哈工程通信原理软件仿真实验报告
通信原理软件仿真实验报告-实验3-模拟调制系统—AM系统
成绩西安邮电大学《通信原理》软件仿真实验报告实验名称:实验三模拟调制系统——AM系统院系:通信与信息工程学院专业班级:通工学生姓名:学号:(班内序号)指导教师:报告日期:2013年5月15日实验三模拟调制系统——AM系统●实验目的:1、掌握AM信号的波形及产生方法;2、掌握AM信号的频谱特点;3、掌握AM信号的解调方法;4*、掌握AM系统的抗噪声性能。
●仿真设计电路及系统参数设置:图1 模拟调制系统——AM系统仿真电路建议时间参数:No. of Samples = 4096;Sample Rate = 20000Hz1、记录调制信号与AM信号的波形和频谱;调制信号为正弦信号,Amp= 1V,Freq=200Hz;直流信号Amp = 2V;余弦载波Amp = 1V,Freq= 1000Hz;频谱选择|FFT|;2、采用相干解调,记录恢复信号的波形和频谱;接收机模拟带通滤波器Low Fc = 750Hz,Hi Fc = 1250Hz,极点个数6;接收机模拟低通滤波器Fc = 250Hz,极点个数为9;3、采用包络检波,记录恢复信号的波形和频谱;接收机包络检波器结构如下:其中图符0为全波整流器Zero Point = 0V;图符1为模拟低通滤波器Fc = 250Hz,极点个数为9;4、在接收机模拟带通滤波器前加入高斯白噪声;建议Density in 1 ohm = 0.00002W/Hz;观察并记录恢复信号波形和频谱的变化;5*、改变高斯白噪声的功率谱密度,观察并记录恢复信号的变化。
仿真波形及实验分析:1、记录调制信号与AM信号的波形和频谱;图1-1 调制信号波形图1-2 AM已调信号波形图1-3 调制信号的频谱图1-4 AM——已调制信号的频谱分析:AM信号的波形包络包含基带信号信息,频率是载波频率,频谱有边带分量和载波分量。
2、采用相干解调,记录恢复信号的波形和频谱;图2-1 AM——相干解调信号的波形图2-2 AM——相干解调信号的频谱分析:相干解调恢复出来的信号和原始信号相同,其频谱波形跟原始信号频谱波形基本相同。
通信系统建模与仿真实验报告
实验报告哈尔滨工程大学教务处制实验一:低通采样定理和内插与抽取实现一、实验目的用Matlab 编程实现自然采样与平顶采样过程,根据实验结果给出二者的结论;掌握利用MATLAB 实现连续信号采样、频谱分析和采样信号恢复的方法。
二、实验原理1.抽样定理若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。
因此,当s ω≥m ω时,不会发生频率混叠;而当 s ω<m ω 时将发生频率混叠。
2.信号重建经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:)(t f =)(t f s *)(t h其中:)(t f s =)(t f ∑∞∞--)(s nT t δ=∑∞∞--)()(s s nT t nT f δ,)()(t Sa T t h c csωπω= 所以:)(t f =)(t f s *)(t h =∑∞∞--)()(s s nT t nT f δ*)(t Sa T c csωπω =πωcs T ∑∞∞--)]([)(scsnT t Sa nT f ω上式表明,连续信号可以展开成抽样函数的无穷级数。
利用MATLAB 中的t t t c ππ)sin()(sin =来表示)(t Sa ,有 )(sin )(πt c t Sa =,所以可以得到在MATLAB 中信号由)(s nT f 重建)(t f 的表达式如下:)(t f =πωcs T ∑∞∞--)]([sin )(s cs nT t c nT f πω 我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。
我们取理想低通的截止频率c ω=m ω。
下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa :三、 实验内容已知信号()()990(1)cos 2(10050)m x t m m t π==++∑,试以以下采样频率对信号采样:(a) 20000s f Hz =; (b) 10000s f Hz =; (c)30000s f Hz =,求x(t)信号原信号和采样信号频谱,及用采样信号重建原信号x’(t)时序图。
哈工程通信原理软件仿真实验报告
实验报告哈尔滨工程大学教务处制实验一基带码型仿真(一)单、双极性归零码仿真一、实验原理1.1归零码归零码,是信号电平在一个码元之内都要恢复到零的编码方式,它包括曼彻斯特编码和差分曼彻斯特编码两种编码方式。
1.2单、双极性归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。
A)单极性不归零码,无电压表示”0”,恒定正电压表示” 1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。
单极性归零码(RZ)即是以高电平和零电平分别表示二进制码1和0,而且在发送码1时高电平在整个码元期间T只持续一段时间T其余时间返回零电平. 在单极性归零码中,T /T 称为占空比•单极性归零码的主要优点是可以直接提取同步信号,因此单极性归零码常常用作其他码型提取同步信号时的过渡码型.也就是说其他适合信道传输但不能直接提取同步信号的码型,可先变换为单极性归零码,然后再提取同步信号|B)双极性不归零码,” 1”码和” 0”码都有电流,”1”为正电流,” 0”为负电流,正和负的幅度相等,判决门限为零电平。
双极性归零码是二进制码0和1分别对应于正和负电平的波形的编码,在每个码之间都有间隙产生.这种码既具有双极性特性,又具有归零的特性•双极性归零码的特点是:接收端根据接收波形归于零电平就可以判决1比特的信息已接收完毕,然后准备下一比特信息的接收,因此发送端不必按一定的周期发送信息.可以认为正负脉冲的前沿起了起动信号的作用,后沿起了终止信号的作用.因此可以经常保持正确的比特同步. 即收发之间无需特别的定时,且各符号独立地构成起止方式,此方式也叫做自同步方式.由于这一特性,双极性归零码的应用十分广泛。
1.3功率谱密度求信号的功率谱,功率谱=信号的频率的绝对平方/传输序列的持续时间,求得的功率谱进行单位换算以dB值表示1.4占空比(Duty Ratio)在电信领域中有如下含义:例如:脉冲宽度1ys,信号周期4 s 的脉冲序列占空比为 0.25。
(精编)哈工大通信原理实验报告
(精编)哈工大通信原理实验报告H a r b i n I n s t i t u t e o f T e c h n o l o g y通信原理实验报告课程名称:通信原理院系:电子与信息工程学院班级:姓名:学号:指导教师:倪洁实验时间:2015年12月哈尔滨工业大学实验二帧同步信号提取实验一、实验目的1.了解帧同步的提取过程。
