小学六年级上册数学知识点归纳
小学六年级上数学重点知识点归纳
一、整数运算
1.整数的概念和表示法
2.整数的相反数和绝对值
3.整数的加减法运算
4.整数的乘法运算
5.整数的除法运算
二、小数和分数
1.小数的概念和表示法
2.小数的加减法运算
3.小数的乘法运算
4.小数的除法运算
5.分数的概念和表示法
6.分数的加减法运算
7.分数的乘法运算
8.分数的除法运算
三、平方根
1.平方根的概念
2.平方根的求法和性质
四、面积与体积
1.平面图形的面积计算(矩形、正方形、三角形、梯形)
2.立体图形的体积计算(长方体、正方体、棱柱)
五、比和比例
1.比的概念和表示法
2.比的相等性质和比的大小性质
3.比例的概念和表示法
4.比例的等比性质和比例的大小性质
5.解比例问题的方法
六、图形的相似
1.相似图形的概念和性质
2.相似三角形的性质
3.两个图形是否相似的判断方法
七、统计与概率
1.数据的收集和整理方法
2.数据的图表表示
3.数据的统计指标(平均数、中位数、众数)
4.概率的概念和计算方法
总结:以上是小学六年级上数学重点知识点的归纳。
掌握这些知识点可以帮助学生在数学学习中打下坚实的基础,并为进一步学习中学阶段的数学知识做好准备。
六年级上册数学知识点汇总
圆
圆 周 率 及 圆 例 4 红星剧场的圆形舞台的 的周长 直径是 15 米, 它的周长是多少 米? C=πd =3.14×15 =47.1(米) 答:它的周长是 47.1 米。 圆的面积
圆环的面积
例 5 一个圆形湖心岛的直径 是 200 米 它的面积是多少平 方米? r=d÷ 2=200÷ 2=100 米 S=πr² =3.14×100×100 =31400(平方米) 例 6 在一个周长是 62.8 米的 圆环面积为 S 环=πR² -πr² =π(R² -r² ) 圆形花圃边缘修一条宽 1 米的 环形小路,这条小路的面积是 多少平方米?
例 14 一项工程,由甲队做 30 天完成,由 三、将工作总量假设为“ 1” ,用工 乙队做 20 天完成,两队合作几天完成? 作总量 ÷工作效率的和=合作工作时 1 1 间 1 ( ) 12 (天) 20 30 答:两队合作 12 天完成。 3.比 知识要点 比的意义
典型例题 例 15 填一填:小强和小丽在礼品店买同样的 花,小强买了 4 枝,小丽买了 8 枝,小强和小 丽买的花的枝数之比为( ) : ( ) ,比值是 1 ( ) 答案:4:8 2 比的基本性质 例 16 把下面各比化成最简的整数比, 1 3 : 35:7 0.8:0.2 4 4 =5:1 =4:1 =1:3 3 比、分数、除法 例 17 填一填 : 3 : 5 3 5 的联系与区别 5
六年级上册数学知识点汇总 1.分数乘法 知识要点 分数乘整数 典型例题 例1 计算
5 8 12
姓名: 重点内容 分数乘整数: 用分子和整数相乘的积 作分子,分母不变,能约分的要先约 分,再计算。
分数乘分数
例2
8 3 计算 9 10
六年级上册数学知识点归纳
六年级上册数学知识点归纳六年级上册数学知识点归纳(上)一、数的读法与数的大小比较1. 中文数字的读法及其书写;2. 常见的数的大小比较方法,包括数的比较和数的排列;3. 比较相同数位的数的大小、不同数位的数的大小以及有相同前缀的数的大小。
二、数的整除性与因数分解1. 再认识数的整除的定义和符号,包括定义、符号和性质;2. 熟练掌握计算数量积的方法,学会找出因数和公因数;3. 再认识数的分解因数的定义和方法,包括分解质因数的方法和定理。
三、分数与小数1. 熟练掌握分数的定义和基本概念,学会转化和化简分数;2. 熟练掌握小数的定义和基本概念,学会比较和换算小数;3. 掌握分数与小数间的转换关系和计算方法。
四、面积与周长1. 熟练掌握面积的基本概念和计算公式,学会计算常见图形的面积;2. 熟练掌握周长的基本概念和计算公式,学会计算常见图形的周长;3. 熟悉计算平行四边形和三角形面积的公式,学会解决实际问题。
五、容积与体积1. 熟练掌握容积的基本概念和计算公式,学会计算常见容器的容积;2. 熟练掌握体积的基本概念和计算公式,学会计算常见图形的体积;3. 熟悉不同形状的立体图形的特点和计算方法,学会解决实际问题。
六、平面图形的相似和全等1. 熟悉平面图形的相似和全等的定义和判定条件,学会通过变形来寻找相似或全等的方法;2. 了解相似和全等的性质,包括比例相等和角度相等;3. 掌握相似和全等图形之间的性质和应用,学会解决实际问题。
七、数据的收集和分析1. 熟悉收集数据的方法和工具,包括调查、测量和实验;2. 熟悉数据的表示方式和统计方法,包括表格、折线图和柱状图;3. 学会分析数据,并对数据进行简单的处理和解释,理解数据在生活和科学中的应用。
八、平面直角坐标系1. 熟悉平面直角坐标系的概念和表示方法,学会绘制基本图形;2. 熟悉平面直角坐标系的应用,包括表示点、确定距离和面积等;3. 熟悉平面直角坐标系与图形的关系,学会求出图形的坐标和方程。
六年级数学上册40个重要知识点归纳
11.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
22.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
33.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
44.分数乘整数:数形结合、转化化归55.倒数:乘积是1的两个数叫做互为倒数。
66.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
77.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
88.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1。
99.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
