电力电子技术课程设计中频加热电源主电路设计

合集下载

中频电源电路设计

中频电源电路设计

摘要随着科学技术的发展以及提高我国国防能力的需要,对军事设施的技术改造已被列为军事技术改造中的重点。

中频电源指输出频率为400Hz的电源,它可以为动力系统及导航与武备系统供电。

传统的400Hz中频电源体积大,输出波形不稳定。

本文所设计的400Hz中频电源通过整流电路、逆变电路、积分电路、放大电路和检波电路及控制其最后的输出电压,实现了电压的稳定输出,具有体积小、功率大和波形无失真等优点,有着广泛的用途和良好的发展前景。

关键词:中频电源,PWM调制,输出变压器电力电子装置及系统课程设计任务书一、课程设计的目的通过电力电子装置及系统的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。

2、培养学生综合分析问题、发现问题和解决问题的能力。

3、培养学生运用知识的能力和工程设计的能力。

4、培养学生运用仿真工具的能力和方法。

5、提高学生课程设计报告撰写水平。

二、课程设计的要求1. 题目题目:中频电源电路设计主要技术数据●输入电压:三相360V~400V,50Hz±5%●输出电压:单相,220V±2%,400Hz±0.5%●输出功率:4kW●输出电流:22A●功率因数:0.8二、课程设计的要求1. 题目题目:中频电源电路设计主要技术数据●输入电压:三相360V~400V,50Hz±5%●输出电压:单相,220V±2%,400Hz±0.5%●输出功率:4kW●输出电流:22A●功率因数:0.8●效率:85%设计内容:●主电路设计和参数选择●控制系统及辅助电源电路设计●电路仿真分析和仿真结果要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。

严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。

设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。

电力电子课程设计-晶闸管并联谐振感应加热中频电源主电路的设计

电力电子课程设计-晶闸管并联谐振感应加热中频电源主电路的设计

《电力电子设计技术报告》题目:晶闸管并联谐振感应加热中频电源主电路的设计目录1.课程设计目的 (1)2.课程设计题目描述和要求 (1)2.1. 课程设计题目描述 (1)2.2.课程设计题目要求及技术指标 (2)3.课程设计报告内容 (3)3.1 设计方案的选定与说明 (3)3.2论述方案的各部分工作原理及计算 (4)3.3设计方案图表及其电路图 (6)4.总结 (9)5.参考书目 (10)引言晶闸管交流功率控制器是国际电工委员会(IEC)命名的“半导体交流功率控制器”(Semiconductor AC Power Controller)的一种,它以晶闸管(可控硅SCR或双向可控硅TRIAC)为开关元件,是一种可以快速、精确地控制合闸时间的无触点开关,是自动控制温度系统高精度及高动态指标必不可少的功率终端控制设备。

晶闸管交流调功器是在一个固定周期或变动周期里,以控制导通的交流电周波数来控制输出功率的大小。

晶闸管在正弦波过零时导通,在过零时关断,输出为完整的正弦波。

晶闸管交流调功器主要用于各种电阻炉、电加热器、扩散炉、恒温槽、烘箱、熔炉等电热设备的温度自动、手动控制。

一.晶闸管并联谐振感应加热中频电源主电路的设计要求主要技术数据:(1)输入交流电源:线电压有效值UL =380V、电网波动范围AV=0.95~1.1、频率f=50Hz(2)中频电源:额定输出功率PH =100kw、最大输出功率PHm=110kw、频率f=1000Hz、负载基波位移角φ1=300。

二.整流电路的设计1.整流电路的选择很明显,单相全控桥式整流电路具有输出电流脉动小、功率因数高和变压器利用率高等特点。

然而值得注意的是,在大电感负载情况下,当控制角α接近π/2时,输出电压的平均值接近于零,负载上的电压太小,且理想的大电感负载是不存在的,故实际电流波形不可能是一条直线,而且在α=π/2之前电流就会出现断续。