2.了解同步保护原理。
3.掌握假同步,漏同步,捕捉动态和维持态的概念。
二、实验原理时分复用通信系统,为了正确的传输信息,必须在信息码流中插入一定数量的帧同步码,帧同步码应具有良好的识别特性。
本实验系统帧长为24比特,划分三个时隙,每个时隙长度8比特,在每帧的第一时隙的第2至第8码元插入七位巴克码作为同步吗。
第9至24比特传输两路数据脉冲。
帧结构为:X11100101010101011001100,首位为无定义位。
本实验模块由信号源,巴克码识别器和帧同步保护电路三部分构成,信号源提供时钟脉冲和数字基带脉冲,巴克码识别器包裹移位寄存器、相加器和判决器。
其余部分完成同步保护功能。
三、实验内容1.观察帧同步码无错误时帧同步器的维持状态。
2.观察帧同步码有一位错误时帧同步器的维持态和捕捉态3.观察帧同步器假同步现象和同步保护器。
四、实验步骤1.开关K301接2.3脚。
K302接1.2脚。
2.接通电源,按下按键K1,K2,K300,使电路工作。
3.观察同步器的同步状态将信号源中的SW001,SW002,SW003设置为11110010,10101010,11001100(其中第2-8位为帧同步码),SW301设置为1110,示波器1通道接TP303,2通道接TP302,TP304,TP305,TP306,观察上述信号波形,使帧同步码(SW001的2-8位)措一位,重新做上述观察,此时除了TP303外,个点波形不变,说明同步状态仍在维持。
4.观察同步器的失步状态。
关闭电源,断开K302,在开电源(三个发光二极管全亮)。
通信原理软件实验
实验报告哈尔滨工程大学教务处制通信原理软件仿真实验一、实验题目1、基带码型仿真1)通过仿真观察占空比为50%、75%以及100%的单、双极性归零码波形以及其功率谱,分析不同占空比对仿真结果的影响。
2)通过仿真产生一随机消息码序列,将其分别转换为AMI码和HDB码,观察3它们的波形及其功率谱密度。
2、数字带通调制仿真设计一个采用2DPSK调制的数字通信系统:产生二进制随机数据,并仿真其对应的2DPSK调制波形,分析其频谱。
所产生的调制波形加入不同信噪比的白噪声,选取合适的接收方案,画出系统误码率曲线,并与理论误码率进行对比。
二、实验基本原理1、基带码型仿真想要产生不同占空比的单、双极性归零码波形,首先要确定码元序列,其次要对码元序列进行采样并输出到图表上。
确定码元序列的原理很简单,对于单极性码元,只需要产生一系列随机数并判断随机数是否大于零即可。
若大于等于零则码元为1,若小于零则码元为0。
对于双极性码元,可以通过判断随机数的极性来产生码元。
AMI码为传号交替反转码,为1反转,否则归零。
而HDB3码则是在AMI的基础上进行变换。
通过检测4个及以上的连零来插入破坏符号(V)。
倘若两个相邻破坏符号间的非零符号有偶数个时,还要插入B 符号。
2、数字带通调制仿真2DPSK数字调制系统的调制过程可以认为成差分双极性非归零矩形脉冲与高频载波的乘积。
至于解调过程,我在本次实验中选取的为相位比较法。
基本原理是将接收到的调制波形延迟一个码元周期,再与未延迟的调制波形相乘,分析该信号,从而解调码元。
三、仿真方案1、基带码型仿真1)占空比为0.5占空比为0.75占空比为1分析:由实验结果可知,随着占空比的增大,码元信号的直流分量会逐渐增多,频谱变窄。
而且,相较于单极性,双极性的功率谱要更宽一些。
2)(参数:HDB3码中V为1.5,B为2)分析:通过以上实验结果可见,AMI和HDB3码波形正确,而二者的功率谱在如此有限的码元数量内看不出来太多的区别。
哈工程通信原理软件仿真实验报告材料
实验报告哈尔滨工程大学教务处制实验一基带码型仿真(一)单、双极性归零码仿真一、实验原理1.1归零码归零码,是信号电平在一个码元之内都要恢复到零的编码方式,它包括曼彻斯特编码和差分曼彻斯特编码两种编码方式。
1.2单、双极性归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。
A)单极性不归零码,无电压表示”0”,恒定正电压表示”1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。
单极性归零码(RZ)即是以高电平和零电平分别表示二进制码1 和0,而且在发送码1 时高电平在整个码元期间T 只持续一段时间τ,其余时间返回零电平.在单极性归零码中,τ/T 称为占空比.单极性归零码的主要优点是可以直接提取同步信号,因此单极性归零码常常用作其他码型提取同步信号时的过渡码型.也就是说其他适合信道传输但不能直接提取同步信号的码型,可先变换为单极性归零码,然后再提取同步信号B)双极性不归零码,”1”码和”0”码都有电流,”1”为正电流,”0”为负电流,正和负的幅度相等,判决门限为零电平。
双极性归零码是二进制码0 和1 分别对应于正和负电平的波形的编码,在每个码之间都有间隙产生.这种码既具有双极性特性,又具有归零的特性.双极性归零码的特点是:接收端根据接收波形归于零电平就可以判决1 比特的信息已接收完毕,然后准备下一比特信息的接收,因此发送端不必按一定的周期发送信息.可以认为正负脉冲的前沿起了起动信号的作用,后沿起了终止信号的作用.因此可以经常保持正确的比特同步.即收发之间无需特别的定时,且各符号独立地构成起止方式,此方式也叫做自同步方式.由于这一特性,双极性归零码的应用十分广泛。
1.3 功率谱密度求信号的功率谱,功率谱 = 信号的频率的绝对平方 / 传输序列的持续时间,求得的功率谱进行单位换算以dB值表示1.4占空比(Duty Ratio)在电信领域中有如下含义:例如:脉冲宽度1μs ,信号周期4μs 的脉冲序列占空比为0.25。
通原软件实验报告
信息与通信工程学院通信原理软件实验报告班级:201121xxxx姓名:xxx学号:序号:目录实验八 (4)一、实验内容 (4)二、实验原理 (4)三、仿真设计 (6)1. 仿真思路 (6)2. 程序框图 (6)3. 源程序 (7)四、实验结果及分析 (10)1.实验仿真结果 (10)2. 结果分析 (12)五、实验总结 (12)实验九 (13)一、实验内容 (13)二、实验原理 (13)三、仿真设计 (13)1. 仿真思路 (13)2. 程序框图 (14)3. 源代码 (14)四、实验结果及分析 (16)1. 实验仿真结果 (16)2. 结果分析 (17)五、实验总结 (17)实验十一 (18)一、实验内容 (18)二、实验原理 (18)1、单极性归零码 (18)2、双极性归零码 (18)3、各种码的比较 (19)三、仿真设计 (19)1. 仿真思路 (19)2. 程序框图 (20)3. 源代码 (20)四、实验结果及分析 (23)1. 实验仿真结果 (23)2. 结果分析 (24)五、实验总结 (24)实验十二 (25)一、实验内容 (25)二、实验原理 (25)三、仿真设计 (26)1. 仿真思路 (26)2. 程序框图 (26)3. 源程序 (26)四、实验结果及分析 (28)1. 实验仿真结果 (28)2. 结果分析 (29)五、实验总结 (29)实验八一、实验内容假设基带信号为()sin(2000)2cos(1000)m t t t ππ=+,载波频率为20kHz ,请仿真出AM 、DSB-SC 、SSB 信号,观察已调信号的波形及频谱。
