混流与轴流水轮机转轮流道几何参数
中小型混流式、轴流式水轮机模型参数及型谱表
, n1 (r/min)
20
95
22 24 26 28
18
90
62
12
16 14
68
72
76 78 80
30 32
85
10
82
0.04
80
84
75
Ao=8
σ =0.03
86 87 88
89
70
65
0.05
91
91
92 92.8%
90
.5
0.07
60
0.06
55
75
Ao=8
σ =0.03
89
70
90
70
60
55
600
700
800
900
1000
1100
δ =
60
55
600
700
800
900
1000
1100
模型转轮综合特性曲线
90
80
70
η = 60
δ
50
40
100
120
140
160
180
200
A244-35 转轮综合特性曲线
110
7 80 8
100
7 74 2 76
A244-35 转轮综合特性曲线
转轮综合特性曲线
δ =
δ =
δ =
δ =
η =
400
450
500
550
600
650
700
18.0
21.0
24.0
27.0
30.0
33.0
18.0
500
600
水轮机模型转轮型谱表
0
0.365 0.315 0.28 0.25 0.225 0.2 0.225 0.16 0.118 0.12 0.12
1.15 1.16 1.16 1.16 1.16 1.18 1.16 1.25 1.17 1.2 1.2
最优工况 Z0 n110 (r/min) 165 16 20 32 32 32 24 148 140 142 140 140 128 120 最优工况 Q110 (m /s) 1.1 1.08 1.08 0.95 0.955 0.65 0.69 0.548 0.313 0.32 0.203
1.175 1.255 1.16 1.16 1.16 1.16
表B.0.2中小型混流式水轮机模型转轮主要参数表 序号 1 2 3 4 5 6 7 8 9 10 11 转轮型号 HL240 HL260/A244 HL260/D74 HL240/D41 HL220/A153 HL180/A194 HL180/D06A HL160/D46 HL110 HL120 HL90/D54 Z0 24 24 24 24 24 20 24 20 20 18 20 n110 (r/min) 72 80 79 77 71 70 69 67.5 61.5 62.5 62
0.348 Q11
0.393 Q11 0.416 Q11 0.416 Q11 0.57 Q11
180° 180° 180° 225°
对称型 对称型 对称型 对称型
自行设计 自行设计 自行设计 4号
>2.6D1 >2.4D1 >2.42D1 >2.71D1
σ 0.2 0.15 0.143 0.106 0.08 0.078 0.053 0.045 0.055 0.063 0.033
水轮机类型及工作参数
第一节水轮机的主要类型自然界有多种能源,其中有很多式可以开发利用的,目前已被利用的能源中主要有热能、水能、风能和核能。
其中水能是一种最经济的能源,水能的开发利用已受到越来越多的关注。
我国有着丰富的水力资源,对水能的开发利用已受到社会的广泛关注,对水能最重要的开发形式就是兴建各种各样的水电站。
水轮机作为将水能转换成旋转机械能的一种水力原动机,是水电站中最重要的组成部分。
根据转轮转换水流能量方式的不同,水轮机分成两大类:反击式水轮机和冲击式水轮机。
反击式水轮机包括混流式、轴流式、斜流式和贯流式水轮机;冲击式水轮机分为水斗式、斜击式和双击式水轮机。
一、反击式水轮机反击式水轮机转轮区内的水流在通过转轮叶片流道时,始终是连续充满整个转轮的有压流动,并在转轮空间曲面型叶片的约束下,连续不断地改变流速的大小和方向,从而对转轮叶片产生一个反作用力,驱动转轮旋转。
当水流通过水轮机后,其动能和势能大部分被转换成转轮的旋转机械能。
1.混流式水轮机如图1-1所示,水流从四周沿径向进入转轮,然后近似以轴向流出转轮。
混流式水轮机应用水头范围较广,约为20~700m,结构简单,运行稳定且效率高,是现代应用最广泛的一种水轮机。
图1-1 混流式水轮机1—主轴;2—叶片;3—导叶2.轴流式水轮机如图1-2所示,水流在导叶与转轮之间由径向流动转变为轴向流动,而在转轮区内水流保持轴向流动,轴流式水轮机的应用水头约为3~80m。
轴流式水轮机在中低水头、大流量水电站中得到了广泛应用。
根据其转轮叶片在运行中能否转动,又可分为轴流定桨式和轴流转桨式水轮机两种。
轴流定桨式水轮机的转轮叶片是固定不动的,因而结构简单、造价较低,但它在偏离设计工况运行时效率会急剧下降,因此,这种水轮机一般用于水头较低、出力较小以及水头变化幅度较小的水电站。
轴流转桨式水轮机的转轮叶片可以根据运行工况的改变而转动,从而扩大了高效率区的范围,提高了运行的稳定性。
但是,这种水轮机需要有一个操作叶片转动的机构,因而结构较复杂,造价较高,一般用于水头、出力均有较大变化幅度的大中型水电站。
灯泡混流式水轮机流道系列的设计
0 引言
灯泡混流式水轮机是一种采用类似于混流式水
