小学奥数几何专题训练

合集下载

完整版)小学奥数几何专题

完整版)小学奥数几何专题

完整版)小学奥数几何专题小学几何面积问题一引理:如图1在ABCD中,P是AD上一点,连接PB、PC,则S△PBC=S△ABP+S△pcD= P/AD(适应长方形、正方形)。

1.已知:四边形ABCD为平行四边形,求阴影部分面积占平行四边形ABCD的面积的几分之几?无需删除)2.已知:ABCD的面积为18,E是PC的中点,求阴影部分面积。

无需删除)3.在ABCD中,CD的延长线上的一点E,DC=2DE,连接BE交AC于P点,(如图)知S△PDE=1,S△ABP=4,求平行四边形ABCD的面积。

无需删除)4.四边形ABCD中,BF=EF=ED,(如图)1) 若S四边形ABCD=15,则S阴=(无需删除)2) 若S△AEF+S△BFC=15,则S四边形ABCD=(无需删除)3) 若S△AEF=3S△BFC,则S四边形ABCD=(无需删除)5.四边形ABCD的对角线BD被E、F、G三点四等分,(如图)若四边形AECG=15,则S四边形ABCD=(无需删除)6.四边形ABCD的对角线BD被E、F、G三点四等分,(如图)若阴影部分面积为15,则S四边形ABCD=(无需删除)7.若ABCD为正方形,F是DC的中点,已知:S△BFC=1。

1) 则S四边形ADFB=(无需删除)2) S△DFE=(无需删除)3) S△AEB=(无需删除)8.直角梯形ABCD中,AE=ED,BC=18,AD=8,CD=6,且BF=2FC,S△GED=S△GFC,求阴影部分面积。

无需删除)小学几何面积问题二1.如图S△AEF=2,AB=3AE,CF=3EF,则S△ABC=(无需删除)2.如图S△BDE=30,AB=2AE,DC=4AC,则S△ABC=(无需删除)3.正方形ABCD中,E、F、G为BC边上四等份点,M、N、P为对角线AC上的四等份点(如图),若S正方形ABCD=32,则S△NGP=(无需删除)4.已知:S△ABC=30,D是BC的中点,AE=2ED,则S△BDE=(无需删除)1.在梯形ABCD中,AD//BC,OC=2AO,阴影部分的面积为4,求梯形ABCD的面积。

小学六年级奥数几何计数问题专项强化训练(中难度)

小学六年级奥数几何计数问题专项强化训练(中难度)

小学六年级奥数几何计数问题专项强化训练(中难度)例题1:在一个正方形的边长为5cm的区域内,用红、蓝两种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求两种颜色的砖头必须完全分开铺,且不能有重叠部分,那么一共有多少种不同的铺法?解析:首先我们知道正方形边长为5cm,正方形砖头的边长可以为1cm、2cm、3cm、4cm或5cm。

由于两种颜色的砖头必须完全分开铺,且不能有重叠部分,所以我们可以分别计算每种颜色砖头的铺法数量,然后相乘得到总的铺法数量。

对于红色砖头的铺法数量,我们可以考虑从左上角开始铺设。

当砖头的边长为1cm时,只有一种铺法。

当砖头的边长为2cm时,有两种铺法,水平或垂直放置。

当砖头的边长为3cm时,有三种铺法,水平放置、垂直放置或者斜放。

同理,当砖头的边长为4cm时,有四种铺法,水平放置、垂直放置、斜放或者两个合并一起放置。

当砖头的边长为5cm时,只有一种铺法,即整个正方形都用红色砖头铺满。

因此,红色砖头的铺法数量为1 + 2 + 3 + 4 + 1 = 11种。

同理,蓝色砖头的铺法数量也为11种。

总的铺法数量为11 * 11 = 121种。

专项练习应用题:1. 在一个正方形的边长为6cm的区域内,用红、蓝、黄三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头必须完全分开铺,且不能有重叠部分,那么一共有多少种不同的铺法?2. 在一个正方形的边长为8cm的区域内,用红、蓝两种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求两种颜色的砖头必须完全分开铺,且不能有重叠部分,那么一共有多少种不同的铺法?3. 在一个正方形的边长为10cm的区域内,用红、蓝、绿三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头必须完全分开铺,且不能有重叠部分,那么一共有多少种不同的铺法?4. 在一个正方形的边长为7cm的区域内,用红、蓝两种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求两种颜色的砖头必须完全分开铺,但可以有重叠部分,那么一共有多少种不同的铺法?5. 在一个正方形的边长为9cm的区域内,用红、蓝、绿三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头必须完全分开铺,但可以有重叠部分,那么一共有多少种不同的铺法?6. 有一条长度为10cm的线段,若将其分成三段长度相等的线段,那么一共有多少种不同的分法?7. 有一条长度为12cm的线段,若将其分成四段长度相等的线段,那么一共有多少种不同的分法?8. 有一条长度为15cm的线段,若将其分成五段长度相等的线段,那么一共有多少种不同的分法?9. 有一条长度为8cm的线段,若将其分成两段长度为整数的线段,且这两段线段的长度之差为1cm,那么一共有多少种不同的分法?10. 有一条长度为11cm的线段,若将其分成三段长度为整数的线段,且这三段线段的长度之差为1cm,那么一共有多少种不同的分法?11. 有一条长度为14cm的线段,若将其分成四段长度为整数的线段,且这四段线段的长度之差为1cm,那么一共有多少种不同的分法?12. 在一个正方形的边长为4cm的区域内,用红、蓝两种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求两种颜色的砖头可以重叠铺,那么一共有多少种不同的铺法?13. 在一个正方形的边长为6cm的区域内,用红、蓝、黄三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头可以重叠铺,那么一共有多少种不同的铺法?14. 在一个正方形的边长为9cm的区域内,用红、蓝、绿三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头可以重叠铺,那么一共有多少种不同的铺法?15.在一个正方形的边长为5cm的区域内,用红、蓝、黄、绿四种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求四种颜色的砖头可以重叠铺,那么一共有多少种不同的铺法?例题2:题目:在一个正方形格子图中,每个格子都填上了数字0或1,使得每行每列的数字和都为偶数。