电感量越小,电流开始断续的α值就越小。

电力电子课程设计主电路

电力电子课程设计主电路

电力电子课程设计主电路一、教学目标本节课的教学目标是使学生掌握电力电子主电路的基本原理和组成部分,能够分析并设计简单的电力电子电路。

知识目标:学生能够描述电力电子主电路的基本原理和各组成部分的功能,理解电力电子器件的工作特性。

技能目标:学生能够运用所学知识分析和设计简单的电力电子电路,提高解决实际问题的能力。

情感态度价值观目标:通过学习电力电子技术,培养学生对现代电子技术的兴趣,增强其对电力电子领域的认同感和责任感。

二、教学内容本节课的教学内容主要包括电力电子主电路的基本原理、组成部分及电力电子器件的工作特性。

1.电力电子主电路的基本原理:介绍电力电子系统的工作原理,包括电源、负载、控制电路和电力电子器件等。

2.电力电子主电路的组成部分:详细讲解整流电路、逆变电路、斩波电路等电力电子电路的组成和工作原理。

3.电力电子器件的工作特性:分析常用电力电子器件(如晶闸管、GTO、IGBT等)的结构、参数和特性,探讨其在工作状态下的性能表现。

三、教学方法为了提高教学效果,本节课将采用多种教学方法相结合的方式进行教学。

1.讲授法:教师通过讲解电力电子主电路的基本原理、组成部分和电力电子器件的工作特性,使学生掌握相关知识。

2.案例分析法:教师通过分析实际案例,使学生更好地理解电力电子主电路在实际应用中的工作原理和性能表现。

3.实验法:安排实验环节,让学生亲自动手进行电力电子电路的搭建和测试,提高学生的实践能力。

四、教学资源本节课的教学资源包括教材、参考书、多媒体资料和实验设备等。

1.教材:选用合适的教材,为学生提供系统、科学的学习材料。

2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。

3.多媒体资料:制作课件、视频等多媒体资料,提高课堂教学的趣味性和生动性。

4.实验设备:准备实验所需的设备,为学生提供实践操作的机会。

五、教学评估为了全面、客观地评估学生的学习成果,本节课采用以下评估方式:1.平时表现:关注学生在课堂上的参与程度、提问回答等情况,给予相应的表现评价。

电力电子技术-项目六中频感应加热电源

电力电子技术-项目六中频感应加热电源

任务一 认识中频感应加热电源
4.控制电路 中频感应加热装置的控制电路比较复杂,一般包括整流触发电路、逆 变触发电路、启动停止控制电路。 (1)整流触发电路。整流触发电路主要是保证整流电路正常可靠工作, 产生的触发脉冲必须达到以下要求。 ① 产生相位互差60º的脉冲,依次触发整流电路的晶闸管。 ② 触发脉冲的频率必须与电源电压的频率一致。 ③ 采用单脉冲时,脉冲的宽度应该大于90º,小于120º。采用双脉冲 时,脉冲的宽度为25º~30º,脉冲的前沿相隔60º。 ④ 输出脉冲有足够的功率,一般为可靠触发功率的3~5倍。 ⑤ 触发电路有足够的抗干扰能力。 ⑥ 控制角能在0º~170º之间平滑移动。
任务一 认识中频感应加热电源
2.逆变电路 由逆变晶闸管、感应线圈、补偿电容共同组成逆变器,将直 流电变成中频交流电给负载供电。为了提高电路的功率因数, 需要调协电容器向感应加热负载提供无功能量。根据电容器 与感应线圈的连接方式可以把逆变器分为以下几种类型。 (1)串联逆变器:电容器与感应线圈组成串联谐振电路。 (2)并联逆变器:电容器与感应线圈组成并联谐振电路。 (3)串、并联逆变器:综合以上两种逆变器的特点。
任务一 认识中频感应加热电源
任务一 认识中频感应加热电源
1.整流电路 中频感应加热电源装置的整流电路设计一般要满足以下要求。 (1)整流电路的输出电压在一定的范围内可以连续调节。 (2)整流电路的输出电流连续,且电流脉动系数小于一定值。 (3)整流电路的最大输出电压能够自动限制在给定值,而不受负载 阻抗的影响。 (4)当电路出现故障时,电路能自动停止直流功率输出,整流电路 必须有完善的过电压、过电流保护措施。 (5)当逆变器运行失败时,能把储存在滤波器的能量通过整流电路 返回工频电网,保护逆变器。

中频感应加热电源的设计

中频感应加热电源的设计

中频感应加热电源的设计
1.电源输出功率和频率:根据加热要求确定电源的输出功率和频率。

输出功率一般由加热负荷大小决定,频率一般选择在1kHz~20kHz之间,
根据不同的加热要求进行调整。

2.电源结构设计:电源的结构设计主要包括整流、逆变、振荡等电路
的设计。

整流电路用于将交流电转换成直流电,逆变电路用于将直流电转
换成交流电,振荡电路用于产生中频振荡信号。

3.电源控制系统设计:电源控制系统主要包括开关控制电路、保护电
路和自动控制电路等。

开关控制电路用于控制电源的开关,保护电路用于
保护电源和负载不受损坏,自动控制电路用于实现加热功率的调节和温度
等参数的监测和控制。

4.效率和功率因数:设计中频感应加热电源时,需要考虑电源的效率
和功率因数,以提高电源的能量利用率和减少对电网的电能需求。

5.冷却系统设计:中频感应加热电源在工作过程中会产生大量的热量,需要通过冷却系统将热量排出,以保证电源的正常工作和寿命。

6.控制方式:中频感应加热电源的控制方式有手动控制和自动控制两种。

手动控制方式需要人工操作电源的开关和参数调节,自动控制方式通
过传感器和控制器实现对加热过程的自动控制。

7.安全性设计:中频感应加热电源设计中需要考虑安全性问题,包括
过载、短路、过流、过热等保护措施的设计,以及对电源和负载的绝缘和
接地等安全措施的实施。

综上所述,中频感应加热电源的设计需要考虑输出功率和频率、电源结构、电源控制系统、效率和功率因数、冷却系统、控制方式、安全性等方面的因素。

通过合理的设计和选择,可以提高电源的性能和工作效率,满足不同加热需求的要求。

中频感应加热电源的设计PPT学习教案

中频感应加热电源的设计PPT学习教案
第11页/共15页
参考文献
[1] 叶斌.电力电子应用技术及 装置[M].北京:中国铁道出版 社,2000.8:1~10,50~98.
[2] 赵良炳.电力电子技术与近 代电源.中国电源学会第十届学 术年会论文集[C],2001.9:5~
39.
[3] 全亚杰.感应加热电源的发 展历程与动向[M].电焊机, 2001,31(11第)12页/:共15页3~6.
给定 电压
Ut
Us 整流控
电压调
制角调 a 可控 Ud 滤波
节器
节器
整流 电路
Un d2
逆变
负载
变路
电路
f
Tc
电压反 馈电路
Ud d1
逆变触 脉冲形
发电路 成电路
U0
第8页/共15页
系统控制的采用
Us
P
U P
I
I




