深圳大学物理化学实验报告燃烧热的测定谢佳澎苏竹修订稿

合集下载

燃烧热的测定 实验报告

燃烧热的测定 实验报告

燃烧热的测定一、实验目的●使用氧弹式量热计测定固体有机物质(萘)的恒容燃烧热,并由此求算其摩尔燃烧热。

●了解氧弹式量热计的结构及各部分作用,掌握氧弹式量热计的使用方法,熟悉贝克曼温度计的调节和使用方法●掌握恒容燃烧热和恒压燃烧热的差异和相互换算二、实验原理摩尔燃烧焓Dc H m 恒容燃烧热Q VDr H m = Q p Dr U m = Q V对于单位燃烧反应,气相视为理想气体Dc H m = Q V +S n B RT= Q V +△n(g)RT氧弹中放热(样品、点火丝)=吸热(水、氧弹、量热计、温度计)待测物质QV-摩尔恒容燃烧热 Mx-摩尔质量e-点火丝热值 bx-所耗点火丝质量q-助燃棉线热值 cx-所耗棉线质量K-氧弹量热计常数 DTx-体系温度改变值三、仪器及设备标准物质:苯甲酸待测物质:萘氧弹式量热计1-恒热夹套 2-氧弹3-量热容器4-绝热垫片5-隔热盖盖板6-马达7,10-搅拌器8-伯克曼温度计9-读数放大镜11-振动器12-温度计四、实验步骤1.量热计常数K的测定(1) 苯甲酸约 1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量W1和W2(2)把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线(3) 盖好氧弹,与减压阀相连,充气到弹内压力为1.2MPa为止(4)把氧弹放入量热容器中,加入3000ml水(5) 调节贝克曼温度计,水银球应在氧弹高度约1/2处(6) 接好电路,计时开关指向“1分”,点火开关到向“振动”,开启电源。

约10min后,若温度变化均匀,开始读取温度。

读数前5s 振动器自动振动,两次振动间隔1min,每次振动结束读数。

(7)在第10min读数后按下“点火”开关,同时将计时开关倒向“半分”,点火指示灯亮。

加大点火电流使点火指示灯熄灭,样品燃烧。

灯灭时读取温度。

(8)温度变化率降为0.05°C·min-1后,改为1min计时,在记录温度读数至少10min,关闭电源。

大学物理实验报告样本范文

大学物理实验报告样本范文

实验名称:二组分金属相图(注意::兰字部分即为预习报告,不用另外抄写一份!)班级:102班姓名:王亮学号:20xx××××× 实验组号:20xx年3月14日指导教师:一、实验目的:1、用热分析法(步冷曲线法)测绘Zn-Sn二组分金属相图;2、掌握热电偶测量温度的基本原理。

二、实验原理:概述、及关键点1、简单的二组分金属相图主要有几种?2、什么是热分析法?步冷曲线的线、点、平台各代表什么含义?3、采用热分析法绘制相图的关键是什么?4、热电偶测量温度的基本原理?三、实验装置图(注明图名和图标)四、实验关键步骤:不用整段抄写,列出关键操作要点,推荐用流程图表示。

五、实验原始数据记录表格(根据具体实验内容,合理设计)组成为w(Zn)=的样品的温度-时间记录表时间τ/min 温度 t/oC开始测量 0 380第一转折点第二平台点结束测量六、数据处理(要求写出最少一组数据的详细处理过程)七、思考题八、对本实验的体会、意见或建议(若没有,可以不写)(完)1.学生姓名、学号、实验组号及组内编号;2.实验题目:3.目的要求:(一句话简单概括)4.仪器用具: 仪器名称及主要规格(包括量程、分度值、精度等)、用具名称。