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。

3 小学奥数——几何图形 试题及解析

3 小学奥数——几何图形 试题及解析

小学奥数——几何图形一.选择题(共50小题)1.图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4B.3C.5D.102.如图中阴影部分是正方形,最大长方形的周长是()厘米.A.22B.26C.36D.无法确定3.如图,由6个边长为3厘米的小正方形拼成的图形,它的周长是()厘米.A.36B.39C.42D.454.把一个直径是4厘米的圆分成两个完全相等的半圆,这两个半圆的周长之和是()A.12.56厘米B.16.56厘米C.20.56厘米D.24.56厘米5.如图,有8条线段,至少要分别测量编号为()的三条线段的长度,才能求出这个图形的周长.A.①②⑤B.①②③C.①②⑦D.②③⑦6.如图,是一个台阶的侧面(线段AC,BC,AB的长依次为5米、12米、13米)要在台阶上面铺上红地毯,且上下各多铺出两米,需要地毯的长度是()米.A.17B.18C.20D.217.如图,正方形被一条曲线分成了A、B两部分,下面第()种说法不正确?A.如果a>b,那么A的周长大于B的周长B.如果a<b,那么A的周长小于B的周长C.如果a=b,那么A的周长等于B的周长D.不管a、b哪个大,A、B的周长总是相等8.如图是用3个长8厘米、宽3厘米的长方形拼成的,这个图形的周长是()A.66厘米B.48厘米C.45厘米2C.489.图中多边形每相邻两条边都互相垂直,若要计算起其周长,那么至少要知道()边长.A.6B.5C.4D.310.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米C.160米D.200米11.把如图的长方形用一条曲线分成甲、乙两个图形,甲图与乙图的周长相比,()A.甲图的长B.乙图的长C.甲图与乙图同样长12.如图,在由1⨯1的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接1⨯1的正方形相邻两边中点的线段,或者是1⨯1的正方形的对角线,则图中2015四个数字(阴影部分)的面积是()A.47B.471 D.481213.如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积()2B.A.123C.35D.5814.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是()A.25B.40C.49D.5015.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.6416.如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是()平方厘米.A.240B.270C.300D.36017.如图所示,在58的方格中,阴影部分的面积为37cm2.则非阴影部分的面积为()cm2.lA.43B.74C.80D.11118.图中,将两个正方形放在一起,大、小正方形的边长分别为0,6,则图中阴影部分面积为()A.42B.40C.38D.3619.下图中,四边形ABCD都是边长为1的正方形,E、F、G、H分别是AB、BC、CD、DA的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数m n的值等于()mn,那么,A.5B.7C.8D.1220.有5个长方形,它们的长和宽都是整数,且5个长和5个宽恰好是1~10这10个整数;现在用这5个长方形拼成1个大正方形,那么,大正方形面积的最小值为()A.169B.144C.121D.10021.一个梯形的上底增加2厘米,下底减少2厘米,高不变,它的面积与原面积相比()A.变大了C.不变B.变小了D.高不知道,所以无法比较22.已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相等,请问正方形中的阴影面积与大等腰直角三角形面积的比值3B.2C.1是()A.11 D.3223.如图,梯形ABCD中,AB//D C,∠ADC+∠BCD=90︒,且DC=2A B,分别以DA、AB、BC为边向梯形外作正方形,其面积分别为S,S,S,则S,S,S之间的关系是下123123列选项中的()A.S+S>S;B.S+S=S;C.S+S<S;D.无法确定.12313213224.小王将一些同样大小的正三角形纸片摆放在桌上.第一次放1张纸片;第二次在这个小正三角形纸片四周再放三张纸片;第三次在第二次摆好的图形四周再摆放纸片;⋯摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有一条边重合,且纸片之间除边之外,无重合(见图).第20次摆放后,该图形共用了正三角形纸片()张.A.571B.572C.573D.57425.在8⨯8网格的所有方格中放入黑白两种围棋子,每个方格放一枚棋子,要求每行中的白色棋子的数目互不相同,每列中的白色棋子的数目相等,那么这个8⨯8网格中共有( )枚黑色棋子.A.42B.32C.22D.1226.在6⨯6网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个6⨯6网格中共有()枚黑.色围棋子.A.18B.14C.12D.1027.一块木板上有13枚钉子(如图1所示)用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(如图2).请回答:可以构成()个正方形.A.9B.10C.11D.1228.在如图中,一共能数出()个含有“☆”的长方形.A.8B.10C.12D.1429.如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形.A.6B.10C.13D.1530.以平面上任意4个点为顶点的三角形中,钝角三角形最多有()个.A.5B.2C.4D.331.图中,有()个三角形.A.13B.15C.14D.1632.图中共有()个三角形.A.10B.9C.19D.1833.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形34.将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14B.16C.18D.2035.在桌面上,将一个边长为1的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.536.用210个大小相同的正方形拼成一个长方形,不同的拼法有()种.A.2B.4C.6D.837.一个长方形由15个小正方形拼成,如图所示,若这个长方形的周长是64cm,则它的面积为()cm2.A.960B.256C.240D.12838.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为)平方厘米.(A.16B.20C.24D.3239.如图,四边形ABCD为长方形,四边形CDEF为平行四边形.下面四种说法中正确的是()A.甲的面积比乙的面积大B.甲的面积比乙的面积小C.只有当丙、丁两部分面积相等时,甲、乙两部分面积才相等D.甲、乙两部分面积总是相等的,与丙、丁两部分面积的大小无关40.如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是()平方厘米.A.40B.50C.60D.8041.如图,线段BE将长方形ABCD分成M、N两个部分,如果M部分比N部分的面积小l80平方厘米,那么AE的长是()A.24厘米B.21厘米C.20厘米D.14厘米42.如图,一个33的正方形网格,如果小正方形边长是1,那么阴影部分的面积是()A.5B.4C.3D.243.如图所示,四边形BCDE为平行四边形,∆AOE的面积为6,求∆BOC的面积.()A.3B.4C.5D.644.如图,M为平行四边形ABCD的边BC上的一点,且BM:MC=2:3,已知三角形C MN的面积为45cm2,则平行四边形ABCD的面积为()cm2.A.30B.45C.90D.10045.如图,长方形ABCD中的AE、AF、AG、AH四条线段把此长方形面积五等分,又长等于()平方厘米.方形长20厘米、宽12厘米,那么三角形AFG的面积S∆AFGA.41.2B.43.2C.43.1D.42.346.在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,∠AEC是直角,CE=CB,则AE2等于()A.84B.80C.75D.6447.下面的四个图形中,第()幅图只有2条对称轴.A. B.C. D.48.下面图形中,恰有2条对称轴()A. B. C. D.49.在如图的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图(的三角形.)中A. B.C. D.50.在下面的阴影三角形中,不能由图中的阴影三角形经过旋转、平移得到的是图(的三角形.)中A. B. C. D.参考答案与试题解析一.选择题(共50小题)1.图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4B.3C.5【解析】如上图,把线段①平移到②的位置可以组成一个大长方形,大长方形的4条边,对边相等,所以只需知道相邻两条边的长度,③=④,所以只需知道1条线段的长度,所以求八边形的周长需要知道:2+1=3条线段的长度.故选:B.2.如图中阴影部分是正方形,最大长方形的周长是()厘米.D.10A.22B.26C.36【解析】(9+4)⨯2=26答:最大长方形的周长是26厘米.3.如图,由6个边长为3厘米的小正方形拼成的图形,它的周长是(D.无法确定)厘米.A.36B.39C.42D.45【解析】3⨯4=12(厘米)3⨯2=6(厘米)(12+6)⨯2+6=36+6=42(厘米)答:它的周长是42厘米.故选:C.4.把一个直径是4厘米的圆分成两个完全相等的半圆,这两个半圆的周长之和是()A.12.56厘米B.16.56厘米C.20.56厘米D.24.56厘米【解析】(3.14⨯4÷2+4)⨯2=(6.28+4)⨯2=10.28⨯2=20.56(厘米)答:这两个半圆周长之和是20.56厘米.故选:C.5.如图,有8条线段,至少要分别测量编号为()的三条线段的长度,才能求出这个图形的周长.A.①②⑤B.①②③C.①②⑦D.②③⑦【解析】由图形可知,④+⑥的线段补给⑧所在的长方形边的虚线部分,⑦-⑤等长线段的补给③所在边的虚线部分,这样就构成了一个完整的长方形,原图形的周长就是答长方形的周长+2个⑤的线段总长,所以图形的周长只要知道①②⑤即可求得.故选:A.6.如图,是一个台阶的侧面(线段AC,BC,AB的长依次为5米、12米、13米)要在台阶上面铺上红地毯,且上下各多铺出两米,需要地毯的长度是()米.A.17B.18C.20D.21【解析】12+5+2⨯2=12+5+4=21(米)答:需要地毯的长度是21米.故选:D.7.如图,正方形被一条曲线分成了A、B两部分,下面第()种说法不正确?A.如果a>b,那么A的周长大于B的周长B.如果a<b,那么A的周长小于B的周长C.如果a=b,那么A的周长等于B的周长D.不管a、b哪个大,A、B的周长总是相等【解析】A的周长=曲线长+正方形边长⨯2+b-aB的周长=曲线长+正方形边长⨯2+a-b所以A、B、C选项都是正确的,错误的是D.8.如图是用3个长8厘米、宽3厘米的长方形拼成的,这个图形的周长是()22A.66厘米B.48厘米C.45厘米【解析】8⨯6-3⨯1=48-3=45(厘米)答:这个图形的周长是45厘米.故选:C.9.图中多边形每相邻两条边都互相垂直,若要计算起其周长,那么至少要知道()边长.A.6B.5C.4D.3【解析】根据题干分析可得:这个图形的横着的边长之和是:b;竖着的边长之和是:a+2c;所以这个图形的周长是:2a+2b+2c=2(a+b+c),故计算这个图形的周长至少需要知道3条边,故选:D.10.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米C.160米D.200米【解析】(30+10)⨯2⨯2=160(米)故选:C.11.把如图的长方形用一条曲线分成甲、乙两个图形,甲图与乙图的周长相比,()A.甲图的长C.甲图与乙图同样长【解析】B.乙图的长2C.482B.因为,甲图形的周长是:AB+BC+AC,乙图形的周长是:DC+AD+AC,而AB=CD,AD=BC,所以,甲、乙两个图形的周长相等;故选:C.12.如图,在由1⨯1的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接1⨯1的正方形相邻两边中点的线段,或者是1⨯1的正方形的对角线,则图中2015四个数字(阴影部分)的面积是()A.47B.471D.4812【解析】据分析可知:将小三角形移到空白处补全完整正方形,共47.5个,所以阴影部分的面积是4712;故选:B.13.如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积()A.123C.35D.58【解析】根据分析,将图中阴影部分进行等积变形,由图不难发现,阴影部分和空白部分的面积刚好相等,正八边形中阴影部分的面积占:1 2故选:A.14.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是()A.25B.40C.49D.50【解析】根据分析,如下图所示,图①逆时针旋转90︒,阴影部分可拼成一等腰直角三角形,S=142÷4=49故选:C.15.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.64【解析】根据分析,一条阴影部分的面积为10÷2=5平方厘米.因为都是整数,所以只能为1⨯5.故,大正方形面积=(1+5)⨯(1+5)=6⨯6=36平方厘米.故选:B.16.如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是()平方厘米.A.240B.270C.300D.360【解析】如图所示,将图分割成面积相等的小正三角形,显然,图中的空白部分的面积和等于3个小正六边形.而阴影部分由6个小正六边形组成,所以,大正六边形是由9个小正六边形组成的.一个小正六边形的面积为:180÷6=30(平方厘米),大正六边形的面积为:30⨯9=270(平方厘米),故选:B.l17.如图所示,在 5 ⨯ 8 的方格中,阴影部分的面积为 37cm 2 .则非阴影部分的面积为 ()cm 2 .A.43【解析】如图,B.74C.80 D .111阴影部分占了 18.5 个格,面积为 37cm 2 ,每格的面积是: 37 ÷ 18.5 = 2(cm 2 ) ;非阴影就分占 21.5 格,其面积是: 21.5 ⨯ 2 = 43(cm 2 ) ; 答:则非阴影部分的面积为 43cm 2 ;故选: A .18.图中,将两个正方形放在一起,大、小正方形的边长分别为 0 ,6,则图中阴影部分面积为 ()A.42B.40C.38D .36【解析】10 ⨯10 + 6 ⨯ 6 - 6 ⨯ (10 + 6) ÷ 2 - 10 ⨯10 ÷ 2= 100 + 36 - 48 - 50【解析】由以上可知,两个阴影面积比为 : = 3: 2 ,= 38答:阴影部分的面积是 38.故选: C .19.下图中,四边形 ABCD 都是边长为 1 的正方形,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数m + n 的值等于 ()mn,那么,A.5B.7C.8 D .121 12 33 + 2 = 5.故选: A .20.有 5 个长方形,它们的长和宽都是整数,且 5 个长和 5 个宽恰好是1~10 这 10 个整数;现在用这 5 个长方形拼成 1 个大正方形,那么,大正方形面积的最小值为()A.169【解析】如图所示,B.144C.121 D .100,于是可得:正方形的边长为 11,则其面积为11⨯11 = 121.答:大正方形面积的最小值为 121.故选: C .3B. 2C.1则正方形的面积是 ( )2 + ( )2 = + =小等腰三角形与大等腰三角形的面积和: + =21.一个梯形的上底增加 2 厘米,下底减少 2 厘米,高不变,它的面积与原面积相比 ()A.变大了C.不变B.变小了D.高不知道,所以无法比较【解析】因为梯形的面积 = (上底 + 下底) ⨯ 高 ÷2 ,若“上底增加 2 厘米,下底减少 2 厘米,高不变”则(上底 + 下底)的和不变,且高不变,所以梯形的面积不变.故选: C .22.已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相等,请问正方形中的阴影面积与大等腰直角三角形面积的比值是 ()A.1 1D.32【解析】设小等腰三角形的边长是 a ,大等腰三角形的边长为 b , 则小三角形的斜边是 2a ,大三角形的斜边为 2b2a 2b a 2 b 2 a 2 + b 22 2 2 2 2a 2b 2 a 2 + b 22 2 2又因小等腰直角三角形与正方形中的圆面积相等,所以正方形中的阴影面积与大等腰直角三角形面积相等.所以它们的比值是 1.故选: C .23.如图,梯形 ABCD 中,AB / / D C ,∠ADC + ∠BCD = 90︒ ,且 DC = 2 A B ,分别以 DA 、AB 、BC 为边向梯形外作正方形,其面积分别为S , S , S ,则 S , S , S 之间的关系是下12 3 1 2 3列选项中的 ()A.S+S>S;B.S+S=S;C.S+S<S;D.无法确定.123132132【解析】过点A作AE//BC交CD于点E,因为AB//D C,所以四边形AECB是平行四边形,所以AB=CE,BC=AE,∠BCD=∠AED,因为∠ADC+∠BCD=90︒,DC=2A B,所以AB=DE,∠ADC+∠AED=90︒,所以∠DAE=90︒那么AD2+AE2=DE2,因为S=AD2,S=AB2=DE2,S=BC2=AE2,123所以S=S+S.213故选:B.24.小王将一些同样大小的正三角形纸片摆放在桌上.第一次放1张纸片;第二次在这个小正三角形纸片四周再放三张纸片;第三次在第二次摆好的图形四周再摆放纸片;⋯摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有一条边重合,且纸片之间除边之外,无重合(见图).第20次摆放后,该图形共用了正三角形纸片()张.A.571B.572C.573D.574【解析】根据分析可得,.第 20 次摆放后,该图形共用:1 + 3 + 6 + 9 +⋯+ 3 ⨯ (20 - 1)= 1 + 3 + 6 + 9 +⋯+ 57= (3 + 57) ⨯ (20 - 1) ÷ 2 + 1= 570 + 1= 571 (个 )答:第 20 次摆放后,该图形共用了正三角形纸片 571 张.故选: A .25.在 8 ⨯ 8 网格的所有方格中放入黑白两种围棋子,每个方格放一枚棋子,要求每行中的白色棋子的数目互不相同,每列中的白色棋子的数目相等,那么这个8 ⨯ 8 网格中共有 () 枚黑色棋子.A.42B.32C.22 D .12【解析】由分析得0 + 1 + 2 + 3 + 5 + 6 + 7 + 8 = 32 (枚 )8 ⨯ 8 - 32 = 32 (枚 )故选: B .26.在 6 ⨯ 6 网格的所有方格中放入围棋子,每个方格放 1 枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个 6 ⨯ 6 网格中共有 () 枚黑色围棋子.A.18B.14C.12 D .10【解析】每行的数目可以为 0 ~ 6 个,每列都相等,所以一定是 6 的倍数,0 + 1 + 2 + 3 + 4 + 5 + 6 = 21 ,如果去掉 3,那么剩下的数: 21 - 3 = 18 正好是 6 的倍数,所以,白棋子有 18 个,则,黑色围棋子有: 6 ⨯ 6 - 18 = 18 (个 )故选: A .27.一块木板上有 13 枚钉子(如图 1 所示)用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(如图 2) .请回答:可以构成 () 个正方形.A.9【解析】B.10C.11D.12第一种正方形有5个,第二种正方形有4个,第三个正方形有1个,第四种正方形有1个,共11个.故选:C.28.在如图中,一共能数出()个含有“☆”的长方形.A.8B.10C.12D.14【解析】根据分析可得,共有:6+6=12(个);答:图中,一共能数出12个含有“☆”的长方形.故选:C.29.如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形.A.6B.10C.13D.15【解析】单个的三角形有9个,4个三角形组成的大三角形3个,最外面的最大的三角形1个,共有:9+3+1=13(个)答:用橡皮筋可套出13个正三角形.故选:C.30.以平面上任意4个点为顶点的三角形中,钝角三角形最多有()个.A.5B.2C.4D.3【解析】如图,平面上任意4点构成了4个钝角三角形:∆ABC、∆ABD、∆ACD、∆BCD,所以以平面上任意4个点为顶点的三角形中,钝角三角形最多有4个.故选:C.31.图中,有()个三角形.A.13B.15C.14D.16【解析】由题意,由一个小三角形构成的,有6个;由两个小三角形构成的,有3个;由三个小三角形构成的,有6个;大三角形1个,所以三角形的个数为6+3+6+1=16个,故选:D.32.图中共有()个三角形.A.10B.9C.19D.18而实际空白部分面积总和是 10 平方厘米,可得单位 1 的实际面积是10 ÷ 15 = (平方厘米);【解析】根据题干分析可得:8 + 8 + 2 = 18 (个 ) ,答:图中一共有 18 个三角形.故选: D .33.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由() 拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形【解析】因为拼在一起的两个小三角形一定有两条边共线,这时能组成一个平角,A 、因为两个锐角的和小于 180 度,所以,两个锐角三角形不可能拼成一个大三角形;B 、因为 90︒ + 90︒ = 180︒ ,所以两个直角三角形能拼成一个大三角形;C 、因为钝角 + 锐角有可能等于180︒ ,所以两个钝角三角形可能拼成一个大三角形;D 、因为钝角 + 锐角有可能等于180︒ ,所以两个钝角三角形可能拼成一个大三角形;故选: A .34.将长方形 ABCD 对角线平均分成 12 段,连接成如图,长方形 ABCD 内部空白部分面积总和是 10 平方厘米,那么阴影部分面积总和是() 平方厘米.A.14B.16C.18 D .20【解析】设把中间最小的空白长方形的面积看作单位1 = ab ,那么与它相邻的阴影部分的面积就是 2a ⨯ 2b - ab = 3ab = 3 ,同理,相邻的空白部分的面积就是 5ab = 5 ,依此规律,面积依次下去为 7,9,11,则空白部分的面积总和是1 + 5 + 9 = 15 ,23那么阴影部分面积总和是: 3 + 7 + 11 = 21 ,;则实际面积是:21⨯23=14(平方厘米)答:阴影部分面积总和是14平方厘米.故选:A.35.在桌面上,将一个边长为1的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.5【解析】180︒⨯(6-2)÷6=180︒⨯4÷6=120︒180︒÷6=60︒120︒+60︒=180︒所以,拼接后的图形是:6+3-4=5(条)答:得到的新图形的边数为5.故选:D.36.用210个大小相同的正方形拼成一个长方形,不同的拼法有()种.A.2B.4C.6D.8【解析】210=2⨯3⨯5⨯7因数的总个数:(1+1)⨯(1+1)⨯(1+1)⨯(1+1)=16(个)不同的拼法有:16÷2=8(种)答:不同的拼法有8种.故选:D.37.一个长方形由15个小正方形拼成,如图所示,若这个长方形的周长是64cm,则它的面积为()cm2.(A.960B.256C.240D.128【解析】64÷[(5+3)⨯2]=64÷16=4(厘米)4⨯4⨯15=240(平方厘米)答:它的面积为240cm2.故选:C.38.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为)平方厘米.A.16B.20C.24D.32【解析】如右图进行分割,把图形分成了8个边长是2厘米的小正方形2⨯2⨯8=32(平方厘米)答:这个图形的面积是32平方厘米.故选:D.39.如图,四边形ABCD为长方形,四边形CDEF为平行四边形.下面四种说法中正确的是()A.甲的面积比乙的面积大B.甲的面积比乙的面积小C.只有当丙、丁两部分面积相等时,甲、乙两部分面积才相等D.甲、乙两部分面积总是相等的,与丙、丁两部分面积的大小无关【解析】四边形ABCD为长方形,所以BC=AD,AB=CD,因为四边形CDEF为平行四边形,所以C D=EF,所以AB=EF,两边同时加上BE,所以BF=AE;根据等底等高的三角形的面积相等,所以得出三角形CBF的面积=三角形DAE的面积,则:三角形CBF的面积-丁的面积=三角形DAE的面积-丁的面积,所以甲、乙两部分面积总是相等,与与丙、丁两部分面积的大小无关;故选:D.40.如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是()平方厘米.A.40B.50C.60D.80【解析】10⨯10-8⨯5=60(平方厘米)故选:C.41.如图,线段BE将长方形ABCD分成M、N两个部分,如果M部分比N部分的面积小l80平方厘米,那么AE的长是()A.24厘米B.21厘米C.20厘米D.14厘米【解析】设N部分的面积为x,那么M部分的面积为x-180,x+(x-180)=30⨯202x-180=600;2x=600+1802x=780x=390;N部分的面积是390平方厘米.设梯形的上底为y,(y+30)⨯20⨯1=390210y+300=39010y=90y=9;AE=30-9=21(厘米)故选:B.42.如图,一个3⨯3的正方形网格,如果小正方形边长是1,那么阴影部分的面积是()A.5B.4C.3D.2【解析】通过观察可知,阴影部分的面积=长是3宽是1的长方形的面积-中间边长是1的正方形的面积.3⨯1-1⨯1=2故选:D.43.如图所示,四边形BCDE为平行四边形,∆AOE的面积为6,求∆BOC的面积.()A.3【解析】连接BD,B.4C.5D.6因为,BE//CD,OB=OB,所以,∆BOC的面积等于∆BOD的面积,又因为,DE//AC,AB=AB,所以,∆ABE的面积等于∆ABD的面积,又因为,∆ABO是∆ABE和∆ABD的公共部分,所以,∆BOD的面积等于∆AOE的面积,即,∆BOD的面积=∆AOE的面积=6.答:∆BOC的面积是6.故选:D.44.如图,M为平行四边形ABCD的边BC上的一点,且BM:MC=2:3,已知三角形C MN的面积为45cm2,则平行四边形ABCD的面积为()cm2.A.30B.45C.90D.100【解析】如图,连接AC.Q四边形ABCD是平行四边形,∴AD//B N,∴∆A DM∽∆NCM,)2 = ,= S∴ S∆ADM = (S∆MNCDM 4CM 9Q S∴ S∆MNC ∆ADM= 45 ,= 20 ,Q CM : DM = 3: 2 ,∴ S∴ S∴ S = 30 , ∆ACM= 50 ,∆ADC平行四边形ABCD= 2S∆ADC= 100 ,故选: D .45.如图,长方形 ABCD 中的 AE 、 AF 、 AG 、 AH 四条线段把此长方形面积五等分,又长方形长 20 厘米、宽 12 厘米,那么三角形 AFG 的面积 S∆AFG等于 ( ) 平方厘米.A.41.2B.43.2C.43.1D .42.3【解析】由题意可知 S∆ABE= S∆AEF= S∆AGH= S∆ADH=20 ⨯125= 48 ,∴ B E = EF , DH = HG ,Q 1g BE g AB = 48 ,2∴ BE = EF = 8 , CF = 20 - 16 = 4 ,Q 1g DH g AD = 48 ,2∴ DH = HG = 4.8 , CG = 2.4 ,∴ S 1 2∴ S∆AFG= 48- 4.8 = 43.2 ,故选: B .46.在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,∠AEC是直角,CE=CB,则AE2等于()A.84【解析】如图,B.80C.75D.64连接AC,过点A作AF⊥CD于点F,过点B作BG⊥CD于点G,则AF=BG,AB=FG=6,DF=CG=4.在直角∆AFC中,AC2=AF2+FC2=AF2+102=AF2+100,在直角∆BGC中,BC2=BG2+GC2=AF2+42=AF2+16,又Q CE=CB,∠AEC=90︒,∴AE2=AC2-EC2=AF2+100-(A F2+16)=84,即AE2=84.故选:A.47.下面的四个图形中,第()幅图只有2条对称轴.A. B.C. D.【解析】如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.观察易知,符合题意的是C.故选:C.48.下面图形中,恰有2条对称轴()A. B. C. D.【解析】根据轴对称图形的定义,可得:A有4条对称轴,B没有对称轴,C有2条对称轴,D有1条对称轴.故选:C.49.在如图的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B.C. D.【解析】根据分析,可以逆向思维,可以将题中的阴影三角形经过旋转、平移,长直角边旋转和短直角边旋转后得到的图形,不难看出,只有A选项是不可能出现的.图中图中①、②、③三边应为顺时针关系,A不合要求.故选:A.50.在下面的阴影三角形中,不能由图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B. C. D.【解析】解析:由图可知:A、C、D都可由原三角形经过旋转和平移得到,而B选项必须经过对称才能与原三角形重合,故选:B.。