轮机转轮和灯泡贯流式水轮机导水机构及流道形式 的一种新型水轮机 , 取消了常规 的蜗壳式引水 , 采用 球形导流室 , 其固定导叶设计成扭 曲型, 承担转轮所 需要 的环量 , 活动导叶设计成平板型 , 分布在球形体 内, 起着调节流量 的作用 。该 型水轮机 避免了混流 式水轮机的一些水力方面 的缺点 , 并具 备混 流式水 轮机空蚀性能好 , 转轮强 度高, 适用于高水头( 流 混
收稿 日期 : 0 —60 2 60 —7 0
基 金 项 目 : 省 重点 科 技 计 划 项 目( 号 :1 O 4 0 ) 四川 编 0 GG 3 — 9
图 1 灯泡混流式水轮机与常规混流式 水轮机的流道形式对 比
作者简介 : 喻华全 (9 2 ) 男 , 1 7一 。 四川营 山人 , 工程师 , 主要从事水力机 械的设 计与制造l 作方面的研究 。 丁
内部流动状况以及整个流道 的绕流情况 , 通过其可
视化对流道结构几何参数进行 了优化 , 灯泡混流式 水轮机适用于各种不同水头段 的流道几何参数见表
1 表 以致于产生脱流 , 诱发
严重的空蚀 , 造成水力振动从而影响到活 动导 叶的 寿命 , 同时过分扭曲的活动导叶在锥形 导流室布置 时, 又给导叶的密合封水及加工带来不便。灯泡混 流式水轮机也与一般混流式水 轮机一样 , 只让活动 导叶形成很少部分环量或不形成环量 , 仅起调节流 量的作用, 全部环量或绝 大部分 的水流环量 由导流 室中的固定导叶来形成 , 这样 固定导叶设计成空 间 扭曲的, 在水力上相当于混流式水轮机庞大的蜗壳。
小型混流式水轮机转轮优化设计及数值模拟
小型混流式水轮机转轮优化设计及数值模拟张洪渠,余波,陈柱(西华大学能源与环境学院,四川I成都610039)摘要:针对某小型混流式水轮发机电组长期受到转轮流道堵塞、出力受阻闻题,提出在基本不改变水轮机原性能参数的条件下.以加大叶片开121为优化目标的转轮流道优化方案,并对优化后的水轮机转轮流道进行数值模拟。
数值模拟及现场运行表明了该转轮优化设计方案的正确性。
关键词:水轮机;转轮;优化设计;数值模拟;水电站O pt i m i z at i on D瞄i和and N um eri cal Si m ul a t i on of Sm a l l Fra nci s T ur bi ne R unn erZ hang H on gqu,Y u B o,C he n Z h u(School of E n er g y a nd E nvi ronm e nt,X i hua U ni ve r s i t y,Che ngdu Si chuan610039)A bs t r a ct:The r u nne r of Fr an ci s t ur bi ne i n a sm al l hydropew er s t at i on i s of t e n bl oc ke d by debr i s.For sol vi ng t he pr obl em,t he r u nne r i s r e des i gne d t o i ncr ease bl a de op e ni ng under t he con di t i on of n o c h a ng e t he basi c per f or m ance and pa r am et er s of t u r bi ne.T h e r u nne r opt i m i zat i on i s als o nu m er i ca l l ysi m ul at ed.T he si m ul at i on a nd f ield oper at i on s ho w s t hat t he r u nne r r e desi g n i sr eas onable.K e y W ords:t ur bi ne;runne r,opt i m a l des i gn;num er i c al si m ul at i on;hydr opow e r s t at i on中图分类号:TK730.2文献标识码:A文章编号:0559-9342(2010)08-0065-03四川I某水电站安装有3台单机容量为1600kW 的卧式混流式水轮发电机组,电站额定水头91.4m,水轮机型号为H L l60娟U--60,单机额定流量2.3m3/s。
混流式水轮机转轮
A897 转轮
• 构皮滩水电站(Hmax=200.0 m,5×600 MW),水头变 幅并不大,业主对水轮机最高效率要求高,而且要具有高 效宽广的效率圈。全部水力设计由“哈电” 独立完成, 采用创新设计理念,优化设计出A897 转轮,并进行了模 型效率试验。该转轮具有长短叶片,已用于构皮滩水电站, 2009 年首台机组发电。 • A897 转轮模型试验验收分国内和国外两个阶段, 分别在 “哈电”和瑞士洛桑EPFL-LMN 进行,其结论是一致的: 水轮机模型最高效率平均值为95.17%, 换算到原型最高 效率96.65%,原型水轮机加权平均效率为94.7%,水轮机 模型额定点效率平均值为91.5%,换算到原型为93.0%, 均满足合同的要求;在单位飞逸转速、模型各工况点的压 力脉动幅值等方面,均满足合同的要求;水轮机模型在运 行区域内没有出现空化现象。
