4.几何光学讲解
几何光学物理光学知识点
几何光学物理光学知识点光学是研究光的传播、反射、折射、干涉和衍射现象的学科。
几何光学是光学的一个分支,主要研究光的传播直线性质和光的反射、折射的基本规律。
以下是几何光学的一些重要的知识点。
1.光的传播直线性质:光的传播遵循直线传播定律,即光在一种介质中以直线传播,称为光的直线传播性质。
2.光的反射定律:光在光滑表面上发生反射时,入射角等于反射角。
3. 光的折射定律:光从一种介质进入另一种介质时,入射角、折射角和两种介质的折射率之间满足折射定律,即n1*sin(θ1)=n2*sin(θ2),其中n1和n2分别为两种介质的折射率,θ1和θ2分别为入射角和折射角。
4.球面镜和薄透镜的成像公式:对于球面镜,成像公式为1/f=1/v+1/u,其中f为焦距,v为像距,u为物距。
对于薄透镜,成像公式为1/f=1/v-1/u。
5.凸凹透镜成像规律:凸透镜成像规律是物体距离凸透镜距离为f的位置,像无论在哪里都在凸透镜的反面,正立,放大,属于放大系统。
凹透镜成像规律是物体距离凹透镜越远,像越近,倒立,缩小,属于缩小系统。
6.光的干涉现象:光的干涉是指两束或多束光波叠加形成明暗相间的干涉条纹。
干涉分为相干光的干涉和非相干光的干涉,其中相干光干涉又分为同一光源光的干涉和不同光源光的干涉。
7.杨氏双缝干涉实验:是杨振宁做的关于光的干涉实验,实验证明了光的波动性。
8.杨氏实验的解释:杨氏双缝干涉实验的解释是光波从两个缝中通过后分别传播到屏幕上的不同位置,根据光的相位差和干涉条件,形成干涉条纹。
9.光的衍射现象:光的衍射是指光波通过一个小孔或物体边缘时,发生弯曲和扩散的现象。
根据衍射的级数,分为一级衍射、二级衍射、多级衍射。
10.衍射光栅:是利用衍射现象进行光学分析和测量的重要工具。
光栅是一种周期性结构,通过多级衍射产生许多衍射光束,形成明暗相间的衍射条纹。
11.真实像和虚像:根据物体和像的位置关系,成像可以分为真实像和虚像。
光学几何光学知识点总结
光学几何光学知识点总结光学几何光学是研究光传播的基本规律和现象的一门学科,它通过几何光学原理来描述光的传播路径和成像规律。
在这篇文章中,我们将总结光学几何光学的核心知识点,帮助读者加深对光学几何光学的理解。
1. 光传播的直线特性光学几何光学的基本假设之一是光在均匀介质中直线传播。
根据光的直线传播特性,我们可以得出光传播的两大基本规律:直线传播定律和逆向规律。
直线传播定律指出,光在均匀介质中传播的路径是直线。
这意味着当光通过一块透明介质时,光线的传播路径是直线,除非发生折射或反射。
逆向规律指出,光线的传播方向与光线的路径相反。
这意味着当光线反射或折射时,其传播方向会发生变化,但光线总是沿着路径的反方向传播。
2. 折射定律和反射定律折射定律和反射定律是光学几何光学中最重要的定律之一。
折射定律描述了光在两种不同介质之间传播时的路径变化规律。
它指出,光线在通过两种介质的交界面时,入射角和折射角之间的正弦比等于两种介质的折射率之比。
反射定律描述了光线从一种介质到同种介质的传播过程中的路径变化规律。
它指出,入射角和反射角之间的角度相等。
这两个定律为解释光在透明介质之间传播和反射的现象提供了重要的理论基础。
3. 成像规律成像规律是光学几何光学的核心内容之一,它用来描述光线经过光学系统(如透镜和反射面)后的成像规律。
对于薄透镜而言,成像规律可以用薄透镜公式来描述。
薄透镜公式指出,当光线通过一个薄透镜时,入射光线与透镜光轴的乘积等于出射光线与透镜光轴的乘积。
对于反射面而言,成像规律可以用镜面成像公式来描述。
镜面成像公式指出,当光线经过反射面时,入射角和出射角之间的角度关系与光的传播路径相对应。
这些成像规律帮助我们理解光在透镜和反射面上的成像过程,从而应用于光学仪器和光学系统的设计和优化。
4. 光的光程差和相干性光程差是光学几何光学中的重要概念之一。
它表示光线经过不同路径传播所经历的光程的差异。
光程差在干涉和衍射现象中起着关键作用。
几何光学第四章
M
N A´
——轴外光束决定 孔径光阑的位置
M´ N´
二、渐晕光阑
(Vignetting stop)
1、渐晕现象:像平面的边缘比中间暗(离轴物点)。
(渐晕光阑)
2、渐晕系数:
K
D D
一般允许达到0.5
三、照相系统的光阑总结
孔径光阑在物镜中的位置 1、根据轴外光束的像质选择孔径光阑位置; 2、轴外点成像光束宽度取决于孔径光阑、渐晕光阑均有关; 3、感光底片边框,即视场光阑; 4、孔径光阑一般为圆形,视场光阑为圆形或者矩形。
B' A'
O'2
ω
O1
O2
P'
B
入 射 窗 A O'2 O1
出 射 光 瞳
孔 径 光 阑
入 射 光 瞳
B'
P'' ω' P
O2
P'
ω
B
A'
入射窗边缘对入瞳中心的张角为物方视场角 2 ,同时也决定 了视场边缘点。视场光阑经后面光学零件所成的像即为出射窗, 出射窗对出瞳中心的张角即为像方视场角 。 ' 2
c.在光学设计时,可以合理设置孔径光阑位置用以校正像差.