小学奥数几何图练习及答案【三篇】

小学奥数几何图练习及答案【三篇】

小学奥数几何图练习及答案【三篇】【第一篇】习题:一个长方形,如果宽不变,长增加8米,面积增加72平方米,如果长不变,宽减少4米,面积减少48平方米,原长方形的面积是( )。

考点:长方形、正方形的面积分析:用增加的面积除以增加的长,就是原来的宽,即72÷8=9米;用减少的面积除以减少的宽,就是原来的长,即48÷4=12米,从而利用长方形的面积公式即可求解。

解答:解:72÷8=9(米)48÷4=12(米)12×9=108(平方米);答:长方形的面积是108平方米。

故答案为:108平方米【第二篇】鸟头定理即共角定理。

燕尾定理即共边定理的一种。

共角定理:若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。

共边定理:有一条公共边的三角形叫做共边三角形。

共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM 这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。

为了避开相似,我们用相应的底,高的比来推出三角形面积的比。

例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。

连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。

很显然,三角形ABD和ACD面积之比是1:2因为共边,所以两个对应高之比是1:2而四个小三角形也会存在类似关系三角形ABE和三角形ACE的面积比是1:2三角形BED和三角形CED的面积比也是1:2所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。

以上是根据共边后,高之比等于三角形面积之比证明所得。

必须要强记,只要理解,到时候如何变形,你都能会做。

至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。

【第三篇】习题:两条直线相交,四个交角中的一个锐角或一个直角称为这两条直线的“夹角”。

小学奥数题库《几何》-曲线型-圆环-2星题(含解析)

小学奥数题库《几何》-曲线型-圆环-2星题(含解析)

几何-曲线型几何-圆环-2星题课程目标知识提要圆环•概述圆环是由两个半径不相等的同心圆构成的,大圆面积比小圆面积多的部分就是圆环。

•面积公式S=πR2−πr2=π(R2−r2)精选例题圆环1. 如下图所示,已知圆环的面积是141.3平方厘米,那么阴影部分的面积是平方厘米.(π取3.14)【答案】45【分析】设大圆半径为R,小圆半径为r,则圆环面积为π(R2−r2)=141.3(平方厘米),所以阴影部分面积为R2−r2=141.3÷3.14=45(平方厘米).2. 如下图所示,有10个同心圆,任意两个相邻的同心圆半径之差等于里面最小圆的半径.如果射击时命中最里面的小圆得10环,命中最外面的圆环得1环.得1环圆环的面积是10环圆面积的倍.【答案】19【分析】1环、2环、10环的外圈的圆的半径值比为10:9:1,面积比为100:81:1,1环面积是10面积的(100−81)÷1=19倍.3. 如下图所示,大正方形的面积是400平方厘米,则圆环的面积是平方厘米.(π取3.14)【答案】157平方厘米【分析】将小正方形转45∘,如下图所示,可以看出大正方形的面积是小正方形面积的两倍,所以大圆面积是小圆面积的两倍.因为大正方形面积是400平方厘米,所以大圆面积为314平方厘米,小圆面积为157平方厘米,圆环面积为314−157=157(平方厘米).4. 如图,大正方形的面积是400平方厘米,则圆环面积是平方厘米.(π取3.14)【答案】157【分析】如图所示,由大正方形的面积为400平方厘米知AB=20(厘米).取圆心O,AB中点M,连接OM交小正方形于点E,连接OB交大圆于点F.于是MB=OM=OF=10(厘米),易知△OEF为等腰直角三角形,所以2OE2=OF2=100(平方厘米),于是OE2=50(平方厘米),所以圆环的面积为π⋅OM2−π⋅OE2=π×102−π×50=50π≈157(平方厘米).5. 两个半径不等的同心圆,内圆半径3cm,外圆直径8cm,圆环面积是多少?【答案】21.98平方厘米.【分析】注意外圆的直径是8cm,半径应是4cm,那么圆环的面积是π×4×4—π×3×3=21.98(平方厘米).6. 在直径为6米的圆形花坛的外面,围绕着一条宽1米的环形小路,这条小路的面积是多少?【答案】21.98平方米.【分析】此题相当于知道小圆直径和环宽,求圆环的面积.小圆半径3米,大圆半径4米,圆环的面积是21.98平方米.7. 大圆半径为R,小圆半径为r,两个同心圆构成一个环形.以圆心O为顶点,半径R为边长作一个正方形:再以O为顶点,以r为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14)【答案】157平方厘米【分析】环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是R2−r2=50平方厘米,那么环形的面积为:πR2−πr2=π(R2−r2)=π×50=157(平方厘米).8. 图中阴影部分的面积为50平方厘米,求环形面积.(π取3.14)【答案】157平方厘米【分析】环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是R2−r2=50平方厘米,那么环形的面积为:πR2−πr2=π(R2−r2)=π×50=157(平方厘米).9. 奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π=3.14)【答案】 4.1平方厘米.【分析】⑴每个圆环的面积为:π×42−π×32=7π=21.98(平方厘米)⑵五个圆环的面积和为:21.98×5=109.9(平方厘米)⑶八个阴影的面积为:109.9−77.1=32.8(平方厘米)⑷每个阴影的面积为:32.8÷8=4.1(平方厘米)10. 已知与小圆相切的线段长度是10厘米,那么图中圆环的面积是多少?【答案】 25π 平方厘米【分析】连接 OC 、OB ,则 OC ⊥AB ,在直角三角形 OBC 中,OB 2−OC 2=BC 2=(12AB)2=25, 图中圆环的面积为πR 2−πr 2=π(R 2−r 2)=π×(OB 2−OC 2)=25π(平方厘米).11. 图为一卷紧绕成的牛皮纸,纸卷直径为 20 厘米,中间有一直径为 6 厘米的卷轴.已知纸的厚度为 0.4 毫米,问:这卷纸展开后大约有多长?【答案】71.4米.【分析】将这卷纸展开后,它的侧面可以近似的看成一个长方形,它的长度就等于面积除以宽.这里的宽就是纸的厚度,而面积就是一个圆环的面积.因此,纸的长度≈纸卷侧面积纸的厚度≈3.14×102−3.14×320.04=3.14×(100−9)0.04=7143.5(厘米)所以,这卷纸展开后大约71.4米.12. 图中阴影部分的面积是25cm2,求圆环的面积.【答案】157cm2.【分析】设大圆半径为R,小圆半径为r,依题有R 22−r22=25,即R2−r2=50.则圆环面积为:πR2−πr2=π(R2−r2)=50π=157(cm2).13. 如图所示,在两个同心圆上有一条两端点都在大圆上的线段与小圆相切,其长度为10厘米.求阴影部分的面积.(π取3.14)【答案】78.5平方厘米.【分析】如图所示,从圆心连结其中一个端点,长度为大圆半径,再从圆心向线段作垂线,长度为小圆半径,图中的三角形为直角三角形,由勾股定理可得R2−r2=52=25,所以图中阴影部分面积为πR2−πr2=π×(R2−r2)=25π=78.5(平方厘米).14. 图中阴影部分的面积是25平方厘米,求圆环的面积.(π取3.14)【答案】157平方厘米.【分析】记大圆半径为R,小圆半径为r,那么圆环的面积为π(R2−r2),只要能够求出R2−r2即可.阴影部分是两个等腰直角三角形的面积差,等于12(R2−r2),所以R2−r2=2×25=50(厘米).由此可得圆环面积等于50×3.14=157(平方厘米).15. 如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【答案】9388.6【分析】卷在一起时铜版纸的横截面的面积为π×(1802)2−π×(502)2=7475π(平方厘米),如果将其展开,展开后横截面的面积不变,形状为一个长方形,宽为0.25毫米(即0.025厘米),所以长为7475π÷0.025=938860(厘米)=9388.6(米).所以这卷铜版纸的总长是9388.6米.16. 如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径是20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是多少平方米?(π取3.14)【答案】 65.94【分析】 卷纸问题:依据体积不变原则求解,缠绕在一起时塑料薄膜的体积为:[π×(202)2−π×(82)2]×100=8400π(立方厘米)薄膜展开后为一个长方形,体积保持不变,而厚度为 0.04 厘米,所以薄膜展开后的面积为8400π÷0.04=659400(平方厘米)=65.94(平方米).17. 如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为 20 厘米,中间有一直径为 8 厘米的卷轴,已知薄膜的厚度为 0.04 厘米,则薄膜展开后的面积是多少平方米?【答案】 65.94 平方米.【分析】 缠绕在一起时塑料薄膜的体积为:[π×(202)2−π×(82)2]×100=8400π(立方厘米), 薄膜展开后为一个长方体,体积保持不变,而厚度为 0.04 厘米,所以薄膜展开后的面积为8400π÷0.04=659400(平方厘米)=65.94(平方米).另解:也可以先求出展开后薄膜的长度,再求其面积.由于展开前后薄膜的侧面的面积不变,展开前为π×(202)2−π×(82)2=84π(平方厘米),展开后为一个长方形,宽为0.04厘米,所以长为84π÷0.04=6594(厘米),所以展开后薄膜的面积为6594×100=659400(平方厘米)=65.94(平方米).。