Ur

Tr
+ T g
整流
控制 a
角调 节 器
U
Ud 可控 整流
滤 波 电 路

逆变器控制电路
负载
第3页/共15页
三相全控整流电路
第4页/共15页
三相式全控整流电路
第5页/共15页
第6页/共1Байду номын сангаас页
控制电路的概述
为什么要有控制电路
控制电路的作用
a.功能控制 b.故障保护 c.调节和保护 d.负载频率自动跟踪 e.协调各部分工作
第7页/共15页
中频电源控制原理
U1 U
[4] 朴兴哲.10KHz/150KW中频
LOGO
谢谢 各位老师 指导

全数字中频感应加热电源设计

全数字中频感应加热电源设计

本设计是全数字中频感应加热电源, 采用串联谐振电路。

主电路整流部分采用了三相全控整流电路,逆变电路采用了单相逆变桥。

串联逆变器的输入电压恒定,近似为恒压源,逆变元件采用IGBT,利用单片机控制其开关,控制部分采用PIC16F877单片机,实现对中频电源的控制。

其中使用了IGBT专用驱动芯片。

本设计完成了中频感应电源控制系统的硬件和软件设计任务,实现了负载频率的自动跟踪。

控制电路简单可靠,方案合理。

关键词:整流;逆变;可控硅;IGBT;单片机。

This design is the entire digital mid-frequency induction heating power source. The main circuit rectification part with transported three-phase in this design has all controlled the leveling circuit, inverted the electric circuit to use the single item inversion electric circuit sine pulse width to modulate (SPWM), the load is a antiresonance circuit. This paper introduces a new inversion and three phase bridge rectification control circuit based on PIC16F877 microcontroller for thyristor medium frequency power supply. Meanwhile the hardware and software designs are also provided. It is approved by analysing the experimental results that the circuit softly starts the power supply in the way of sweeping-frequency and zero-voltage, and well tracks the tank resonant frequency in normal working. The power adjustment can be made by adopting SPWM control technology in the system. Series resonance and frequency follow technology are used. The IGBT, as the switch device, can work between 10Hz to 10kHz frequency channel, and based on the principle of the effects . Key Words: inverter; induction;IGBT; single chip computer; rectification.目录第一章全数字中频感应加热电源设计背景 (4)1.1 感应加热的基本原理 (4)1.2 全数字中频感应电源简介 (5)第二章主电路的设计 (9)2.1 可控硅工作原理 (9)2.2 可控硅触发导通 (9)2.3 整流电路的介绍 (9)2.3.1 基本工作原理 (11)2.3.2 电阻负载时三相桥式全控整流特性 (13)2.4 逆变电路的介绍 (16)2.5 负载电路的介绍 (21)2.5.1 电流过零点检测 (21)2.6 主电路的保护介绍 (22)2.6.1 闸管的保护 (22)2.7 主电路的计算及其器件选型 (25)2.7.1 主电路计算部分 (25)第三章控制电路的设计 (26)3.1 PIC单片机介绍 (26)3.2 LM339介绍 (31)第四章软件部分设计 (33)4.1 程序清单 (33)4.2流程图 (59)总结 (63)参考文献 (64)外文翻译 (65)A 外文原文 (65)B 外文译文 (76)致谢 (81)附录 (82)附录一元件明细表 (82)第一章全数字中频感应加热电源设计背景1.1 感应加热的基本原理感应加热是靠感应线圈把电能传递给要加热的金属,然后电能在金属内部转变为热能。

电力电子课程设计--中频电源主电路设计汇总

电力电子课程设计--中频电源主电路设计汇总

辽宁石油化工大学课程设计信控学院电气工程及其机动化专业电气1103班题目中频电源主电路设计学生指导老师二零一一年六月课程设计任务书目录1.1 课程设计的题目 (1)1.2 设计思想及内容 (2)1.3 主电路原理图 (6)1.4 元器件清单 (7)1.5 设计总结 (8)参考文献 (8)电力电子技术课程设计1.1课程设计的题目1.原始数据及资料:(1)额定中频电源输出功率P H=100kW,极限中频电源输出功率P HM=1.1P H=110kW;(2)电源额定频率f =1kHz;(3)逆变电路效率η=95%;(4)逆变电路功率因数:cosϕ=0.81,ϕ=36º;(5)整流电路最小控制角αmin=15º;(6)无整流变压器,电网线电压U L=380V;(7)电网波动系数A=0.95~1.10。

2.设计要求(1)画出中频感应加热电源主电路原理图;(2)完成整流侧电参数计算;(3)完成逆变侧电参数计算。

1.2 设计思想及内容1.设计思想中频电源装置的基本工作原理,就是通过一个整流电路把工频交流电变为直流电,经过直流电抗器最后经逆变器变为单相中频交流电供给负载,所以中频电源装置实际上是交流电-直流电-交流电-负载。

2.设计内容:一. 整流电路的设计1. 整流电路的选择:本设计不用整流变压器而直接由380V 三相交流接入再整流为直流电源。

常用的三相可控整流的电路有○1三相半波○2三相半控桥○3三相全控桥○4双反星形等。

三相全控桥整流电压脉动小,脉动频率高,基波频率为300Hz ,所以串入的平波电抗器电感量小,动态响应快,系统调整及时,并且三相全控桥电路可以实现有源逆变,把能量回送电网或者采用触发脉冲快速后移至逆变区,使电路瞬间进入有源逆变状态进行过电流保护。