d. 各光学元件的口径匹配。
4、主光线(Chief ray)
★定义:离轴物点发出的、通过孔径光阑中心的光线。 出瞳
Q 1
L1
孔径光阑 L 2
Q1
入瞳
Q 1
B
A
Q
Q
Q2
Q
A
B
C
Q 2
Q2
★ 主光线的入射、出射部分各自通过入瞳及出瞳的中心。
几何光学基础教材讲解
几何光学基础可见光,指那引起视觉的电磁波,这部分电磁波的波长范围约770-390纳米之间。
光具有波粒二象性,它有时表现为波动,有时也表现为粒子(光子)的线形运动。
几何光学就是以光的直线传播性质及光的反射和折射规律为基础,用数学方法研究光传播问题的学科。
几何光学研究的对象为光学仪器,研究一般光学仪器(透镜,凌镜,显微镜,望远镜,照相机)成像与消灭像差的问题,研究特种光学仪器(光谱仪,测距仪)的设计原理。
本章仅就几何光学中光线及其传播规律问题做一介绍。
1.光线及光线的种类在均匀介质中呈直线传播的光,就是光线。
就光的传播而言在均匀介质中是呈直线传播的;从其本身而言,均匀均匀介质中的光为一直线。
自发光点发出许多光线,我们任意取围绕一个线传播的一束光线,这一束光线就叫光束。
1.散开光线。
又称作发散光线任何发光点发出光线都是发散的,这些光线总是表现在一定的空间,总是在一定的限度内表现为空间的物理现象,从发光点射向某一方向的光总是以发光点为顶点的锥体向外传播,沿锥体向外传播的光束称为散发光束,常称为发散光线。
人们为了便于理解,又把这立体图形简化为平面图形,但在理解知识的时后,我们应该时时意设到,光是在空间意义上的光。
2.平行光线由任何一点发出的光束,经过光学仪器后,光束中的光线的相对方位改变为无相平行,成为平行光束,即平行光线。
平行光线产生见图1。
图1通常所说的平行光线是就另外的意义而言,任何光源所发出的光线,如果光距越大,就越趋于平行,当光距无限大时,即可视为平行,这种光线就称为平行光线。
在眼屈光学中,对光线的性质又作了人为的规定,并约定:5米及5米以外射来的光线,虽有发散性质,但同平行光线对眼生理光学的影响,差异实在微乎其微,故约定二者均为平行光线。
那么,5米以内光源发出的光线即为发散光线。
三.集合光线,又称会聚光线光源发出的平行光线,由一凹面镜发射(图2)或一凸透镜屈析(图3)而产生的光线,就称为集合光线。
几何光学完整PPT课件
4. 物和像都是相对某一系统而言的,前一系统的像则是后一系统 的物。物空间和像空间不仅一一对应,而且根据光的可逆性,若 将物点移到像点位置,使光沿反方向入射光学系统,则像在原来 物点上。这样一对相应的点称为“共轭点”。
1. 共轴球面系统的结构参量: 各球面半径:r1 、 r2 …… rk-1 、 rk 相邻球面顶点间隔:d1 、 d2 …… dk-1 各球面间介质折射率:n1 、 n2 …… nk-1 、 nk n 、 k+1
精选
31
2. 转面公式
原则:前一折射面的象为后一面的物 ,前一面的象空间为后一面的物空间
4. C-球心 r-球面曲率半径 I 、I′-入、折射角
5. A 、A′-物点、象点 L、L′-物距、象距
精选
20
2. 符号法则(便于统一计算) 规定光线从左向右传播
a)沿轴线段 L、L′、r 以O为原点, 与光线传播方向相同,为“+” 与光线传播方向相反,为“-”
b)垂轴线段 h 在光轴之上,为“+” 在光轴之下,为“-”
例:某物体通过一透镜成像后在透镜内部,透镜材 料为玻璃,透镜两侧均为空气。问该像所处的空间 介质是玻璃还是空气?
