煤矿供电设计规范

合集下载

煤矿供电设计规范

煤矿供电设计规范

煤矿供电设计规范煤矿供电设计规范是制定和规范煤矿供电工程建设的技术要求和设计标准的文件。

其目的是保障煤矿供电系统的安全可靠运行,提高电力供应质量,减少生产事故的发生。

1. 设计规范范围和适用对象煤矿供电设计规范适用于煤矿供电系统的设计和建设工程,包括配电所、变电所、接线间、电力线路等设施。

适用对象包括煤矿企业、设计单位、施工单位等。

2. 设计规范的基本要求(1) 安全性要求:煤矿供电系统应符合电力安全运行的要求,能够应对各种突发情况,保障人员生命财产安全。

(2) 可靠性要求:煤矿供电系统应具备良好的可靠性,保证供电连续稳定,避免因电力故障产生的停电事故。

(3) 经济性要求:煤矿供电系统应具备合理的经济性,包括设备选型的合理性、运行成本的控制等。

(4) 灵活性要求:煤矿供电系统应具备一定的灵活性,能够适应煤矿生产的变化需求,具备一定的可扩展性和调整性。

3. 设计规范的主要内容(1) 煤矿供电系统的结构和布置设计,包括配电所、变电所、接线间等设施的位置和布置,以及电力线路的布置和走向。

(2) 供电系统的容量和负荷计算,包括配电系统的总容量和负荷的估算,以及各级变电站的容量和负荷的计算。

(3) 供电系统的设备选型和安装要求,包括配电设备、变压器、开关设备等设备的选型和安装要求。

(4) 供电系统的保护和配电装置设计,包括过电压保护、电流保护、短路保护等装置的选型和设置。

(5) 运行和维护管理要求,包括对供电系统的运行模式、监控设备和记录要求等的规定。

4. 设计规范的执行和监督(1) 设计规范应由专业设计单位按煤矿企业的需求进行编制,并经复核、审核后发布。

(2) 煤矿企业应按照设计规范的要求进行供电系统的建设和改造工程,确保设计规范的贯彻执行。

(3) 设计单位、监理单位和施工单位应对供电工程进行监督,确保设计规范的实施和工程质量的合格。

(4) 煤矿安全监察机构应加强对煤矿供电工程的检查和监督,发现问题及时整改。

煤矿井下供电设计规范GB

煤矿井下供电设计规范GB

煤矿井下供电设计规范-GB--————————————————————————————————作者:————————————————————————————————日期:煤矿井下供配电设计规范GB50417-2007中华人民共和国建设部2007年05月21日发布2007年12月01日实施煤矿井下供配电设计规范GB50417-20072007—05—21 发布 2007—12—01实施中华人民共和国国家建设部联合发布中华人民共和国国家质量监督检验检疫总局、中华人民共和国国家标准、中国煤炭建设协会主编、中华人民共和国建设部公告第646号,建设部关于发布国家标准《煤矿井下供配电设计规范》的公告,现批准《煤矿井下供配电设计规范》为国家标准,编号为 GB50417—2007,自2007年12月1日起实施。

其中,第2.0.1、2.O.3、2.0.5、2.0.6、2.0.9、4.1.1、4.2.1、4.2.9、5.1.3、5.1.4(4.5.6)、6.1.4、6.3.1(4)、7.1.1、7.1.2、7.1.3、7.1.4、7.1.5、7.2.1、7.2.8 条(款)为强制性条文,必须严格执行。

本规范由建设部标准定额研究所组织中国计划出版社出版发行。

中华人民共和国建设部二OO七年五月二十一日前言本规范是根据建设部建标函[2005]124号文件《关于印发“2005年工程建设标准制定、修订计划(第二批)”的通知》的要求,由中煤国际工程集团武汉设计研究院会同有关单位共同编制完成的。

本规范在编制过程中,编制组认真分析、总结和吸取了十几年来国内外煤矿井下供配电采用新技术、新装备的经验及新的科研成果。

所引用的技术参数和指标,是生产实践经验数据的总结。

特别是高产高效工作面近几年发展较快,其供配电系统有了比较成熟的运行实践经验。

编制组广泛征求了有关单位意见,经反复修改,最后经审查定稿。

本规范共8 章,内容涉及煤矿井下供电的各个方面,主要包括: 总则、井下供配电系统与电压等级、井下电力负荷统计与计算、井下电缆选择与计算、井下主(中央)变电所设计、采区供配电设计、井下电气设备保护及接地、井下照明等。