三相全控桥式可控整流电路与三相半波电路相比,若要求输出电压相同,则三相桥式整流电路对晶闸管最大正反向电电压的要求降低一半;若输入电压相同,则输出电压比三相半波可控整流是高一倍。

中频感应加热电源设计

中频感应加热电源设计

洛阳理工学院毕业设计(论文)题目中频感应加热电源的设计姓名王强系(部)电气工程与自动化系专业应用电子技术指导教师张刚2013 年 6 月1 日中频感应加热电源的设计摘要感应加热电源具有加热效率高,速度快,可控性好,易于实现高温和局部加热,易于实现机械化和自动化等优点,目前已在金属熔炼、工件透热、淬火、焊接、铸造、弯管、表面热处理等行业得到了广泛的应用。

本设计研究了中频感应加热及其相关技术的发展、现状和趋势,并在较全面的论述基础上,对2.5kHz/250kW可控硅中频感应加热电源的整流电路以及控制电路进行了设计。

本文设计的电源电路可用于大型机械热加工设备的感应加热电源。

整流电路采用三相桥式全控整流电路,其电路结构简单,使电源易于推广;控制策略选用双闭环反馈控制系统,改善了信号迟滞的缺点,为以后研制大功率、超音频的感应加热电源打下了基础。

关键词:可控硅中频电源,感应加热,逆变,保护电路Design Of Induction Heating Power Of Medium FrequencyABSTRACTInduction heating power is equipped with lots of advantages such as high heating efficiency, fast speed, good controllability, which is prone to make heating of high and partial temperature ,and realize mechanization and automation. At present metal melting, work piece heat penetration, quenching, welding, casting, elbow piece, surface heating processing has been widely applied.Induction heating of medium frequency and development, current situation, and tendency related technology has been studied,and have made quite comprehensive and in the profound elaboration foundation, this article has carried on the design to main circuit and the inversion control of the 2.5kHz/250kW silicon-controlled rectifier intermediate frequency induction heating power. This design is used for big facility of mechanical heating processing. Structure of rectification circuit is easy, which makes power popularized easily. Three-phase bridge rectification circuit is used in Rectification circuit. Rectification circuit uses feedback control of two closed loop, improving the disadvantages. The foundation for inventing induction heating power of big power and super audio is made.KEY WORDS: Controllable silicon medium power, Induction heating, Inverter, Protect circuit目录前言 (1)第1章概述 (2)1.1 感应加热电源的特点和应用 (2)1.2 感应加热电源的发展阶段 (3)1.3 国内外发展现状 (3)1.4 影响感应加热电源发展的主要因素 (4)1.5 感应加热电源的发展趋势 (5)第2章感应加热电源的结构及工作原理 (7)2.1 基本工作原理 (7)2.2 感应加热电源的基本结构 (8)第3章整流电路设计 (8)3.1 整流电路的分类 (9)3.2 整流电路的选择 (9)3.3 三相桥式全控整流电路 (9)3.4 整流电路的参数设计 (13)第4章逆变器的选择 (15)4.1 串并联谐振电路的比较 (15)4.2 串联谐振电源工作原理 (17)4.3 串并联谐振逆变器拓扑电路的对偶关系 (19)4.4 串并联谐振优缺点比较 (20)第5章控制电路设计 (21)5.1 控制电路系统的概述 (21)5.2 控制电路的结构与原理 (21)5.3 控制电路的作用 (24)5.4 控制策略 (24)5.5 2.5kHz/250kW感应加热电源控制电路结构 (28)5.6 控制触发回路频率跟踪调节 (28)5.6.1 触发要求 (28)5.6.2 频率跟踪电路 (29)第6章过流和过压的保护电路 (30)结论 (32)谢辞 (33)参考文献 (34)外文资料翻译 (36)前言感应加热技术是在20世纪初才应用于工业生产的,因其具有加热速度快、物料内部发热和热效率高、加热均匀且具有选择性、产品质量好、几乎无环境污染、可控性好及易于实现生产自动化等一系列优点,因此近年来得到了迅速发展。