7ljd399d294d398等转轮?东电自三峡左岸电站vgs水轮机模型验收试验后就在总结这一试验结果的基础上开始了历时4年的三峡右岸电站水轮机的水力开发工作进行了精心的水力设计和大量的模型试验研究水力开发工作围绕着在保持能量空化性能与左岸电站水轮机相当的前提下考虑如何最大限度地提高右岸电站水轮机水力稳定性消除左岸电站水轮机存在的部分负荷压力脉动带
混流式水轮机转轮
混流式水轮机转轮
F13 转轮
富春江水电设备厂为三门峡扩机而于1991 年6 月从 俄罗斯列宁格勒金属工厂引进了PO45/820 转轮技术,并 完成了模型试验及验收,其编号为F13。又将F13 模型机 组的尾水管换成按三门峡水电站实际流道设计的模型进行 了试验研究, 编号为F12。F12 转轮用于三门峡水电站的 6 号、7号机组(最高水头47.7 m,单机容量75 MW,水 轮机型号为HLF12-LJ-550,真机最优效率ηmax=94.2%), 6 号机组于1993 年12 月投产。 在前苏联1982 年重新制定的轴流式和混流式水轮机 型谱中,PO45(PO 表示混流式, 45 表示可供使用的最大 水头( m) ) 是用于最低水头段的混流式水轮机,转轮推 荐使用最大水头为45 m。在JB/T6310—92《中小型轴流 式混流式水轮机转轮系列型谱》中F13 的推荐使用水头 Hmax=50 m。
轴流式水轮机基本结构
轴流式水轮机基本结构轴流式水轮机与混流式水轮一样属于反击式水轮机,二者结构上最明显的差别是转轮,其次是导叶高度。
根据转轮叶片在运行中能否调节,轴流式水轮机又分为轴流定桨式和轴流转桨式两种型式。
轴流式水轮机用于开发较低水头(3m~55m),较大流量的水能资源。
它的比转速大于混流式水轮机,属于高比转速水轮机。
在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图5-13),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。
当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的功率。
但在相对高水头条件下,轴流式水轮机除了空化系数较大,厂房要有较大开挖量外,飞逸转速和轴向水推力较混流式水轮机高。
轴流转桨式水轮机,由于桨叶和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,是一种值得广泛使用的优良机型。
限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。
由于轴流式水轮机的过流能力大。
单位流量和单位转速都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数。
在相同水头下,轴流式水轮机由于桨叶数少,桨叶单位面积上所承受的压差较混流式叶片的大,桨叶正背面的平均压差较混流式的大,所以它的空化性能较混流式叶片的差。
因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。
随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。
另一方面是由于轴流式水轮机桨叶数较少(3~8片),桨叶呈悬臂形式,所以强度条件较差。
当使用水头增高时,为了保证足够的强度,就必须增加桨叶数和桨叶的厚度,为了能够方便地布置下桨叶和转动机构,转轮的轮毂比,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量下降。
水轮机型谱
C.0.1 附 录C收集了四 张新模型转 轮参数表: 表C.0.1-1— —轴流转桨 式水轮机新 模型转轮主 要参数表; 表C.0.1-2— —轴流定桨 式水轮机新 模型转轮主 要参数表; 表C.0.1-3— —混流式水 轮机新模型 转轮主要参 数表; 表C.0.1-4— —水斗式水 轮机新模型 转轮主要参 数表。 C.0.2 附录C 各表中转轮 型号及参数 的符号表 示: A——哈尔滨 大电机研究 所研制的转 轮; D——东方电 机厂研究所 研制的转 轮; F——富春江 水电设备总 厂研制的转 轮; JK——中国 水利水电科 学研究院水 力机电研究 所研制的轴 流转桨式转 轮;
~140
35
0.25
14
1.18
24
49
JF2508
~140
35
0.25
14
1.18
24
50
TF13-43.4 ~145
43.4
0.261
13
1.145
24
51
A398-35
~150
35
0.225
17
1.18
24
52
A353-35
~150
35
0.225
14
1.18
24
63
A356-35
~150
35
0.225
14
1.18
24
54
A497-35
~150
35
0.225
15
1.2
20
55
A553-35
~150
35
0.225
16
1.25
20
56
A606-35
混流式水轮机