煤矿井下供配电设计规范

煤矿井下供配电设计规范

煤矿井下供配电设计规范目次1总则2井下供配电系统与电压等级3井下电力负荷统计与计算4井下电缆选择与计算4·1电缆类型选择4·2电缆安装及长度计算4·3电缆截面选择5井下主(中央)变电所设计5·1变电所位置选择及设备布置5.2设备选型及主接线方式6采区供配电设计6·1采区变电所设计6·2移动变电站6·3采区低压网络设计7井下电气设备保护及接地7·1电气设备及保护7·2电气设备保护接地8井下照明本规范用词说明附:条文说明1总则1.0.1为在煤矿井下供配电设计中贯彻执行国家有关煤炭工业建设的法律、法规和方针政策,做到技术先进、安全可靠、经济合理、节约电能和安装维护方便,特制定本规范。

1.0.2本规范适用于设计生产能力0.45Mt/a及以上新建矿井的井下供配电设计。

1.0.3煤矿井下供配电设计应从我国国情出发,依靠科学技术进步,采用国内外先进技术,经实践检验成熟可靠的新设备、新器材,提高煤炭工业的装备水平和安全管理水平。

1.0.4煤矿井下供配电设计除应符合本规范外,尚应符合国家现行有关标准的规定。

2井下供配电系统与电压等级2.0.1下列用电设备应按一级用电负荷设计,其配电装置必须由两回路或两回路以上电源线路供电。

电源线路应引自不同的变压器和母线段,且线路上不应分接任何其他负荷。

1井下主排水泵:2下山采区排水泵:3兼作矿井主排水泵的井下煤水泵:4经常升降人员的暗副立井绞车;5井下移动式瓦斯抽放泵站。

2.0.2下列用电设备应按二级用电负荷设计,其配电装置宜由两回电源线路供电,并宜引自不同的变压器和母线段。

当条件受限制时,其中一回电源线路可引自本条规定的同种设备的配电点处。

1暗主井提升设备、主井装载设备、大巷强力带式输送机、主运输用的井下电机车充电及整流设备;2经常升降人员的暗副斜井提升设备、副井井底操车设备、元轨运输换装设备;3供综合机械化采煤的采区变(配)电所;4煤与瓦斯突出矿井的采区变(配)电所;5井下移动式制氮机;6井下集中制冷站;7不兼作矿井主排水泵的井下煤水泵、井底水窝水泵;8井下运输信号系统;9井下安全监控系统分站。

煤矿井下供电设计规范

煤矿井下供电设计规范

煤矿井下供电设计规范 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】煤矿井下供配电设计规范GB50417-2007中华人民共和国建设部2007年05月21日发布 2007年12月01日实施煤矿井下供配电设计规范GB50417-20072007—05—21 发布 2007—12—01 实施中华人民共和国国家建设部联合发布中华人民共和国国家质量监督检验检疫总局、中华人民共和国国家标准、中国煤炭建设协会主编、中华人民共和国建设部公告第646号,建设部关于发布国家标准《煤矿井下供配电设计规范》的公告,现批准《煤矿井下供配电设计规范》为国家标准,编号为 GB50417—2007,自 2007年12月1日起实施。

其中,第2.0.1、、2....、.中华人民共和国建设部二OO七年五月二十一日前言本规范是根据建设部建标函[2005]124号文件《关于印发“2005年工程建设标准制定、修订计划(第二批)”的通知》的要求,由中煤国际工程集团武汉设计研究院会同有关单位共同编制完成的。

本规范在编制过程中,编制组认真分析、总结和吸取了十几年来国内外煤矿井下供配电采用新技术、新装备的经验及新的科研成果。

所引用的技术参数和指标,是生产实践经验数据的总结。

特别是高产高效工作面近几年发展较快,其供配电系统有了比较成熟的运行实践经验。

编制组广泛征求了有关单位意见,经反复修改,最后经审查定稿。

本规范共8 章,内容涉及煤矿井下供电的各个方面,主要包括:总则、井下供配电系统与电压等级、井下电力负荷统计与计算、井下电缆选择与计算、井下主(中央)变电所设计、采区供配电设计、井下电气设备保护及接地、井下照明等。