小学生奥数几何题、计算题、计数练习题

小学生奥数几何题、计算题、计数练习题

小学生奥数几何题、计算题、计数练习题1.小学生奥数几何题练习题1、一个长方体的长、宽、高分别是11厘米、6厘米、4厘米,如果高增加3厘米,表面积增加多少平方厘米?2、一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?3、一块长方体石料,长4分米,横截面是一个边长为0.5分米的正方形,这块石料的表面积是多少?如果每立方分米石料重2.7千克,这块石料有多重?4、长方体的右侧面面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的体积是多少立方厘米?5、把一个体积为460立方厘米的石块放入一个长方体容器中,完全进入水中后,水面由148厘米上升到150厘米,这个容器的底面积是多少?2.小学生奥数计算题练习题计算题:1、用竖式计算.18.25×34=2、用竖式计算.9.35×4.2=3、用竖式计算.15.07×9.8=4、用竖式计算.7.02×0.56=(得数保留两位小数)5、81.25×0.6×9.3=6、15×3.6+4.83=7、98.42×2.5-83.7=8、700×0.34×2=9、172.4×6.2+2724×0.38=10、4.75-9.64+8.25-1.36=11、3.17-2.74+4.7+5.29-0.26+6.3=12、(5.25+0.125+5.75)×8=13、34.5×8.23-34.5+2.77×34.5=14、6.25×0.16+264×0.0625+5.2×6.25+0.625×20=15、0.035×935+0.035+3×0.035+0.07×61×0.5=3.小学生奥数计算题练习题1、16+815+328-235-7442、456797+455457796+1153、(13+25+37+49)(113+135+157+179)4、2005200612004+122003200320055、(1996+19199696+191919969696)19191919969696966、(1+0.12+0.23)(0.12+0.23+0.34)-(1+0.12+0.23+0.34)(0.12+0.23)7、1+312+516+7112+9120+11130+13142+15156+17172+191908、325+358+3811++31972009、112+224+347+4711+51116+6162210、12+56+1112+1920+2930+4142+97019702+9899990011、123+246+369++100200300234+468+6912++20030040012、127+1712+11217+11722++19297+1971024.小学生奥数计数练习题1、把一包糖果分给小朋友们,如果每人分10粒,正好分完;如果每人分16粒,则3人分不到,这包糖有_________粒。

六年级奥数几何专题

六年级奥数几何专题

几何专题例1 从一个棱长为10厘米的正方体木块中挖去一个长10厘米、宽2 厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)例1图【拓展】一个圆柱体高是4厘米,底面半径是2厘米。

将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米?拓展图例2 把11块相同的长方体的砖拼成如图所示的大长方体,已知每块砖的体积是 ,则大长方体的表面积为多少?3288cm例3 如图,用高都是1米,底面半径分别为1.5 米、 1米和0.5米的 3个圆柱组成一个物体。

问这个物体的表面积是多少平方米?例3图例4 现有一个棱长为1厘米的正方体,一个长宽为1厘米,高为2厘米的长方体,三个长宽为1厘米高为3厘米的长方体。

下列图形是把这五个图形合并成某一立体图形时,从上面、前面、侧面所看到的图形。

试利用下面三个图形把合并成的立体图形的样子画出来,并求出其表面积。

【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?巩固图1110.511.5侧面所看到的图形前面所看到的图形上面所看到的图形例5如图所示,一个 的立方体,在一个方向上开有 的孔,在另一个方向上开有 的孔,在第三个方向上开有 的孔,剩余部分的体积是多少?表面积为多少?例5图例6 如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米。

若将木块从容器中取出,水面将下降________厘米。

【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米。

现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后。

现在水深多少厘米?例7 (第五届走进美妙数学花园六年级初赛试题)如图,把正方体用两个与它的底面平行的平面切开,分成三个长方体。

这三个长方体的表面积比是 时,用最简单的整数比表示这三个长方体的体积比:_______:_______:_______例8 已知直角三角形的三条边长分别为3,4,5,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?555⨯⨯115⨯⨯215⨯⨯315⨯⨯3:4:5【巩固】 如图,直角三角形如果以BC 边为轴旋转一周,那么所形成的圆锥的体积为 ,以AC 边为轴旋转一周,那么所形成的圆锥的体积为 ,那么如果以AB 为轴旋转一周,那么所形成的几何体的体积是多少?例9 有6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某些面染上红色,使得有的长方体只有1个面是红色的,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长方体分割成棱长为1厘米的小正方体。

小学奥数几何题、数论练习题

小学奥数几何题、数论练习题

小学奥数几何题、数论练习题1.小学奥数几何题习题篇一1、一挂钟时针长10厘米,经过一昼夜时针的顶端走多少厘米?一昼夜走两圈走的路程为:2*2πr=2*2*3.14*10=125.6厘米2、小刚用一根长452.6分米的绳子绕一棵树干正好绕6圈,这棵树干的周长是多少厘米?横截面的面积是多少平方厘米?这棵树的周长为:452.6÷6≈75.4分米半径为:75.4÷(3.14*2)≈12分米横截面积为:3.14*12=452.16平方分米3、一根铁丝在一个圆形缸口上绕了3圈,正好用去3.768米,这个缸口的面积是多少平方米?这个缸口的'周长为:3.768÷3=1.256米半径为:1.256÷(3.14*2)=0.2米面积为:3.14*0.2=0.0628平方米2.小学奥数几何题练习题篇二例题:人民路小学操场长90米,宽45米,改造后,长增加10米,宽增加5米。

现在操场面积比原来增加多少平方米?答案与解析:用操场现在的面积减去操场原来的面积,就得到增加的面积,操场现在的面积是:(90+10)×(45+5)=5000(平方米),操场原来的面积是:90×45=4050(平方米)。

所以现在比原来增加5000-4050=950平方米。

(90+10)×(45+5)-(90×45)=950(平方米)练习(1):有一块长方形的木板,长22分米,宽8分米,如果长和宽分别减少10分米,3分米,面积比原来减少多少平方分米?练习(2):一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?3.小学奥数数论练习题篇三有100名少先队员在岸边准备坐船去湖中离岸边600米的甲岛,等最后一人到达甲岛15分钟后,再去离甲岛900米的乙岛,现有机船和木船各1条,机船和木船每分钟各行300米和150米,而机船和木船可各坐10人和25人,问最后一批少先队员到达乙岛,最短需要多长时间?(按小时计算)分析:根据题意,先求出最后一批学生到达甲岛的时间,再求出最后一批学生到达乙岛所需要的时间,再由在甲岛休息15分钟,即可求出要求的答案。

小学奥数思维训练-几何(三)立体图形(拓展训练)(通用,含答案)

小学奥数思维训练-几何(三)立体图形(拓展训练)(通用,含答案)

保密★启用前小学奥数思维训练几何(三)立体图形一、选择题1.如图给出了一个立体图形的正视图、左视图和俯视图,图中单位为厘米.立体图形的体积()立方厘米.A.2πB.2.5πC.3πD.3.5π二、解答题2.将NNN(N是正整数)正方体的一些面涂上颜色以后,再将它切割成111的小正方体.已知至少有一面涂色的小正方体恰好占总数的52%,N是多少?3.小红的生日舞会,做了一顶圆锥形帽子,要将帽子涂成红色和蓝色,O点为顶点,BC为底面圆直径30cm,A点是OB的下三分之一处,OB=30cm,从A点出发,CA 之间最短的距离之上涂成红色,下边涂成蓝色.那么小红的帽子有多大地方涂的是蓝色?(π=3)4.一个正方体纸盒中恰好能放入一个体积为628立方厘米的圆柱,纸盒的容积有多大?(π=3.14)5.图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积?6.圆柱形的售报亭的高和底面直径相等(如图),开一个边长等于底面半径的正方形售报窗口.问窗口处挖去的圆柱部分的面积占圆柱形侧面积的几分之几?7.一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?8.如图,一个正方体形状的木块,棱长1米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么这60块长方体表面积的和是多少平方米?9.如图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为1/2厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同,棱长为1/4厘米,那么最后得到的立体图形的表面积是多少平方厘米?10.把一个棱长为2cm正方体在同一平面的边的中点用线段连接起来,如图.然后把正方体顶点上的三角锥锯掉,请问最后所得的立体图形的表面积的多少平方厘米?(1.732×1.732=3)参考答案:1.A【解析】【详解】首先确定此图形为“不完整的圆柱”,先求出圆柱体积,再求出缺失的半个小圆柱,最后作差.如图,从给定的正视图、左视图和俯视图可以看出,该立体图形由一个半径为1厘米、高为1厘米的圆柱和一个半径为1厘米、高为2厘米的半圆柱组成..π×1×1×(1+2)-12π×1×1×2=2π,选A【点睛】这里的要点在于还原,还原的技巧在于先补全,再细雕刻2.5【解析】【详解】一个正整数×52%=另一个正整数,那么这个正整数必须能被25整除1352%25⎛⎫=⎪⎝⎭因为.那么N必须能被5整除.当N取最小N=5 正方体有5×5×5=125个小正方体涂色的小正方体5×5×5×52%=65(个)不可能被涂色的小正方体3×3×3=27(个)27+65小于125成立当N=2×5=10时,正方体有10×10×10=1000个小正方体涂色的小正方体10×10×10×52%=520(个)不可能被涂色的小正方体 8×8×8=512(个) 512+520大于1000 不成立同理N 大于10都不成立所以 N=53.750平方厘米【解析】【详解】底面周长为圆锥展开后 扇形的弧长蓝色面积=圆锥侧面积-红色面积底面周长=30×π=30×3=90侧面展开后扇形所在圆的周长=2×π×30=1809011802= 所以侧面展开图为半圆 蓝色面积=π×30×30×12-12×(20+20) ×30 =1350-600=750(平方厘米)4.800cm 3【解析】【详解】设纸盒棱长为x圆柱体积=22x x x π⨯⨯⨯=628 整理上边式子得x 3=800(cm 3) 即为纸盒容积.5.1050平方厘米【解析】【详解】用透视法观察 上、下两个面的面积相等4个侧面的每个侧面面积为6个小正方形面积底面棱长5×3=15 上、下两个面的面积=15×15×2=4504个侧面面积=4×6×5×5=600总面积=450+600=1050(平方厘米)6.1 12【解析】【详解】窗口上下的弧长为底面圆周长的六分之一窗口的高为圆柱的高的二分之一挖去的圆柱部分的面积占圆柱形侧面积的16×12=1127.1252【解析】【详解】截去一个小正方体,表面积不变.只有在截去的小正方体的面相重合时,表面积才会减少.所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是:15×15×6-7×7×2=1252.想想为什么不是15×15×6-7×7-8×8.8.24平方米【解析】【详解】我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1×1=1(平方米),所以表面积增加了9×2×1=18(平方米).原来正方体的表面积为6×1=6(平方米).所以现在的这些小长方体的表积之和为6+18=24(平方米).9.29.25平方厘米【解析】【详解】俯视图发现上表面积就是大正方体的一个面的面积表面积为大正方体表面积加上3个小正方体的侧面积2×2×6+1×1×4+12×12×4+14×14×4=24+4+1+1 4=29.25(平方厘米)10.18.928cm2【解析】【详解】所得立体图形表面为6个正方形和8个等边三角形勾股定理等边三角形的高的平方=底边的平方-半个底边的平方=34底边的平方6个正方形面积=6×(1×1+1×1)=6×2=12等边三角形的高的平方=34×2=32等边三角形的高的平方×底边的平方=32×2=3所以等边三角形的高×底边=1.732,等边三角形的面积=1/2×1.732=0.866立体图形的表面积=12+8×0.866=18.928(cm2)。

三年级数学奥数专题训练几何

三年级数学奥数专题训练几何

三年级数学奥数专题训练几何
三年级数学奥数专题训练:几何
一、目标
掌握基本的几何图形特征,如正方形、长方形、圆形、三角形等。

初步培养空间想象能力和逻辑推理能力。

能够运用所学知识解决简单的几何问题。

二、训练内容
图形的认识
正方形、长方形、圆形、三角形的定义和特征。

识别不同图形,并描述其特点。

图形的周长和面积
计算正方形、长方形的周长和面积。

了解周长和面积的概念,并初步掌握计算方法。

图形的变换
平移、旋转、对称等基本概念。

能够识别经过变换后的图形。

简单几何问题的解决
通过观察、分析、推理等方法,解决简单的几何问题。

初步培养解决问题的能力。

三、训练题目
一个正方形的边长是5厘米,它的周长是多少厘米?
一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?
下列哪个图形是对称的?请画出对称轴。

A. 正方形
B. 三角形
C. 圆形
一个图形经过平移后,它的形状和大小有没有变化?
用8根火柴棒首尾顺次连接成一个三角形,能接成不同的三角形有多少个?
四、训练建议
在教学过程中,注重引导学生观察、思考和操作,培养学生的几何直觉和空间想象力。

通过小组合作和讨论,激发学生的学习兴趣和积极性。

定期复习和巩固所学知识,确保学生能够熟练掌握基本几何概念和计算方法。

五、拓展内容
引入更复杂的几何图形,如梯形、菱形等,拓展学生的知识范围。

介绍一些基础的几何定理和公式,为后续学习打下基础。

通过实践活动或游戏,让学生在实际操作中感受几何的魅力,提高几何素养。

小学五年级奥数几何题

小学五年级奥数几何题

小学五年级奥数几何题1.小学五年级奥数几何题1.一个长方体的无盖水族箱, 长是6m, 宽是60cm, 高是1.5m。

这个水族箱占地面积有多大?需要多少平方米的玻璃?它的体积是多少?2.要砌一道长15m, 厚24cm, 高3m的砖墙。

如果每立方米用砖525块, 一共用砖多少块?3.花园小区为居民新安装了50个休息的凳子, 凳面的长、宽、高分别是100cm, 45cm,4.5cm。

凳腿的长、宽、高分别是45cm, 5cm, 35cm, 做这些凳子至少用了混凝土多少方?4、“六一”儿童节前, 全市的小学生代表用棱长3cm的正方体塑料拼插积木在广场中央搭起了一面长6m, 高2.7m, 厚6cm的奥运心愿墙。