/trade/pay_success.htm?biz_order_id=213979720000462&out_trade_no=T200P213979720000462&dealing=T第一节混流式水轮机结构一、概述混流式水轮机是反击式水轮机的一种,其应用水头范围很广,从20~700m水头均可使用。
它结构简单,制造安装方便,运行可靠,且有较高的效率和较低的空蚀系数。
现以图2-1所示的混流式水轮机为例来介绍这种水轮机结构。
水轮机的进水部件是具有钢板里衬的蜗壳,座环支柱也称固定导叶1,在转轮四周布置着导水机构导叶2。
座环支柱具有坚固的上环a和下环b,蜗壳和上下环焊接在一起。
导叶轴颈用衬套(钢或尼龙材料)支承在底环3和固定于顶盖4的套筒5上。
底环固定于座环的下环上面。
顶盖用螺钉6与座环的上环连接。
导水的传动机构是由安置在导水叶上轴颈的转臂12,连杆13和控制环14组成。
导叶的开度0a(从导叶出口边端到相邻导叶背部的最短距离)的改变是通过导水机构的两个接力器16和控制环连接的推拉杆15传动控制环来实现的。
图2-1 HL200-LJ-550水轮机剖面图(高度单位:m,尺寸单位:mm)1—固定导叶;2—导叶;3—底环;4—顶盖;5—套筒;6—螺钉;7—主轴法兰;8—主轴;9—上冠;10—下环;11—叶片;12—转臂;13—连杆;14—控制环;15—推拉杆;16—接力器;17—导轴承;18—泄水锥;a19,b19—上,下迷宫环;a—坐环上环;b—坐环下环;20—连接螺栓由于混流式水轮机应用水头较高,导叶承受的弯曲载荷大,因此导叶的相对高度0b与轴流式水轮机比较起来做得短一些,以减小跨度。
此外,随着水头增高,相同功率下水轮机的过流量减小,这样有可能减小流道的过流载面。
0b一般随水头增加而减小。
导叶和水轮机顶盖4及底环3之间的间隙及相邻导叶在关机时的接合面都会有漏水现象。
一般采用橡胶的或金属制成的密封件,可使导水机构关闭时的漏水量最小。
(精品)水轮机特性及选型
三峡(9.8m,700MW)、水布垭、小湾、龙滩、向家坝、溪洛渡、锦屏二级
2 、机组台数与机电设备制造的关系 台数多→N单↓→尺寸(D1)小→制造运输容易 (相反,大机组制造困难)
3、机组台数与运行效率的关系 单台机组:? 整个电站:台数多↑→负荷分配灵活→平均效率↑ 担任基荷:可用较少的台数,在较长时间内以最优
1)
n1 n10 n10M n10M (
max M max
1)
❖其他工况时:
Q1 Q1M Q1 n1 n1M n1
在工程实践中,当 n1 0.03n10M 时,单位转速不必修正 单位流量修正值与单位流量的比值较小,一般可不修正
第四节 水轮机的主要综合特性曲线
综合反映参数n、H、 N之间的关系,代表
了水轮机的轮系特征。
❖ns随工况变化,用最优比转速,限制工况下 的比转速比较不同轮系水轮机性能,
❖比转速用来表示水轮机的型号,还用来划分 水轮机的类型。
❖各种类型的水轮机比转速大致范围:
➢贯流式:ns=600-1000 高 高水头小流量
➢轴流式:ns=200-850 高
几何相似的水轮机——轮系,系列,型号。
2、运动相似:
(1) 对应点的速度方向相同。 (2) 对应点的速度大小对成比例, 即速度三角形相似。
同一轮系的水轮机才能建立运动相似和动力相似。 几何相似就运动相似吗? 同一轮系水轮机,保持运动相似——相似工况
3、动力相似
对应点所受的同名作用力方向相同、大小成比例。
D21M
hH hM H
M
2
P
或
NM
水轮机类型及工作参数
第一节水轮机的主要类型自然界有多种能源,其中有很多式可以开发利用的,目前已被利用的能源中主要有热能、水能、风能和核能。
其中水能是一种最经济的能源,水能的开发利用已受到越来越多的关注。
我国有着丰富的水力资源,对水能的开发利用已受到社会的广泛关注,对水能最重要的开发形式就是兴建各种各样的水电站。
水轮机作为将水能转换成旋转机械能的一种水力原动机,是水电站中最重要的组成部分。
根据转轮转换水流能量方式的不同,水轮机分成两大类:反击式水轮机和冲击式水轮机。
反击式水轮机包括混流式、轴流式、斜流式和贯流式水轮机;冲击式水轮机分为水斗式、斜击式和双击式水轮机。
一、反击式水轮机反击式水轮机转轮区内的水流在通过转轮叶片流道时,始终是连续充满整个转轮的有压流动,并在转轮空间曲面型叶片的约束下,连续不断地改变流速的大小和方向,从而对转轮叶片产生一个反作用力,驱动转轮旋转。
当水流通过水轮机后,其动能和势能大部分被转换成转轮的旋转机械能。
1.混流式水轮机如图1-1所示,水流从四周沿径向进入转轮,然后近似以轴向流出转轮。
混流式水轮机应用水头范围较广,约为20~700m,结构简单,运行稳定且效率高,是现代应用最广泛的一种水轮机。
图1-1 混流式水轮机1—主轴;2—叶片;3—导叶2.轴流式水轮机如图1-2所示,水流在导叶与转轮之间由径向流动转变为轴向流动,而在转轮区内水流保持轴向流动,轴流式水轮机的应用水头约为3~80m。
轴流式水轮机在中低水头、大流量水电站中得到了广泛应用。
根据其转轮叶片在运行中能否转动,又可分为轴流定桨式和轴流转桨式水轮机两种。
轴流定桨式水轮机的转轮叶片是固定不动的,因而结构简单、造价较低,但它在偏离设计工况运行时效率会急剧下降,因此,这种水轮机一般用于水头较低、出力较小以及水头变化幅度较小的水电站。