适用于煤矿井下供电设计咨询的各个阶段。

本规范以黑体字标志的条文为强制性条文,必须严格执行。

本规范由建设部负责管理和对强制性条文的解释,由中国煤炭建设协会负责日常管理,由中煤国际工程集团武汉设计研究院负责具体技术内容的解释。

版煤矿井下供电设计规范方案

版煤矿井下供电设计规范方案

版煤矿井下供电设计规范方案煤矿是我国的重要煤炭资源开采地,煤矿井下供电系统的设计规范对确保矿井安全生产具有重要意义。

井下供电系统的设计不仅要满足矿井的用电需求,还要考虑到供电线路的可靠性、运行安全和节能环保等因素。

下面是一份1200字以上的煤矿井下供电设计规范方案。

一、总体设计原则1.安全第一、安全是煤矿井下供电设计的首要原则,要严格遵守煤矿安全规定和相关法律法规,确保供电系统的安全可靠。

2.稳定可靠。

井下供电系统的设计要确保电力负荷的稳定供应,防止因供电设备故障而导致停电事故的发生。

3.高效节能。

在满足井下照明、通风、提升等需求的前提下,要选用高效节能的供电设备和系统,尽量减少能源消耗。

4.灵活可靠。

井下供电系统的设计要考虑到煤矿生产的灵活性和可靠性,并采用可调节、可控制的供电设备和系统。

二、供电系统设计要点1.矿井用电需求分析。

根据矿井的实际用电需求,综合考虑矿井的规模、生产工艺、设备负荷、用电时间等因素,确定供电设备的容量和数量。

2.线路布置合理。

根据矿井的地质条件和生产布局,设计电缆和电缆支架的布置方案,确保供电线路的合理布置,方便检修和维护。

3.供电系统的保护与自动化。

设计过程中要考虑到供电系统的过载、短路、漏电等故障保护措施,并配置相应的自动控制设备,实现对供电设备和线路的监控和管理。

4.地下电缆的选择与敷设。

根据矿井的环境条件和电力负荷需求,选择合适的地下电缆材料,并严格按照规范要求进行电缆敷设,确保电缆的可靠运行。

5.变电站的设计与布置。

根据矿井的规模和用电负荷,设计合适容量的变电站,并在合适的地点布置变电站,确保供电系统的稳定运行。

6.防雷与接地。

设计中要充分考虑矿井地质条件和天气等因素,采取合适的接地措施,确保供电系统的防雷和接地的可靠性。

7.漏电保护与电源选择。

对于涉及人身安全的电气设备和线路,要设置漏电保护装置,同时选择可靠的电源供应,以确保供电系统的安全可靠。

三、供电设备和设施标准1.供电设备要符合国家的相关标准和规范要求,且经过合格的检测和评估。

煤矿井下供电设计规范标准

煤矿井下供电设计规范标准

煤矿井下供配电设计规范GB50417-2007中华人民共和国建设部2007年05月21日发布 2007年12月01日实施煤矿井下供配电设计规范GB50417-20072007—05—21 发布 2007—12—01 实施中华人民共和国国家建设部联合发布中华人民共和国国家质量监督检验检疫总局、中华人民共和国国家标准、中国煤炭建设协会主编、中华人民共和国建设部公告第646号,建设部关于发布国家标准《煤矿井下供配电设计规范》的公告,现批准《煤矿井下供配电设计规范》为国家标准,编号为 GB50417—2007,自 2007年12月1日起实施。

其中,第2.0.1、2.O.3、2.0.5、2.0.6、2.0.9、4.1.1、4.2.1、4.2.9、5.1.3、5.1.4(4.5.6)、6.1.4、6.3.1(4)、7.1.1、7.1.2、7.1.3、7.1.4、7.1.5、7.2.1、7.2.8 条(款)为强制性条文,必须严格执行。

本规范由建设部标准定额研究所组织中国计划出版社出版发行。

中华人民共和国建设部二OO七年五月二十一日前言本规范是根据建设部建标函[2005]124号文件《关于印发“2005年工程建设标准制定、修订计划(第二批)”的通知》的要求,由中煤国际工程集团武汉设计研究院会同有关单位共同编制完成的。