1010.分数除法:分数除法是分数乘法的逆运算。
1111.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
1212.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
1313.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
1414.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
最新小学六年级数学上册知识点归纳
分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变.三、乘法中比较大小时规律:一个数(0除外)乘大于1的数,积大于这个数.一个数(0除外)乘小于1的数(0除外),积小于这个数.一个数(0除外)乘1,积等于这个数.四、分数混合运算的运算顺序和整数的运算顺序相同.五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用.乘法交换律:a × b = b × a乘法结合律:( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a×c + b×c六、分数乘法的解决问题(已知单位“1”的量,求单位“1”的几分之几是多少(具体量)用乘法) 一个数的几分之几= 一个数×几分之几1、找单位“1”:在分数句中分数的前面; 或“占”、“是”、“比”的后面;2、看有没有多或少的问题;3、写数量关系式技巧:(1)“的” 相当于“×” “占”、“是”、“比”相当于“ = ”(2)分数前是“的”:单位“1”的量×分数=具体量(3)分数前是“多或少”的意思:单位“1”的量×(1-分数)=具体量;单位“1”的量×(1+分数)=具体量(已知具体量求单位“1”的量,用除法)三、倒数1、倒数的意义:乘积是1的两个数互为倒数.1的倒数是1; 0没有倒数.强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在.(要说清谁是谁的倒数).2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置.(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置.(3)、求带分数的倒数:把带分数化为假分数,再求倒数.(4)、求小数的倒数:把小数化为分数,再求倒数.3、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1.第三单元:分数除法一、分数除法1、分数除法的意义:分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算.除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一.乘法:因数× 因数 = 积除法:积÷ 一个因数 = 另一个因数2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数.分数除法比较大小时规律:当除数大于1,商小于被除数;当除数小于1(不等于0),商大于被除数;当除数等于1,商等于被除数.“[ ]”叫做中括号.一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的.二、分数除法解决问题三、比和比的应用1、两个数相除又叫做两个数的比.在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.比的后项不能为0.例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)2、比可以表示两个相同量的关系,即倍数关系.也可以表示两个不同量的比,得到一个新量.例:路程÷速度=时间.3、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示.比值:相当于商,是一个数,可以是整数,分数,也可以是小数.4、比和除法、分数的联系与区别:(区别)除法是一种运算,分数是一个数,比表示两个数的关系.比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数值.注意:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系.(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变.分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变.2、比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比.根据比的基本性质,把比化成最简整数比.3.化简比:(2)用求比值的方法.注意:最后结果要写成比的形式.如:15∶10 = 15÷10 = 3/2 = 3∶25.按比例分配:把一个数量按照一定的比来进行分配.这种方法通常叫做按比例分配.第五单元:百分数一、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几.百分数是指的两个数的比,因此也叫百分率或百分比.2、百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系.区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位.②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数.二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号.2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号.