轴流转桨式水轮机的转轮叶片可以根据运行工况的改变而转动,从而扩大了高效率区的范围,提高了运行的稳定性。
但是,这种水轮机需要有一个操作叶片转动的机构,因而结构较复杂,造价较高,一般用于水头、出力均有较大变化幅度的大中型水电站。
混流与轴流水轮机转轮流道几何参数
转轮体通常用ZG30 或ZG20MnSi 材料轴流式水轮机转轮流道几何参数、设计工况和最优工况的关系:n11f (1.2~1.4)n11Q11f (1.35~1.6)Q11式中-n11f、Q为设计工况的单位转速、单位流量;n11、Q为最优工况的单位转速、单位流量;适当选取较大的单位转速、单位流量作设计工况参数)、叶栅稠密度L(如下图所示)—比转速查算术平均值t栅距t:t 2 R→R-圆柱层面半径z1-转轮叶片数Z1z 1翼型弦长L:翼形后端点和翼形中线与前端交点的连线的长度叶栅稠密度L→是翼型弦长与栅距的比值:ta. 轮毂处的叶栅稠密度:(L)(1.1~1.2)(L)t B t av (此时计算栅距t中的R为轮毂半径)b. 轮缘处的叶栅稠密度:(L)(0.85~0.95)(L)t A t av (此时计算栅距t中的R为转轮半径)_式中(L)为叶栅稠密度的算术平均值(在下图取值)t av三、转轮叶片数- 算术平均值算叶片数确定 Z 1 的原则是:不使叶片太长,且平面包角 不太于 90°;所谓平面包角-指叶片位于水平位置时,叶片进出水边所对应的中心角 当叶片栅稠密度确定后,Z1 按下式计算取整:3 6 0LZ 1 ( )t(av) 当 =°~ °时, Z 1与 L 关系见下表: (av)四、转轮体 转轮体有环形与圆柱形两种外观形式:球形转轮体 (用于 ZZ 式水机) 时:转轮叶片内表面与转轮体之间的间隙较 小,不同转角时间隙可保持不变。
圆柱形转轮体时:一般按最大转角确定转轮叶片与转轮体之间的间隙附:相同直径下,采用球形转轮体的水机效率高于圆柱形转轮体水机五、泄水锥泄水锥长度系数指:转轮叶片转动轴线到泄水锥底部的高度其高度采用主:L1 0.65D1同时,采用高度为0.4D1与0.6D1泄水锥的大型高水头ZZ 水机其水机效率一样六、导叶相对高度b0 、轮毂比d h及转轮叶片数Z1与最大水头的关系轮毂比计算式建议采用以下公式:0.0005n s+0.75 0.065dh=-或, d h=0.25+94.64式中-n s为水轮机比转速(m·hp)n S七、转轮室ZL 式水轮机转轮室有圆柱形、球形和半球形三种现多采用半球形转轮室:转轮叶片转动轴线以上采用圆柱形,在其以下采用球形ZL 水机宜采用喉部(指转轮室直径最小的部位)直径为(0.955~0.985)D1 的半球形转轮室较为适宜混流式水轮机转轮流道几何参数(40m~450m 水头选混流式最为有利)一、设计工况和最优工况的关系:120 m 水头段:n11 (0.93~1.08)n11 f Q11(0.69~0.91)Q11f200m 水头段,有些转轮:n11 1.07n11f Q11 1.04Q11f式中-n11f、Q为设计工况的单位转速、单位流量;n11、Q为最优工况的单位转速、单位流量;导叶相对高度b0三、上冠上冠流线形状有直线形与曲线形两种;现多采用曲线形上冠,它可以增大单位流量与水力效率,但曲率不能太大-会加大出口附近上冠表面的局部所蚀四、下环下环形状有直线形与曲线形两种(a)为低比转速水轮机(H >230m)下环,一般为曲线形;最优直径比为D 2 D1 0.6~0.76(b)为中高比转速水轮机(H<115m)下环,一般为直线形,用下环锥角α表示扩散程度,一般α<13°,不同比转速机组的锥角如下表:(c)(115m<H< 230m)范围的转轮,下环可做成圆锥形或圆柱形,D 2 D11.0;但(115m<H<170m)推荐采用D2 D10.9~1.10五、叶片数Z1与最大水头H m ax、比转速n s及叶片包角θ的关系六、叶片进出水边位置转轮轴面投影如图:1与3连线成进水边,2与4连线成出水边D1为标称直径;Dj3 1.005D 1或 D 1 D j1 的大小与叶片进水角 和单位转速 n' 有关;有 > 90°、 =90 j1 1 n 11 1 和 <90°三种情况(如下图) :般按 =90 1 计算: D j160D1 h g 轮廓线绘制:叶片进水边-由 叶片出水边-参照相近比速的转轮确定n 1 1 点向下引垂线,然后用弧线将垂线与 3 点相连寰7-9。
水轮机分类和结构(水电站培训资料)
水轮机分类和结构一、水轮机分类1、按能量方式转换的不同,它可分为反击式和冲击式两类。
反击式利用水流的压能和动能,冲击式利用水流动能。
反击式中又分为混流式、轴流式、斜流式和贯流式四种。
冲击式中又分为水斗式、斜击式和双击式三种。
2、混流式:水流从四周沿径向进入转轮,近似轴向流出。
应用水头范围:30m~700m。
特点:结构简单、运行稳定且效率高。
3、轴流式:水流在导叶与转轮之间由径向运动转变为轴向流动。
应用水头:3~80m。
特点:适用于中低水头,大流量水电站。
分类:轴流定桨、轴流转桨4、冲击式:转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已经转变为高速射流,冲击转轮叶片作功。
水头范围:300~1700m。
适用于高水头,小流量机组。