中频电源电路设计

中频电源电路设计

中频电源电路设计
首先,我们需要确定所需的中频输出电压。

根据具体应用需求,确定
输出电压的合适范围。

然后,选择适当的变压器来实现这个输出电压。


压器的选择需要考虑频率范围、输入电压、输出电压以及电流容量等因素。

接下来,我们需要设计中频电源的整流部分。

整流是指将输入的交流
电压转换为直流电压。

常见的整流电路包括单相桥式整流电路和三相桥式
整流电路。

在选择整流电路时,需要考虑输出电压的稳定性和波动性。

在整流电路后,需要设计滤波电路来滤除电路中的噪声和杂散信号。

常用的滤波电路包括电容滤波电路和电感滤波电路。

这些滤波电路可以有
效地去除电路中的高频噪声和杂散信号,以保证稳定的输出电压。

另外,为了确保电路的稳定性和安全性,还需要考虑过流保护、过压
保护和过温保护等电路设计。

这些保护电路可以在电路异常时及时切断电源,以保护设备的安全和可靠性。

最后,我们需要测试和优化中频电源电路的性能。

通过仪器测试,我
们可以评估电路的输出波形、稳定性、效率和功率因数等参数。

根据测试
结果,我们可以进一步优化电路的设计,以获得更好的性能和效果。

总结起来,中频电源电路设计需要考虑输出电压、变压器选择、整流
电路、滤波电路和保护电路等因素。

通过合理的设计和优化,可以实现稳
定的中频输出电压,以满足各种应用需求。

电力电子技术课程设计中频加热电源主电路设计

电力电子技术课程设计中频加热电源主电路设计

电力电子技术课程设计题目中频加热电源主电路设计学院专业班级学号学生姓名指导老师目录1 设计内容和设计要求 (3)1.1 设计内容1.2 设计要求2 中频加热电源 (4)2.1 中频加热电源基本原理2.2 中频加热电源基本结构3 整流电路的设计 (6)3.1 整流电路的选择3.2 三相桥式全控整流电路3.3 整流电路参数计算4 逆变电路的设计 (10)4.1 逆变电路的选择4.2逆变电路参数计算5 保护电路的设计 (14)5.1过电压保护5.2 过电流保护6 设计结果分析 (18)6.1 仿真结果6.2 主电路原理图6.3 结果分析7 设计心得体会 (23)8 参考文献 (24)1 设计内容和设计要求1.1 设计内容1) 额定中频电源输出功率PH=100kw,极限中频电源输出功率P HM=1.1 P H=110kW;2) 电源额定频率f =1kHz;3) 逆变电路效率h=95%4) 逆变电路功率因数:cosj =0.866,j =30o;5) 整流电路最小控制角amin =15o;6) 无整流变压器,电网线电压UL=380V;7) 电网波动系数A=0.95~1.10。

1.2 设计要求1) 画出中频感应加热电源主电路原理图;2) 完成整流侧电参数计算;3) 完成逆变侧电参数计算;4) 利用仿真软件分析电路的工作过程;5)编写设计说明书,设计小结。

2 中频加热电源2.1 中频加热电源基本原理感应加热利用导体处于交变的电磁场中产生感应电流,即涡流,所形成的热效应使导体本身发热。

根据不同的加热工艺的要求,感应加热采用的电源的频率有工频(50HZ),中频(60-10000HZ),高频(高于10000HZ)。

感应加热本身的物体必须是导体,感应加热能在被加热物体内部直接生热,因而热效率高,升温速度快,容易实现整体均匀加热或局部加热。

感应加热利用交流电建立交变磁场涡流对金属工件进行感应加热,基本工作原理如图1,A为感应线圈,B为被加热工件,若线圈A中通以交流电流i1,则线圈A内产生随时间变化的磁场,置于交变磁场中的被加热工件B要产生感应电动势e2,形成涡流i2,这些涡流使金属工件发热,因此,感应加热是靠感应线圈把电能传递给要加热的金属工件,然后在金属工件内部转换成热能,感应线圈与被加热工件不直接接触,能量是通过电磁感应传递的。

KGP-250-10晶闸管中频加热电源设计

KGP-250-10晶闸管中频加热电源设计

KGP-250-10晶闸管中频加热电源本设计主要是分析由半导体二极管、晶闸管、大功率晶体管等元件组成的三相桥式可控整流电路、单相桥式并联逆变电路、保护电路以及继电器接触器控制电路等的工作原理和参数计算,并对整流触发电路和晶闸管中频电源等原理作专门的分析;其次,根据本次设计要求,利用系统软件绘制出了各个电路的原理图和曲线图,并附带了元器件列表。

感应加热是一种常见的加热方式,广泛用于金属冶炼、工件透热、淬火、焊接等工艺,也是电力电子技术的一个重要应用领域。

感应加热电源分为中频电源、高频电源和超音频电源。

一般对频率为10KHz 以下的电源为中频电源。

本设计共分为八章,第一章是对感应加热原理的分析;第二章是对无铁心感应电炉对晶闸管中频电源输出的要求的分析;第三章是对主电路的分析;第四章是对整流触发电路的分析;第五、第六、第七章则是对并联逆变器的启动、保护系统和控制电路的原理分析,也包括它们的参数计算;而第八章则是做完本篇设计后所作的总结。

为了更方便地了解所学知识,在附录中还附带了所涉及到的元气件的型号和参数。

由于本人所学有限,所涉及的范围较窄,如果考虑的不够全面,望见谅!绪论晶闸管是晶体晶闸管的简称,又称作可控硅整流管,它最大的特点是容量大、电压高、损耗小、控制灵便、易实现自动控制,是大功率电能变换与控制的较理想器件。

由于通过它的单相电流可以很大,且能够采用弱电信号控制其开通,因而它自问世以来,使用极为广泛。

随着半导体制造技术和变流技术的发展,相继成功研制出了可关断晶闸管(GTO)、电力晶体管(BJT或称GTR)、功率场效应管MOSFET、绝缘栅双极晶闸管(IGBT)以及新型的MCT、SIT、功率集成模块PIC、智能功率模块IPM等。

目前,晶闸管在各工业部门应用都极为广泛,在中频加热方面的应用也很成功。

本设计利用我们在课堂上所学的基本知识,从分析工作原理入手,逐步分析主电路、保护电路、参数的计算、保护系统等,使我们掌握了课堂设计的步骤,对中频加热电源有了较深入的了解。