(二)百分数的和分数的互化1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数.2、分数化成百分数:① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式.②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.(三)常见的分数与小数、百分数之间的互化三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%.(一般出粉率在70、80%,出油率在30、40%.)(二)、折扣:商品按原定价格的百分之几出售,叫做折扣.通称“打折”.几折就表示十分之几,也就是百分之几十.例如八折=0.8=80﹪,六折五=0.65=65﹪2、成数:一成是十分之一,也就是10%.三成五就是十分之三点五,也就是35%(三)、纳税1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家.2、纳税的意义:税收是国家财政收入的主要来源之一.国家用收来的税款发展经济、科技、教育、文化和国防安全等事业.缴纳的税款叫做应纳税额.应纳税额与各种收入的比率叫做税率.应纳税额 = 总收入× 税率(四)利息 1、存款分为活期、整存整取和零存整取等方法.2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入.3、存入银行的钱叫做本金.取款时银行多支付的钱叫做利息.利息与本金的比值叫做利率.利息=本金×利率×时间注意:如要上利息税,则:税后利息=利息×(1-利息税率)国债和教育存款的利息不纳税第六单元:统计一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系.也就是各部分数量占总数的百分比.二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少.2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况.3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系.三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大.(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比.)第七单元:数学广角一、“鸡兔同笼”问题的特点:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量.二、“鸡兔同笼”问题的解题方法1、列表猜测法2、假设法 (1) 假如都是兔 (2) 假如都是鸡 (3) 古人“抬脚法”:3、列方程法。
小学六年级数学知识点归纳(上)
小学六年级数学知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级上册数学知识点总结
六年级上册数学知识点总结六年级上册数学知识点总结篇一1、一单元分数乘法分数乘整数的意义:就是求几个相同加数和的简便运算。
2、计算法则:分数乘整数,用分数的分子和整数的积做分子,分母不变。
3、一个数乘分数的意义:可以看做是求这个数的几分之几。
4、计算法则:一个数乘分数,用分子×的积做分子,分母相乘的做分母,为了计算的简便可以先约分。
5、整数乘法的交换律,结合律,分配率,对分数同样适用。
6、乘积是一的两个数互为倒数。
7、2单元位置与方向用坐标确定位置:前面的数表示列,后面的表示行上北下南左西右东3单元分数除法分数除法的意义:分数与整数的意义相同。
8、单位1:1.甲是乙的几分之几?甲÷乙2.甲比乙多几分之几?(甲-乙)÷乙3.甲比乙少几分之几?(乙-甲)÷乙路程=速度×时间速度=路程÷时间时间=路程÷速度工作总量=效率×时间工作效率=总量÷时间工作时间=总量÷效率4单元比比的意义:两数相除就叫做两个数的`比比的前项相当于被除数,后项相当于除数,比值相当于商。
9、前项相当于分子,后项相当于分母,比值相当于分数的值。
10、5单元圆圆是一种平面曲线图形。
11、圆中心的点叫圆心,连接圆心和圆上的任意一点叫半径,通过圆心并且两端都在圆上的线段叫直径直径=半径×2圆的周长公式:面积公式:C=πd或C=2πr S=πr的平方6单元百分数便是一个数是另一个数的百分之几的数叫百分数。
12、百分数也叫百分率和百分比。
13、百分数表示的是数量,不能带单位;百分数是分母是100的分数,分母是100的不一定是百分数。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,保留三位小数),再把小数化成百分数;把百分数化成分数,先把百分数改成分母是100的,能约分的要约成最简分数。
15、7单元扇形统计图统计图有:扇形统计图,条形统计图和折线统计图。
六年级上册数学知识点总结
六年级上册数学知识点总结小学六年级上册数学知识点总结篇一1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7、比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:8、组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
10、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11、正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
小学六年级上册数学知识点总结归纳(绝对经典)
小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