5.实验原理:简单但要抓住要点,要写出试验原理所对应的公式表达式、公式中各物理参量的名称和物理意义、公式成立的条件等。

画出简单原理图等。

6.实验内容;7.数据表格:画出数据表格(写明物理量和单位);8.数据处理及结果(结论):按实验要求处理数据。

9.作业题:认真完成实验教师要求的思考题。

10.讨论:对实验中存在的问题、数据结果、误差分析等进行总结,对进一步的想法和建议等进行讨论。

实验报告要求 1.认真完成实验报告,报告要用中国科学技术大学实验报告纸,作图要用坐标纸。

2.报告中的线路图、光路图、表格必须用直尺画。

大学物理实验报告热敏电阻热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。

物化实验——燃烧热的测定

物化实验——燃烧热的测定

燃烧热的测定1 引言 1.1实验目的1. 熟悉弹式量热计的原理、构造及使用方法。

2. 明确恒压燃烧热与恒容燃烧热的差别及相互关系。

3. 掌握温差测量的实验原理和技术。

4. 学会用雷诺图解法校正温度改变值。

1.2实验原理在指定温度及一定压力下,1mol 物质完全燃烧时的定压反应热,称为该物质在此温度下的摩尔燃烧热,记作△c H m 。

通常,完全燃烧是指C →CO 2(g ),H 2→H 2O (l ),S →SO 2(g ),而N 、卤素、银等元素变为游离状态。

由于在上述条件下△H =Q p ,因此△c H m 也就是该物质燃烧反应的等压热效应Q p 。

在实际测量中,燃烧反应在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q v (即燃烧反应的△c U m )。

若反应系统中的气体均为理想气体,根据热力学推导,Q p 和Q v 的关系为p V Q Q nRT =+∆ (1) 式中:T ——反应温度,K ;△n ——反应前后产物与反应物中气体的物质的量之差; R ——摩尔气体常数。

通过实验测得Q v 值,根据上式就可计算出Q p ,即燃烧热的值。

测量热效应的仪器称作量热计。

量热计的种类很多。

一般测量燃烧热用弹式量热计。

本实验所用量热计和氧弹结构如图2-2-1和图2-2-2所示。

实验过程中外水套保持恒温,内水桶与外水套之间以空气隔热。

同时,还对内水桶的外表面进行了电抛光。

这样,内水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成一个绝热体系。

弹式量热计的基本原理是能量守恒定律。

样品完全燃烧所释放的能量使得氧弹本身及周围的介质和量热计有关附件的温度升高。

测量介质在燃烧前后的变化值,就可求算该样品的恒容燃烧热。

V V V rmQ K T Q m Q m M ••=•∆--棉线棉线点火丝点火丝 (2) 式中:m ——为待测物的质量,kg ;r M ——为待测物的摩尔质量,k g ·mol -1;K ——仪器常数,k J ·℃-1 ;T ∆——样品燃烧前后量热计温度的变化值;V Q 棉线,V Q 点火丝——分别为棉线和点火丝的恒容燃烧热(-16736和-3243k J ·kg )m 棉线,m 点火丝——分别为棉线和点火丝的质量,kg ;先燃烧已知燃烧热的物质(如苯甲酸),标定仪器常数K ,再燃烧未知物质,便可由上式计算出未知物的恒容摩尔燃烧热,再根据(1)式计算出摩尔燃烧热。

大学物理重力加速度的测定实验报告范文

大学物理重力加速度的测定实验报告范文

一、实验任务精确测定银川地区的重力加速度二、实验要求测量结果的相对不确定度不超过5%三、物理模型的建立及比较初步确定有以下六种模型方案:方法一、用打点计时器测量所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.方法二、用滴水法测重力加速度调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面重力加速度的计算公式推导如下:取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知:ncosα-mg=0 (1)nsinα=mω2x (2)两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g,∴y/x=ω2x/2g. ∴ g=ω2x2/2y..将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.方法四、光电控制计时法调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法五、用圆锥摆测量所用仪器为:米尺、秒表、单摆.使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r 由以上几式得:g=4π2n2h/t2.将所测的n、t、h代入即可求得g值.方法六、单摆法测量重力加速度在摆角很小时,摆动周期为:则通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。