二、实验原理1. 具有离散大载波的双边带幅度调制信号AM该幅度调制是由DSB-SC AM 信号加上离散的大载波分量得到,其表达式及时间波形图为:应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制:AM 信号的频谱特性如下图所示:由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。
《通信原理》软件仿真实验指导与报告
第一章Systemview软件仿真环境概述1.1 Systemview系统设计窗口:1、第一行“菜单栏”有几个下拉式菜单,通过菜单可以实现相应的功能。
2、第二行“工具栏”是由图标按钮组成的动作条:(01) 清屏幕(02) 删除元件(03) 断线(04) 连线(05) 复制元件(06) 图标翻转(07) 注释(08) 创建子系统(09) 察看子系统结构(10) 根轨迹(11) 波特图(12) 画面重画(13) 中止(14) 运行(15) 打开时间参数窗口(16) 打开系统分析窗3、左侧竖栏为“基本元件库”:(01) 信源库(02) 子系统(03) 加法器(04) 子系统I/O接口(05) 操作库(06) 函数库(07) 乘法器(08) 信宿库●信源库:●操作库:操作库是本软件最核心的部分之一,它把很多复杂的功能集成为一个小模块,其中的每一个算子都把输入的数据作为运算自变量,以实现对用户数据的操作,包括“滤波器/系统”、“采样/保持”、“逻辑运算”、“积分/微分”、“延迟器”、“增益”六大选项,每种选项又包含若干子选项。
函数库:函数库也是本软件最核心的部分之一,它把很多复杂的函数集成为一个小模块,其中的每一个算子都把输入的数据作为运算自变量,以实现对用户数据的函数运算,包括“非线性函数”、“函数”、“复数运算函数”、“代数函数”、“相位/频率”、“合成/提取”六大选项,每种选项又包含若干子选项。
信宿库●通常系统采样频率“Sample Rate [Hz]”约为系统中所有模块最高频率的五至十倍。
●按钮“Set Power of 2”用来控制系统波形采样点数“No. of Samples”;波形采样点数越多波形越精细,系统运行时间也越长,波形采样点数过多也会导致波形过于紧密而不利于观察,故波形采样点数应该与系统采样频率相结合,灵活调整。
●设置完系统采样频率“Sample Rate [Hz]”和系统波形采样点数“No. ofSamples”之后,必须通过按钮“Update”进行确认。
通信原理软件实验实验报告
通信原理软件实验实验报告一、实验目的通信原理是电子信息类专业的一门重要基础课程,通过通信原理软件实验,旨在加深对通信系统基本原理的理解,熟悉通信系统的基本组成和工作过程,掌握通信系统中信号的产生、传输、接收和处理等关键技术,提高分析和解决通信工程实际问题的能力。
二、实验环境本次实验使用了_____通信原理软件,运行在_____操作系统上。
实验所需的硬件设备包括计算机一台。
三、实验内容1、数字基带信号的产生与传输生成了单极性归零码、双极性不归零码、曼彻斯特码等常见的数字基带信号。
观察了不同码型的时域波形和频谱特性。
研究了码间串扰对数字基带信号传输的影响。
2、模拟调制与解调实现了幅度调制(AM)、频率调制(FM)和相位调制(PM)。
分析了调制指数、载波频率等参数对调制信号的影响。
完成了相应的解调过程,并对比了解调前后信号的变化。
3、数字调制与解调进行了二进制振幅键控(2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK)的调制与解调。
探讨了噪声对数字调制系统性能的影响。
计算了不同调制方式下的误码率,并绘制了误码率曲线。
4、信道编码与译码对线性分组码(如汉明码)进行了编码和译码操作。
研究了编码增益与纠错能力之间的关系。
四、实验步骤1、数字基带信号的产生与传输实验打开通信原理软件,进入数字基带信号产生与传输模块。
设置码型参数,如码元宽度、脉冲幅度等,生成相应的数字基带信号。
利用示波器观察时域波形,使用频谱分析仪分析频谱特性。
加入不同程度的码间串扰,观察对传输信号的影响。
2、模拟调制与解调实验在软件中选择模拟调制模块,设置调制参数,如调制指数、载波频率等。
生成调制信号后,通过解调器进行解调。
使用示波器和频谱分析仪观察调制和解调前后信号的时域和频域变化。
3、数字调制与解调实验进入数字调制与解调模块,选择所需的调制方式(2ASK、2FSK、2PSK)。
设定相关参数,如码元速率、载波频率等,产生调制信号。
哈工程通信原理实验报告
实验PCM编码一、实验目的1.掌握PCM编译码原理2.掌握PCM基带信号的形成过程及分接过程3.掌握语音信号PCM编译码系统的动态范围和频率特性二、实验环境双踪示波器一台通信原理VI型实验箱一台M3 PCM与ADPCM编译码模块和M6数字信号源模块麦克风和扬声器一套三、实验原理1.点到点PCM多路电话通信原理点到点PCM多路电话通信原理可用图1表示。
对于基带通信系统 广义信道包括传输媒质、收滤波器、发滤波器等。
对于频带系统 广义信道包括传输媒质、调制器、解调器、发滤波器、收滤波器等。
图1 点到点PCM多路电话通信原理框图本实验模块可以传输两路话音信号。
采用MC145503编译器 它包括了图1中的收、发低通滤波器及PCM编码器。
编码器输入信号可以是本实验系统内部产生的整形信号 也可以是外部信号源的正弦信号或电话信号。
2.PCM编译码模块原理本模块的原理方框图如图2所示。
图2 PCM编译码原理方框图四、实验内容与实验步骤1.实验连线关闭系统电源,进行如下连接。
源端口目的端口正弦信号源OUT1 PCM&ADPCM编译码单元STA正弦信号源OUT2 PCM&ADPCM编译码单元STBPCM&ADPCM编译码单元PCMA-OUT PCM&ADPCM编译码单元PCMA-INPCM&ADPCM编译码单元PCMB-OUT PCM&ADPCM编译码单元PCMB -IN PCM&ADPCM编译码单元PCM IN PCM&ADPCM编译码单元PCM OUT2.熟悉PCM编译码模块 开关K1接通SL1(或SL3,SL5,SL6) 打开电源开关。
3.用户示波器观察STA,STB 将其幅度调至2V。
4.用示波器观察PCM编码输出信号当采用非集群方式时测量A通道时,将示波器CH1接SLA。
示波器扫描周期不超过SLA的周期,以便观察到一个完整的帧信号。
CH2接PCM A OUT,观察编码后的数据与时隙同步信号的关系。
通信原理软件仿真实验(1)