小六数学知识点归纳
六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
六年级数学上册知识点归纳
六年级数学上册知识点归纳小学六年级数学学问点1.1整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,??,叫做负整数3.零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,假如除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2因数和倍数1.假如整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.在正整数中(除1外),与奇数相邻的两个数是偶数3.在正整数中,与偶数相邻的两个数是奇数4.个位数字是0,5的数都能被5整除5.0是偶数1.4素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3.1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数:树枝分解法,短除法1.5公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数4.假如两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.假如两个数是互素数,那么这两个数的最大公因数是小学六年级数学复习方法一、要明确复习的目的、任务, 从实际启程复习绝不能搞成简洁的机械重复。
应通过复习系统整理小学阶段所学的数学根底学问,理清学问的重点和关键, 搞清学问间的内在联系, 使学生的四那么计算实力、初步的逻辑思维实力和空间观念在原有的根底上得到进一步的提高。
小学数学六年级上册知识点归纳
小学六年级上册总复习1. 数与代数一、 分数乘法1. 分数乘法的意义(1) 分数乘整数的意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(2) 一个数乘分数的意义:就是求这个数的几分之几是多少2. 分数乘法的计算方法。
(1) 分数乘整数的计算方法:分数乘整数,用分数的分子与整数相乘的积作分子,分母不变。
(2) 分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积做分母。
二、 倒数的认识1. 倒数的意义乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数2. 求倒数的方法求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置三、 分数除法1. 分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算2. 分数除法的计算方法(1) 分数除以整数(0除外),等于分数乘整数的倒数(2) 一个数除以分数,等于这个数乘分数的倒数。
即甲数除以乙数(0除外),等于甲数乘乙数的倒数。
四、 分数乘、除法应用题1. 分数乘法应用题的解题规律:单位“1”已知,用乘法计算。
(1) 求一个数的几分之几是多少的应用题的解题规律:一个数(单位“1”的量)⨯分率(几几)=部分量(与几分之几相对应的量)。
(2) 求比一个数多(或少)几分之几的数是多少的应用题的解题规律:一个数(单位“1”) ⨯(1几几±) (3) 求一个数的a b 与这个数的cd 的和(或差)是多少的应用题的解题规律:一个数(单位“1”的量)⨯(a b cd ±) 2. 分数除法应用题:单位“1”未知,用方程或者除法计算。
(1) 已知一个数的几分之几是多少,求这个数的应用题的解题规律:一,用方程解:根据“一个数(单位“1”) ⨯ 分率几几=部分量”列方程解答。
二、用算术方法解:即用部分量÷相对应的分率(几几)=一个数(单位“1”)(2) 求甲数比乙数多(或少)几分之几的的应用题的解题规律:(甲—乙)÷乙或(乙—甲)÷乙3. 分数乘、除法应用题的对比(1) 单位“1”已知,用乘法(2) 单位“1”未知,用方程解或用除法解答。
六年级上册数学知识点总结(7篇)
六年级上册数学知识点总结六年级上册数学知识点总结(7篇)总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以促使我们思考,因此我们要做好归纳,写好总结。
总结你想好怎么写了吗?以下是小编精心整理的六年级上册数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
六年级上册数学知识点总结1一、分数除法的意义和分数除以整数知识点一:分数除法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
知识点二:分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
二、一个数除以分数知识点一:一个数除以分数的计算方法一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0。
三、分数除法的混合运算知识点一:分数除加、除减的运算顺序除加、除减混合运算,如果没有括号,先算除法,后算加减。
知识点二:连除的计算方法分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
知识点三:不含括号的分数混合运算的运算顺序在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
知识点四:含有括号的分数混和运算的运算顺序在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