【设计】电力电子课程设计中频电源主电路设计汇总

【设计】电力电子课程设计中频电源主电路设计汇总

【关键字】设计辽宁石油化工大学课程设计信控学院电气工程及其机动化专业电气1103班题目中频电源主电路设计学生指导老师二零一一年六月课程设计任务书目录1.1 课程设计的题目 (1)1.2 设计思想及内容 (2)1.3 主电路原理图 (6)1.4 元器件清单 (7)1.5 设计总结 (8)参照文献 (8)电力电子技术课程设计1.1课程设计的题目1.原始数据及资料:(1)额定中频电源输出功率PH=100kW,极限中频电源输出功率PHM=1.1PH=110kW;(2)电源额定频率f =1kHz;(3)逆变电路效率=95%;(4)逆变电路功率因数:cos =0.81, =36º;(5)整流电路最小控制角min =15º;(6)无整流变压器,电网线电压UL=380V;(7)电网波动系数A=0.95~1.10。

2.设计要求(1)画出中频感应加热电源主电路原理图;(2)完成整流侧电参数计算;(3)完成逆变侧电参数计算。

1.2 设计思想及内容1.设计思想中频电源装置的基本工作原理,就是通过一个整流电路把工频交流电变为直流电,经过直流电抗器最后经逆变器变为单相中频交流电供给负载,所以中频电源装置实际上是交流电-直流电-交流电-负载。

2.设计内容:一.整流电路的设计1.整流电路的选择:本设计不用整流变压器而直接由380V三相交流接入再整流为直流电源。

常用的三相可控整流的电路有三相半波三相半控桥三相全控桥双反星形等。

三相全控桥整流电压脉动小,脉动频率高,基波频率为300Hz,所以串入的平波电抗器电感量小,动态响应快,系统调整及时,并且三相全控桥电路可以实现有源逆变,把能量回送电网或者采用触发脉冲快速后移至逆变区,使电路瞬间进入有源逆变状态进行过电流保护。

三相全控桥式可控整流电路与三相半波电路相比,若要求输出电压相同,则三相桥式整流电路对晶闸管最大正反向电电压的要求降低一半;若输入电压相同,则输出电压比三相半波可控整流是高一倍。

电子课件-《电力电子技术》-B02-2107 项目六 中频加热电源

电子课件-《电力电子技术》-B02-2107 项目六 中频加热电源

项目六 中频加热电源
三、中频电源的故障排除
1. 整流电路中的常见故障 (1) 频繁烧坏晶闸管,更换后又烧坏 (2) 整流桥无输出或输出电压波形不正常,熔断器和晶 闸管 VT1 ~ VT6 都是完好的。 (3) 设备工作不稳定,直流电抗器发出异常声音,频繁 出现过流保护和烧毁快速晶闸管。
项目六 中频加热电源
项目六 中频加热电源
自激启动电路
项目六 中频加热电源
任务实施 一、识读中频电路
KGPS - 1 中频电源装置的主电路
项目六 中频加热电源
二、中频电源的调试
1. 整流电路及其触发电路的调试 (1) 整流电路的调试 检查进线 u、v、w 的相序与同步变压器二次侧 u、v、w 相序是否相符,接通控制电源,检查各输出电压是否正常。 (2) 整流电路触发装置的调试 检查各触发板输出及各晶闸管 ( VT1 ~ VT6) 门极接线是 否与图相符,用双踪示波器依次检查各晶闸管 ( VT1 ~ VT6) 的触发脉冲是否按规定顺序依次相差 60°,如间隔不是 60°,可调节触发电路中的微电位器进行调整。
振频率,用 f0 表示。串联谐振的条件:f = f0 =

由于谐振频率仅与电路的 L 和 热电源
项目六 中频加热电源 2. 并联谐振电路 R、L、C并联电路发生的谐振称为并联谐振。
RLC并联谐振电路
项目六 中频加热电源
项目六 中频加热电源
项目六 中频加热电源
二、逆变电路的自动调频和启动
固定工作频率的方式称为他励方式,工作频率自动调整 适应负载变化的方式称为自励方式。在中频加热和熔炼过程 中,负载线圈参数是随时间变化的,固定的工作频率无法保 证晶闸管的反压时间 tβ 大于关断时间 tq ,从而可能导致逆 变失败。所以并联逆变电路必须采用自动调频,使工作频率 适应负载的变化而自动调整。

电力电子技术课程设计报告书

电力电子技术课程设计报告书

石油大学课程设计电子工程学院自动化专业1203班题目变频感应加热电源主电路设计学生蔡辉武指导老师二○一五年六月《电力电子技术》课程设计任务书目录一绪论………………………………………………………………………1.1感应加热的工作原理…………………………………………………1.2 感应加热电源技术发展现状与趋势…………………………………(1)感应加热电源技术发展现状……………………………………(2)感应加热电源技术发展与趋势…………………………………二感应加热电源及其实现方案研究…………………………………………2.1 串并联谐振电路的比较………………………………………………2.2 电路的功率调节原理…………………………………………………三变频感应加热电源主电路设计……………………………………………3.1主电路设计原始数据及主要技术指标………………………………3.2设计要求………………………………………………………………3.3设计思想………………………………………………………………3.4变频感应加热电源主电路图…………………………………………3.5设计容………………………………………………………………3.5.1整流电路的设计…………………………………………………3.5.1.1整流电路的选择……………………………………………3.5.1.2整流侧参数计算……………………………………………3.5.1.3整流侧电路图……………………………………………………………………3.5.2逆变电路的设计…………………………………………………3.5.2.1逆变电路的选择……………………………………………3.5.2.2逆变侧参数计算……………………………………………3.5.2.3逆变侧电路图………………………………………………3.6电路保护………………………………………………………………3.6.1.整流侧晶闸管过电压保护……………………………………3.6.2.逆变侧晶闸管过电压保护……………………………………3.7波形仿真………………………………………………………………四设计心得体会………………………………………………………………参考文献…………………………………………………………………………一绪论感应加热具有加热效率高、速度快、可控性好及易于实现自动化等优点,广泛应于金属熔炼、透热、热处理和焊接等工业生产过程中,成为冶金、国防、机械加工等部门及铸、锻和船舶、飞机、汽车制造业等不可缺少的技术手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子技术课程设计题目中频加热电源主电路设计学院专业班级学号学生姓名指导老师目录1 设计内容和设计要求 (3)设计内容设计要求2 中频加热电源 (4)中频加热电源基本原理中频加热电源基本结构3 整流电路的设计 (6)整流电路的选择三相桥式全控整流电路整流电路参数计算4 逆变电路的设计 (10)逆变电路的选择逆变电路参数计算5 保护电路的设计 (14)过电压保护过电流保护6 设计结果分析 (18)仿真结果主电路原理图结果分析7 设计心得体会 (23)8 参考文献 (24)1 设计内容和设计要求设计内容1) 额定中频电源输出功率PH=100kw,极限中频电源输出功率P HM= P H=110kW;2) 电源额定频率f =1kHz;3) 逆变电路效率h=95%4) 逆变电路功率因数:cosj =,j =30o;5) 整流电路最小控制角amin =15o;6) 无整流变压器,电网线电压UL=380V;7) 电网波动系数A=~。