• 这里,“y=log(0);”只显示告警信息而不显示运行 结 果 。 “ b=1/0,” 既 显 示 告 警 信 息 ( 被 零 除 : Divide by zero),也显示运行结果(无穷大:Inf )。语句“a=atan(b)*180/pi;”被运行但结果未显 示。在MATLAB中atan是反正切函数,pi是圆周率 。语句“a”的作用是显示a的值。 • 如果语句有运算结果但此结果未被赋值,那么 MATLAB自动将此结果赋值给变量“ans”,它是英 语单词answer的前三个字母。 • 例如: >>0.5*erfc(sqrt(4.77)) • ans = 0.0010 • 注意: 在MATLAB中标识符的大小写是有区别的。
• zeros(size(A))产生一个尺寸与A相同的全零矩阵。 ones(size(A))产生一个尺寸与A相同的全1矩阵。这里 函数size(a)返回一个行矢量[n, m],其中n是a的行数 ,m是a的列数。
• (2)均匀随机数 rand 及正态随机数 randn
• rand(n,m)产生一个尺寸为n*m的矩阵,其元素按 均匀分布随机取值于区间[0,1]。randn(n,m)产生 一个尺寸为n*m的矩阵,其元素服从均值为零, 方差为1的标准正态分布。 • randn(size(a))产生一个尺寸与a相同的正态分布 随机矩阵。
4.函数
• MATLAB中所有的函数或命令都可借助help 菜单或在命令行中键入
• >>help • 或 • >>help 主题名 • 得到帮助。在这里,我们介绍一些常用函 数。
• 1)三角函数 • 三角函数包括正弦sin、余弦cos、正切tan、反正 切atan等。例如:
• >>X=[0:pi/6:pi]; Y=sin(X) Y=
哈工大通信原理实验报告
哈工大通信原理实验报告H a r b i n I n s t i t u t e o f T e c h n o l o g y通信原理实验报告课程名称:通信原理院系:电子与信息工程学院班级:姓名:学号:指导教师:倪洁实验时刻: 2020年 12月哈尔滨工业大学实验二帧同步信号提取实验一、实验目的1.了解帧同步的提取过程。
2.了解同步爱护原理。
3.把握假同步,漏同步,捕捉动态和坚持态的概念。
二、实验原理时分复用通信系统,为了正确的传输信息,必须在信息码流中插入一定数量的帧同步码,帧同步码应具有良好的识别特性。
本实验系统帧长为24比特,划分三个时隙,每个时隙长度8比特,在每帧的第一时隙的第2至第8码元插入七位巴克码作为同步吗。
第9至24比特传输两路数据脉冲。
帧结构为:X11100101010101011001100,首位为无定义位。
本实验模块由信号源,巴克码识别器和帧同步爱护电路三部分构成,信号源提供时钟脉冲和数字基带脉冲,巴克码识别器包裹移位寄存器、相加器和判决器。
其余部分完成同步爱护功能。
三、实验内容1.观看帧同步码无错误时帧同步器的坚持状态。
2.观看帧同步码有一位错误时帧同步器的坚持态和捕捉态3.观看帧同步器假同步现象和同步爱护器。
四、实验步骤1.开关K301接2.3脚。
K302接1.2脚。
2.接通电源,按下按键K1,K2,K300,使电路工作。
3.观看同步器的同步状态将信号源中的SW001,SW002,SW003设置为11110010,10101010,11001100(其中第2-8位为帧同步码),SW301设置为1110,示波器1通道接TP303,2通道接TP302,TP304, TP305,TP306,观看上述信号波形,使帧同步码(SW001的2-8位)措一位,重新做上述观看,现在除了TP303外,个点波形不变,说明同步状态仍在坚持。
4.观看同步器的失步状态。
关闭电源,断开K302,在开电源(三个发光二极管全亮)。
哈工程通信工程实习总结报告
哈工程通信工程实习总结报告哈工程通信工程实习总结报告本次认识实习为一周。
这一个星期在带队老师的安排下我们参观了哈尔滨工业大学中兴实验室,并在那里进行了学习实验。
通过一整周的学习,我们从感性上学到了很多东西,也对我们将来的学习和研究方向的确定产生深远的影响。
通过这次参观实习丰富了本人的理论知识,增强了观察能力,并使我对以后的工作有了定性的认识,真是让我收获颇多。
现将本次实习就参观实习收获新知识、以及未来自己努力的方向以及此次感想等方面作以总结。
一收获新知识首先,加深了我们对理论知识的理解。
我们对无线通信的原理和过程有了整体上的理性的认识,从更加实用的角度对其进行了了解,这也对我们将来步入社会和单位能尽快熟悉业务奠定了基础。
其次,对于硬件设备的讲解与参观以及利用软件进行了网络基站的配置,让我们在理论提高的基础上增加了实践,通过对基站扇形区域的配置,对学习过的网络优化的内容和基站等硬件结构的拓扑结构和作用有了综合直观的感受,同时对网络优化有了基本的掌握,对通信设备的配置和优化有了更深的认识。
老师还向我们介绍了WCDMA硬件设备zxsdr-bs8800系列室内型双模宏基站,ZXSDRBS8800由基带单元BBU和射频单元RSU共同组成:基带-射频接口支持CPRI协议,通过光纤可以与RRU相连作为BS8800的远端射频模块应用,BS8800的典型配置为1个BBU加上3或6个RSU,单机柜最大支持2个BBU和6个RSU,BS8800还可以在上部配置一个射频柜,以支持12个RSU或9个RSU+3个合路器。
随后我们分为两组轮流参观了中兴通讯提供的zxsdr-bs8800系列室内型双模宏基站,主要学习了基站中的NodeB 和RNC。
1、数字移动通信:数字通信包括gsm、cdma等。
第三代移动通信(3g)目前主要有两种主流的技术方向。
其中一种是从第二代cdmaone演进而来的cdma技术,cdmaone移动通讯网络在北美、南韩和香港等地区得到了广泛的应用。
通信原理实验DSB的调制与解调
实验报告哈尔滨工程大学教务处制DSB信号的调制及相干解调一、整体方案及参数设置1.1 方案设计DSB的调制过程实际上是一个频谱搬移的过程,即是将低频信号的频谱(调制信号)搬移到载频位置(载波)。
解调是调制的逆过程,即是将已调信号还原成原始基带信号的过程,信号的接收端就是通过解调来还原已调信号从而读取发送端发送的信息。
本次实验采用相干解调法解调DSB信号(即将已调信号与相同载波频率相乘),这种方式将广泛应用在载波通信和短波无线电话通信中。
但在信道传输过程中定会引入高斯白噪声,虽然经过带通滤波器后会使其转化成窄带噪声,但它依然会对解调信号造成影响,对信号频谱进行分析时将对比讨论加噪声与不加噪声对其影响。
图一:DSB频谱图图二:DSB调制图三:DSB解调DSB信号与本地相干载波相乘后的输出为:Z(t)= Sdsb(t)cos ωct=m(t)cosωct*cosωct=[m(t)/2]*(1+cos2ωct),经过低通滤波后就能够无失真地恢复原始调制信号为:So(t)= 1/2 m(t),因而可得到无失真的调制信号。