知识点五:整数的运算定律在分数混和运算中的运用分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
六年级上册数学知识点总结3篇
六年级上册数学知识点总结一、整数和运算整数的概念:正整数、负整数和零。
相反数:在数轴上,与数a距离相等、方向相反的数叫数a的相反数,用- a表示。
绝对值:一个数a,它的绝对值是它离0的距离(即|a|=a或|a|=-a)。
相加减法:同号两数相加,数的绝对值加,符号不变;异号两数相加,数的绝对值相减,结果的符号与绝对值大的数的符号相同。
公式:两数的和或差的绝对值等于这两数的绝对值的和与差的绝对值的和。
积的概念:积是乘法中的结果。
积的特点:0与任何数的积等于0;任何数与1的积等于这个数本身。
相乘运算规律:交换律、结合律。
除法的概念:分母不等于0的数a除以分母不等于0的数b是指找到一个数c,使得b × c等于a。
除法的特点:0不能作为除数;一个数除以1等于这个数本身。
二、小数的加减小数的概念:数轴上有限小数是指小数部分有限的数。
小数加减:补小数法、列竖式进行计算。
小数乘法:记一位数的积,将乘数、被乘数中的小数点向右移动相应位数,再把小数点省略,使它们构成一位数,再相乘。
练习计算百分数、比例、倍数、化简分数的例题。
三、多位数的乘法与除法(一)多位数的乘法:横式竖式相结合,运用积当数、配合计算能力。
多位数除法:初步掌握除法的基本思想,即被除数分为等份,以逐步缩小被除数的范围,进而求出商和余数的方法。
多余位的小数商,只需计算到所要的小数位数,最后四舍五入。
四、多位数的乘法与除法(二)多位数的乘法计算:分解、合成,利用数的运算规律,配合复习小学三年级到六年级的乘法口诀,提高计算效率,达到快算准算的目的。
多位数的除法计算:练习累加商法,学习竖式计算。
五、分数与单位换算分数:分数的意义、分数的形式与特点、紧凑的分数形式。
分数与小数的转换:分数化小数、小数化分数。
单位换算:长度、面积、体积和质量等。
在计算过程中注意单位的统一,运用常数比的思想。
六、图形的分类和特征平面图形的分类:点、线段、射线、直线、角,平行四边形、矩形、正方形、三角形、梯形、圆、圆心角、圆的周长和弧长。
6年级数学上册知识点归纳
6年级数学上册知识点归纳
以下是六年级数学上册的一些重要知识点:
1. 分数乘法:分数乘法的计算法则包括分数乘整数和分数乘分数。
分数乘整数的计算方法是分数的分子和整数相乘的积作分子,分母不变。
分数乘分数的计算方法是分子相乘的积作分子,分母相乘的积作分母。
分数乘法的意义是求几个相同加数的和的简便运算,也可以看作是求一个数的几分之几是多少。
2. 倒数:乘积是1的两个数叫做互为倒数。
找一个分数的倒数,例如3/4,把分子和分母交换位置,得到4/3。
找一个整数的倒数,例如12,把12化成分数,即12/1,再把分子和分母交换位置,得到1/12。
3. 比:比表示两个数的关系,比的前项除以后项得到比值。
求比值的方法是用前项除以后项,结果写成分数形式。
4. 圆:圆是一种几何图形,由一条封闭的曲线围成。
圆的直径、半径、周长和面积等概念是学习圆的基础。
5. 百分数:百分数是表示一个数是另一个数的百分之几的数。
百分数可以用于表示增长率、比例等。
6. 扇形统计图:扇形统计图是一种用扇形面积表示部分在总体中所占百分比的统计图。
它可以用于表示各类数据的大小和它们之间的关系,通常用于表示百分比和比例。
以上是六年级数学上册的一些重要知识点,学生需要掌握它们的概念、计算方法和应用。
同时,学生还需要能够运用所学知识解决实际问题,提高数学思维能力和解决问题的能力。
六年级数学上册主要知识点整理
小学六年级上册数学重要知识点第一单元:位置与方向用数对表示位置 如:第三列第二行 表示为(3,2)。
一般情况下先列后行表示为(第几列,第几行)第二单元:分数乘法1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(几个几是多少) (如:75×4表示4个75是多少,也可以表示75的4倍是多少。
) 2、一个数乘分数的意义就是求这个数的几分之几是多少。
(谁的几分之几是多少) (如:6×43表示6的43是多少;65×52表示65的52是多少。
) 3、分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。
(能约分的先约分) 4、一个数乘以比1小的数,积就小于这个数。
(如: 5×21﹤ 5 ); 一个数乘以1,积等于这个数。
(如: 54×1 ﹦ 54);一个数乘以大于1的数,积就大于这个数。
(如: 53×45 ﹥ 53)。
5、倒数 意义:乘积是1的两个数,互为倒数。
(1的倒数是1,0没有倒数)法则:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
3、一个数除以真分数,商大于这个数。
( 如: 4÷21﹥ 4 ); 一个数除以大于1的假分数,商小于这个数。
( 如: 3÷23﹤ 3 )。
4、两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示。
根据分数与除法的关系,两个数的比也可以写成分数形式。
(如:3:2也可以写成23,仍读作“3比2”)如: 2 : 3 = 2 ÷ 3 =36、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
小学六年级数学上册知识点归纳
小学六年级数学上册知识点归纳一、数的认识与运算1. 自然数:表示物体个数的数,如0、1、2、3等。
2. 整数:包括正整数、负整数和零,如-3、-2、-1、0、1、2等。
3. 分数:表示部分的数,如1/2、3/4、5/6等。
4. 小数:表示十分之几、百分之几的数,如0.1、0.25、0.5等。
5. 百分数:表示百分之几的数,如20%、50%、80%等。
6. 四则运算:加法、减法、乘法、除法。
7. 混合运算:将四则运算按照一定的顺序进行计算。
二、数的大小比较1. 比较整数的大小:从左到右依次比较每一位上的数字,直到找到不同的位或者比较完所有位。
