河流与湖泊淤泥的最佳资源化利用途径

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河流与湖泊淤泥的最佳资源化利用途径

河流、湖泊是地球表层系统各圈层相互作用的联结点,是陆地水圈的重要组成部分,与

生物圈、大气圈、岩石圈等关系密切。湖泊不仅具有调蓄洪涝、引水灌溉、饮用水源地、交通运输、发电、水产养殖和景观旅游的功能,还具有调节区域气候、记录区域环境变化、维

持区域生态系统平衡和繁衍生物多样性的特殊功能。自20世纪50年代以来,我国湖泊在自

然和人为活动双重胁迫的共同作用下,其功能发生了剧烈的变化。湖泊大面积的萎缩乃至消

失,贮水量相应骤减,湖泊水质不断恶化,湖泊生态系统严重退化,给区域经济和社会可持续发展带来严重威胁。主要表现在:

(1) 湖泊萎缩与干涸,水面积锐减

以处于新疆北部的艾比湖为例:在20世纪40年代,湖面面积为1200km2,贮水量

30.0 X08m3。到1950年,湖泊面积尚有1070km2,到了20世纪80年代面积急剧缩小到

2 3

500km ,贮水量也相应减少到7.0 >108m。

(2) 污染严重,湖泊富营养化加剧

2004年七大水系的412个水质监测断面中,I〜川类、"〜V类和劣V类水质的断面比例分别为:41.8%、30.3%和27.9%,七大水系总体水质与去年基本持平,珠江、长江水质较好,辽河、淮河、黄河、松花江水质较差,海河水质差。主要污染指标为氨氮、五日生化需氧量、高锰酸盐指数和石油类。七大水系的

121个省界断面中,1〜川类、"〜V类和劣

V类水质的断面比例分别为:36.3%、33.9%和29.8%。污染较重的为海河和淮河水系的省

界断面。

我国131个主要湖泊和39个大中型水库湖库的富营养化状况十分严重,131个主要湖泊中,已达富营养程度的湖泊有67个,占调查湖泊总数的51.3% ;已达富营养程度的水库有

12座,占调查水库总数的30% (见表1)。

表1中国主要湖泊和水库营养状况分类结果统计

指标贫营养中营养富营养

湖泊数量(个)95567

占调查湖泊数(%) 6.9041.9051.20

湖泊面积(km1 2)5477.8016525.7011029.90占湖泊的总面积(%)16.6050.033.4水库数量(个)101712

占调查水库数(%)25.6043.6030.80

水库容积(X 103m4 5)37.36546.1073.94

根据全国水环境监测网2000年的水质监测资料和国家《地面水环境质量标准》

(GB3838-88),全国九大流域片的700多条河流的11.4万km河长中,1类水占4.9%,n类水占24.0%,川类水占29.8%,"类水占16.1%, V类水占8.1%,劣V类水占17.1%。枯、丰水期水质变化不大。

3 湖泊水生态系统退化,生物多样性受损

在20世纪60年代以前,我国长江中下游地区大多数湖泊的湖湾区和沿岸的浅水湖区

都生长有数量较多的沉水植物、浮水植物和挺水植物,形成结构较为稳定的水生植被群落。

湖体内其他水生动物、底栖生物的种类繁多,生物量亦大,生物资源十分丰富。湖泊水体中

溶解氧十分丰富,水色明亮,水质清澈,呈现出良性循环的相对稳定的生态体系。进入80年代以后,由于湖区工业发展和城镇人口数量增加,大量耗氧物质、营养物质和有毒物质排入