这面墙一共用了多少块积木?5、学校运来7.6立方米的沙子, 铺在一个长5米、宽38米的沙坑里, 可以铺多厚?2.小学五年级奥数几何题1.一个长、宽、高分别为40cm、30cm、20cm的小纸箱, 在所有棱上粘上一圈胶带, 至少需要多长的胶带?2.为迎接“五一”劳动节, 要在俱乐部的四周装上彩灯(地面的四边不装)。

已知俱乐部的长90米, 宽55米, 高20米, 工人叔叔至少需要多长的彩灯线?3.小卖部要做一个长2.2m, 宽40cm, 高80cm的玻璃柜台, 现要在柜台各边都安上角铁, 这个柜台需要多少米角铁?4、一个长方体的饼干盒, 长10cm宽6cm, 高12cm。

如果围着它贴一圈商标纸(上、下面不贴), 这张商标纸的面积至少要多少平方厘米?5、光华街口装了一个新的铁皮邮箱, 长50cm, 宽40cm, 高78cm。

做这个邮箱至少需要多少平方厘米的铁皮?3.小学五年级奥数几何题(1)有一个棱长是4厘米的正方体, 从它的一个顶点处挖去一个棱长是1厘米的正方体后, 剩下的物体的体积和表面积各是多少?(2)一个正方体和一个长方体拼成一个新的长方体, 拼成的长方体的表面积比原来的长方体的表面积增加了50平方米。

最新小学奥数几何专题训练附答案

最新小学奥数几何专题训练附答案

最新小学奥数几何专题训练附答案奥数,即奥林匹克数学竞赛,是培养学生逻辑思维和解决问题能力的重要途径。

而几何作为奥数竞赛中的一个重要领域,对学生的几何直观和推理能力提出了较高的要求。

为此,我们特别准备了最新的小学奥数几何专题训练,并附上了详细的答案。

通过这个专题训练,相信学生们在几何方面的能力将得到有效提升。

1. 三角形的性质三角形是几何学中最基础的图形之一,具有诸多性质。

在本专题中,我们将针对三角形的内角和、外角和以及角平分线等性质进行训练。

在题目中,我们通过图形的给定或条件的陈述,要求学生运用已知的性质推导出未知的结果。

例如:题目:如图1所示,三角形ABC中,∠ABC=80°,∠ACB=50°。

求∠BAC的度数。

解答:由于三角形的内角和为180°,设∠BAC=x,则∠ACB=80°-x,∠ABC=50°。

将三角形的内角和代入等式中,得到:x + (80°-x) + 50° = 180°130° = 180°-xx = 180°-130°x = 50°因此,∠BAC的度数为50°。

2. 直线与平行线直线和平行线是几何学中的重要概念。

在这个专题中,我们将训练学生在应用直线与平行线性质解决问题时的能力。

例如:题目:如图2所示,AB、CD和EF是三条平行线。

若∠AGE=40°,求∠EDF的度数。

解答:由于AB和EF是平行线,所以∠AGE=∠EDF。

因此,∠EDF的度数为40°。

3. 三角形的相似性质相似三角形是指具有对应角相等且对应边成比例的三角形。

相似三角形在数学和实际生活中具有重要应用。

在这个专题中,我们将训练学生识别和应用相似三角形的能力。

例如:题目:如图3所示,△ABC与△DEF相似,且比例尺为1:2。

已知AC=4,求EF的长度。

解答:由于△ABC与△DEF相似,所以AB/DE = BC/EF = AC/DF。

小学六年级奥数几何计数问题专项强化训练(高难度)

小学六年级奥数几何计数问题专项强化训练(高难度)

小学六年级奥数几何计数问题专项强化训练(高难度)例题1:某小学六年级有10名男生和8名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?解析:首先确定男生和女生的位置,男生和女生的位置可以互换,所以先计算男生和女生的排列方式。

男生和女生分别有10!和8!种排列方式。

但是男生和女生之间是需要相邻的(间隔排列),所以男生和女生的位置可以看作是一个整体,即总共有(10!)(8!)种排列方式。

因此,共有(10!)(8!)种不同的排列方式。

专项练习应用题:1. 某小学六年级有12名男生和10名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?2. 某小学六年级有8名男生和6名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?3. 某小学六年级有15名男生和12名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?4. 某小学六年级有6名男生和8名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?5. 某小学六年级有10名男生和9名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?6. 某小学六年级有7名男生和7名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?7. 某小学六年级有14名男生和15名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?8. 某小学六年级有9名男生和10名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

3 小学奥数——几何图形 试题及解析

3 小学奥数——几何图形 试题及解析

3 小学奥数——几何图形试题及解析小学奥数——几何图形试题及解析一、选择题1. 下列各图形中,几何图形的个数最多的是:A. 正方形B. 矩形C. 三角形D. 长方形解析:该题考察学生对几何图形的辨识和计数能力。

正方形有4条边,矩形也有4条边,三角形有3条边,而长方形同样也有4条边。

因此,答案为D,长方形。

2. 以下哪个几何图形不是多边形?A. 正方形B. 圆形C. 五边形D. 六边形解析:多边形是一个有多个直线边的封闭图形。

正方形有4个边,五边形有5个边,六边形有6个边。

但圆形是一个由无限多个点组成的,边是由连续曲线组成的,因此圆形不是多边形。

答案为B,圆形。

二、填空题1. 三角形的内角和是____度。

解析:三角形的内角和是180度。

2. 矩形的对角线互相垂直且长度相等。

解析:矩形的对角线互相垂直且长度相等。

三、解答题1. 已知一个四边形的两个相邻内角分别是50度和100度,另外两个内角分别是多少度?解析:由四边形的内角和为360度可知两个未知角分别为360度 -50度 - 100度 = 210度。

因此,另外两个内角分别是210度。

2. 一个凸多边形的内角和是1620度,它有几个内角?解析:设凸多边形有n个内角。

由凸多边形的内角和为 (n-2) × 180度,可以得到 n × 180度 = 1620度。

解得 n = 9。

因此,该凸多边形有9个内角。

3. 如图所示,在正方形ABCD中,连接AC和BD两条对角线,交于点O。

若AD的长度为12cm,求AC的长度。

解析:由于正方形的对角线相等且互相垂直,可知AO和OC互相垂直,且AO = OC。

根据勾股定理,可以得到 AD^2 = AO^2 + OD^2,解得AO = OD = (12/√2)cm,而AC = AO + OC = 2AO = 2 × (12/√2)cm = 12√2 cm。

因此,AC的长度为12√2cm。

总结:通过以上的几何图形试题和解析,我们可以看到几何图形的基本概念和性质在小学奥数中起着重要的作用。

经典小学奥数题型(几何图形)

经典小学奥数题型(几何图形)

经典小学奥数题型(几何图形)经典小学奥数题型(几何图形)在小学奥数竞赛中,几何图形是一个常见的考点。

通过熟悉和掌握一些经典的几何题型,学生能够提高解题能力,增强空间想象力,并且培养逻辑思维。

一、平面图形的边、角和面积计算1. 边和角计算设某个多边形的边数为 n,则它的内角和为 (n-2) × 180 度。

如果该多边形是正多边形,则每个内角都相等,即每个内角为 [(n-2) ×180]/n 度。

2. 正多边形的面积计算设正多边形的边长为 a,边数为 n,则正多边形的面积 S = (n ×a^2)/(4 × tan(π/n)) 平方单位。

3. 三角形的面积计算设三角形的底边长为 a,高为 h,则三角形的面积 S = (a × h) /2 平方单位。

二、相似三角形的性质当两个三角形的相应角相等时,我们可以推论他们是相似三角形。

相似三角形之间存在以下几个性质:1. 边长的比例如果两个三角形 ABC 和 XYZ 是相似的,那么对应边长之间的比例应该相等: AB/XY = BC/YZ = AC/XZ。

2. 面积的比例如果两个三角形 ABC 和 XYZ 是相似的,那么对应边长之间的比例的平方等于对应面积之间的比例:(AB/XY)^2 = (BC/YZ)^2 =(AC/XZ)^2 = S(ABC)/S(XYZ)。

三、三角形的周长和面积计算1. 三角形的周长计算将三角形的三条边长相加,即可得到三角形的周长。

2. 海伦公式设三角形的三条边长为 a、b、c,令 p = (a+b+c)/2 为半周长,则三角形的面积S = √( p × (p-a) × (p-b) × (p-c) ) 平方单位。