2. 比较分数的大小:先比较分母,如果分母相同,再比较分子。
3. 比较小数的大小:先比较小数点后第一位,如果相同,再比较小数点后第二位,以此类推。
三、数的应用1. 长度:表示物体的长度,单位有厘米、米、千米等。
2. 重量:表示物体的重量,单位有克、千克、吨等。
3. 容量:表示物体的容积,单位有毫升、升、立方米等。
4. 时间:表示时间的长短,单位有秒、分钟、小时、天等。
5. 货币:表示货币的价值,单位有元、角、分等。
四、几何图形1. 点:没有大小和形状的物体。
2. 线:没有宽度和厚度的物体,可以无限延伸。
3. 面:由线段围成的封闭图形。
4. 三角形:由三条边组成的图形,有三个角和三个顶点。
5. 四边形:由四条边组成的图形,有四个角和四个顶点。
6. 圆形:由一条曲线围成的图形,所有点到圆心的距离相等。
7. 正方形:四边相等且四个角都是直角的四边形。
8. 长方形:对边相等且四个角都是直角的四边形。
9. 平行四边形:对边相等且相邻两边平行的四边形。
10. 梯形:有一对边平行的四边形。
11. 菱形:四条边相等且对角线互相垂直的四边形。
12. 矩形:四个角都是直角的平行四边形。
13. 圆环:由两个同心圆组成的图形。
14. 扇形:由圆心和圆上两点组成的图形。
15. 椭圆:由两个焦点和两条准线组成的图形。
小学六年级上册数学必考知识点总结(必备4篇)
小学六年级上册数学必考知识点总结(必备4篇)小学六年级上册数学必考知识点总结第1篇分数乘法知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
小学六年级数学上册知识点归纳
小学六年级数学上册知识点归纳一、整数的概念与应用整数是由正整数、负整数和0组成的数集。
在日常生活中,整数可以用来表示温度、海拔、债务等概念。
整数的加法、减法和乘法运算遵循相应的规则,例如同号相加得正,异号相加得负,负数相乘得正等。
二、分数的概念与运算分数由分子和分母组成,表示一个整体被分成若干等分中的一部分。
分数的加法、减法和乘法运算分别遵循相应的规则。
例如,两个分数相加时需要化为相同的分母,分数与整数相乘时需要将整数转化为分数。
三、小数的概念与运算小数是指有限小数和无限循环小数,可以通过小数点的位置表达数的大小关系。
小数的加法、减法和乘法运算遵循相应的规则。
例如,两个小数相加时需要对齐小数点,小数与整数相乘时结果的小数点位置与整数的位数有关。
四、几何图形的认识与性质几何图形包括点、线、面等基本图形,如直线、射线、线段、角、三角形、四边形等。
不同几何图形有不同的性质,如平行线的性质、三角形的分类、四边形的特点等。
五、图表的理解与分析图表是将数据以图形形式展示出来,包括条形图、折线图、饼图等。
通过观察图表可以了解数据的分布和变化规律,进而做出相应的分析和判断。
六、时间与日历的计算日历是记录时间的工具,了解日历的结构可以帮助我们进行日期的计算。
在计算时间时,需要掌握年、月、日、时、分、秒等单位之间的换算关系,同时注意闰年和平年的区别。
七、长度、面积与体积的计算长度是物体的长短,可以通过直尺、卷尺等工具进行测量。
面积是指平面图形所围成的空间的大小,可以通过面积公式进行计算。
体积是指立体图形所包含的空间大小,也可以根据相应的公式进行计算。
八、数据的整理、统计与应用数据的整理和统计是对一组数据进行收集、整理、分析和表示的过程。
通过整理数据可以得到频数表、频率表等,利用统计方法可以对数据进行分析和应用,如平均数、中位数、众数等。
九、问题解决与推理能力的培养数学学习不仅仅是记住知识点,更重要的是培养问题解决和推理能力。
【六年级数学上册】40个重要知识点归纳
【六班级数学上册】暑期预习40个重要学问点归纳1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:一般算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1。
9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都用法这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部重量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例始终是学数学简洁弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级上册数学知识点归纳第一部分数与代数一、分数乘法(一)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数实行乘法计算时,要先把带分数化成假分数再实行计算。
(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c二、分数乘法的解决问题(详细见重难点分解)(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数× 。
3、写数量关系式技巧:(1)“的”相当于“×”(乘号)“占”、“是”、“比”“相当于”相当于“=”(等号)(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率的对应量二、分数除法(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存有。
(要说清谁是谁的倒数)。
2、求倒数的方法:(原数与倒数之间不要写等号哦)(1)求分数的倒数:交换分子分母的位置。
(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)求带分数的倒数:把带分数化为假分数,再求倒数。
(4)求小数的倒数:把小数化为分数,再求倒数。
3、因为1×1=1,1的倒数是1;因为找不到与0相乘得1的数0没有倒数。