5、水轮机主轴布置形式分类(1)水轮机按主轴的布置形式又可分为卧式和立式两种(也称横轴和立轴)。
立式布置得水轮发电机分为悬式和伞式两种。
(2)悬式发电机的推力轴承位于发电机转子上部的上机架上或上机架中。
伞式发电机的推力轴承位于转子下部的下机架中,或用支架支承在水轮机顶盖上。
伞式发电机又分普通伞式(其上、下导轴承分别位于上、下机架中),半伞式(只用上导轴承,它布置在上机架中,无下导轴承;我厂机组为此类型)和全伞式(只有下导轴承,它布置在下机架中,无上导轴承)。
二、水轮机主要基本参数1、工作水头H是指水轮机进、出口断面处单位重量水体的能量差,单位是米(m),典型工作水头有以下:(1)最大水头(Hmax):水轮机运行范围内允许出现的最大净水头。
(2)最小水头(Hmin):水轮机运行范围内允许出现的最小净水头。
(3)设计水头(H设):水轮发电机组发出额定功率时的最小水头。
2、流量Q是指单位时间内,通过水轮机某一既定过流断面的水量,单位是立方米/秒。
3、出力N是指水流在单位时间内所做的功(功率),其大小与水轮机的水头,流量有关,单位为千瓦。
计算公式:N=9.81QHn4、效率是指水轮机总效率,是水轮机输入功率与输出功率之比,其值总是小于1,因为水轮机在工作过程中不可避免地要产生一些能量损失,主要包括:(1)水力损失:即水流经过蜗壳、导水机构、转轮、尾水管的水头损失。
混流式水泵水轮机转轮全三维逆向设计方法研究
[
[
[
[
]
]
(15)
]
]
(16)
非叶片区(15)、(16) = ∫ Bπ ϕ Γ ( r ,θ , z ) cos( KBθ ) dθ π −B
π
s ϕΓ K (r , z ) =
B π B ϕ ( r ,θ , z ) sin( KBθ ) dθ π Γ π ∫− B ~ c ∇ 2ϕ qK = 2 q cos( KBf ) ~2 s ∇ ϕ qK = 2q sin( KBf )
(19)
rV θ V θbc = 2 + −ω r r
其中, V r 、 V θ 、 V z 为平均速度分量, Vrbc Vθbc V zbc 为相对流速的周期性分量。 1.2 数值方法 将上述方程及其边界条件从转轮流道轴面投影的物理座标上转换到贴体座标上进行求解。计算 步骤如下:
170
~ ~ ~
1)给定初始叶片及设计参数; 2)根据(8)~(12)式及相应的边界条件求出平均流动; 3)按(15)~(18)及其边界条件求出周期性脉动流动; 4)按 2) 、3)两步计算得到流动相加可得总的三维流动,根据给定的环量分布由叶片方程(19)得 新的叶片; 5)前后两次叶片对应各点之包角差达到一定精度,则得到给定环量分布的叶片,否则返回到 2); 6)根据速度场计算压力场。
(17) (18)
与(13)式类似(14)式可写成:
c s c s 其中 ϕ qK 、 ϕ qK 与ϕΓ K 、 ϕ ΓK 类似。
对非叶片区(17)、(18)式右端项为 0。 1.1.4 叶片方程 根据叶片表面相对流速与叶片表面相切及相对流速的展开式可得叶片方程为:
(V r + Vrbc )
毕业设计(论文)—水轮机导水控制装置结构设计及加工工艺
兰州工业高等专科学校毕业设计(论文)题目水轮机导水控制装置结构设计及加工工艺系别机械工程系专业机械制造及自动化班级机制09-2班姓名寇文辉学号 200903103105指导教师(职称)马淑霞水轮机是当今社会水力发电必不可少的发电设备,然而它的控制系统对于不同的水轮机有着不同的控制类型,水轮机导水机构的控制的研究也是一大研究课题。
在本次设计中,主要研究水轮机导水系统的控制,此次用的事机械控制系统,有调速轴的转动,将力量传递给摇臂和连杆来控制水轮机的转动,来控制导叶的打开和关闭来实现水轮机的导水控制。
在本次设计中,不仅设计了水轮机导水控制系统,而且画了大量的零件图和装配图,以及几种零件的加工工艺过程。
通过这次的毕业设计为以后工作打下了结实基础。
关键词:水轮机;控制系统:导水控制Essential in today's society hydroelectric turbine power generation equipment, but its control system for different turbine types have different control, control of turbine guide apparatus of the research is a major research topic.In this design, the main research turbine guide water system control, the control system with mechanical things, there is the shaft rotation speed, the power delivered to the rocker arm and the connecting rod to control the rotation of the turbine, guide vane control the opening and closing to achieve control of the