4 5
6
3 2 1
位标器动平衡调试系统光源
第二章 球面与共轴球面系统
§ 2-1 光线光路计算与共轴光学系统
共轴球面系统— 光学系统一般由球面和平面组成, 各球面球心在一条直线(光轴)上。
精选
28
2. 轴向放大率:光轴上一对共轭点沿轴移动量之间的比值
几何光学知识点
几何光学知识点光学对未来社会的发展有着十分重要的作用,几何光学是光学学科中以光线为基础,研究光的传播和成像规律的一个重要的实用性分支学科。
在几何光学中,把组成物体的物点看作是几何点,把它所发出的光束看作是无数几何光线的集合,光线的方向代表光能的传播方向。
今天为大家整理了一些关于几何光学的基础,值得收藏。
基本概念:1. 光源与发光点:从物理学的观点看,任何发光的物体都可以叫作光源。
在几何光学中,把凡是发出光线的物体,不论它本身发光体或是因为被照明而漫反射光的物体,都称为光源。
如果某光源可看成几何学上的点,它只占有空间位置而无体积和线度,则称之为发光点或点光源。
2.光线与光束:光线是表示光能传播方向的几何线。
有一定关系的一些光线的集合称为光束。
3.光波波面:光也是一种电磁波。
某一时刻其振动位相相同的点所构成的面称光波波面。
在各向同性介质中,光沿着波面法线方向传播,所以可以认为光波波面的法线就是几何光学中的光线。
与波面对应的法线束就是光束。
基本定律:几何光学以下面几个基本定律为基础:1.光的直线传播定律;2.光的独立传播定律;3.光的反射定律;4.光的折射定律;5.光的全反射现象:⑴ 光线从光密介质射向光疏介质;⑵ 入射角大于临界角。
⑶ 临界角Im:6.光传播的可逆定理:当光线沿着和原来相反方向传播时,其路径不变。
7.费马原理:在A、B两点间光线传播的实际路径,与任何其他可能路径相比,其光程为极值。
实际光路所对应的光程,或者是所有光程可能值中的极小值,或者是所有光程可能值中的极大值,或者是某一稳定值。
8.马吕斯定律:垂直于波面的光线束经过任意多次折射和反射后,出射波面仍和出射光束垂直;且入射波面和出射波面上对应点之间的光程为定值。
光学中的几何光学解析
光学中的几何光学解析光学是物理学的重要分支之一,它研究光的产生、传播和与物质的相互作用等现象。
而几何光学作为光学的基础,其主要研究光在介质中的传播规律以及光的成像原理。
本文将对光学中的几何光学进行解析,并探讨其应用领域。
一、光线与光的传播在几何光学中,我们将光看作一束直线上的光线。
光线沿直线传播,具有直线传播的特性。
当光线在两个介质的交界面上发生折射和反射时,我们利用折射定律和反射定律来描述光线的传播方向和路径。
1. 折射定律当光线从一个介质传播到另一个介质时,会出现折射现象。
折射定律表明了入射光线、折射光线和法线之间的关系。
根据斯涅尔定律,光线在两个介质的交界面上的入射角和折射角满足如下关系:\[ n_1\sin\theta_1 = n_2\sin\theta_2 \]其中,\( n_1 \)和\( n_2 \)分别代表两个介质的折射率,\( \theta_1 \)和\( \theta_2 \)分别代表入射角和折射角。
2. 反射定律当光线从一个介质射到另一个介质上时,会发生反射现象。
反射定律表明了入射光线、反射光线和法线之间的关系。
根据反射定律,入射角和反射角相等,即入射角等于反射角。
二、成像原理与光学器件几何光学研究了光线穿过透镜等光学器件时的成像原理。
光学器件的设计依赖于成像原理,通过调整光学器件的参数,可以实现不同的成像效果。
1. 透镜成像透镜是一种常见的光学器件,它根据折射定律使光线发生折射,从而形成图像。
根据透镜形状的不同,透镜可以分为凸透镜和凹透镜。
通过调整透镜与物体和图像的距离,可以改变成像的大小和位置。
2. 球面反射镜成像球面反射镜是另一种常见的光学器件,它通过反射光线形成图像。
球面反射镜可以分为凸面反射镜和凹面反射镜。
凸面反射镜能够使光线发散,形成实像;而凹面反射镜能够使光线汇聚,形成虚像。
三、几何光学的应用几何光学在物体成像、光学仪器设计以及光学透镜组等领域具有重要应用价值。
几何光学
当|β|>1时,系统成一放大的像。 当|β|<1时,系统成一缩小的像。
角放大率为一对共轭光线与主光轴夹角的比值 角放大率表示折射面改变同心光束张角 大小的能力。在近轴条件下,
h P h P
u P u P
角放大率与垂轴放大率的关系:
u P u P
(7)折射率:沿光轴方向传播的光线,对 应的折射率都为正,反之为负。
二、单折射球面成像
M n d h r
n´
Q
-P
O
D
P´
C
Q´
根据费马原理光程 LQMQ´=光程 LQOQ´, 即光程取稳定值。 LQMQ n QM n MQ LQOQ n QO n OQ n( P ) nP
M
n
d Q -P O h r