物理化学实验燃烧热的测定

物理化学实验燃烧热的测定

按下充气机手柄,先充入少量氧气(约0.5MPa), 然后开启 氧弹进出气口,借以赶出弹中空气,再充入约2MPa的氧气。
充气压力 显示表

压 表



手柄
氧气钢瓶开关
充气机出气口
钢瓶与减压阀 连接螺母
底坐
减压阀低压调节杆
钢瓶出气口
(3)燃烧和测量温度:
①将充好氧气的氧弹放入 量热计的内桶,将 SHR—15氧弹式量热计 电极插头插在氧弹两电 极上,打开电源,若 “点火”指示红灯亮了, 说明通路(注意:此时 决不能按“点火按 键”),否则应取出氧 弹查明原因。
压太紧,太紧点火后不能充分燃烧)。抽去
模底的托板,再继续向下压,使模底和样品
一起脱落。将此样品表面的碎屑除去,在分 底模托板 析天平上的准确称量后即可供燃烧热测定用。
(2)装置氧弹(图见后面一页) :用分析天平准确称量一
段点火丝(约15cm)的质量,拧开,将氧弹内壁擦干净, 特别是电极下端的不锈钢接线柱更应擦干净挂上放入压好 的片状试样金属小杯。小心地将点火丝二端分别在电极的 固定下端。将点火丝弯成如图形状 。
2.萘的燃烧热测定
• 称取0.5g左右萘,按上述法进行压片、燃 烧等实验操作。
• 实验完毕后,洗净氧弹,倒出卡计盛水桶 中的自来水,并擦干待下次实验用。
五、实验数据的电脑记录与处理
1.水当量测定实验数据的记录
准备开始实验前开启微机,进入操作系统后双击“燃烧热” 图标启动燃烧热测定应用程序,出现如图界面。
点 火 丝
片状试样
旋紧氧弹盖,将SHR—15氧弹式量热计电极插头插在 氧弹两电极上,打开电源,若“点火”指示红灯亮了, 说明通路,然后在弹杯中注入10ml水,旋紧氧弹盖后

物理化学实验报告-燃烧热的测定

物理化学实验报告-燃烧热的测定

实验四燃烧热的测定摘要:本实验采用氧弹量热计测定萘的恒容燃烧热,并计算萘的恒压燃烧热。

在测量过程中先用标准物质苯甲酸标定量热计的热容,通过雷诺校正图的方法校正过程的温度变化,以获得同绝热系统相近的测量效果,然后用相同的方法进行萘的燃烧测定关键词:氧弹量热计燃烧热雷诺校正图The Determination of The Combustion Heat of AlbocarbonAbstract:In this experiment, we determined the combustion heat of Albocarbon at a constant volume by using Oxygen-bomb calorimeter and then calculated thecombustion heat at a constant pressure. Benzoic acid, as standard substance,is used at the process of the experience first, and then we calculated the heatcapacity of the whole instrument. Through the method of Renault correctfigure we can measure the temperature variance to simulate a perfectinsulator-system in the actual system. After that, we got the albocarbon’scombustion heat at a constant volume.Key words:Oxygen-bomb calorimeter Combustion heat Renault correct figure1.序言摩尔燃烧热是指一摩尔纯净物完全燃烧时所放出的热量。

大学物理演示实验报告

大学物理演示实验报告

院系名称:纺织与材料学院专业班级:轻化工程11级03班姓名:梁优学号:鱼洗实验描述:鱼洗是中国三大青铜器之一,在鱼洗内注入清水后摩擦其两耳,如果频率恰当,就会出现水面产生波纹,发出嗡嗡的声音并有水花跃出的现象。

经验表明,湿润的双手比干燥的双手更容易引起水花飞跃。

实验原理:鱼洗的原理应该是同时应用了波的叠加和共振。

摩擦的双手相当于两个相干波源,他们产生的水波在盆中相互叠加,形成干涉图样。

这与实验中观察到的现象相同。

按照我的分析,如果振动的频率接近于鱼洗的固有频率,才会产生共振现象。

通过摩擦输入的能量才会激起水花。

令人不解的是,事实上鱼洗是否能产生水花与双手的摩擦频率并没有关系。

在场的同学试着摩擦的时候,无论是缓慢的摩擦还是快速的摩擦,都能引起水花四溅。

通过查阅资料得知,鱼洗的原理其实是摩擦引起的自激振动。

(就像用槌敲锣一样,敲击后锣面的振动频率并不等于敲击频率。

)外界能量(双手的摩擦)输入鱼洗时,就会引起其以自己的固有频率震动。

(正如在锣面上敲一下。

)为什么湿润的双手更容易引起鱼洗的振动呢?从实践的角度,可能是因为湿润的双手有更小的摩擦系数,因为摩擦起来更流畅,不会出现干燥双手可能会出现的“阻塞”情况,这只是我个人猜想,并没有发现资料有关于这方面的讨论。