四、平行四边形和矩形的性质1. 平行四边形的性质平行四边形的对边互相平行且相等,对角线互相等分,并且对角线相交的点将对角线份平分。

2. 矩形的性质矩形是一种特殊的平行四边形,它的对边相等且互相平行,且所有角都是直角。

小学奥数--几何计数25道

小学奥数--几何计数25道

【题型】应用题【题目】用3根等长的火柴可以摆成一个等边三角形.如图19-1,用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形昀每边由20根火柴组成,那么一共要用多少根火柴?【答案】630【解析】把大的等边三角形分为20“层”分别计算火柴的根数:最上一“层”只用了3根火柴;从上向下数第二层用了3×2=6根火柴;从上向下数第三层用了3×3=9根火柴;……从上向下数第20层用了3×20=60根火柴.所以,总共要用火柴3×(1+2+3+…+20)=630根.【难度】难度3【知识点】几何计数【题目】如图19-2,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?【答案】13975【解析】横放需1996×4根,竖放需1997×3根,共需1996×4+1997×3=13975根.【难度】难度2【知识点】几何计数【题目】图19-3是一个跳棋棋盘,请你计算出棋盘上共有多少个棋孔?【答案】【解析】把棋盘分割成一个平行四边形和四个小三角形,如下图.平行四边形中棋孔数为9×9=81,每个小三角形中有10个棋孔,所以棋孔共有81+10×4=121个.或直接数出有121个.【难度】难度3【知识点】几何计数【题目】如图19-4,在桌面上,用6个边长为l的正三角形可以拼成一个边长为1的正六边形.如果在桌面上要拼出一个边长为6的正六边形,那么,需要边长为1的正三角形多少个?【答案】【解析】如图AB=6,组成△AOB需要边长为1的正三角形共:1+3+5+7+9+11=36个,而拼成边长为6的正六边形需要6个△AOB,因此总共需要边长为1的正三角形36×6=216个.【难度】难度4【知识点】几何计数【题目】如图19-5,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、2厘米和4厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方形面积的和.【答案】100,10664【解析】确定好长方形的长和宽,长方形就唯一确定,而图中只需确定好横向线段,竖向线段,即可.于是横向线段有(1+2+3+4)=10种选法,竖向线段也有(1+2+3+4)=10种选法,则共有10×10=100个长方形.这些长方形的面积和为:(5+7+9+2+12+16+11+21+18+23)×(4+6+5+1+10+11+6+15+12+16)=124×86=10664(平方厘米).【难度】难度4【知识点】几何计数【题目】如图19-6,18个边长相等的正方形组成了一个3×6的方格表,其中包含“*”的长方形及正方形共有多少个?【答案】36【解析】我们把所求的长、正方形按占有的行数分为三类,每类的长、正方形的个数相等.其中只占有下面一行的有如下12种情况:于是共有12×3=36个正、长方形包含“*”.【难度】难度4【知识点】几何计数【题目】图19-7是由若干个相同的小正方形组成的.那么,其中共有各种大小的正方形多少个?【答案】130【解析】每个4×4正方形中有:边长为1的正方形4×4个;边长为2的正方形3×3个;边长为3的正方形2×2个,边长为4的正方形1×1个.总共有4×4+3×3+2×2+1×1=30个正方形.现在5个4×4的正方形,它们重叠部分是4个2×2的正方形.因此,图中正方形的个数是30×5-5×4=130.【难度】难度4【知识点】几何计数【题目】图19-8中共有多少个三角形?【答案】22【解析】边长为1的正三角形,有16个.边长为2的正三角形,尖向上的有3个,尖向下的也有3个.因此共有16+3+3=22个.【难度】难度2【知识点】几何计数【题目】图19-9是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形.那么,图中包含“*”的各种大小的正三角形一共有多少个?【答案】6【解析】设小正三角形的边长为1,分三类计算计数包含*的三角形中,边长为1的正三角形有1个;边长为2的正三角形有4个,边长为3的正三角形有1个;因此,图中包含“*”的所有大、小正三角形一共有1+4+1=6个.【难度】难度2【知识点】几何计数【题目】如图19-10,AB,CD,EF,MN互相平行,则图中梯形个数与三角形个数的差是多少?【答案】20【解析】图中共有三角形(1+2+3+4)×4=40个,梯形(1+2+3+4)×(1+2+4)=60个,梯形比三角形多60-40=20个.【难度】难度3【知识点】几何计数【题目】在图19-1l中,共有多少个不同的三角形?【答案】85【解析】下图中共有35个三角形,两个叠加成题中图形时,又多出5+5×2=15个三角形,共计35×2+15=85个三角形.【难度】难度5【知识点】几何计数【题目】如图19-12,一块木板上有13枚钉子.用橡皮筋套住其中的几枚钉子,可以构成三角形、正方形、梯形等等,如图19-13.那么,一共可以构成多少个不同的正方形?【答案】11【解析】按正方形的面积分类,设最小的正方形面积为1,面积为1的正方形有5个,如图a所示;面积为2的正方形有4个,如图b所示;面积为4的正方形有1个,如图c所示;还有1个面积比4大的正方形,如图d所示;于是,一共可以构成5+4+1+1=11个不同的正方形.【难度】难度3【知识点】几何计数【题目】如图19-14,用9枚钉子钉成水平和竖直间隔都为1厘米的正方阵.用一根橡皮筋将3枚不共线的钉子连结起来就形成一个三角形.在这样得到的三角形中,面积等于1平方厘米的三角形共有多少个?【答案】32【解析】我们分三种情况来找面积为1平方厘米的三角形,这些三角形的底与高分别为1厘米或2厘米,利用正方形的对称性:(1)等腰直角三角形,如下图a所示有△AOC,△COE,△EOG,△GOA,△BOH,△DFB,△FHD,△HBF,共计8个,其中以AC,CF,FG,GA为底的各一个,以BF,DH为底的各两个.(2)直角三角形,如图b所示有△ACH,△CHD,△ACD,△DHA,△BEF,△BCE,△CEF,△CFB,△DEG,△DGH,△EGH,△EHD,△GAB,△GBF,△FAB,△FGA,共计16个,其中以AD、CH、BE、CF、DG、EH、FA、GB为斜边的各两个.(3)钝角三角形,如图c所示有△ABE,△AHE,△ADE,△AFE,△CBG,△CFG,△CDG,△CHG共计8个,其中以AE、CG为边的各四个.于是,综上所述,共有面积为1平方厘米的三角形32个.【难度】难度4【知识点】几何计数【题目】如图19-15,木板上钉着12枚钉子,排成三行四列的长方阵.那么用橡皮筋共可套出多少个不同的三角形?【答案】200【解析】我们先任意选取三个点,那么第1个点有12个位置可以选择,第2个点有11个位置可以选择,第3个点有10个位置可以选择,但是每6种选法对应的都是同一个图形,如下图,ABC,ACB,BAC,BCA,CAB,CBA均是同一个图形.所以有12×11×10÷6=220种选法,但是如果这3点在同一条直线上就无法构成三角形,其中每行有4种情况,共3×4;每列有1种情况,共1×4;2个边长为2的正方形的4条对角线,共4种情况.所以,可以套出220-3×4-1×4-4=200个不同的三角形.【难度】难度2【知识点】几何计数【题目】如图19-16,正方形ACEG的边界上有A,B,C,D,E,F,G这7个点,其中B,D,F分别在边AC,CE,EG上.以这7个点中的4个点为顶点组成的不同四边形的个数等于多少?【答案】12【解析】如果暂时不考虑点之间的排列位置关系,从7个点中任取4个点,则第一个点有7个位置可选,第二个点有6个位置可选,第三个点有5个位置可选,第四个点有4个位置可选,而不考虑先后,那么有4×3×2×1=24种选法的实质是一样的,所有可能的组合数目应该是(7×6×5×4)÷24=35.我们只要从中减去不能构成四边形的情形.对图19-16而言,任取4个点而又不构成四边形的情形只能发生在所取的4个点中有3个来自正方形ACEG的一条边,而另一个则任意选取的时候,例如选定A、B、C3点,第4个点无论如何选取都不能构成四边形.正方形的4条边中有3条都存在这样的情况.而每次这种情况发生时,第4个顶点的选取有4种可能.所取的顶点只有4个,因此不可能出现同时选择了2条有3点共线的边的情况.那么需要排除的情况有4×3=12种.所以,满足题意的四边形个数有35-12=23个.【难度】难度4【知识点】几何计数【题目】数一数下列图形中各有多少条线段.【答案】15【解析】要想使数出的每一个图形中线段的总条数,不重复、不遗漏,就需要按照一定的顺序、按照一定的规律去观察、去数.这样才不至于杂乱无章、毫无头绪.我们可以按照两种顺序或两种规律去数.第一种:按照线段的端点顺序去数,如上图(1)中,线段最左边的端点是A,即以A为左端点的线段有AB、AC两条以B为左端点的线段有BC一条,所以上图(1)中共有线段2+1=3条.同样按照从左至右的顺序观察图(2)中,以A 为左端点的线段有AB、AC、AD三条,以B为左端点的线段有BC、BD两条,以C为左端点的线段有CD一条.所以上页图(2)中共有线段为3+2+1=6条. 第二种:按照基本线段多少的顺序去数.所谓基本线段是指一条大线段中若有n 个分点,则这条大线段就被这n个分点分成n+1条小线段,这每条小线段称为基本线段.如上页图(2)中,线段AD上有两个分点B、C,这时分点B、C把AD 分成AB、BC、CD三条基本线段,那么线段AD总共有多少条线段?首先有三条基本线段,其次是包含有二条基本线段的是:AC、BD二条,然后是包含有三条基本线段的是AD这样一条.所以线段AD上总共有线段3+2+1=6条,又如上页图(3)中线段AE上有三个分点B、C、D,这样分点B、C、D把线段AE分为AB、BC、CD、DE四条基本线段,那么线段AE上总共有多少条线段?按照基本线段多少的顺序是:首先有4条基本线段,其次是包含有二条基本线段的有3条,然后是包含有三条基本线段的有2条,最后是包含有4条基本线段的有一条,所以线段AE上总共有线段是4+3+2+1=10条.解:①2+1=3(条).② 3+2+1=6(条).③ 4+3+2+1=10(条).小结:上述三例说明:要想不重复、不遗漏地数出所有线段,必须按照一定顺序有规律的去数,这个规律就是:线段的总条数等于从1开始的连续几个自然数的和,这个连续自然数的和的最大的加数是线段分点数加1或者是线段所有点数(包括线段的两个端点)减1.也就是基本线段的条数.例如右图中线段AF 上所有点数(包括两个端点A、F)共有6个,所以从1开始的连续自然数的和中最大的加数是6—1=5,或者线段AF上的分点有4个(B、C、D、E).所以从1开始的连续自然数的和中最大的加数是4+1=5.也就是线段AF上基本线段(AB、BC、CD、DE、EF)的条数是5.所以线段AF上总共有线段的条数是5+4+3+2+1=15(条).【难度】难度3【知识点】几何计数【题目】数出下图中总共有多少个角.【答案】10【解析】在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:4+3+2+1=10(个).解:4+3+2+1=10(个).小结:数角的方法可以采用例1数线段的方法来数,就是角的总数等于从1开始的几个连续自然数的和,这个和里面的最大的加数是角分线的条数加1,也就是基本角的个数.【难度】难度3【知识点】几何计数【题目】数一数下图中总共有多少个角?【答案】55【解析】因为∠AOB内角分线OC1、OC2…OC9共有9条,即9+1=10个基本角. 所以总共有角:10+9+8+…+4+3+2+1=55(个).【难度】难度3【知识点】几何计数【题目】如下图中,各个图形内各有多少个三角形?【答案】(1)6(2)10【解析】可以采用类似例1数线段的两种方法来数,如图(2):第一种方法:先数以AB为一条边的三角形共有:△ABD、△ABE、△ABF、△ABC四个三角形.再数以AD为一条边的三角形共有:△ADE、△ADF、△ADC三个三角形.以AE为一条边的三角形共有:△AEF、△AEC二个三角形.最后以AF为一条边的三角形共有△AFC一个三角形.所以三角形的个数总共有4+3+2+1=10.第二种方法:先数图中小三角形共有:△ABD、△ADE、△AEF、△AFC四个三角形.再数由两个小三角形组合在一起的三角形共有:△ABE、△ADF、△AEC三个三角形,以三个小三角形组合在一起的三角形共有:△ABF、△ADC二个三角形,最后数以四个小三角形组合在一起的只有△ABC一个.所以图中三角形的个数总共有:4+3+2+1=10(个).解:①3+2+1=6(个)② 4+3+2+1=10(个).答:图(1)及图(2)中各有三角形分别是6个和10个.小结:计算三角形的总数也等于从1开始的几个连续自然数的和,其中最大的加数就是三角形一边上的分点数加1,也就是三角形这边上分成的基本线段的条数.【难度】难度3【知识点】几何计数【题目】如下图中,数一数共有多少条线段?共有多少个三角形?【答案】60,30【解析】分析在数的过程中应充分利用上几例总结的规律,明确数什么?怎么数?这样两个问题.数:就是要数出图中基本线段(基本三角形)的条数,算:就是以基本线段(基本三角形)条数为最大加数的从1开始的连续几个自然数的和.①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三角形,先看在△AGH中,在GH上有3个分点,分成基本小三角形有4个.所以在△AGH中共有三角形4+3+2+1=10(个).在△AMN与△ABC 中,三角形有同样的个数,所以在△ABC中三角形个数总共:(4+3+2+1)×3=10×3=30(个).解:①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三角形是:(4+3+2+1)×3=10×3=30(个).【难度】难度3【知识点】几何计数【题目】如右图中,共有多少个角?【答案】13【解析】分析本题虽然与上几例有区别,但仍可以采用上几例所总结的规律去解决. ∠1、∠2、∠3、∠4我们可视为4个基本角,由2个基本角组成的有:∠1与∠2、∠2与∠3、∠3与∠4、∠4与∠1,共4个角.由3个基本角组成的角有:∠1、∠2与∠3;∠2、∠3与∠4;∠3、∠4与∠1;∠4、∠1与∠2,共4个角,由4个基本角组成的角只有一个.所以图中总共有角是:4×3+1=13(个).解:所以图中共有角是:4×3+1=13(个).小结:由本题可以推出一般情况:若周角中含有n 个基本角,那么它上面角的总数是 n (n-1)+1.【难度】难度4【知识点】几何计数【题目】在图中(单位:厘米):①一共有几个长方形?②所有这些长方形面积的和是多少?374218125【答案】100,12384【解析】①一共有(4321)(4321)100+++⨯+++=(个)长方形;②所求的和是[][]51281(512)(128)(81)(5128)(1281)(51281)2473(24)(47)(73)(247)(473)(2473)+++++++++++++++++++⨯+++++++++++++++++++ 1448612384=⨯=(平方厘米)。

小学奥数:几何计数一.专项练习及答案解析

小学奥数:几何计数一.专项练习及答案解析

7-8-1几何计数(一)教课目的掌握数常用方法;熟一些数公式及其推方法;依据不一样目灵巧运用数方法行数.本主要介了数的常用方法枚法、数法、形法、插板法、法等,并渗透分数和用容斥原理的数思想.知识重点一、几何计数在几何形中,有多风趣的数,如算段的条数,足某种条件的三角形的个数,若干个分平面所成的地区数等等.看起来仿佛没有什么律可循,可是通真分析,是能够找到一些理方法的.常用的方法有枚法、加法原理和乘法原理法以及推法等.n条直最多将平面分红223⋯⋯n(n2n2)个部分;n个2最多分平面的部分数n(n-1)+2;n个三角形将平面最多分红3n(n-1)+2部分;n个四形将平面最多分红4n(n-1)+2部分⋯⋯在其余数中,也常用到枚法、加法原理和乘法原理法以及推法等.解需要仔、合所学知点逐渐求解.摆列不与参加摆列的事物相关,并且与各事物所在的先后序相关;合与各事物所在的先后序没关,只与两个合中的元素相关.二、几何计数分类数段:假如一条段上有n+1个点(包含两个端点)(或含有n个“基本段”),那么n+1个点把条段一共分红的段数n+(n-1)+⋯+2+1条数角:数角与数段相像,段形中的点似于角形中的.数三角形:可用数段的方法数如右所示的三角形(法),因DE上有15条段,每条段的两头点与点A相,可构成一个三角形,共有15个三角形,同一在BC上的三角形也有15个,所以中共有30个三角形.数方形、平行四形和正方形:一般的,于随意方形(平行四形),若其横上共有n 条段,上共有条段,中共有方形(平行四形)个.m mn例题精讲模块一、简单的几何计数【例1】七个同的如右搁置,它有_______条称.7-8-1.几何计数(一).题库题库版page1of10【考点】简单的几何计数【难度】1星【题型】填空【重点词】迎春杯,六年级,初赛,试题【分析】如图:6条.【答案】6条【例2】下边的表情图片中:,没有对称轴的个数为()(A)3(B)4(C)5(D)6【考点】简单的几何计数【难度】2星【题型】选择【重点词】华杯赛,初赛,第1题【分析】经过观察可知,第1,2,5这三张图片是有对称轴的,其余的5张图片都没有对称轴,所以没有对称轴的个数为5,正确答案是C。