本规范在编制过程中,编制组认真分析、总结和吸取了十几年来国内外煤矿井下供配电采用新技术、新装备的经验及新的科研成果。

所引用的技术参数和指标,是生产实践经验数据的总结。

特别是高产高效工作面近几年发展较快,其供配电系统有了比较成熟的运行实践经验。

编制组广泛征求了有关单位意见,经反复修改,最后经审查定稿。

本规范共8 章,内容涉及煤矿井下供电的各个方面,主要包括:总则、井下供配电系统与电压等级、井下电力负荷统计与计算、井下电缆选择与计算、井下主(中央)变电所设计、采区供配电设计、井下电气设备保护及接地、井下照明等。

煤矿井下供电设计规范GB50417

煤矿井下供电设计规范GB50417

煤矿井下供电设计规范GB50417
首先,规范明确了井下供电系统的设计原则。

根据井下设备的特点和动力需求,要选择适当的供电电压等级,并确保供电系统的可靠性和稳定性,以保障井下设备的正常运行。

其次,在电气设备选择方面,规范要求根据矿井的实际情况,选择具有防爆性能的电气设备,并根据不同区域的防爆要求,对设备进行分类和标志,以确保井下供电系统的安全可靠。

在电气设备的安装要求方面,规范要求井下电缆的敷设应符合国家相关标准,并对电缆井、电缆桥架等设施的布置和绝缘接地进行了详细的规定,以确保井下供电系统的安全运行。

同时,规范还对井下供电系统的设备保护和维护提出了要求。

例如,要建立健全的井下设备保护装置和系统,确保故障时能够及时切断电源,防止电气设备的受损和事故的发生。

另外,还对设备的巡视、检修和保养提出了要求,以保证井下供电系统的长期稳定运行。

最后,规范还详细规定了井下电力系统的布线方式,包括电力线路的敷设、井下分级变电站的设置等。

规范要求布线应合理、经济,尽可能减少线路的长度和损耗,确保电能传输的效率和质量。

GB 50070-1994 矿山电力设计规范

GB 50070-1994 矿山电力设计规范

目次
第一章 总 则 第二章 矿山工程供配电 第三章 矿井井下供配电
第一节 供配电电压及供配电系统 第二节 电力设备及其保护 第三节 电缆线路 第四节 变 配 电所硐室 第五节 矿井照明 第六节 保护接地
第四章 露天矿供配电 第五章 电力牵引供电
第一节 一般规定 第二节 直流牵引变电所 第三节 直流牵引网

条 当矿山工程地面配电电源采用二回或二回以上
电源线路 且其中一回路停止运行时 其余回路的供电能力 应能
承担一级负荷和二级负荷

条 矿山工程固定式架空电力线路的路径选择 应符
合下列要求
一 不应架设在爆破危险区
二 不应架设在未稳定的排废场内 并应有安全距离
三 应避免通过初期塌陷区域 当无法避免时 应采取安全措
第一章 总 则

条 为使矿山工程电力设计认真执行国家的技术经济
政策 做到安全可靠 技术先进 经济合理 制订本规范

条 本规范适用于新建 扩建的矿山工程电力设计 不
适用于石油矿电力设计

条 矿山工程电力设计 应根据矿山工程规模 服务
年限和远景规划 正确处理近期建设和远景发展的关系 做到近 远
期建设 以近期为主 合理地兼顾远期建设 条件允许时 应使基
采掘工
作面应采用
三 行灯电压不应大于
第二节 电力设备及其保护