离心力演示仪实验描述:离心力演示仪是一个圆柱形仪器,中间有一个细柱,细柱穿过一段闭合的硬塑料带上的两个正对小孔。

塑料带的一段固定,静止时,系统为一个竖直平面的圆,中间由细柱传过。

当摁下仪器上的按钮时,细柱带动塑料带在水平面旋转起来。

当旋转速度增大时,可以看到塑料带的自由端延细柱向下运动,整个塑料带变成旋转的椭圆形状。

实验原理:离心力是一个惯性力,实际上是并不存在的。

绕旋转中心转动的物体有脱离中心延半径方向向外运动的趋势,产生这种趋势的力即称为离心力。

当启动仪器时,塑料带各部分均作水平方向的圆周运动,所需要的向心力由临近部分的塑料小段的拉力的径向分力提供。

燃烧热测定,实验报告(精选5篇)

燃烧热测定,实验报告(精选5篇)

燃烧热测定,实验报告(精选5篇)第一篇:燃烧热测定,实验报告20XX 报告汇编 Compilation of reports报告文档·借鉴学习word 可编辑·实用文档燃烧热的测定一、实验目的λ使用氧弹式量热计测定固体有机物质(萘)的恒容燃烧热,并由此求算其摩尔燃烧热。

λ了解氧弹式量热计的结构及各部分作用,掌握氧弹式量热计的使用方法,熟悉贝克曼温度计的调节和使用方法λ掌握恒容燃烧热和恒压燃烧热的差异和相互换算二、实验原理焓摩尔燃烧焓∆∆cHm 恒容燃烧热 QV ∆∆rHm = Qp∆∆rUm = QV 对于单位燃烧反应,气相视为理想气体∆∆cHm = QV +∑∑νν BRT =QV +△ n(g)RT 氧弹中放热(样品、点火丝)=吸热(水水、氧弹、量热计、温度计)待测物质QV -摩尔恒容燃烧热Mx -摩尔质量εε-点火丝热值bx -所耗点火丝质量 q -助燃棉线热值cx -所耗棉线质量 K -氧弹量热计常数∆∆Tx -体系温度改变值xV x x xxWQ(x)+ εb +qc = KΔTM报告文档·借鉴学习word 可编辑·实用文档三、仪器及设备标准物质:苯甲酸待测物质:萘氧弹式量热计-恒热夹套2弹-氧弹 3 -量器热容器 4片-绝热垫片 5 -隔热盖盖板-马达 7,10 -搅拌器 8 -伯克曼温度计 9 -读数放大镜 11 -振动器12 -温度计报告文档·借鉴学习word 可编辑·实用文档四、实验步骤 1.量热计常数 K 的测定(1)苯甲酸约 1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放量置样片前后质量 W1 和和 W2(2)把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线(3)盖好氧弹,与减压阀相连,充气到弹内压力为1.2MPa 为止(4)把氧弹放入量热容器中,加入 3000ml 水(5)调节贝克曼温度计,水银球应在氧弹高度约 1/2 处(6)接好电路,计时开关指向“1 分”,点火开关到向“ 振动”,开启电约源。

深圳大学物理化学实验报告--燃烧热的测定--谢佳澎 苏竹示范文本

深圳大学物理化学实验报告--燃烧热的测定--谢佳澎 苏竹示范文本

深圳大学物理化学实验报告--燃烧热的测定--谢佳澎苏竹示范文本After completing the work or task, record the overall process and results, including the overall situation, progress and achievements, and summarize the existing problems and futurecorresponding strategies.某某管理中心XX年XX月深圳大学物理化学实验报告--燃烧热的测定--谢佳澎苏竹示范文本使用指引:此报告资料应用在完成工作或任务后,对整体过程以及结果进行记录,内容包含整体情况,进度和所取得的的成果,并总结存在的问题,未来的对应策略与解决方案。

