收的能量小
1 > 0
即发射波长 > 激发波长
15
硫酸奎宁的激发光谱和荧光光谱
激发光谱 激发光谱
荧荧光光光光谱谱
返1回6
续前 5、磷光(phosporescence)
过程:电子由三重态的第一激发态最低振动能级跃迁到基态的 任一振动能级而发射的光量子为磷光
特点:发生在激发三重态最低振动能级与基态之间。分子在三 重态的最低振动能级上可以存活一段时间,发射时间约 为10-4~10 s。
注:
发射磷光的能量比荧光的能量小 2>1 > 0 即磷光波长 > 荧光波长 > 激发波长
分析化学Ⅱ
第十一章 荧光分析法
分析化学教研室
1
荧光分析法(Fluorometry)
概述 基本原理 荧光定量分析方法 荧光分析技术与应用 小结
2
11.1 概述
物质基 态
光照射
吸收
特定光
激发态
无辐射跃迁 放出热能或动能
光致发光 发射荧光和磷光
水溶性荧光黄
物质基 态
荧光分析法:基于对化合物的荧光测量建立起来的分析方法 荧光测量包括:荧光谱线位置及荧光强度
17
续前
跃迁 光电子能量
波长 发射时间
荧光与磷光的比较
荧光
激发单重态 最低振动能级→基态
磷光
激发三重态 最低振动能级→基态
E激发> E荧光>E磷光
λ激发< λ荧光< λ磷光
10-9~10-7秒
10-4~10秒
返回18
续前 6、外部能量转换(external conversion)
过程:如果分子在溶液中被激发,激发分子之间、分子与溶剂 之间会发生碰撞而失去能量,这种非辐射跃迁的过程称 为外部能量转换
续前
跃迁类型 所需能量 自旋方向 跃迁几率
跃迁类型的比较
基态→激发单重态S* 大
不变 接近于1
基态→激发三重态T* 小 改变
10-6(光学禁阻)
8
续前
二、荧光的产生
处于激发态的分子返回到基态共有以下几种途径:
回基态途径
无辐射跃迁
1
2 36
辐射跃迁 45
振动弛 豫
内部能量 转换
体系间跨越
外部能量转 换