4、对于任意数a(a≠0),它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
(二)分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“[ ] ”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
(三)分数除法解决问题(详细见重难点分解)(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量2、解法:(建议:用方程解答)(1)方程:根据数量关系式设未知量为x,用方程解答。
(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就用一个数÷另一个数4、求一个数比另一个数多(少)几分之几:① 求多几分之几:大数÷小数– 1② 求少几分之几: 1 - 小数÷大数或①求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数(四)比和比的应用1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值(比值通常用分数表示,也能够用小数或整数表示)。
例如15 :10 = 15÷10=1.5∶ ∶ ∶ ∶前项比号后项比值3、比能够表示两个相同量的关系,即倍数关系。
也能够表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、区分比和比值比:表示两个数的关系,能够写成比的形式,也能够用分数表示。
比值:相当于商,是一个数,能够是整数,分数,也能够是小数。
5、根据分数与除法的关系,两个数的比也能够写成分数形式。
6、比和除法、分数的联系:7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,能够理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这仅仅一种记分的形式,不表示两个数相除的关系。
(五)比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,能够把比化成最简单的整数比。
4.化简比:(1)用比的基本性质化简①用比的前项和后项同时除以它们的公因数。
②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。
注意:最后结果要写成比的形式。
5.按比例分配:把一个数量按照一定的比来实行分配。
这种方法通常叫做按比例分配。
如:已知两个量之比为,则设这两个量分别为。
6、路程一定,速度比和时间比成反比。
(如:路程相同,速度比是4:5,时间比则为5:4)工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)三、百分数(一)百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指的两个数的比,所以也叫百分率或百分比。
2、百分数和分数的主要联系与区别:(1)联系:都能够表示两个量的倍比关系。
(2)区别:①意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既能够表示具体的数,又能够表示两个数的关系,表示具本数时能够带单位。
②、百分数的分子能够是整数,也能够是小数;分数的分子不能是小数,只能是除0以外的自然数。
3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。
(二)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。
(三)百分数的和分数的互化1、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。
2、分数化成百分数:① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(四)常见的分数与小数、百分数之间的互化第二部分图形与几何圆一、理解圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这个点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=d/28、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai) 表示。
(1)一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π ≈3.14。
(2)在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式5、在一个正方形里画一个的圆,圆的直径等于正方形的边长。
在一个长方形里画一个的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2计算方法:2πr÷2 即πr(2)半圆的周长:等于圆的周长的一半加直径。
计算方法:πr+2r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。
用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
4、环形的面积:一个环形,外圆的半径是R,内圆的半径是r。
(R=r+环的宽度.)S环= πR²-πr²或环形的面积公式: S环=π(R²-r²)。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。
例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。
6、两个圆:半径比 = 直径比 = 周长比;而面积比等于这比的平方。