,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。

深圳大学物理化学实验报告实验者: 谢佳澎苏竹实验时间: 2000/3/5气温: 24.5 ℃大气压: 101.47 kpa燃烧热的测定目的要求一,用氧弹热量计测定萘的燃烧热二,明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别三,了解热量计中主要部分的作用,掌握氧弹热量计的实验技术四,学会雷诺图解法校正温度改变值仪器与试剂氧弹卡计贝克曼温度计普通温度计压片器分析天平台秤万用电表点火丝剪刀直尺镊子扳手苯甲酸柴油氧气钢瓶氧气减压阀实验数据及其处理贝克曼温度计读数苯甲酸柴油苯甲酸柴油样品质量g序号初段末段初段末段w2w212.1573.458 1.528 3.440 2.2500 39.1769 22.1623.461 1.533 3.480 w1w132.1693.464 1.538 3.520 1.5718 38.5392 42.1753.467 1.541 3.550 样重样重52.1803.469 1.542 3.558 0.6782 0.6377 62.1853.470 1.544 3.561 点火丝72.1903.471 1.5463.568 l2l282.1943.472 1.547 3.570 20 2092.1983.473 1.549 3.575l1l1102.2033.475 1.550 3.572 165.8消耗消耗414.2初段斜率初段截距初段斜率初段截距0.0051 2.1530.00231.529 末段斜率末段截距末段斜率末段截距0.0018 3.458 0.0131 3.467 升温中点12升温中点12.5中点低温中点高温中点低温中点高温2.2153.480 1.558 3.625 温升1.265 温升2.066报告文书样本 QCT/FS-ZH-GZ-K439水值j/℃14191热值j/g459204 实验讨论固体样品为什么要压成片状?答:压成片状易于燃烧,和氧气充分接触,且易于称中。

燃烧热的测定实验报告

燃烧热的测定实验报告

燃烧热的测定一、实验目的1.明确燃烧热的定义,了解恒压燃烧热和恒容燃烧热的差别和联系;2.掌握量热技术的基本原理,学会测定萘的燃烧热;3.了解氧弹卡计主要部件的作用,掌握卡计的实验技术;4.学会用雷诺图解法校正温度变化。

二、实验原理燃烧热是指1摩尔物质完全燃烧时所放出的热量。

在恒容条件下测得的燃烧热称为恒容燃烧热(Q v ),恒容燃烧热这个过程的内能变化(ΔU )。

在恒压条件下测得的燃烧热称为恒压燃烧热(Qp ),恒压燃烧热等于这个过程的热焓变化(ΔH )。

若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列关系式:∆cHm = Qp =Qv +ΔnRT 。

量热反应测量的基本原理为能量守恒定律。

热是一个很难测定的物理量,热量的传递往往表现为温度的改变,而温度却很容易测量。

本实验采用氧弹热量计为测量仪器。

氧弹是一个特制的不锈钢容器,为了保证样品完全燃烧,氧弹中应充以高压氧气(或者其他氧化剂),还必须使燃烧后放出的热量尽可能全部传递给量热计本身和其中盛放的水,而几乎不与周围环境发生热交换。

在盛有定水的容器中,样品物质的量为n 摩尔,放入密闭氧弹充氧,使样品完全燃烧,放出的热量传给水及仪器各部件,引起温度上升。

设系统(包括内水桶,氧弹本身、测温器件、搅拌器和水)的总热容为C (通常称为仪器的水当量,即量热计及水每升高1K 所需吸收的热量),假设系统与环境之间没有热交换,燃烧前、后的温度分别为T1、T2,则此样品的恒容摩尔燃烧热为:n T T C Q m V )(12,--=式中,Qvm 为样品的恒容摩尔燃烧热(J·mol-1);n 为样品的摩尔数(mol);C 为仪器的总热容(J·K-1或J / ℃)。

上述公式是最理想、最简单的情况。

但是,由于氧弹量热计不可能完全绝热,热漏在所难免。

因此,燃烧前后温度的变化不能直接用测到的燃烧前后的温度差来计算,必须经过合理的雷诺校正才能得到准确的温差变化。

燃烧热的测定-report example

燃烧热的测定-report example

燃烧热的测定物理化学实验报告2010-05-09 18:34:03 阅读45 评论0 字号:大中小订阅一、实验目的1.掌握燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别及相互关系;2.熟悉热量计中主要部件的原理和作用,掌握氧弹热量计的实验技术;3.用氧弹热量计测定苯甲酸萘的燃烧热;4.学会雷诺图解法校正温度改变值。