n´
D P´
C
Q´
由△MDC可得:
h r (r d ) r (r d 2rd ) 2rd d 由△QMD可得:
2 2 2 2 2 2
2
QM ( P d ) 2 h 2 P 2 d 2 2 Pd h 2 P 2 d 2 2 Pd 2rd d 2 P 2 2d ( r P )
光沿反方向传播,必定沿原光路返回。 二、三条定律成立的条件 (1)必须是均匀介质,即同一介质的折射 率处处相等,折射率不是位置的函数。 (2)必须是各向同性介质,即光在介质中 传播时各个方向的折射率相等,折射率不 是方向的函数。
(3)光强不能太强,否则巨大的光能量会 使线性叠加原理不再成立而出现非线性情况。 (4)光学元件的线度应比光的波长大得多, 否则不能把光束简化为光线。 三、光学成像系统的物与像 物:一个本身发光或受到光照的物体。
几何光学PPT【2024版】
i 介质1
1
分界面
介质2
i2
像 物
13
折射光在入射面内
入射面
n
i1 i1
界面
i2
n1 sin i1 n2 sin i2 Snell定律
Descartes 定律 14
光的色散
• 一束平行的白光(复色光)从一种媒质 (例如真空或空气)射入另一种媒质时, 只要入射角不等于0,不同颜色的光在空间 散开来。
这种情况就是全反射,也称全内反射
30
全反射临界角
• 光线从光密介质射向光疏介质,折射角比
入射角大
•
入射角满足
i1
arcsin
n2 n1
就会出现全反射
• 出现全反射的最小入射角
称作全反射临界角
n1
iC
iC
arcsin
n2 n1
n2
31
4.全反射棱镜
屋脊形五棱镜
67.5
67.5
倒转棱镜(阿米西棱镜) 32
• 根据这一事实,也可以得出这样的结论, 既然在媒质中,光总是沿直线、折线、或 曲线传播,那么就可以用一条几何上的线 来描述和研究光的传播,这就是“光线”。
8
几何光学的局限
• 几何光学是关于光的唯象理论。 • 不涉及光的物理本质。 • 对于光线,是无法从物理上定义其速度的。 • 在几何光学领域,也无法定义诸如波长、
51
n n n n s s r
平行光入射 s n
n
M
n n
r
Q
O
C
Q
r
n
s
s
s nr f n
n n
O
Q
几何光学高三知识点梳理
几何光学高三知识点梳理几何光学是光学的基础分支,是描述光的传播和反射折射规律的一门学科。
在高中的物理课程中,几何光学是必修内容之一。
本文将对高三几何光学的知识点进行梳理和总结,以帮助同学们更好地学习和理解。
一、光的传播路径与反射1. 光的传播直线性原理:光在均匀介质中沿直线传播,光线可以表示光的传播路径。
光线具有方向,可以用箭头表示。
2. 光的反射定律:入射角等于反射角。
光线在与界面垂直的方向上发生反射。
3. 光的反射规律:光线在反射过程中,入射角、反射角和法线三者处在同一平面内。
二、光的折射1. 光的折射定律:折射定律也叫斯涅尔定律,它是描述光线通过界面从一种介质到另一种介质时的反射规律。
光线在通过界面时折射角和入射角之间的关系式是sin(i)/sin(r)=n。
2. 光的折射规律:光线在折射过程中,入射角、折射角和法线三者处在同一平面内。
3. 折射率:折射率是描述光线从一个介质射入另一个介质中时,光在两个介质中传播速度比值的一种物理量。
其计算公式为n =c/v,其中c为真空中的光速,v为光在介质中的传播速度。
折射率是一个与介质的物理性质有关的常数。
4. Snell-Descartes定律:光从一个相对密度较大的介质射入到一个相对密度较小的介质中时,光线经过界面的折射方向偏离法线,折射角小于入射角。
光从一个相对密度较小的介质射入到一个相对密度较大的介质中时,光线经过界面的折射方向趋近于法线,折射角大于入射角。
三、透镜成像1. 透镜的种类:透镜分为凸透镜和凹透镜。
凸透镜是由两个球面交替组成,呈现凸形状;凹透镜也是由两个球面交替组成,呈现凹形状。
2. 凸透镜成像规律:凸透镜成像时,遵循以下规律:- 物体离凸透镜近,像离凸透镜远;- 物体离凸透镜远,像离凸透镜近;- 物体在焦距处,像无限远;- 物体无限远,像在焦点处。
3. 凹透镜成像规律:凹透镜成像时,遵循以下规律:- 物体离凹透镜近,像离凹透镜近;- 物体离凹透镜远,像离凹透镜远;- 物体无限远,像在焦点处。
几何光学(课堂PPT)
l
r1 ( r2)
l
近轴条件下,略去 项, h 2
l s l s
n 1hn 1hnhn hn 2hn 2h0 r1 s r1 r2 r2 s
.
34
n2 n1 nn1n2n
s s
r1
r2
薄透镜的物像公式
物方焦距 像方焦距
fsl im sn1 n r1n1n2r 2n
fls i m sn2 n r1n1n2r 2n
.