设计要求1) 画出中频感应加热电源主电路原理图;2) 完成整流侧电参数计算;3) 完成逆变侧电参数计算;4) 利用仿真软件分析电路的工作过程;5)编写设计说明书,设计小结。

2 中频加热电源中频加热电源基本原理感应加热利用导体处于交变的电磁场中产生感应电流,即涡流,所形成的热效应使导体本身发热。

根据不同的加热工艺的要求,感应加热采用的电源的频率有工频(50HZ),中频(60-10000HZ),高频(高于10000HZ)。

感应加热本身的物体必须是导体,感应加热能在被加热物体内部直接生热,因而热效率高,升温速度快,容易实现整体均匀加热或局部加热。

感应加热利用交流电建立交变磁场涡流对金属工件进行感应加热,基本工作原理如图1,A为感应线圈,B为被加热工件,若线圈A 中通以交流电流i1,则线圈A内产生随时间变化的磁场,置于交变磁场中的被加热工件B要产生感应电动势e2,形成涡流i2,这些涡流使金属工件发热,因此,感应加热是靠感应线圈把电能传递给要加热的金属工件,然后在金属工件内部转换成热能,感应线圈与被加热工件不直接接触,能量是通过电磁感应传递的。

为了将金属工件加热到一定的温度,要求工件中的感应电流尽可能地大,增加感应线圈中的电流,可以增加金属工件中的交变磁通,进而增加工件中的感应电流,现代感应加热设备中,感应线圈中的电流最大可以达到几千甚至上万安培。

增加工件中感应电流的另一个有效途径是提高感应线圈中电流的频率,由于工件中的感应电势正比于交变磁通的变化率,感应线圈中电流的频率越高,磁通的变化就越快,感应电势就越大,工件中的感应电流也就越大。

对同样的加热效果,频率越高,感应线圈中的电流就可以小一些,这样可以减少线圈中的功率损耗,提高设备的电效率。

中频加热电源基本结构经过半导体器件的发展,感应加热电源的拓扑结构逐渐固定为一种AC∕DC∕AC的变换形式,基本结构如图所示,由整流器,滤波器,逆变器及一些控制和保护电路组成。

3 整流电路的设计整流电路的选择整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式各种各样;按组成的器件可分为不可控、半控和全控三种,按电路结构可分为桥式电路和零式电路,按交流输入相数分为单相电路和多相电路,按变压器二次侧电流的方向是单相或双相,又分为半波电路和全波电路;实用电路是上述的组合结构。

整流电路的实质就是把交流电能转换为直流电能的电路。

1)整流电路的分类当负载容量大,要求直流电压脉动小时,应采用三相整流电路,这里我们采用三相可控整流电路。

我们学过的常用的三相可控整流的电路有三相半波、三相半控桥、三相全控桥、双反星形、多重化整流电路等。

(1)三相半波可控整理电路结构和控制简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化,实际上很少应用此种电路。

(2)双反星形结构二次侧为两组匝数相同极性相反的绕阻,分别接成两组三相半波电路,它二次侧两绕组的极性相反可消除铁芯的直流磁化带平衡电抗器能保证两组三相半波整流电路能同时导电。

与三相桥式电路相比,双反星形电路的输出电流可大一倍。

(3)多重化整流电路是采用相同器件时可达到更大的功率。

可减少交流侧输入电流的谐波或提高功率因数,从而减小对供电电网的干扰,其脉动小,能提供的功率大但使用的器件多。

(4)三相全控桥整流电压脉动小,脉动频率高,基波频率为300Hz,所以串入的平波电抗器电感量小,动态响应快,系统调整及时,并且三相全控桥电路可以实现有源逆变,把能量回送电网或者采用触发脉冲快速后移至逆变区,使电路瞬间进入有源逆变状态进行过电流保护。

2)整流电路的比较三相全控桥式可控整流电路与三相半波电路相比,若要求输出电压相同,则三相桥式整流电路对晶闸管最大正反向电电压的要求降低一半;若输入电压相同,则输出电压比三相半波可控整流是高一倍。