1.2参数设计这儿不知道咋写……你写了给我看下吧1.3实验大纲a.绘制出DSB调制波形时域频域图,用载波将其调制,得到已调波形;b.绘制已调波形时,分为加噪与不加噪两种,分析其频谱上有何差别;c.用与载波频率相同的波对上述两种已调信号进行解调,分别分析两种波形解调结果有何不同。
二.设计实现2.1 实验程序n=2048;fs=n;s=400*pi;i=0:1:n-1;t=i/n;m=sin(10*pi*t);c=cos(300*pi*t);x=m.*c;y=x.*c;x1=awgn(x,30);x2=awgn(x,30);x3=awgn(x,30);x4=awgn(x,30);y1=x1.*c;y2=x2.*c;y3=x3.*c;y4=x4.*c;z1=x1-x;z2=x2-x;z3=x3-x;z4=x4-x;n1=z1.*c;n2=z2.*c;n3=z3.*c;n4=z4.*c;wp=0.1*pi;ws=0.12*pi;Rp=1;As=15; [N,wn]=buttord(wp/pi,ws/pi,Rp,As); [b,a]=butter(N,wn);m1=filter(b,a,y);m1=2*m1;m2=filter(b,a,y1);m2=2*m2;M=fft(m,n);C=fft(c,n);X=fft(x,n);Y=fft(y,n);X1=fft(x1,n);Z1=fft(z1,n);Z2=fft(z2,n);Z3=fft(z3,n);Z4=fft(z4,n);N1=fft(n1,n);N2=fft(n2,n);N3=fft(n3,n);N4=fft(n4,n);[H,w]=freqz(b,a,n,'whole');f=(-n/2:1:n/2-1);figure(1);subplot(221),plot(t,m,'k');axis([0,1,-0.25,1.25]);title('m(t)波形');subplot(222),plot(t,abs(fftshift(M)),'k');%axis([-300,300,0,250]); title('m(t)频谱');subplot(223),plot(t,c,'k');axis([0,0.2,-1.2,1.2]);title('c(t)波形');subplot(224),plot(t,abs(fftshift(C)),'k');%axis([-300,300,0,600]); title('c(t)频谱');figure(2);subplot(221),plot(t,x,'k');axis([0,1,-1.2,1.2]);title('无噪时已调DSB时域波形');subplot(222),plot(t,abs(fftshift(X)),'k');%axis([-300,300,0,600]); title('无噪时已调DSB频谱图');subplot(223),plot(t,x1,'k');axis([0,1,-1.2,1.2]);title('有噪时已调DSB时域波形');subplot(224),plot(t,abs(fftshift(X1)),'k');%axis([-300,300,0,600]); title('有噪时已调DSB频谱图');figure(3);subplot(311),plot(t,abs(fftshift(H)),'k');%axis([-300,300,0,200]); title('滤波器特性');subplot(312),plot(t,m1,'k');axis([0,1,-0.25,1.25]);title('DSB解调后信号波形(无噪)');subplot(313),plot(t,m2,'k');axis([0,1,-0.25,1.25]);title('DSB解调后信号波形(有噪)');2.2实验结果三.总结从程序运行结果可以看出DSB调制是对基带信号进行频谱搬移。
通信系统建模与仿真实验报告
实验报告哈尔滨工程大学教务处制实验一:低通采样定理和内插与抽取实现一、实验目的用Matlab 编程实现自然采样与平顶采样过程,根据实验结果给出二者的结论;掌握利用MATLAB 实现连续信号采样、频谱分析和采样信号恢复的方法。
二、实验原理1.抽样定理若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。
因此,当s ω≥m ω时,不会发生频率混叠;而当 s ω<m ω 时将发生频率混叠。
2.信号重建经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:)(t f =)(t f s *)(t h其中:)(t f s =)(t f ∑∞∞--)(s nT t δ=∑∞∞--)()(s s nT t nT f δ,)()(t Sa T t h c csωπω= 所以:)(t f =)(t f s *)(t h =∑∞∞--)()(s s nT t nT f δ*)(t Sa T c csωπω =πωcs T ∑∞∞--)]([)(s csnT t Sa nT f ω上式表明,连续信号可以展开成抽样函数的无穷级数。
利用MATLAB 中的t t t c ππ)sin()(sin =来表示)(t Sa ,有 )(sin )(πt c t Sa =,所以可以得到在MATLAB 中信号由)(s nT f 重建)(t f 的表达式如下:)(t f =πωcs T ∑∞∞--)]([sin )(s cs nT t c nT f πω我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。
我们取理想低通的截止频率c ω=m ω。
下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa :三、 实验内容已知信号()()990(1)cos 2(10050)m x t m m t π==++∑,试以以下采样频率对信号采样:(a) 20000s f Hz =; (b) 10000s f Hz =; (c)30000s f Hz =,求x(t)信号原信号和采样信号频谱,及用采样信号重建原信号x ’(t)时序图。
通信原理仿真实验报告
通信原理仿真实验报告一、引言通信原理是现代社会中不可或缺的一部分,它涉及到信息的传输和交流。
为了更好地理解通信原理的工作原理和效果,我们进行了一次仿真实验。
本报告将详细介绍实验的目的、方法、结果和分析。
二、实验目的本次实验的目的是通过仿真实验,深入了解通信原理的基本原理和信号传输过程,掌握通信系统中常见的调制解调技术,并通过实验验证理论知识的正确性。
三、实验方法1. 实验平台:我们使用MATLAB软件进行仿真实验,该软件具有强大的信号处理和仿真功能,可以模拟真实的通信环境。
2. 实验步骤:a. 设计信号源:根据实验要求,我们设计了一种特定的信号源,包括信号的频率、幅度和相位等参数。