3 小学奥数——几何图形 试题及解析

3 小学奥数——几何图形 试题及解析

小学奥数——几何图形一.选择题(共50小题)1.图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4B.3C.5D.102.如图中阴影部分是正方形,最大长方形的周长是()厘米.A.22B.26C.36D.无法确定3.如图,由6个边长为3厘米的小正方形拼成的图形,它的周长是()厘米.A.36B.39C.42D.454.把一个直径是4厘米的圆分成两个完全相等的半圆,这两个半圆的周长之和是()A.12.56厘米B.16.56厘米C.20.56厘米D.24.56厘米5.如图,有8条线段,至少要分别测量编号为()的三条线段的长度,才能求出这个图形的周长.A.①②⑤B.①②③C.①②⑦D.②③⑦6.如图,是一个台阶的侧面(线段AC,BC,AB的长依次为5米、12米、13米)要在台阶上面铺上红地毯,且上下各多铺出两米,需要地毯的长度是()米.A.17B.18C.20D.217.如图,正方形被一条曲线分成了A、B两部分,下面第()种说法不正确?A.如果a b>,那么A的周长大于B的周长B.如果a b<,那么A的周长小于B的周长C.如果a b=,那么A的周长等于B的周长D.不管a、b哪个大,A、B的周长总是相等8.如图是用3个长8厘米、宽3厘米的长方形拼成的,这个图形的周长是()A.66厘米B.48厘米C.45厘米9.图中多边形每相邻两条边都互相垂直,若要计算起其周长,那么至少要知道()边长.A.6B.5C.4D.310.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米C.160米D.200米11.把如图的长方形用一条曲线分成甲、乙两个图形,甲图与乙图的周长相比,()A.甲图的长B.乙图的长C.甲图与乙图同样长12.如图,在由11⨯的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接11⨯的正方形相邻两边中点的线段,或者是11⨯的正方形的对角线,则图中2015四个数字(阴影部分)的面积是()A.47B.1472C.48D.148213.如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积()A.12B.23C.35D.5814.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是( )A.25B.40C.49D.5015.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是( )平方厘米.A.25B.36C.49D.6416.如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是( )平方厘米.A.240B.270C.300D.36017.如图所示,在58 的方格中,阴影部分的面积为237cm .则非阴影部分的面积为( 2)cm .A.43B.74C.80D.11118.图中,将两个正方形放在一起,大、小正方形的边长分别为0l,6,则图中阴影部分面积为()A.42B.40C.38D.3619.下图中,四边形ABCD都是边长为1的正方形,E、F、G、H分别是AB、BC、CD、DA的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,m n的值等于()A.5B.7C.8D.1220.有5个长方形,它们的长和宽都是整数,且5个长和5个宽恰好是1~10这10个整数;现在用这5个长方形拼成1个大正方形,那么,大正方形面积的最小值为()A.169B.144C.121D.10021.一个梯形的上底增加2厘米,下底减少2厘米,高不变,它的面积与原面积相比()A.变大了B.变小了C.不变D.高不知道,所以无法比较22.已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相等,请问正方形中的阴影面积与大等腰直角三角形面积的比值A.13B.12C.1D.3223.如图,梯形ABCD 中,//AB DC ,90ADC BCD ∠+∠=︒,且2DC AB =,分别以DA 、AB 、BC 为边向梯形外作正方形,其面积分别为1S ,2S ,3S ,则1S ,2S ,3S 之间的关系是下列选项中的( )A.123S S S +>;B.132S S S +=;C.132S S S +<;D.无法确定.24.小王将一些同样大小的正三角形纸片摆放在桌上.第一次放1张纸片;第二次在这个小正三角形纸片四周再放三张纸片;第三次在第二次摆好的图形四周再摆放纸片;⋯摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有一条边重合,且纸片之间除边之外,无重合(见图).第20次摆放后,该图形共用了正三角形纸片( )张.A.571B.572C.573D.57425.在88⨯网格的所有方格中放入黑白两种围棋子,每个方格放一枚棋子,要求每行中的白色棋子的数目互不相同,每列中的白色棋子的数目相等,那么这个88⨯网格中共有( )枚黑色棋子.A.42B.32C.22D.1226.在66⨯网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个66⨯网格中共有( )枚黑A.18B.14C.12D.1027.一块木板上有13枚钉子(如图1所示).用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(如图2).请回答:可以构成()个正方形.A.9B.10C.11D.1228.在如图中,一共能数出()个含有“☆”的长方形.A.8B.10C.12D.1429.如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形.A.6B.10C.13D.1530.以平面上任意4个点为顶点的三角形中,钝角三角形最多有()个.A.5B.2C.4D.331.图中,有()个三角形.A.13B.15C.14D.1632.图中共有()个三角形.A.10B.9C.19D.1833.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形34.将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14B.16C.18D.2035.在桌面上,将一个边长为1 的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.536.用210个大小相同的正方形拼成一个长方形,不同的拼法有()种.A.2B.4C.6D.837.一个长方形由15个小正方形拼成,如图所示,若这个长方形的周长是64cm,则它的面)cm.积为(2A.960B.256C.240D.12838.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为()平方厘米.A.16B.20C.24D.3239.如图,四边形ABCD为长方形,四边形CDEF为平行四边形.下面四种说法中正确的是()A.甲的面积比乙的面积大B.甲的面积比乙的面积小C.只有当丙、丁两部分面积相等时,甲、乙两部分面积才相等D.甲、乙两部分面积总是相等的,与丙、丁两部分面积的大小无关40.如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是()平方厘米.A.40B.50C.60D.8041.如图,线段BE将长方形ABCD分成M、N两个部分,如果M部分比N部分的面积小80l 平方厘米,那么AE的长是()A.24厘米B.21厘米C.20厘米D.14厘米42.如图,一个33的正方形网格,如果小正方形边长是1,那么阴影部分的面积是()A.5B.4C.3D.243.如图所示,四边形BCDE 为平行四边形,AOE ∆的面积为6,求BOC ∆的面积.( )A.3B.4C.5D.644.如图,M 为平行四边形ABCD 的边BC 上的一点,且:2:3BM MC =,已知三角形CMN的面积为245cm ,则平行四边形ABCD 的面积为( 2)cm .A.30B.45C.90D.10045.如图,长方形ABCD 中的AE 、AF 、AG 、AH 四条线段把此长方形面积五等分,又长方形长20厘米、宽12厘米,那么三角形AFG 的面积AFG S ∆等于( )平方厘米.A.41.2B.43.2C.43.1D.42.346.在等腰梯形ABCD 中,AB 平行于CD ,6AB =,14CD =,AEC ∠是直角,CE CB =,则2AE 等于( )A.84B.80C.75D.6447.下面的四个图形中,第()幅图只有2条对称轴.A. B.C. D.48.下面图形中,恰有2条对称轴()A. B. C. D.49.在如图的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B.C. D.50.在下面的阴影三角形中,不能由图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B. C. D.参考答案与试题解析一.选择题(共50小题)1.图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4B.3C.5D.10【解析】如上图,把线段①平移到②的位置可以组成一个大长方形,大长方形的4条边,对边相等,所以只需知道相邻两条边的长度,③=④,所以只需知道1条线段的长度,所以求八边形的周长需要知道:213+=条线段的长度.故选:B.2.如图中阴影部分是正方形,最大长方形的周长是()厘米.A.22B.26C.36D.无法确定【解析】+⨯=(94)226答:最大长方形的周长是26厘米.3.如图,由6个边长为3厘米的小正方形拼成的图形,它的周长是()厘米.A.36B.39C.42D.45【解析】3412⨯=(厘米)326⨯=(厘米)+⨯+(126)26366=+=(厘米)42答:它的周长是42厘米.故选:C.4.把一个直径是4厘米的圆分成两个完全相等的半圆,这两个半圆的周长之和是()A.12.56厘米B.16.56厘米C.20.56厘米D.24.56厘米【解析】(3.14424)2⨯÷+⨯=+⨯(6.284)210.282=⨯=(厘米)20.56答:这两个半圆周长之和是20.56厘米.故选:C.5.如图,有8条线段,至少要分别测量编号为()的三条线段的长度,才能求出这个图形的周长.A.①②⑤B.①②③C.①②⑦D.②③⑦【解析】由图形可知,④+⑥的线段补给⑧所在的长方形边的虚线部分,⑦-⑤等长线段的补给③所在边的虚线部分,这样就构成了一个完整的长方形,原图形的周长就是答长方形的周长2+个⑤的线段总长,所以图形的周长只要知道①②⑤即可求得.故选:A.6.如图,是一个台阶的侧面(线段AC,BC,AB的长依次为5米、12米、13米)要在台阶上面铺上红地毯,且上下各多铺出两米,需要地毯的长度是()米.A.17B.18C.20D.21【解析】12522++⨯=++1254=(米)21答:需要地毯的长度是21米.故选:D.7.如图,正方形被一条曲线分成了A、B两部分,下面第()种说法不正确?A.如果a b>,那么A的周长大于B的周长B.如果a b<,那么A的周长小于B的周长C.如果a b=,那么A的周长等于B的周长D.不管a、b哪个大,A、B的周长总是相等【解析】A的周长=曲线长+正方形边长2b a⨯+-B的周长=曲线长+正方形边长2a b⨯+-所以A、B、C选项都是正确的,错误的是D.8.如图是用3个长8厘米、宽3厘米的长方形拼成的,这个图形的周长是()A.66厘米B.48厘米C.45厘米【解析】8631⨯-⨯483=-=(厘米)45答:这个图形的周长是45厘米.故选:C.9.图中多边形每相邻两条边都互相垂直,若要计算起其周长,那么至少要知道()边长.A.6B.5C.4D.3【解析】根据题干分析可得:这个图形的横着的边长之和是:2b;竖着的边长之和是:22+;a c所以这个图形的周长是:2222()++=++,故计算这个图形的周长至少需要知道3a b c a b c条边,故选:D.10.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米C.160米D.200米【解析】(3010)22160+⨯⨯=(米)故选:C.11.把如图的长方形用一条曲线分成甲、乙两个图形,甲图与乙图的周长相比,()A.甲图的长B.乙图的长C.甲图与乙图同样长【解析】因为,甲图形的周长是:AB BC AC++,乙图形的周长是:DC AD AC++,而AB CD=,AD BC=,所以,甲、乙两个图形的周长相等;故选:C.12.如图,在由11⨯的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接11⨯的正方形相邻两边中点的线段,或者是11⨯的正方形的对角线,则图中2015四个数字(阴影部分)的面积是()A.47B.1472C.48D.1482【解析】据分析可知:将小三角形移到空白处补全完整正方形,共47.5个,所以阴影部分的面积是1 472;故选:B.13.如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积()A.12B.23C.35D.58【解析】根据分析,将图中阴影部分进行等积变形,由图不难发现,阴影部分和空白部分的面积刚好相等,正八边形中阴影部分的面积占:1 2故选:A.14.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是()A.25B.40C.49D.50【解析】根据分析,如下图所示,图①逆时针旋转90︒,阴影部分可拼成一等腰直角三角形,214449S=÷=故选:C.15.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.64【解析】根据分析,一条阴影部分的面积为1025÷=平方厘米.因为都是整数,所以只能为15⨯.故,大正方形面积(15)(15)6636=+⨯+=⨯=平方厘米.故选:B.16.如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是()平方厘米.A.240B.270C.300D.360【解析】如图所示,将图分割成面积相等的小正三角形,显然,图中的空白部分的面积和等于3个小正六边形.而阴影部分由6个小正六边形组成,所以,大正六边形是由9个小正六边形组成的.一个小正六边形的面积为:180630÷=(平方厘米),大正六边形的面积为:309270⨯=(平方厘米),故选:B.17.如图所示,在58⨯的方格中,阴影部分的面积为237cm .则非阴影部分的面积为( 2)cm .A.43B.74C.80D.111【解析】如图,阴影部分占了18.5个格,面积为237cm , 每格的面积是:23718.52()cm ÷=;非阴影就分占21.5格,其面积是:221.5243()cm ⨯=; 答:则非阴影部分的面积为243cm ; 故选:A .18.图中,将两个正方形放在一起,大、小正方形的边长分别为0l ,6,则图中阴影部分面积为( )A.42B.40C.38D.36【解析】1010666(106)210102⨯+⨯-⨯+÷-⨯÷ 100364850=+--38=答:阴影部分的面积是38.故选:C.19.下图中,四边形ABCD都是边长为1的正方形,E、F、G、H分别是AB、BC、CD、DA的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,m n+的值等于()A.5B.7C.8D.12【解析】由以上可知,两个阴影面积比为11:3:2 23=,325+=.故选:A.20.有5个长方形,它们的长和宽都是整数,且5个长和5个宽恰好是1~10这10个整数;现在用这5个长方形拼成1个大正方形,那么,大正方形面积的最小值为()A.169B.144C.121D.100【解析】如图所示,,于是可得:正方形的边长为11,则其面积为1111121⨯=.答:大正方形面积的最小值为121.故选:C.21.一个梯形的上底增加2厘米,下底减少2厘米,高不变,它的面积与原面积相比( ) A.变大了 B.变小了C.不变D.高不知道,所以无法比较【解析】因为梯形的面积=(上底+下底)⨯高2÷,若“上底增加2厘米,下底减少2厘米,高不变”则(上底+下底)的和不变,且高不变, 所以梯形的面积不变. 故选:C .22.已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相等,请问正方形中的阴影面积与大等腰直角三角形面积的比值是( )A.13B.12C.1D.32【解析】设小等腰三角形的边长是a ,大等腰三角形的边长为b , 2a 2b 则正方形的面积是22222222()(222a b a b a b ++=+=小等腰三角形与大等腰三角形的面积和:2222222a b a b ++=又因小等腰直角三角形与正方形中的圆面积相等,所以正方形中的阴影面积与大等腰直角三角形面积相等. 所以它们的比值是1. 故选:C .23.如图,梯形ABCD 中,//AB DC ,90ADC BCD ∠+∠=︒,且2DC AB =,分别以DA 、AB 、BC 为边向梯形外作正方形,其面积分别为1S ,2S ,3S ,则1S ,2S ,3S 之间的关系是下列选项中的( )A.123S S S +>;B.132S S S +=;C.132S S S +<;D.无法确定.【解析】过点A 作//AE BC 交CD 于点E ,因为//AB DC ,所以四边形AECB 是平行四边形,所以AB CE =,BC AE =,BCD AED ∠=∠, 因为90ADC BCD ∠+∠=︒,2DC AB =, 所以AB DE =,90ADC AED ∠+∠=︒, 所以90DAE ∠=︒那么222AD AE DE +=,因为21S AD =,222S AB DE ==,223S BC AE ==, 所以213S S S =+. 故选:B .24.小王将一些同样大小的正三角形纸片摆放在桌上.第一次放1张纸片;第二次在这个小正三角形纸片四周再放三张纸片;第三次在第二次摆好的图形四周再摆放纸片;⋯摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有一条边重合,且纸片之间除边之外,无重合(见图).第20次摆放后,该图形共用了正三角形纸片( )张.A.571B.572C.573D.574【解析】根据分析可得,第20次摆放后,该图形共用:++++⋯+⨯-13693(201)=++++⋯+136957=+⨯-÷+(357)(201)21=+5701=(个)571答:第20次摆放后,该图形共用了正三角形纸片571张.故选:A.25.在88⨯网格的所有方格中放入黑白两种围棋子,每个方格放一枚棋子,要求每行中的白色棋子的数目互不相同,每列中的白色棋子的数目相等,那么这个88⨯网格中共有( )枚黑色棋子.A.42B.32C.22D.12【解析】由分析得+++++++=(枚)0123567832⨯-=(枚)883232故选:B.26.在66⨯网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个66⨯网格中共有()枚黑色围棋子.A.18B.14C.12D.10【解析】每行的数目可以为0~6个,每列都相等,所以一定是6的倍数,++++++=,012345621如果去掉3,那么剩下的数:21318-=正好是6的倍数,所以,白棋子有18个,则,黑色围棋子有:661818⨯-=(个)故选:A.27.一块木板上有13枚钉子(如图1所示).用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(如图2).请回答:可以构成()个正方形.A.9B.10C.11D.12【解析】第一种正方形有5个,第二种正方形有4个,第三个正方形有1个,第四种正方形有1个,共11个.故选:C.28.在如图中,一共能数出()个含有“☆”的长方形.A.8B.10C.12D.14【解析】根据分析可得,共有:6612+=(个);答:图中,一共能数出12个含有“☆”的长方形.故选:C.29.如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形.A.6B.10C.13D.15【解析】单个的三角形有9个,4个三角形组成的大三角形3个,最外面的最大的三角形1个,共有:93113++=(个)答:用橡皮筋可套出13个正三角形. 故选:C .30.以平面上任意4个点为顶点的三角形中,钝角三角形最多有( )个. A.5B.2C.4D.3【解析】如图,平面上任意4点构成了4个钝角三角形: ABC ∆、ABD ∆、ACD ∆、BCD ∆,所以以平面上任意4个点为顶点的三角形中,钝角三角形最多有4个. 故选:C .31.图中,有( )个三角形.A.13B.15C.14D.16【解析】由题意,由一个小三角形构成的,有6个; 由两个小三角形构成的,有3个; 由三个小三角形构成的,有6个; 大三角形1个,所以三角形的个数为636116+++=个, 故选:D .32.图中共有( )个三角形.A.10B.9C.19D.18【解析】根据题干分析可得:88218++=(个),答:图中一共有18个三角形.故选:D.33.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形【解析】因为拼在一起的两个小三角形一定有两条边共线,这时能组成一个平角,A、因为两个锐角的和小于180度,所以,两个锐角三角形不可能拼成一个大三角形;B、因为9090180︒+︒=︒,所以两个直角三角形能拼成一个大三角形;C、因为钝角+锐角有可能等于180︒,所以两个钝角三角形可能拼成一个大三角形;D、因为钝角+锐角有可能等于180︒,所以两个钝角三角形可能拼成一个大三角形;故选:A.34.将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14B.16C.18D.20【解析】设把中间最小的空白长方形的面积看作单位1ab=,那么与它相邻的阴影部分的面积就是2233a b ab ab⨯-==,同理,相邻的空白部分的面积就是55ab=,依此规律,面积依次下去为7,9,11,则空白部分的面积总和是15915++=,而实际空白部分面积总和是10平方厘米,可得单位1的实际面积是210153÷=(平方厘米);那么阴影部分面积总和是:371121++=,则实际面积是:221143⨯=(平方厘米);答:阴影部分面积总和是14平方厘米.故选:A.35.在桌面上,将一个边长为1 的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.5【解析】180(62)6︒⨯-÷18046=︒⨯÷120=︒180660︒÷=︒12060180︒+︒=︒所以,拼接后的图形是:6345+-=(条)答:得到的新图形的边数为5.故选:D.36.用210个大小相同的正方形拼成一个长方形,不同的拼法有()种.A.2B.4C.6D.8【解析】2102357=⨯⨯⨯因数的总个数:(11)(11)(11)(11)16+⨯+⨯+⨯+=(个)不同的拼法有:1628÷=(种)答:不同的拼法有8种.故选:D.37.一个长方形由15个小正方形拼成,如图所示,若这个长方形的周长是64cm,则它的面积为(2)cm.A.960B.256C.240D.128【解析】64[(53)2]÷+⨯=÷6416=(厘米)4⨯⨯=(平方厘米)4415240答:它的面积为2240cm.故选:C.38.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为()平方厘米.A.16B.20C.24D.32【解析】如右图进行分割,把图形分成了8个边长是2厘米的小正方形⨯⨯=(平方厘米)22832答:这个图形的面积是32平方厘米.故选:D.39.如图,四边形ABCD为长方形,四边形CDEF为平行四边形.下面四种说法中正确的是()A.甲的面积比乙的面积大B.甲的面积比乙的面积小C.只有当丙、丁两部分面积相等时,甲、乙两部分面积才相等D.甲、乙两部分面积总是相等的,与丙、丁两部分面积的大小无关【解析】四边形ABCD为长方形,所以BC AD=,AB CD=,因为四边形CDEF为平行四边形,所以CD EF=,=,所以AB EF两边同时加上BE,所以BF AE=;根据等底等高的三角形的面积相等,所以得出三角形CBF的面积=三角形DAE的面积,则:三角形CBF的面积-丁的面积=三角形DAE的面积-丁的面积,所以甲、乙两部分面积总是相等,与与丙、丁两部分面积的大小无关;故选:D.40.如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是()平方厘米.A.40B.50C.60D.80【解析】⨯-⨯=(平方厘米)10108560故选:C.41.如图,线段BE将长方形ABCD分成M、N两个部分,如果M部分比N部分的面积小80l 平方厘米,那么AE的长是()A.24厘米B.21厘米C.20厘米D.14厘米【解析】设N部分的面积为x,那么M部分的面积为180x-,+-=⨯(180)3020x xx-=2180600x=+2600180x=2780x=;390N部分的面积是390平方厘米.设梯形的上底为y,1y+⨯⨯=(30)203902y+=10300390y=1090y=;9AE=-=(厘米);30921故选:B.42.如图,一个33⨯的正方形网格,如果小正方形边长是1,那么阴影部分的面积是()A.5B.4C.3D.2【解析】通过观察可知,阴影部分的面积=长是3宽是1的长方形的面积-中间边长是1的正方形的面积.⨯-⨯=31112故选:D.43.如图所示,四边形BCDE为平行四边形,AOE∆的面积.()∆的面积为6,求BOCA.3B.4C.5D.6【解析】连接BD,因为,//BE CD ,OB OB =,所以,BOC ∆的面积等于BOD ∆的面积,又因为,//DE AC ,AB AB =,所以,ABE ∆的面积等于ABD ∆的面积,又因为,ABO ∆是ABE ∆和ABD ∆的公共部分,所以,BOD ∆的面积等于AOE ∆的面积,即,BOD ∆的面积AOE =∆的面积6=.答:BOC ∆的面积是6.故选:D .44.如图,M 为平行四边形ABCD 的边BC 上的一点,且:2:3BM MC =,已知三角形CMN的面积为245cm ,则平行四边形ABCD 的面积为( 2)cm .A.30B.45C.90D.100【解析】如图,连接AC .Q 四边形ABCD 是平行四边形,//AD BN ∴,ADM NCM ∴∆∆∽,∴24()9ADM MNC S DM S CM ∆∆==, 45MNC S ∆=Q ,20ADM S ∆∴=,:3:2CM DM =Q ,30ACM S ∆∴=,50ADC S ∆∴=,2100ADC ABCD S S ∆∴==平行四边形,故选:D .45.如图,长方形ABCD 中的AE 、AF 、AG 、AH 四条线段把此长方形面积五等分,又长方形长20厘米、宽12厘米,那么三角形AFG 的面积AFG S ∆等于( )平方厘米.A.41.2B.43.2C.43.1D.42.3【解析】由题意可知2012485ABE AEF AGH ADH AFCG S S S S S ∆∆∆∆⨯======四边形, BE EF ∴=,DH HG =,Q 1482BE AB =g g , 8BE EF ∴==,20164CF =-=,Q 1482DH AD =g g , 4.8DH HG ∴==, 2.4CG =,14 2.4 4.82FGC S ∆∴=⨯⨯=, 48 4.843.2AFG S ∆∴=-=,故选:B .46.在等腰梯形ABCD 中,AB 平行于CD ,6AB =,14CD =,AEC ∠是直角,CE CB =,则2AE 等于( )A.84B.80C.75D.64【解析】如图,连接AC ,过点A 作AF CD ⊥于点F ,过点B 作BG CD ⊥于点G ,则AF BG =,6AB FG ==,4DF CG ==.在直角AFC ∆中,22222210100AC AF FC AF AF =+=+=+,在直角BGC ∆中,222222416BC BG GC AF AF =+=+=+,又CE CB =Q ,90AEC ∠=︒,22222100(16)84AE AC EC AF AF ∴=-=+-+=,即284AE =.故选:A .47.下面的四个图形中,第( )幅图只有2条对称轴. A. B. C. D.【解析】如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.观察易知,符合题意的是C.故选:C.48.下面图形中,恰有2条对称轴()A. B. C. D.【解析】根据轴对称图形的定义,可得:A有4条对称轴,B没有对称轴,C有2条对称轴,D有1条对称轴.故选:C.49.在如图的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B.C. D.【解析】根据分析,可以逆向思维,可以将题中的阴影三角形经过旋转、平移,长直角边旋转和短直角边旋转后得到的图形,不难看出,只有A选项是不可能出现的.图中图中①、②、③三边应为顺时针关系,A不合要求.故选:A.50.在下面的阴影三角形中,不能由图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B. C. D.【解析】解析:由图可知:A、C、D都可由原三角形经过旋转和平移得到,而B选项必须经过对称才能与原三角形重合,故选:B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级几何专题复习
如图,已知AB =40cm,图中的曲线是由半径不同的三种半圆弧平滑连接
而成,那么阴影部分的面积是_____cm2。