turbine's hydraulic conductivity.In this design, not only designed the turbine control system, hydraulic conductivity, and drew a large number of parts and assembly drawings, and several parts of the machining process. Through this work after graduation designed to lay a solid foundation.Key words:hydroelectric;control system;turbine's hydraulic conductivity目录1 水轮机的基础知识 (5)1.1水轮机的简介 (5)1.2水轮机导水机构作用及几何参数 (5)1.3水轮机的工作原理 (8)1.3.1发电机原理 (8)1.3.2水轮发电机基本工作原理 (8)1.4水轮机的分类 (10)1.5水轮机的主要参数 (12)2 水轮机导水机构方案设计及核算 (13)2.1水轮机导水控制部分的主要参数 (13)3 机械装配图的设计和绘制 (25)3.1机械装配图的设计概念 (25)3.2画正式装配图注意的事项 (25)3.3装配草图的设计和绘制 (28)3.4装配工作图的设计和总成设计 (31)3.5装配图的分析和说明 (32)4零件工作图的设计和绘制 (35)4.1零件工作图设计概述 (35)4.2 零件工作图设计概述 (36)4.3轴类零件工作图的设计和绘制 (37)4.4箱体(铸造)工作图的设计和绘制 (38)4.5 零件工作图设计概述 (40)4.6零件图的作用和分析 (41)5 零件的工艺规程 (47)5.1 工艺规程 (47)5.2机械加工工艺规程 (49)5.3 零件的机械加工工艺分析 (50)5.3.1机械加工工艺规程的制订原则 (50)5.3.2 制订机械加工工艺规程的内容和步骤 (50)5.4 轴类零件的加工工艺制订 (51)5.5 箱体类零件的加工工艺 (54)5.6拨动杆零件机械加工工艺规程 (57)5.7零件的加工工艺过程 (58)结论 (62)致谢 (63)参考文献 (64)1 水轮机的基础知识1.1 水轮机的简介:水轮机:水轮机是把水流的能量转换为旋转机械能的动力机械,它属于流体机械中的透平机械。
水轮机复习知识要点总结
水轮机复习知识要点总结 第一章1、 水轮机是一种将河流种蕴藏的水能转换成旋转机械能的原动机,水流流过水轮机时,通过主轴带动发电机或者发电机的转子将旋转的机械能转换成电能。
2、水轮机的工作水头:指水轮机进口和出口截面处单位重量的水流能量差,单位为m 。
一般用几个特征水头表示水轮机工作水头的范围,特征水头包括最大水头max H ,最小水头min H ,加权平均水头a H 和设计水头r H 。
3、特征水头:(1)最大水头max H ,是允许水轮机运行的最大净水头。
它对水轮机结构的强度设计有决定性影响。
(2)最小水头min H ,是保证水轮机安全、稳定运行的最小净水头。
(3)加权平均水头a H :是在一定期间内(视水库调节性能而定),所有可能出现的水轮机水头的加权平均值,是水轮机在其附近运行时间最长的净水头。
(4)设计水头r H :是水轮机发出额定出力时所需要的最小净水头。
4、反击式水轮机包括:混流式水轮机:水流从四周沿径向进入转轮,然后近似的以轴向流出转轮,应用水头范围较广,约为50~700m ,水头 较高。
(水流流经转轮:径向流入,轴向流出。
转轮标称直径1D :取下环与叶片进口边的交点对应的直径为转轮标称 直径。
)轴流式水轮机:水流在导叶和转轮之间由径向流动变为轴向流动,而在转轮区水流保持轴向流动,其应用水头约为3~80m ,适用水头较低,根据其转轮叶片在运行中能否转动,可以分为轴流定桨式和轴流转桨式两种。
(水流流经转轮:轴向流入,轴向流出。
转轮标称直径1D :取转轮叶片轴线与转轮室交点处的直径为转轮标称直径。
) 斜流式水轮机:斜流式水轮机具有较宽的高效率区,适用水头在轴流式与混流式水轮机之间,约为40~200m 。
(水流流经转轮:斜向流入,斜向流出。
转轮标称直径1D :取转轮叶片轴线与转轮室交点处轴截圆断面的直径为转轮标称直径。
) 贯流式水轮机:根据其发电装置形式不同,分为全贯流式和半贯流式两类,广泛用于平原河流上的电站和潮汐电站。
9_水轮机转轮设计
2、轮毂比(转轮体球面直径与转轮直径之比 )
3、叶栅稠密度(转轮叶栅翼型的弦长l与栅距t之比 值l /t)
l / t对s影响: / t ,l l ,叶片面积大,单位面 积负荷 ,s 。
4、转轮叶片数Z1、包角θ:
轴面投影
叶 片 圆 柱 截 面
L2
L1
L1
L2
水平投影
Ⅰ
Ⅰ
Ⅱ
Ⅲ
Ⅱ Ⅲ
Ⅰ Ⅱ
Ⅲ
第四节 转轮基本参数的确定
一、混流式水轮机
混流式水轮机,其转轮基本上由 上冠、下环、叶片、上下止漏装 置,泄水锥和减压装置组成,
1.减压装置;2、6—止漏环;3—上冠;4—叶片;5—泄水锥;7—下环
1、导叶相对高度b0/D1
5、转轮的叶片数
转轮叶片数的多少对水力性能和强度有显著的影响, 随比转速的不同叶片数在9~21的范围内。