b. 调制过程:通过调制技术将信号源与载波信号进行合成,得到调制后的信号。
c. 信道传输:模拟信号在信道中的传输过程,包括信号的衰减、噪声的干扰等。
d. 解调过程:通过解调技术将接收到的信号还原为原始信号。
e. 信号分析:对解调后的信号进行频谱分析、时域分析等,以验证实验结果的准确性。
四、实验结果我们进行了多组实验,得到了一系列的实验结果。
以下是其中两组实验结果的示例:1. 实验一:调幅调制a. 信号源:频率为1kHz的正弦信号。
b. 载波信号:频率为10kHz的正弦信号。
c. 调制后的信号:将信号源与载波信号相乘,得到调制后的信号。
d. 信号分析:对调制后的信号进行频谱分析,得到频谱图。
e. 解调过程:通过解调技术,将接收到的信号还原为原始信号。
f. 结果分析:通过对比解调后的信号与原始信号,验证了调幅调制的正确性。
2. 实验二:频移键控调制a. 信号源:频率为1kHz的正弦信号。
b. 载波信号:频率为10kHz的正弦信号。
c. 调制后的信号:将信号源与载波信号相加,得到调制后的信号。
d. 信号分析:对调制后的信号进行频谱分析,得到频谱图。
e. 解调过程:通过解调技术,将接收到的信号还原为原始信号。
f. 结果分析:通过对比解调后的信号与原始信号,验证了频移键控调制的正确性。
哈工大通信原理实验报告
H a r b i n I n s t i t u t e o f T e c h n o l o g y通信原理实验报告课程名称:通信原理院系:电子与信息工程学院班级:姓名:学号:指导教师:倪洁实验时间: 2015年 12月哈尔滨工业大学实验二帧同步信号提取实验一、实验目的1.了解帧同步的提取过程。
2.了解同步保护原理。
3.掌握假同步,漏同步,捕捉动态和维持态的概念。
二、实验原理时分复用通信系统,为了正确的传输信息,必须在信息码流中插入一定数量的帧同步码,帧同步码应具有良好的识别特性。
本实验系统帧长为24比特,划分三个时隙,每个时隙长度8比特,在每帧的第一时隙的第2至第8码元插入七位巴克码作为同步吗。
第9至24比特传输两路数据脉冲。
帧结构为:X11100101010101011001100,首位为无定义位。
本实验模块由信号源,巴克码识别器和帧同步保护电路三部分构成,信号源提供时钟脉冲和数字基带脉冲,巴克码识别器包裹移位寄存器、相加器和判决器。
其余部分完成同步保护功能。
三、实验内容1.观察帧同步码无错误时帧同步器的维持状态。
2.观察帧同步码有一位错误时帧同步器的维持态和捕捉态3.观察帧同步器假同步现象和同步保护器。
四、实验步骤1.开关K301接2.3脚。
K302接1.2脚。
2.接通电源,按下按键K1,K2,K300,使电路工作。
3.观察同步器的同步状态将信号源中的SW001,SW002,SW003设置为11110010,10101010,11001100(其中第2-8位为帧同步码),SW301设置为1110,示波器1通道接TP303,2通道接TP302,TP304, TP305,TP306,观察上述信号波形,使帧同步码(SW001的2-8位)措一位,重新做上述观察,此时除了TP303外,个点波形不变,说明同步状态仍在维持。
4.观察同步器的失步状态。
关闭电源,断开K302,在开电源(三个发光二极管全亮)。
通信原理软件实验培训资料
实验报告哈尔滨工程大学教务处制通信原理软件仿真实验一、实验题目1、基带码型仿真1)通过仿真观察占空比为50%、75%以及100%的单、双极性归零码波形以及其功率谱,分析不同占空比对仿真结果的影响。
2)通过仿真产生一随机消息码序列,将其分别转换为AMI码和HDB3码,观察它们的波形及其功率谱密度。
2、数字带通调制仿真设计一个采用2DPSK调制的数字通信系统:产生二进制随机数据,并仿真其对应的2DPSK调制波形,分析其频谱。
所产生的调制波形加入不同信噪比的白噪声,选取合适的接收方案,画出系统误码率曲线,并与理论误码率进行对比。
二、实验基本原理1、基带码型仿真想要产生不同占空比的单、双极性归零码波形,首先要确定码元序列,其次要对码元序列进行采样并输出到图表上。
确定码元序列的原理很简单,对于单极性码元,只需要产生一系列随机数并判断随机数是否大于零即可。
若大于等于零则码元为1,若小于零则码元为0。
对于双极性码元,可以通过判断随机数的极性来产生码元。
AMI码为传号交替反转码,为1反转,否则归零。
而HDB3码则是在AMI的基础上进行变换。
通过检测4个及以上的连零来插入破坏符号(V)。
倘若两个相邻破坏符号间的非零符号有偶数个时,还要插入B符号。
2、数字带通调制仿真2DPSK数字调制系统的调制过程可以认为成差分双极性非归零矩形脉冲与高频载波的乘积。
至于解调过程,我在本次实验中选取的为相位比较法。
基本原理是将接收到的调制波形延迟一个码元周期,再与未延迟的调制波形相乘,分析该信号,从而解调码元。
四、实验结果1、基带码型仿真1)占空比为0.5占空比为0.75占空比为1分析:由实验结果可知,随着占空比的增大,码元信号的直流分量会逐渐增多,频谱变窄。
而且,相较于单极性,双极性的功率谱要更宽一些。
2)(参数:HDB3码中V为1.5,B为2)分析:通过以上实验结果可见,AMI和HDB3码波形正确,而二者的功率谱在如此有限的码元数量内看不出来太多的区别。
哈工程通信原理实验报告
实验一数字基带信号实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、了解HDB3 (AMI)编译码集成电路CD22103。
二、实验仪器l、双踪示波器一台2、通信原理Ⅵ型实验箱一台3、M6信源模块三、实验原理AMI编码规律是:信息代码1变为带有符号的1码即+1或-1,1的符号反转交替;信息代码0为0码。
AMI码对应的波形是占空比为0.5的双极性归零码,即脉冲宽度是码元宽度(码元周期、码元间隔)0.5倍。
HDB3码的编码规律是:4个连0信息码用取代节000V或B00V代替,当两个相邻V 码中间有奇数个信息1码时取代节为000V,有偶数个信息1码(包括0个信息1码)时取代节为B00V,其他信息0码仍为0码;信息码的1码变为带有符号的1码即+1或-1;HDB3码中1、B的符号符合交替反转原则,而V的符号破坏这种符号的交替反转原则,但相邻V 码的符号又是交替反转的;HDB3码是占空比为0.5的双极性归零码。
四、实验内容及步骤1、熟悉信源模块,AMI&HDB3编译码模块(由可编程逻辑器件模块实现)和HDB3编译码模块的工作原理。
2、接通数字信号源模块的电源。
用示波器观察数字信源模块上的各种信号波形。
(1)示波器的两个通道探头分别接NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用K1产生代码×1110010(X为任意码,1110010为7位帧同步码),K2,K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