(π取3.14)(几何)
有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,则至少需要绳子_____分米。

(结头处绳长不计,π取3.14)
图中的阴影部分的面积是________平方厘米。

(π取3)
如图,△ABC中,点E在AB上,点F在AC上,BF与CE相交于点P,如果S四边形AEPF=S△BEP=S△CFP=4,则S△BPC=______。

如图,在一个棱长为20厘米的正方体密闭容器的下底固定了一个实体圆柱 体,容器内盛有m 升水时,水面恰好经过圆柱体的上底面。

如果将容器倒 置,圆柱体有8厘米露出水面。

已知圆柱体的底面积是正方体底面积的 1/8,求实心圆柱体的体积。

在三角形ABC 中,已知三角形ADE 、三角形DCE 、三角形BCD 的面积分别是9,6,5,那么三角形DBE 的面积是
.
A
答案:
::()5:(96)1:3BDC ADE EDC DB DA S S S ∆∆∆=+=+=,
所以113(965)34
45
EDB ABE ABC BD AE S S S BA
AC
∆∆∆=⨯=⨯⨯=⨯⨯++=
如图,三角形田地中有两条小路AE 和CF ,交叉处为D ,张大伯常走这两条小路,他知道DF =DC ,且AD =2DE .则两块田地ACF 和CFB 的面积比是______.
F E D
C B A
F
E D
C B
A
【分析】 连接BD ,设1CED S =△(份),则2ACD ADF S S ==△△,设BED S x =△BFD S y =△,则有122x y
x y +=⎧⎨
=+⎩
,解得34x y =⎧⎨
=⎩,所以:(22):(431)1:2ACF CFB S S =+++=△△
如图,H G F E 、、、、分别是四边形ABCD 各边的中点,FG 与FH 交于点O ,123S S S 、、及4S 分别表示四个小四边形的面积.试比较13S S +与24S S +的大小.
S 4
S 3
S 2
S 1
O
H
G
F
E D
C
B
A
S 4
S 3
S 2
S 1
O
H
G
F
E
D
C
B A
【分析】 连接AO 、BO 、CO 、DO ,则可判断出,每条边与O 所构成的三角形被平分为两
部分,分属于不同的组合,且对边中点连线,将四边形分成面积相等的两个小四边形,所以13S S +=24S S +.
如图,对于任意四边形ABCD ,通过各边三等分点的相应连线,得到中间四边形EFGH ,求四边形EFGH 的面积是四边形ABCD 的几分之几?
D
[分析] 如图,分层次来考虑:
(1)23
BMD ABD S S =⨯,23
BPD CBD S S =⨯,
所以22()3
3
MBPD ABD CBD ABCD S S S S =+⨯=⨯
又因为DOM
POM S S =,MNP BNP S S =,
所以12
MNPO MBPD S S =;
121
233
MNPO ABCD ABCD S S S =⨯⨯=⨯.
D
(2)已知13
MJ BD =,23
OK BD =;
所以:1:2MJ BD =;
所以:1:2ME EO =,即E 是三等分点; 同理,可知F 、G 、H 都是三等分点; 所以再次应用(1)的结论,可知,
1111
3339
EFGH MNPO ABCD ABCD S S S S =⨯=⨯⨯=.
如图,正方形ABCD 和正方形ECGF 并排放置,BF 与EC 相交于点H ,已知AB =6厘米,则阴影部分的面积是________平方厘米.
C
B
A
C
B
A
【分析】 连接DF 、CF ,可知四边形BDFC 是梯形,所以根据梯形蝴蝶定理有BHC DHF S S =△△,
又因为DHF
DHG S S =△△, 所以66218BDC S S ==⨯÷=△阴影
右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC 的面积.
A
A
[分析] 连接AD ,可以看出,三角形ABD 与三角形ACD 的底都等于小正方形的边长,高
都等于大正方形的边长,所以面积相等.因为三角形AGD 是三角形ABD 与三角形
ACD 的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,
即三角形ABG 与三角形GCD 面积仍然相等.根据等量代换,求三角形ABC 的面积等于求三角形BCD 的面积,等于4428⨯÷=(平方厘米).。

相关文档
最新文档