条 井下
电力网的短路电流 不得超过井下
装设的高压矿用断路器的额定开断电流 非矿用高压油断路器用于
井下时 其使用的开断电流值不应超过其额定开断电流值的
一半

条 电气设备类型选择 应符合下列规定
一 无爆炸危险的矿井 宜采用矿用一般型电气设备 在变

煤矿电力设计规范

煤矿电力设计规范
三、经技术经济比较合理时,可采用2台以上变压器。
第2.0.9条矿山工程地面主变电所的主变压器为2台及以上时,其中1台停止运行时,其余变压器容量应能保证一级和二级负荷。
当主变压器为l台时,宜预留全部负荷15%—25%的裕量。
第2.0.10条矿井6—10kV电网,当单相接地电容电流小于等于10A时,宜采用电源中性点不接地方式;大于10A时,必须采取限制措施。当采用自动调谐消弧线圈串、并电阻接地方式时,脱谐度的允许偏差为±5%以内,且接地电流的无功分量不应大于5A。当采用非自动调谐时,必须过补偿调谐,且故障点的残余电流不应大于10A;脱谐度不应大于10%。
一、一级负荷:
1.用井巷疏干的排水没备;
2.有淹没采掘场危险的主排水设备和疏干设备;
3.大型铁路车站的信号电源。
二、二级负荷:
1.大、中型露天矿的疏干设备和采掘场排水设备;
2.大、中型露天矿采煤(采矿)、掘进、运输、排土设备;
3.大、中型露天矿地面生产系统中主要生产设备及照明设备。
三、三级负荷:
不属于一级和二级负荷的生产设备和照明设备。
不属于二级负荷的生产设备和照明设备。
第2.0.4条矿山工程供电电源,应符合下列规定;
一、矿山工程的一级负荷应由两个电源供电,且两个电源间允许无联系和有联系,当两个电源有联系时,应同时符合下列规定:
1.当发生任何一种故障时,两个电源的任何部分应不致同时受到损坏;
2.当发生任何一种故障且保护装置动作正常时,应有一回电源不中断供电;当发生任何一种故障且主保护装置失灵,以致两电源均中断供电后,应能在有人值班的处所完成各种必要的操作,迅速恢复一个电源的供电。
一、一级负荷:
1.因事故停电有淹井危险的主排水泵;
2.有爆炸,火灾危险的矿井主通风机;

煤矿供电设计要求规范

煤矿供电设计要求规范

一、负荷计算与变压器选择工作面电力负荷计算是选择变压器和移动变电站台数、容量的依据,也是配电网络计算的依据之一。

1、负荷统计按表1-1内容,把工作面的每一种负荷进行统计。

平均功率因数计算公式:eneeen eneeeepj PPP PPP++++++=...cos ...coscoscos212211ϕϕϕϕ加权平均效率计算公式:eneeen eneeeepj PPP PPP++++++=......2 12211ηηηη注:负荷统计表的设计参考北京博超公司的负荷统计表的设计2、负荷计算1)变压器需用容量b S 计算值为:pjexb PK S ϕcos ∑=()KVA2)单体支架各用电设备无一定顺序起动的一般机组工作面,按下式计算需用系数:∑+=ex P P K max714.0286.03)自移式支架,各用电设备按一定顺序起动的机械化采煤工作面,按下式计算需用系数:∑+=ex P P K max6.04.0max P ——最大一台电动机功率,kw 。

二、高压电缆选择计算和校验1、按长时负荷电流选择电缆截面长时负荷电流计算方法:pjpj e xe gU k P I ηϕcos 3103⨯⋅=∑∑eP ——高压电缆所带的设备额定功率之和kw ;(见变压器负荷统计中的结果) x k ——需用系数;计算和选取方法同前。

(见变压器负荷统计中的结果)e U ——高压电缆额定电压(V) V 10000、V 6000;pj ϕcos ——加权平均功率因数; (见变压器负荷统计中的结果)pj η——加权平均效率。

0.8-0.92、电缆截面的选择选择要求是:g y I KI ≥―> 长时最大允许负荷电流应满足: KI I g y≥,初步筛选出符合条件的电缆g I ——电缆的工作电流计算值,A ;y I ——环境温度为C o 25时电缆长时允许负荷电流,A ;K ——环境温度校正系数。