3、关闭数字信号源模块的电源,按照下表连线,打开数字信号源模块和AMI(HDB3)编译码模块电源。
用示波器观察AMI (HDB3)编译单元的各种波形。
源端口目的端口1.数字信源单元NRZ-OUT AMI (HDB3)编译码单元:NRZ-IN2.数字信源单元:BS-OUT AMI (HDB3)编译码单元:BS-IN(1)示波器的预个探头CH1和CH2分别接NRZ-OUT和(AMI) HDB3,将信源模块K1K2、K3的每一位都置l,观察并记录全l码对应的AMI码和HDB3码;再将K1,K2,K3置为全O,观察全0码对应的AMI码和HDB3码。
通信原理软件仿真实验报告学习整理
邮电大学《通信原理》软件仿真实验报告实验名称:《通信原理》软件实验院系:通信与信息工程学院专业班级:学生姓名:学号:指导教师:报告日期:实验一●实验目的:1、正弦信号的产生;2、双极性不归零码的产生;3、单极性不归零码的产生;4、四进制数字信号的产生;5、模拟滤波器的设计;6、单位冲激信号的产生;7、直流信号的产生;8、高斯白噪声的产生;9、矩形脉冲序列的产生;10、低通带限型信号的产生。
●仿真设计电路及系统参数设置:1、正弦信号的产生:振幅5V,频率100Hz,初相为45 2、双极性不归零码的产生:幅度±10V,频率100Hz3、单极性不归零码的产生:幅度2V,频率100Hz4、四进制数字信号的产生:幅度±1V、±3V,频率100Hz 5、模拟滤波器的设计:1、低通滤波器:最高截止频率200Hz ,极点个数为62、带通滤波器:6、单位冲激信号的产生:增益为1,出现时刻0.7s ,即()0.7t δ-7、直流信号的产生:幅度5V8、高斯白噪声的产生:功率谱密度6110/W Hz -⨯9、矩形脉冲序列的产生:幅度2V ,频率100Hz (周期0.01s ),脉宽0.002s (占空比20%)10、低通带限型信号的产生:最低截止频率300Hz ,最高截止频率3400Hz仿真波形及实验分析:1、正弦信号的产生:2、双极性不归零码的产生:3、单极性不归零码的产生:4、四进制数字信号的产生:5、模拟滤波器的设计:1、低通滤波器:2、带通滤波器:6、单位冲激信号的产生:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告哈尔滨工程大学教务处制实验一基带码型仿真(一)单、双极性归零码仿真一、实验原理1.1归零码归零码,是信号电平在一个码元之内都要恢复到零的编码方式,它包括曼彻斯特编码和差分曼彻斯特编码两种编码方式。
1.2单、双极性归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。
A)单极性不归零码,无电压表示”0”,恒定正电压表示”1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。
单极性归零码(RZ)即是以高电平和零电平分别表示二进制码1 和0,而且在发送码1 时高电平在整个码元期间T 只持续一段时间τ,其余时间返回零电平.在单极性归零码中,τ/T 称为占空比.单极性归零码的主要优点是可以直接提取同步信号,因此单极性归零码常常用作其他码型提取同步信号时的过渡码型.也就是说其他适合信道传输但不能直接提取同步信号的码型,可先变换为单极性归零码,然后再提取同步信号B)双极性不归零码,”1”码和”0”码都有电流,”1”为正电流,”0”为负电流,正和负的幅度相等,判决门限为零电平。
双极性归零码是二进制码0 和1 分别对应于正和负电平的波形的编码,在每个码之间都有间隙产生.这种码既具有双极性特性,又具有归零的特性.双极性归零码的特点是:接收端根据接收波形归于零电平就可以判决1 比特的信息已接收完毕,然后准备下一比特信息的接收,因此发送端不必按一定的周期发送信息.可以认为正负脉冲的前沿起了起动信号的作用,后沿起了终止信号的作用.因此可以经常保持正确的比特同步.即收发之间无需特别的定时,且各符号独立地构成起止方式,此方式也叫做自同步方式.由于这一特性,双极性归零码的应用十分广泛。
1.3 功率谱密度求信号的功率谱,功率谱= 信号的频率的绝对平方/ 传输序列的持续时间,求得的功率谱进行单位换算以dB值表示1.4占空比(Duty Ratio)在电信领域中有如下含义:例如:脉冲宽度1μs ,信号周期4μs 的脉冲序列占空比为0.25。
在一段连续工作时间内脉冲占用的时间与总时间的比值。
二、仿真方案2.1程序流程图2.2参数设计分别设置占空比为0.5、0.75、1.0 采样点数为2^k ,k 取正整数 每码元采样点数为64 码元速率为2Mb/s3.实验程序global dt t df Nclose allk=14;Rt=0.5; %占空比N=2^k; %采样点数L=64; %每码元的采样点数M=N/L; %码元数Rb=2; %码速率为2Mb/sTs=1/Rb; %码元间隔dt=Ts/L; %时域采样间隔df=1/(N*dt); %频域采样间隔T=N*dt; %截短时间Bs=N*df/2; %系统带宽t=linspace(-T/2,T/2,N); %时域横坐标f=linspace(-Bs,Bs,N); %频域横坐标EP=zeros(1,N);for jj=1:100a=round(rand(1,M)); %产生M个取值0,1等概的随机码s=zeros(1,N); %产生一个N个元素的零序列for ii=1:Rt*Ts/dts(ii+[0:M-1]*L)=a; %产生单极性归零码endQ=t2f(s); %傅氏变换P=Q.*conj(Q)/T; %P为单极性归零码的功率EP=(EP*(ii-1)+P)/ii; %累计平均aa=30+10*log10(EP+eps); %加eps以避免除以零endsubplot(2,2,2)plot(f,aa,'r')title('单极性归零码的功率谱')xlabel('f/MHZ')ylabel('Ps(f)/MHZ')axis([-15,+15,-50,50])gridsubplot(2,2,1)plot(t,s,'g')title('单极性归零码')xlabel('t(ms)')ylabel('s(t)(V)')axis([-5,5,-0.5,1.5])gridfor jj=1:100a=round(rand(1,M)); %产生M个取值0,1等概的随机码a=1-2*a;s=zeros(1,N); %产生一个N个元素的零序列for ii=1:Rt*Ts/dts(ii+[0:M-1]*L)=a; %产生双极性归零码endQ=t2f(s); %付氏变换P=Q.*conj(Q)/T; %P为双极性归零码的功率EP=(EP*(ii-1)+P)/ii; %累计平均aa=30+10*log10(EP+eps); %加eps以避免除以零endsubplot(2,2,4)%set(2,'position',[10,50,750,350]) %设定窗口位置及大小plot(f,aa,'r')title('双极性归零码的功率')xlabel('f(MHZ)')ylabel('Ps(f)(MHZ)')axis([-15,+15,-50,50])gridsubplot(2,2,3)plot(t,s,'g')title('双极性归零码')xlabel('t(ms)')ylabel('s(t)(V)')axis([-5,5,-1.5,1.5])grid子程序function X=t2f(x)global dt df N t f T%X=t2f(x)%X与x长度相同,并为2的整幂。