而且三相全控桥式可控整流电路在一个周期中变压器绕组不但提高了导电时间,而且也无直流流过,克服了三相半波可控整流电路存在直流磁化和变压器利用率低的缺点。

从以上比较中可看到:三相桥是可控整流电路从技术性能和经济性能两方面综合指标考虑比其他可控整流电路有优势,故本次设计确定选择三相桥式可控的整流电路。

三相桥式全控整流电路在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。

由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。

很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。

1)三相桥式全控整流电路原理图2)三相桥式全控整流电路特性(1) 三相桥式全控整流电路在任何时刻都必须有两个晶闸管导通,而且这两个晶闸管一个是共阴极组,另一个是共阳极组的,只有它们能同时导通,才能形成导电回路。

(2) 三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管VT1、VT3和VT5依次导通,因此它们的触发脉冲之间的相位差应为120°。

对于共阳极组触发脉冲的要求是保证晶闸管VT2、VT4和VT6依次导通,因此它们的触发脉冲之间的相位差也是120°。

(3) 由于共阴极的晶闸管是在正半周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。

(4) 三相桥式全控整流电路每隔60°有一个晶闸管要换流,由上一号晶闸管换流到下一号晶闸管触发,触发脉冲的顺序是:1→2→3→4→5→6→1,依次下去。

相邻两脉冲的相位差是60°。

(5) 由于电流断续后,能够使晶闸管再次导通,必须对两组中应导通的一对晶闸管同时有触发脉冲。

为了达到这个目的,可以采取两种办法;一种是使每个脉冲的宽度大于60°(必须小于120°),一般取80°~100°,称为宽脉冲触发。

另一种是在触发某一号晶闸管时,同时给前一号晶闸管补发一个脉冲,使共阴极组和共阳极组的两个应导通的晶闸管上都有触发脉冲,相当于两个窄脉冲等效地代替大于60°的宽脉冲。

这种方法称双脉冲触发。

(6) 整流输出的电压,也就是负载上的电压。

整流输出的电压应该是两相电压相减后的波形,实际上都属于线电压,波头uab、uac、ubc、uba、uca、ucb均为线电压的一部分,是上述线电压的包络线。

相电压的交点与线电压的交点在同一角度位置上,故线电压的交点同样是自然换相点,同时亦可看出,三相桥式全控的整流电压在一个周期内脉动六次,脉动频率为6 × 50=300赫,比三相半波时大一倍。

(7) 晶闸管所承受的电压。

三相桥式整流电路在任何瞬间仅有二臂的元件导通,其余四臂的元件均承受变化着的反向电压。

例如在第(1)段时期,VT1和VT6导通,此时VT3和VT4,承受反向线电压uba=ub-ua。

VT2承受反向线电压ubc=ub-uc。

VT5承受反向线电压uca=uc-ua。

晶闸管所受的反向最大电压即为线电压的峰值。

当α从零增大的过程中,同样可分析出晶闸管承受的最大正向电压也是线电压的峰值。

整流电路参数计算1) 整流侧最大输出功率P dm =HMP ==×=2) 整流侧输出电压U d = cos =×380×cos15°=3) 整流侧输出电流I dmax = =×1000/=4) 整流侧晶闸管额定电压U TN =(1+10%)×380××2=5) 整流侧晶闸管额定电流I TN =2×× =4 逆变电路的设计逆变电路选择1)电压型逆变电路串联谐振逆变器也称电压型逆变器,其原理图如下:串联谐振式电源采用的逆变器是串联谐振逆变器,其负载为串联谐振负载。

通常需电压源供电,在感应加热中,电压源通常由整流器加一个大电容构成。

由于电容值较大,可以近似认为逆变器输入端电压固定不变。

交替开通和关断逆变器上的可控器件就可以在逆变器的输出端获得交变的方波电压,其电压幅值取决于逆变器的输入端电压值,频率取决于器件的开关频率。

(1) 串联谐振逆变器的输入电压恒定,输出电流近似正弦波,输出电压为矩形波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压-φ角。

(2) 串联谐振逆变器在换流时,晶闸管是自然关断的,关断前其电流己逐渐减少到零,因而关断时间短,损耗小。

在换流时,关断的晶闸管受反压的时间较长。

(3) 串联谐振逆变器感应线圈上的电压和补偿电容器上的电压,都为谐振逆变器输出电压的Q倍。

当Q值变化时,电压变化比较大,所以对负载的变化适应性差。

流过感应线圈上的电流,等于谐振逆变器的输出电流。

(4) 串联谐振逆变器的感应加热线圈与逆变电源(包括补偿电容器)的距离较远时,对输出功率的影响较小。

2)电流型逆变电路并联谐振逆变器也称电流型逆变器,其原理图如下并联谐振式电源采用的逆变器是并联谐振逆变器,其负载为并联谐振负载。

通常需电流源供电,在感应加热中,电流源通常由整流器加一个大电感构成。

由于电感值较大,可以近似认为逆变器输入端电流固定不变。

交替开通和关断逆变器上的可控器件就可以在逆变器的输出端获得交变的方波电流,其电流幅值取决于逆变器的输入端电流值,频率取决于器件的开关频率。

(1) 并联谐振逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压-φ角。

(2)并联谐振逆变器在换流时,晶闸管是在全电流运行中被强迫关断的,电流被迫降至零以后还需加一段反压时间,因而关断时间较长。

相比之下,串联谐振逆变器更适宜于在工作频率较高的感应加热装置中使用。

相关文档
最新文档