5
4、物方空间和像方空间:一个成像的光 学系统将空间分成两部分,入射的同心 光束所在的空间为物方空间,出射的同 心光束所在的空间为像方空间。
5、折射率(n)
6、光程
.
6
2.2几何光学的基本定律、定理
1、光在均匀介质中的直线传播定律。 2、光通过两种介质分界面时的反射定律
和折射定律。 3、光的独立传播定律和光路可逆原理。 4、费马(Fermat)原理:两点间光的实际
基础,研究光在透明介质中传播和
成像问题的光学----几何光学
.
1
一、几何光学历史 二、几何光学基本概念、定理、定律 三、光在平面上的反射和折射、全反射 四、光在球面上的反射和折射 五、薄透镜成像
.
2
一、几何光学历史 墨子及其弟子在《墨经》中,记载着光的直线传播(影的形成和
针孔成像等)和光在镜面(凹面和凸面)上的反射等现象,并提 出了一系列经验规律,把物和像的位置及其大小与所用镜面曲率
1、墨克欧阿人联莱子几眼勒系蒙里构·起(哈得得造来增和前所及。著托著视这4有勒《觉6是《密8光作关光研-学用于前学究》做光全了3研了学书光7究详知6》的了尽识),折平的的研射面叙最究现镜述早了象成。记球,像反录面最问对。镜先题欧和测,几抛定指里物了出得面光了和镜通反托的过射勒性两角密质种等关,介于于并质眼对分 2、欧界入睛光面几射是发时角以出里的的球光入得反面线射射形才(角定式能和前律从看折。到光3射源物3角0发体。-出的前;学2反说7射,5光认)线为与光入线射来光自线于同看面到且的入物射体面,垂并直且 3、克于莱界面蒙。得(50-?)和托勒密(90-168) 4、阿沈入括的勒撰研·写究哈的,增《并梦说(溪明9笔了6谈月5》 相-1对 的0光 变3的 化8直规)线 律传 及播 月及 食球 的面成镜 因成 。像做了比较深 5、沈培根括提(出了1用0透31镜-矫1正09视5力)和采用透镜组构成望远镜的想法,并描述了 6、培透镜根焦(点的法位国置。1214-1294)
几何光学知识点总结
几何光学知识点总结几何光学是光学中的一个重要分支,它主要研究光线和物体之间的关系,用于描述光在空间传播和反射的规律。
在几何光学中,把光看成是直线和点的集合,而不考虑它的波动性质。
几何光学用于解释和模拟许多日常生活和科学技术中的光学现象,例如透镜成像、光学仪器的工作原理等。
在这篇文章中,我们将介绍几何光学的基本概念和常见的知识点,包括光的传播、反射、折射、成像等内容。
1. 光的传播在几何光学中,光线被看成是一条直线,它沿着直线路径向前传播。
根据光线的传播特点,可以得出以下几个基本原理:(1)直线传播原理:光线在各种介质中传播时,沿直线路径传播。
(2)相互独立原理:不同光线之间相互独立,它们不会相互干扰或影响。
(3)射线矢量守恒原理:在介质的交界面上,入射角、反射角和折射角之间存在一定的关系,如入射角等于反射角、入射角与折射角满足Snell定律等。
2. 光的反射光的反射是指光线遇到光滑表面时,从表面下射出的现象。
根据反射定律,反射光线的入射角等于反射角。
反射可以分为平面镜反射和球面镜反射两种情况。
3. 光的折射光的折射是指光线从一种介质传播到另一种介质时改变传播方向的现象。
根据斯涅尔定律,光线从一种介质进入另一种介质时,入射角和折射角之间满足一定的关系。
折射过程中,光线的传播速度和传播方向都会发生变化。
4. 成像原理在几何光学中,成像是指物体通过透镜、凸镜等光学器件后,产生的像。
根据几何光学原理,成像可以分为实像和虚像两种情况,实像是通过透镜、凸镜等成像器件产生的,可以在屏幕上观察到;虚像则不能在屏幕上观察到,只存在于透镜、凸镜等器件的一侧。
成像的位置、大小和性质与物体、成像器件之间的关系有着一定的规律和定律,例如放大率、焦距等参数。
5. 透镜和成像透镜是几何光学中常用的器件,它通过折射作用可以实现光线的聚焦和散焦。
透镜的主要种类有凸透镜和凹透镜,它们在成像时有着不同的特点。
在成像过程中,透镜的成像规律可以通过透镜公式进行描述,包括变焦距公式、薄透镜方程等。
几何光学知识点总结归纳
几何光学知识点总结归纳在几何光学中,有很多重要的知识点和概念,本文将对几何光学的一些重要知识点进行总结和归纳。
1. 光线光线是指在光学中用来表示光传播方向和轨迹的一条直线,它是几何光学的基本概念之一。
在几何光学中,一般假设光线是直线,不考虑其波动性质。
光线的传播方向和速度与光的传播方向和速度一致,但不同于光的波动特性。