二、实验原理1.燃烧与量热根据热化学的定义,1mol物质完全氧化时的反应热称作燃烧热。

所谓完全氧化,对燃烧产物有明确规定。

如有机化合物中的碳氧化成一氧化碳不能认为是完全氧化,只有氧化成二氧化碳才是完全氧化。

燃烧热的测定除了有其实际应用价值外,还可以用于求算化合物的生成热、键能等。

量热法是热力学的一种基本实验方法。

在恒容或恒压条件下可以分别测得恒容燃烧热QV和恒压燃烧热Qp。

由热力学第一定律可知,QV等于体积内能变化△U;Qp等于其焓变△H。

若把参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在以下关系:△H=△U+△(pV)(Ⅱ—4—1a)Qp=QV+△nRT (Ⅱ—4—1b)式中△n为反应前后反应物和生成物中气体的物质的量之差;R为摩尔气体常数;T为反应时热力学温度。

氧弹热量计测量装置如图Ⅱ—4—1所示。

图Ⅱ—4—2氧弹的剖面图。

Ⅱ—4—1 Ⅱ—4—22.氧弹热量计氧弹热量计的基本原理是能量守恒定律。

样品完全燃烧后所释放的能量使得氧弹本身及其周围的介质和热量计有关附件的温度升高,则测量介质在燃烧前后体系温度的变化值,就可求算该样品的恒容燃烧热。

其关系式如下:—(m样/M)QV—l*Ql=(m水C水+C计)△T式中m样和M分别为样品的质量和摩尔质量;QV为样品的恒容燃烧热;l和Ql是引燃用铁丝的长度和单位长度燃烧热;m水和C水是以水为测量介质时,水的质量和比热容;C计称为热量计的水当量,即除水之外,热量计升高1℃所需的热量;△T为样品燃烧前后水温的变化值。

为了保证样品完全燃烧,氧弹中须充以高压氧气或其他氧化剂。

大学物理实验报告范例

大学物理实验报告范例

摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。

本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。

关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-~+)℃-1。

因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。

国产的主要是指MF91~MF96型半导体热敏电阻。

由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。

大多应用于测温控温技术,还可以制成流量计、功率计等。

Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。

这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。

载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越校应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。

2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(Ω)以及控温用的温度传感器),连接线若干。

【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。

因而热敏电阻的电阻值可以根据电阻定律写为(1—2)式中为两电极间距离,为热敏电阻的横截面,。

物理化学实验报告——燃烧热的测定

物理化学实验报告——燃烧热的测定

物理化学实验报告班级:姓名:学号:实验日期:2019年5月23日实验名称:燃烧热的测定一、实验目的(一)充分认识和掌握恒压热效应与恒容热效应的区别及互相关系。

(二)了解氧弹量热计的构造和测量原理,掌握燃烧热的测定技术。

(三)学会应用雷诺图解法矫正温度改变值。

二、实验原理在指定温度及一定压力下,1mol物质完全燃烧时的定压反应热,称为该物质在此温度下的摩尔燃烧热,记作△c H m。

通常,完全燃烧是指C→CO2(g),H2→H2O(l),S→SO2(g),而N、卤素、银等元素变为游离状态。

由于在上述条件下△H=Q p,因此△c H m也就是该物质燃烧反应的等压热效应Q p。

在实际测量中,燃烧反应在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q v(即燃烧反应的△c U m)。

若反应系统中的气体均为理想气体,根据热力学推导,Q p和Q v的关系为QQQQ=QQQQ+Δnnnnnn式中:T为反应温度,单位为K;△n 为反应前后产物与反应物中气体的物质的量之差;R 为摩尔气体常数。

通过实验测得Q v值,根据上式就可计算出Q p,即燃烧热的值。

测量热效应的仪器称作量热计。

量热计的种类很多。

一般测量燃烧热用弹式量热计。

本实验所用量热计和氧弹结构如图2-2-1和图2-2-2所示。

实验过程中外水套保持恒温,内水桶与外水套之间以空气隔热。

同时,还对内水桶的外表面进行了电抛光。

这样,内水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成一个绝热体系。

弹式量热计的基本原理是能量守恒定律。

样品完全燃烧所释放的能量使得氧弹本身及周围的介质和量热计有关附件的温度升高。

测量介质在燃烧前后的变化值,就可求算该样品的恒容燃烧热。

mm MMMM QQQQ=KK•Δnn−QQQQ点火丝•mm点火丝式中:m为待测物的质量,单位为kg ;MMMM为待测物的摩尔质量,单位为kg·mol-1;KK为仪器常数,单位为kJ·℃-1 ;Δnn为样品燃烧前后量热计温度的变化值;QQQQ点火丝为点火丝的恒容燃烧热,mm点火丝为点火丝的质量,单位为kg。