混流式转轮的叶片数与比转速的关系
叶片数不同时的
6、泄水锥
泄水锥的作用是引导经叶片流道流出的水流迅速而顺畅 的向下渲泄,防止水流相互撞击,以减少水力损失,提高 水轮机效率。其外形呈倒锥体。它的结构型式有铸造和钢 板焊接两种。里面空心,下面开口,以便排除通过止漏环 的漏水及橡胶导轴承的润滑水(有的转轮将泄水孔开在泄 水锥的外侧),还作为主轴的中心补气和有的转轮的顶盖 补气通道之用。
8、根据 值及圆柱面直径、叶片数、包角可确定叶片栅 节距 并计算翼型实际长度 按强度对所选翼型骨线参数、 厚度分布规律对翼型加厚,并确定叶片转轴位置及叶片安放 角 把翼型安放到设计位置。 9、重复上述计算,对各圆柱面计算。绘制各圆 柱面上的翼型。由这些翼型组成叶片。
二、绘制叶片木模图
Ⅰ Ⅱ Ⅲ
Ⅰ Ⅱ Ⅲ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转轮体通常用ZG30 或ZG20MnSi 材料
轴流式水轮机转轮流道几何参数
、设计工况和最优工况的关系:
n11f (1.2~1.4)n11
Q11f (1.35~1.6)Q11
式中-n11f、Q为设计工况的单位转速、单位流量;
n11、Q为最优工况的单位转速、单位流量;
适当选取较大的单位转速、单位流量作设计工况参数)、叶栅稠密度L(如下图所示)—比转速查算术平均值t
栅距t:t 2 R→R-圆柱层面半径z1-转轮叶片数
Z1z 1
翼型弦长L:翼形后端点和翼形中线与前端交点的连线的长度叶栅稠密度L→是翼型弦长与栅距的比值:
t
a. 轮毂处的叶栅稠密度:(L
)(1.1~1.2)(
L
)
t B t av (此时计算栅距t中
的R为轮毂半径)
b. 轮缘处的叶栅稠密度:(L
)(0.85~0.95)(
L
)t A t av (此时计算栅距t中的R
为转轮半径)
_式中(L
)为叶栅稠密度的算术平均值
(在下图取值)t av
三、转轮叶片数- 算术平均值算叶片数
确定 Z 1 的原则是:不使叶片太长,且平面包角 不太于 90°;所谓平面包角-
指叶片位于水平位置时,叶片进出水边所对应的中心角 当叶片栅稠密度确定后,
Z1 按下式计算取整:
3 6 0L
Z 1 ( )
t
(av) 当 =
°~ °时, Z 1与 L 关系见下表: (av)
四、转轮体 转轮体有环形与圆柱形两种外观形式:
球形转轮体 (用于 ZZ 式水机) 时:转轮叶片内表面与转轮体之间的间隙较 小,不同转角时间隙可保持不变。
圆柱形转轮体时:一般按最大转角确定转轮叶片与转轮体之间的间隙
附:相同直径下,采用球形转轮体的水机效率高于圆柱形转轮体水机
五、泄水锥
泄水锥长度系数指:转轮叶片转动轴线到泄水锥底部的高度
其高度采用主:L1 0.65D1
同时,采用高度为0.4D1与0.6D1泄水锥的大型高水头ZZ 水机其水机效率一样
六、导叶相对高度b0 、轮毂比d h及转轮叶片数Z1与最大水头的关系轮毂比计算式建议采用以下公式:
0.0005n s+0.75 0.065
dh=-
或, d h=0.25+94.64式中-n s为水轮机比转速(m·hp)
n S
七、转轮室
ZL 式水轮机转轮室有圆柱形、球形和半球形三种现多采用半球形转轮室:转轮叶片转动轴线以上采用圆柱形,在其以下采用球形
ZL 水机宜采用喉部(指转轮室直径最小的部位)直径为(0.955~0.985)D1 的半球形转轮室较为适宜
混流式水轮机转轮流道几何参数
(40m~450m 水头选混流式最为有利)
一、设计工况和最优工况的关系:
120 m 水头段:n11 (0.93~1.08)n11 f Q11(0.69~0.91)Q11f
200m 水头段,有些转轮:n11 1.07n11f Q11 1.04Q11f
式中-n11f、Q为设计工况的单位转速、单位流量;
n11、Q为最优工况的单位转速、单位流量;
导叶相对高度b0
三、上冠上冠流线形状有直线形与曲线形两种;现多采用曲线形上冠,它可以增大单位
流量与水力效率,但曲率不能太大-会加大出口附近上冠表面的局部所蚀四、下环
下环形状有直线形与曲线形两种
(a)为低比转速水轮机(H >230m)下环,一般为曲线形;最优直径比为D 2 D1 0.6~0.76
(b)为中高比转速水轮机(H<115m)下环,一般为直线形,用下环锥角α表示扩散程度,一般α<13°,
不同比转速机组的锥角如下表:
(c)(115m<H< 230m)范围的转轮,下环可做成圆锥形或圆柱形,
D 2 D11.0
;但(115m<H<170m)推荐采用D2 D10.9~1.10
五、叶片数Z1与最大水头H m ax、比转速n s
及叶片包角θ的关系
六、叶片进出水边位置
转轮轴面投影如图:1与3连线成进水边,2与4连线成出水边
D1为标称直径;
D
j3 1.005D 1或 D 1 D j1 的大小与叶片进水角 和单位转速 n
' 有关;有 > 90°、 =90 j1 1 n 1
1 1 和 <90°三种情况(如下图) :
般按 =90 1 计算: D j1
60D
1 h g 轮廓线绘制:叶片进水边-由 叶片出水边-参照相近比速的转轮确定
n 1 1 点向下引垂线,然后用弧线将垂线与 3 点相连
寰7-9。