光线可以用来描述光的传播、折射和反射规律,是进行光学系统设计和分析的重要工具。
2. 折射定律折射定律是描述光线在两种介质界面上折射规律的定律。
在两种介质的界面上,入射角和折射角之间有着确定的关系,这一关系就是折射定律。
折射定律可以用来计算光线在折射介质中的传播方向和角度,同时也可以用来设计和分析光学系统中的折射元件。
折射定律的数学表达式为n1*sin(θ1) = n2*sin(θ2),其中n1和n2分别是两种介质的折射率,θ1和θ2分别是入射角和折射角。
3. 反射定律反射定律是描述光线在介质表面上反射规律的定律。
根据反射定律,入射角和反射角相等,且入射光线、反射光线和法线在同一平面内。
反射定律是光学中非常重要的定律,它可以用来计算光线在反射介质中的反射方向和角度,同时也可以用来设计和分析光学系统中的反射元件。
反射定律的数学表达式为θ1=θ2,其中θ1和θ2分别是入射角和反射角。
4. 球面折射球面折射是几何光学中的一个重要现象,它描述了光线通过球面介质界面的折射规律。
当光线通过球面介质界面时,由于介质的曲率,光线会发生折射,并且折射后的光线会经过焦点。
球面折射主要应用在光学系统的球面透镜设计和分析中,通过球面折射定律可以计算光线通过球面透镜后的折射方向和焦点位置,从而进行成像和焦距的计算。
5. 薄透镜成像薄透镜成像是几何光学中的一个重要知识点,它描述了光线通过薄透镜后的成像规律。
薄透镜成像主要应用在光学系统的透镜设计和分析中,通过薄透镜成像规律可以计算光线通过透镜后的成像位置和放大率,从而进行成像质量的评估和优化。
几何光学知识点总结高中
几何光学知识点总结高中光学是物理学的一个重要分支领域,主要研究光在空气和透明物质中传播的规律,以及光的成像、色散、干涉等现象。
几何光学是光学研究中的一个重要分支,主要研究光在透明介质中传播时的几何规律,包括反射、折射、成像等现象。
本文将从光的波动性质、光的反射和折射、成像和光学仪器等方面对几何光学知识点进行总结。
一、光的波动性质1. 光的波动模型光既具有波动性质也具有粒子性质,可以通过光的干涉、衍射、偏振等现象来说明光的波动性质。
波动模型主要是用来解释光的干涉和衍射现象,比如双缝干涉实验和单缝衍射实验。
2. 光的波长和频率光的波长决定了光的颜色,波长越短的光颜色越偏蓝,波长越长的光颜色越偏红。
而光的频率与波长之间有确定的关系,频率越高的光波长越短,频率越低的光波长越长。
3. 光的速度和光的折射率光在不同介质中传播时,速度和折射率都会发生变化。
光在真空中的速度是最快的,而在介质中的速度要小于真空中的速度。
折射率是介质对光的折射能力的度量,不同介质的折射率是不同的。
二、光的反射和折射1. 光的反射定律光线和法线的夹角等于入射角和反射角的夹角,这就是光的反射定律。
光的反射定律适用于所有的反射现象,无论是平面反射还是曲面反射。
2. 光的折射定律光线和法线的夹角的正弦比等于入射介质的折射率和折射介质的折射率的比值,这就是光的折射定律。
光的折射定律适用于所有的折射现象,无论是平面折射还是曲面折射。
3. 光的全反射当光线从折射率较高的介质朝折射率较低的介质射入时,入射角大于临界角时,光线将发生全反射。
全反射现象在光纤通信和水面反射中都有重要的应用。
三、成像和光学仪器1. 透镜成像透镜是一种常用的光学元件,主要可以将平行光线汇聚成焦点或将发散光线聚成焦点。
透镜成像可以分为凸透镜和凹透镜两种情况,分别对应着实物的虚像和实像。
2. 显微镜成像显微镜是一种用来观察微小物体的光学仪器,主要由物镜和目镜组成。
显微镜成像原理和透镜成像原理类似,但是显微镜可以放大物体的微小细节,能够观察到肉眼无法看到的微观结构。
版高中物理几何光学知识点
版高中物理几何光学知识点光学是物理学的一个分支,主要研究光的传播规律和光对物质的相互作用。
而几何光学则是光学的一个重要的分支,它主要研究光线在直线传播时的规律和在与平面镜、球面镜等光学器件中的传播规律。
以下是几何光学的一些重要的知识点。
1.光线与物体的相互作用当光照射到物体上时,会发生反射、折射、透射等现象。
其中,发生反射的光线遵循反射定律,即入射角等于反射角;发生折射的光线遵循折射定律,即入射角的正弦与折射角的正弦比等于两种介质的折射率之比。
2.平面镜成像平面镜是一种反射器件,它将光线反射得非常规则。
当光线射向平面镜时,会发生反射并形成像。