物理化学实验报告-燃烧热的测定(2)

物理化学实验报告-燃烧热的测定(2)

2)参与反应的气体均视为理想气体,则Q p =Q V +ΔnRT 。

Q V 为恒容燃烧热,Q p 为恒压燃烧热,Δn 为反应前后产物与反应物中气体的物质的量之差,R 为摩尔气体常量,T 为反应的热力学温度。

3)化学反应的热效应(包括燃烧热)通常用恒压热效应ΔH 来表示。

2.氧弹热量计和装置原理1)本实验采用恒温式氧弹热量计。

在下面的氧弹热量计装置图中,贝克曼温度计和外筒温度计在本实验中采用精密温差测定仪来代替。

2)测燃烧热原理:样品在纯氧气氛中完全燃烧放出的热量使氧弹周围介质温度升高,若已知仪器常数,测量其温差即可求算样品的恒容燃烧热。

燃烧热计算式:Q V W + q 1x + q 2 ≈ Q V W + q 1x = KΔh式中Q V (J/g )为萘(被测物质)的恒容燃烧热;W (g )为萘的质量;x (g )为烧掉点火丝(铜丝)的质量;已知铜丝的燃烧热q 1=-2510J/g ,此实验中由于q 2(即氧弹内的N 2生成硝酸时放出的热量)太小则可以忽略。

一般用已知燃烧热的标准物质苯甲酸来标定氧弹热量计的仪器常数K (J/mm ),已知苯甲酸的恒容燃烧热Q V =-3231.3KJ/mol 。

Δh (mm )为记录纸上曲线的峰高。

设苯甲酸和萘的恒容燃烧热分别为Q V1和Q V2,烧掉铜丝的质量分别为x 1和x 2,消耗样品质量分别为W 1和W 2,曲线记录的峰值分别为Δh 1和Δh 2,则萘的恒容燃烧热可由下式计算得:Q V2= Q V1W 1+q 1x 1 ∆h 2−q 1x 2∆h 1∆h 1W 2 此处燃烧热的单位为KJ/g ,注意单位的换算。

3)为了保证样品完全燃烧,氧弹中必须充足高压氧气(本实验要求在1.2-1.4MPa 之间)。

因此要求氧弹必须耐高压、密封、耐腐蚀,同时粉末样品必须压成片状,以免充气时冲散样品,使样品燃烧不完全。

必须使燃烧后放出的热量尽可能传递给介质,使水温升高,因此应尽量避免和减小由于辐射、对流以及传导等引起的能量散失。

物化实验报告:燃烧热的测定

物化实验报告:燃烧热的测定

燃烧热的测定一、实验目的1、用氧弹量热计测定萘的燃烧热,明确燃烧热的定义,了解恒压燃烧热与衡蓉燃烧热的差别与相互关系;2、了解量热计的原理、构造和使用方法,掌握有关热化学实验的一般知识和测量技术;3、掌握用雷诺图解法校正温度的改变值。

二、实验原理1、燃烧热定义:一定温度和压力或者体积下,1mol 纯物质完全氧化时的反应热。

对于苯甲酸,如在25℃下,按下式完全反应,燃烧热为-3226.8kJ/mol 。

由热力学第一定律可知:在不做非膨胀功的情况下,恒容燃烧热v Q U =∆,恒压燃烧热p Q H =∆。

在氧弹式量热计中测得燃烧热热为Q ,其与p Q 的关系为p v Q Q nRT =+∆在盛有定量水的容器中,放入内装有m g 样品和W g 氧气的密闭氧弹,然后使样品完全燃烧,放出的热量会传给水及仪器,引起温度上升。

计燃烧前后的体系温度分别为0,n t t ,则物质的总的燃烧热为0'(')()n Q CW W t t =+-2、用雷诺作图法校正ΔT :尽管在仪器上进行了各种改进,但在实验过程中仍不可避免环境与体系间的热量传递。