湖体,使水体富营养化,湖水的自净能力下降,导致湖体内溶解氧不断下降,透明度降低,水色发暗,原有的水生植被群落因缺氧和得不到光照而成片死亡,水体中其他水生动物、底

栖生物的种类也随之减少,生物量降低,取而代之的是浮游植物(藻类),最终形成以藻类

4 湖泊围网养殖过度,生态系统受损

随着湖泊围网养殖泛滥,面积不断扩大,许多湖泊的围网养殖已远远超出湖泊本身所能容纳的能力,湖泊水生态系统被破坏,人工大量投放饵料又加速了湖泊的富营养化过程。

5 流域水土流失加剧,湖泊淤塞严重

我国东部平原和云贵高原等地区的淡水湖泊普遍存在着泥沙淤积的问题,其中以长江中游地区湖泊的泥沙淤积问题较为突出。如洞庭湖据多年平均入出湖沙量平衡资料计算,年入湖沙量达1.2895 XI08m3,年出湖沙量仅为0.3374 K08m3,湖盆年淤积量0.9521 X108m3,年淤积速率达3.7cm/a。目前洞庭湖湖盆因泥沙淤积已高出江汉平原地面 5.0〜7.0m。

占设置库容(%) 5.7083.1011.20

为主体的富营养型的生态体系。

河流、湖泊底泥是湖泊生态系统的重要组成部分,是河流、湖泊营养物质循环的中心环节,也是水土界面物质物理的化学的生物的积极交替带。各种来源的营养物质,经一系列河流、湖泊物理、化学及生化作用沉积于湖底,形成疏松、富含有机质和营养盐的灰黑色淤泥。

在河流、湖泊各种水动力学生态动力学作用下或湖泊环境变化时,特别是目前,随着着社会经济的发展,大量无处理污水的排放使得湖泊接纳了大量的工业生活和农业废水。沉积物中营养盐溶出或再悬浮形成湖泊富营养化的内负荷。湖泊底泥既是湖体水土界面各类物质的特殊缓冲载体,也是各类营养物质的聚集库。另一方面,随着水土流失的日益严重,大量泥沙冲入河流、湖泊中,造成底泥量迅速增加,在影响航运的同时,也加剧了河流、湖泊水体的污染。同时底泥对环境作用具有累积性和滞后性。这使得河流、湖泊淤泥成为引起以上问题的主要因素之一,疏浚、处置河流、湖泊淤泥迫在眉睫。

目前底泥的处理方法大致有四种:卫生填埋、焚烧、投海、综合利用。大部分的疏浚污泥疏挖出来时有令人不快的臭味。工业上的疏浚污泥的有毒有害物的成分比普通的疏浚污泥高出1〜2个数量级,危害性很大,必须将其固化处理或用封泥层将其表面封闭。一般的途径是使用水泥、石灰、石膏等胶泥材料与疏浚污泥混合、固化、阻止毒害物渗透,然后卫生填埋。卫生填埋所需建筑造价及维护费用较高,而且很难找到适合的地点。

焚烧的设备昂贵,操作条件苛刻,适用范围窄,而且容易造成大气污染。往大海倾弃是利用海洋的巨大稀释和容纳能力来处理疏浚污泥,操作简单、成本较低,只适宜于疏浚场所离海岸较近地区。但是,随着人们的生态环境意识的加强,沿海国家越来越关注污泥投海后对海洋生态环境可能的影响。伦敦倾废公约及我国有关环境评价标准明确规定,倾倒废物必须进行各项检验,以评价其倾倒废物对海域生态环境的影响。如在我国长江口的调查[13]表明:倾倒区的水质虽未有重金属污染现象,但比倾倒前有较大升高,升高程度与倾倒区的水动力条件关系密切。营养盐是水域水质的主要污染物,各区水质均达到富营养或超富营养状态。倾倒区沉积物的有机质和重金属浓度大多超标,其超标程度与沉积物粒度成反比因此,这三种做法都不能符合现在的实际情况。目前,我们处理底泥的最好的办法莫过于将其处理后加以利用。而污泥作为资源综合利用是一种广为人们重视和研究的方法。它可以作为路基的填料加以利用;也可作为工艺品的原材料,将小部分底泥处理后渗入其他原料,加工成砖瓦、陶瓷工艺品等,变废为宝;亦可在淤泥堆放处植树造林,一方面长树,一方面让污染物质自然分解,既有经济效益,又能可持续利用,一举两得。

⑴土地化

疏浚污泥在堆场风干后除含高残留性有害物(如重金属、难分解的有机物)外,一般可直接作农业、林

相关文档
最新文档