根据镜面法线的位置不同,平面镜的成像有实像和虚像两种情况。
实像是指光线会交叉而形成的像,而虚像则是指光线不会交叉而形成的像。
无论是实像还是虚像,它们的位置都位于镜面法线上。
3.球面镜的成像球面镜是一种由一个曲面构成的光学器件,可分为凹面镜和凸面镜两种。
球面镜也会将光线反射或折射,并形成像。
不同的是,球面镜的像可以是实像也可以是虚像,且位置不一定位于镜面法线上。
凹面镜会使得光线发散,而凸面镜会使得光线汇聚。
4.光的色散和色度光的色散是指光线经过一种介质时由于不同波长的光的折射率不同而发生的偏折现象。
色度则是描述光的颜色的一个参数。
当光通过光栅、棱镜等介质时,会发生不同波长的光的折射角度不同造成的色散现象。
透明介质对不同颜色的光呈现出不同的折射率,从而使得不同颜色的光出现不同的偏折。
5.光的干涉和衍射光的干涉和衍射是光的波动性质的表现。
干涉是指两束或多束光线相遇并发生叠加的现象,其干涉图样包括明暗交替的干涉条纹。
衍射是指光波通过物体缝隙或物体边缘时发生偏折的现象,形成衍射图样。
干涉和衍射的结果可以用来验证光的波动性以及进行精密测量。
以上就是几何光学的主要知识点。
通过学习这些知识,我们可以更好地理解光的传播规律,掌握光学器件的工作原理,从而应用于生活和科学研究中。
几何光学
3.符号法则
1.物距:物与入射光线在界面的同侧,S为正,实 物;反之,S为负,虚物。 2.像距:像与出射光线在界面的同侧,S′为正, 实像;反之,S′为负,虚像。 3.曲率半径R、焦距 f :曲率中心C与出射光线在 界面的同侧,R、f 为正(如:凹球面镜),反之为 负(如:凸球面镜)。 4.垂直于光轴的横向线段:光轴上方为正,光轴 下方为负。
则不能把光束简化为光线。
4
5、费马原理
光沿着光程为极值(可以是极大值、 极小值,也可以是常量)的路径传播。 数学表达式为: 或
B
A
ndr 极值
ndr 0
A
B
费马原理是一个确定光线传播轨迹的原理。 从理论上可以取代前述的三定律而作为几何 光学的基础。
5
5、费马原理
由费马原理导出几何光学定律
凸透镜是最简单的放大镜,用于放大物对人眼的张角。 人眼的近点约在距眼睛25cm处——明视距离
h 25cm
h f
角放大率:
25cm m f
25
2.显微镜
——可获得较大的放大率以观察微小物体的双会聚透镜系统。 物体紧靠在物镜第一焦点的外侧。
fo s1 其中物镜横向放大率 m s1 fo
单球面折射成像公式
15
例9.1:在油液(折射率为1.33)中有一圆柱状长玻璃棒, 棒的一端为曲率半径R=3cm半球面,玻璃的折射率为 1.52,在棒轴上距端点9cm的P处有一点状物体,求像的 位置。PFra bibliotek P解:
n1 n2 n2 n1 S S' R
1.33 1.52 1.52 1.33 9 S' 3
几何光学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3.2 孔径光栏、入瞳和出瞳
物面中心点 A经系统成像于 A‘,其成像光束受限制的最小的圆 为 P,称为“孔径光栏”
P经系统前部的像为 P‘,称为入瞳,经后部的像为 P“,称为出瞳, 显然所有通过孔径光栏的光线必定都通过入瞳和出瞳。入瞳和出瞳互 为物像关系。
对于边缘的物点 B,通过入瞳的光线可能不能完全通过孔径光 栏和出瞳,称为有“渐晕”(见下文讨论),但对于一个设计得较好 的光学系统,渐晕不应该很大。
远心光路的一个用途是控制光束粗细,以适应光学元件的大小(如用在 有双折射滤光器的光路);另一个用途是当存在失焦时,像点的中心距(A"-
B")将不会改变,因此适合某些测量仪器。
4.4 近轴光路和理想光路的计算公式
4.4.1 同轴光路、近轴光路和理想光路
同轴光路是一种应用最广的光学系统,望远镜系统多属于同轴光 路。
实际的同轴光路计算要用三角函数。但如将孔径角和视场角均限 制得很小时,角度的正弦值或正切值可以用弧度值代替,于是光路计 算就大为简化,这样的光路称为“近轴光路”。
近轴光路对于光路的方案设计、外部参数计算(如焦距、截距、 像的高度、放大率、组合光学系统参数等)非常有利。
至于实际光路对于近轴光路在计算结果上的差异则可以归为光学 设计的"像差修正"的程度。
对于由多圈子镜组合起来的大型主镜,除中间一块子镜外,多数子 镜的对称轴与理论曲面的旋转轴是不重合的,称为“偏轴”曲面。
天文望远镜反射式光路常见的曲面及其组成的系 统