%本函数需要一个全局变量dt(时域取样间隔)H=fft(x);X=[H(N/2+1:N),H(1:N/2)]*dt;end图一占空比为0.5的波形图二占空比为0.75的波形图三占空比为1.0的波形(二)AMI码和HDB3码仿真一、实验原理1.1 AMI码1码通常称为传号,0码则叫空号,这是沿用了早期电报通信中的叫法。
从形态上看,它已是三状态信号,所以AMI码是伪三进制码。
(1)编码规则:消息代码中的0 传输码中的0消息代码中的1 传输码中的+1、-1交替例如:消息代码:1 0 1 0 1 0 0 0 1 0 1 1 1AMI码: +1 0 -1 0 +1 0 0 0 -1 0 +1 -1 +1(2)AMI码的特点:1 由AMI码确定的基带信号中正负脉冲交替,而0电位保持不变;所以由AMI码确定的基带信号无直流分量,且只有很小的低频分量;2 在接收端不易提取定时信号,由于它可能出现长的连0串;3 具有检错能力,如果在整个传输过程中,因传号极性交替规律受到破坏而出现误码时,在接收端很容易发现这种错误。
(3)解码规则从收到的符号序列中将所有的-1变换成+1后,就可以得到原消息代码1.2 HDB3码三阶高密度双极性码(英语:High Density Bipolar of Order 3,简称:HDB3码)是一种适用于基带传输的编码方式,它是为了克服AMI码的缺点而出现的,具有能量分散,抗破坏性强等特点。
三阶高密度双极性码用于所有层次的欧洲E-carrier系统,HDB3码将4个连续的“0”位元取代成“000V”或“B00V”。
这个做法可以确保连续的violations are of differing polarity,即是相隔单数的一般B记号。
1 先将消息代码变换成AMI码,若AMI码中连0的个数小于4,此时的AMI码就是HDB3码;2 若AMI码中连0的个数大于3,则将每4个连0小段的第4个0变换成与前一个非0符号(+1或-1)同极性的符号,用表示(+1+,-1-);3 为了不破坏极性交替反转,当相邻V符号之间有偶数个非0符号时,再将该小段的第1个0变换成+B或-B,符号的极性与前一非零符号的相反,并让后面的非零符号从符号开始再交替变化。
例如:消息代码: 1 0 0 0 0 10 0 0 01 1 0 0 0 0 1 1AMI码: +1 0 0 0 0 -10 0 0 0+1 -1 0 0 0 0 +1 -1HDB3码:+1 0 0 0 +V -10 0 0 -V+1 -1 +B 0 0 +V -1 +1二、实验程序global dt df t f Nclose allN=2^14; %采样点数L=64; %每码元的采样点数M=N/L; %码元数Rb=2;Ts=0.5; %码元宽度是0.5usdt=Ts/L;df=1/(N*dt); %MHzRT=0.5; %占空比T=N*dt ; %截短时间Bs=N*df/2; %系统带宽t=[-T/2+dt/2:dt:T/2]; %时域横坐标f=[-Bs+df/2:df:Bs]; %频域横坐标EPAMI=zeros(size(f));EPHDB=zeros(size(f));for ii=1:8ami=zeros(1,M);hdb=zeros(1,M);a=round(rand(1,M));b=3;%表示0000之间循环个数c=-1;%记载相邻V之间的1元素个数sign1=-1; %标志前一个信号sign2=-1; %标志前一个信号for ii=1:Mif a(ii)==1sign1=0-sign1;ami(ii)=sign1;endendfor ii=1:Mif b==3 %表示非0000if a(ii)==1sign2=0-sign2;hdb(ii)=sign2;if c>=0 %表示不是第一个0000c=c+1; %用来计算相邻v之间的非0元素个数endelseif ii<=M-3 & a(ii)+a(ii+1)+a(ii+2)+a(ii+3)==0 if mod(c,2)==1 %000Vhdb(ii+3)=sign2;else%B00Vsign2=0-sign2;hdb(ii)=sign2;hdb(ii+3)=sign2;endc=0;b=0;endelseif b<3 %对0000的循环b=b+1;endendfor i=[1:L]ami1(i+[0:M-1]*L)=ami;hdb1(i+[0:M-1]*L)=hdb;endAMI=t2f(ami1);PAMI=AMI.*conj(AMI)/T;HDB=t2f(hdb1);PHDB=HDB.*conj(HDB)/T;EPAMI=(EPAMI*(ii-1)+PAMI)/ii; EPHDB=(EPHDB*(ii-1)+PHDB)/ii;%画出RNZ、AMI、HDB3码波形figure(1)subplot(3,1,1)tt=[1:40];stem(a(1:40))axis([1,40,-1.5,1.5])title('原始RNZ信号')subplot(3,1,2)stem(tt,ami(1:40)')title('AMI码')subplot(3,1,3)stem(tt,hdb(1:40))title('HDB3码')%画出AMI的功率谱密度图figure(2)subplot(2,2,1)stem(tt,ami(1:40)','g')title('AMI码')subplot(2,2,3)stem(tt,hdb(1:40),'g')title('HDB3码')subplot(2,2,2)aa=30+10*log10(EPAMI+eps);%加eps以避免除以零bb=30+10*log10(EPHDB+eps);plot(f,aa,'r');gridaxis([-8,+8,-80,40])xlabel('f/MHz')ylabel('Ps(f)(dBm/MHz)')title('AMI功率谱密度')%画出HDB3的功率谱密度图subplot(2,2,4)plot(f,bb,'r');gridaxis([-8,+8,-80,40])xlabel('f/MHz')ylabel('Ps(f)(dBm/MHz)')title('HDB3功率谱密度')end实验2:采用2DPSK调制的数字通信系统一、实验原理1.1 2DPSK信号原理2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。