这种传递使得我们不能准确地由温差测定仪上读出由于燃烧反应所引起的温升ΔT 。

而用雷诺作图法进行温度校正,能较好地解决这一问题。

将燃烧前后所观察到的水温对时间作图,可联成FHIDG 折线,如图(1)和图(2)所示。

图(1)中H 相当于开始燃烧之点。

D 为观察到的最高温度。

在温度为室温处作平行于时间轴的JI 线。

它交折线FHIDG 于I 点。

过I 点作垂直于时间轴的ab 线。

然后将FH 线外延交ab 线于A 点。

将GD 线外延,交ab 线于C 点。

则AC 两点间的距离即为ΔT 。

图中AA ′为开始燃烧到温度升至室温这一段时间 t1内,由环境辐射进来以及搅拌所引进的能量而造成量热计的温度升高。

它应予以扣除之。

CC ′为温度由室温升高到最高点D 这一段时间 t2内,量热计向环境辐射而造成本身温度的降低。

燃烧热-物化实验报告

燃烧热-物化实验报告

燃烧热的测定:憨家豪学号:2012012026 班级:材23 同组人:晓慧实验日期:2014年4月19日提交报告日期:2014年4月20日实验老师:郭勋1 引言1.1实验目的(1)熟悉弹式量热计的原理、构造及使用方法;(2)明确恒压燃烧热与恒容燃烧热的差别及相互关系;(3)掌握温差测量的实验原理和技术;(4)学会用雷诺图解法校正温度改变值;1.2实验原理在指定温度及一定压力下,1 mol物质完全燃烧时的定压反应热,称为该物质在此温度下的摩尔燃烧热,记作△c H m。

通常,完全燃烧是指C→CO2(g),H2→H2O(l),S→SO2(g),而N、卤素、银等元素变为游离状态。

由于在上述条件下△H=Q p,因此△c H m也就是该物质燃烧反应的等压热效应Q p。

在实际测量中,燃烧反应在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q v(即燃烧反应的△c U m)。

若反应系统中的气体均为理想气体,根据热力学推导,Q p和Q v的关系为(1)式中:T——反应温度,K;——反应前后产物与反应物中气体的物质的量之差;R——摩尔气体常数。

通过实验测得值,根据上式就可计算出,即燃烧热的值。

测量热效应的仪器称作量热计。

量热计的种类很多。

一般测量燃烧热用弹式量热计。

本实验所用量热计和氧弹结构如图2-2-1和图2-2-2所示。

实验过程中外水套保持恒温,水桶与外水套之间以空气隔热。

同时,还对水桶的外表面进行了电抛光。

这样,水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成一个绝热体系。

弹式量热计的基本原理是能量守恒定律。

样品完全燃烧所释放的能量使得氧弹本身及周围的介质和量热计有关附件的温度升高。

测量介质在燃烧前后的变化值,就可求算该样品的恒容燃烧热。

(2)式中: m——为待测物的质量,kg ;——为待测物的摩尔质量,kg·mol-1;——仪器常数,kJ·℃-1 ;——样品燃烧前后量热计温度的变化值;,——分别为棉线和点火丝的恒容燃烧热(-16736和-3243 kJ/mol)——分别为棉线和点火丝的质量,kg;先燃烧已知燃烧热的物质(如苯甲酸),标定仪器常数K,再燃烧未知物质,便可由上式计算出未知物的恒容摩尔燃烧热,再根据(1)式计算出摩尔燃烧热。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳大学物理化学实验报告燃烧热的测定谢佳
澎苏竹
Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】
深圳大学物理化学实验报告--燃烧热的测定--谢佳澎苏竹
深圳大学物理化学实验报告
实验者: 谢佳澎苏竹实验时间: 2000/3/5
气温: ℃ 大气压: kPa
燃烧热的测定
1.目的要求
一,用氧弹热量计测定萘的燃烧热
二,明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别
三,了解热量计中主要部分的作用,掌握氧弹热量计的实验技术
四,学会雷诺图解法校正温度改变值
2.仪器与试剂
氧弹卡计贝克曼温度计普通温度计压片器分析天平台秤万用电表点火丝剪刀直尺镊子扳手苯甲酸柴油氧气钢瓶氧气减压阀
3.实验数据及其处理
4 实验讨论
1.固体样品为什么要压成片状
答:压成片状易于燃烧,和氧气充分接触,且易于称中。

2.在量热学测定中,还有哪些情况可能需要用到雷诺温度校正方法答:实验中要用到温度差校正的都可以用。

3.如何用萘的燃烧数据来计算萘的标准生成热
答:代入公式计算。

相关文档
最新文档