4.3 视场和孔径
如将光学系统看成一块没有厚度的透镜,则很容易区分“视场” 和“孔径”的不同概念。其区别在于:视场是从“镜头中心”出发向 观测物张开的角度,它表示可以观测的范围;而孔径是从物面(或像 面)上的一点出发向“镜头”张开的角度,它表示成像光束的粗细 (即反映光能量的集中程度)。
4.4.2 单球面近轴光路 1)几何量正负的规定:
轴上线段:起始点可为曲面顶点或焦点;方向与光线传播方向相 同时为正(线段包括光线截距 l、l‘、x、x’、曲面半径 r、两曲面顶点距 离Δ以及焦点的距离 等)
物体高度:处于光轴以上为正。光线与光轴的夹角:由光轴绕锐 角顺时针转到光线为正。
2)折射球面的物像关系
第四章 几何光学基本概念
望远镜作为精密光学仪器,必然涉及到“应用光学” 这门学科。应用光学不但是光学设计的基础,而且对光 学仪器的镜筒结构设计也有指导意义。本章所述“几何 光学”主要介绍应用光学中有关“近轴光路”的成像规 律的内容(如焦距、像面位置、放大率、光学系统组合 等),以及天文望远镜的常用光路。
如图几何关系,在小角度条件下有
u
u’
折射定律 i n'
i' n
n(h h) n'(h h)
rl
r l'
阿贝常数
n(1 1) n'(1 1) Q
rl
r l'
物像关系
n' n n'n l' l r
3)反射球面的物像关系
将 n'=-n,代入6式,得
11 2 1 l' l r f '
理想光路
理想光路就是能对任意宽的空间,用任意宽的光束成 完善像的光学系统,也称为“高斯光路”。对于“外部参 数”,如焦距、物(像)距和物(像)高度的计算,它与 “近轴光路”的基本上一样,只是角度要用三角函数而已。
当然实际光路不可能是“理想”的,但是可以用优化 设计方法尽量逼近理想光路,因此理想光路的理论对于光 学设计无疑是有益的。
1)场镜
为了避免各点主光线过于散开而致使后方光学元件(如透镜)尺寸太大, 中间像面上加上一块透镜,使得B'点以后的光束向光轴靠拢。这种不改变成 像光束粗细,而仅仅改变主光线方向的,置于像面附近的透镜称为“场镜”。
2)远心光路
将孔径光栏设置在最后一个透镜的前焦面上,这样各成像光束的主光线 都通过此焦点,因此出射后都平行于光轴。这时出射光瞳位于无穷远处,因 此称为“远心光路”。
如视场光栏与中间焦面不重合,则来自轴外物点 B要通过孔径光栏的光束之一部分就 会受到阻挡,即有渐晕产生。
4。3。4 主光线极其方向的控制
任意物点的成像光束中经过入瞳中心(从而经过孔径光栏中心和出瞳中心) 的光线称为“主光线”,主光线决定了成像光束的走向。
有时为I I'
反射定律是折射定律在 n=-n'时的一种特例。
4.2 天文光学常用反射曲面
天文光学常用反射曲面为“圆锥曲线旋转曲面“,圆锥曲线的方程式为
2 2Rz (1 e2 )z2 0 取减号( 0, z 0)
R R2 (1 ) 2
z
1
e 式中
2 为圆锥曲线常数:
近似计算
式中的正负号分别表示曲线的互相对称的两半部分,而实际反射 曲面只用到其中之一,考虑到使曲线的顶点处于坐标原点( ρ=0, z=0),则应取为负号。经这样处理后,再将根式部分展开为级数 而取近似,最后得
光学系统 的“外部”要素
1。入瞳,出瞳的 位置和大小,
2。物(像)面与光 瞳的距离,
3。物点与入瞳中心的连线和光轴的夹角,称为该点的"物方视场角", 像点与出瞳中心的连线和光轴的夹角,称为该点的"像方视场角"。最 边缘点的视场角即为系统的(最大)视场角,一般用 w和w'表示。
4。轴上物点对入瞳半径的张角称为"物方孔径角",一般用 u表示,轴 上像点对出瞳半径的张角称为"像方孔径角",一般用 u'表示。
4.3.3 视场光栏和渐晕
如在光路中间像面上设置光栏,并且唯有此光栏可以限制视场,则此光栏称 为“视场光栏”。视场光栏经前部光学系统所成的像称为“入射窗”,经后部 光学系统所成的像称为“出射窗”,入射窗和出射窗互为物像关系。
如视场光栏与中间焦面重合(入射窗与物面重合),则所有成像光线均能通过,没有 渐晕。
应用光学"的另一部分内容为"像差理论"。
4.1 几何光学的理论基础
1. 光的直线传播定律
在各向同性的、均匀的媒质中,光在两点之间沿 直线传播,即光线是直线。
2. 光的独立传播定律
不同的光线以不同方向经过介质的某一点时彼此 互不影响。
3. 折射定律
sin I n' sin I ' n
4. 反射定律