不同环境温度下的电缆载流量修正系数K3、按经济电流密度选择高压电缆截面jg j I n I A ⋅=j I ——经济电流密度; n ——同时工作电缆的根数。

煤炭工业部煤矿井下供电设计技术规定

煤炭工业部煤矿井下供电设计技术规定

煤炭工业部煤矿井下供电设计技术规定“煤炭工业部煤矿井下供电设计技术规定”是中国煤炭工业部针对煤矿井下供电系统制定的技术标准和规范。

煤炭工业是我国能源行业的重要组成部分,煤矿井下供电系统对其生产和安全管理都具有重要意义。

本文将对该规定的内容、意义和实施情况进行分析。

一、文档的内容“煤炭工业部煤矿井下供电设计技术规定”分为12章,共103条规定,主要包括以下内容:1. 井下供电系统的分类、技术要求及安全措施;2. 井下开关设备的技术参数和选型原则;3. 井下电缆的敷设及维护措施;4. 井下照明及配电系统的设计和安装标准;5. 井下特殊场所(如井下机车车间、提升井、机电设备房等)供电系统的设计及安全管理;6. 井下自动化控制系统的供电设计原则。

以上规定均是根据煤矿生产中的实际需求,就井下供电系统的安全性、可靠性、稳定性以及节能环保等方面提出了具体要求。

二、文档涉及的重要意义1. 安全生产保障煤矿井下供电系统是保障生产、防范事故发生的关键环节,因此该规定的制定目的之一就是为了保障煤矿安全生产。

文档规定了井下供电系统的设计原则及要求,同时明确了设备的选型、安装、维护等各个环节的标准,使井下供电系统更加稳定、安全、可靠。

2. 提高生产效率井下供电系统的质量和可靠性直接影响到煤矿的生产效率,高质量的井下供电系统可以提高生产线的运转效率,从而提高生产产能和降低生产成本。

本规定就是为了通过提高井下供电系统的质量来推动煤矿行业的发展。

3. 保护环境井下供电系统的能源消耗占到了煤矿井下能耗的很大一部分,因此,通过制定标准和规范,促进井下供电系统的节能降耗,有利于推进煤炭工业的节能减排、环境治理和可持续发展。

三、文档的实施情况自“煤炭工业部煤矿井下供电设计技术规定”颁布以来,煤矿企业逐渐重视井下供电系统建设,有序地推进了技术改造和提升。

下面列举几个典型案例:1. 西大社煤矿2015年底,西大社煤矿完成了一次全新的井下电力自动化转型,该矿采用了规定中推荐的先进的PLC控制技术,实现了传统光电式控制向智能化控制的跨越式发展,有效提高了井下设备的自动化程度,大幅度降低了人为干扰对设备稳定性的影响。

煤矿井下供配电设计规范.doc

煤矿井下供配电设计规范.doc

煤矿井下供配电设计规范GB 50417—2007条文说明前言为便于各单位和有关人员在使用本规范时能正确理解和执行,特按章、节、条顺序编制了本规范的条文说明,供使用者参考。

在使用中如发现本条文说明有不妥之处,请将意见函告中煤国际工程集团武汉设计研究院。

本规范主要审查人:曾涛吴文彬何国伟郭均生孟融康忠佳李庚午.陈建平鲍魏超刘毅石强高建国邢国仓王普舟霍磊目次1总则…………………………………………………(2 9)2井下供配电系统与电压等级……………………………(3 o)4井下电缆选择与计算……………………………………(3 3)4.1电缆类型选择……………………………………………(3 3)4.2电缆安装及长度计算……………………………………(3 4)5井下主(中央)变电所设计………………………………(3 6)5.1变电所位置选择及设备布置……………………………(3 6)6采区供配电设计…………………………………………(3 7)6.1采区变电所设计…………………………………………(3 7)6.3采区低压网络设计………………………………………(3 8)7井下电气设备保护及接地………………………………(3 9)7.1电气设备及保护……………………………………··…·(3 9)7.2电气设备保护接地………………………………………(4 3)1总则1.0.1本条明确了《煤矿井下供配电设计规范》(以下简称“本规范”)的指导思想和制定本规范的目的。

1.0.2本条规定了本规范的适用范围。

1.0.3技术创新是工程设计的灵魂,只有不断创新和进步,在矿井建设中使用安全可靠的新设备、新器材,才能不断促进矿井的安全生产,不断提高矿井建设的经济效益。

2井下供配电系统与电压等级2.0.1本条文对突然中断供电可能造成重大的人身伤亡或经济财产损失的井下主排水设备、人员提升设备等规定按一级负荷要求供电。

为一级负荷供电的两个电源及线路,要求在任何情况下都不至于同时受到损坏,以确保供电的连续性,从而保证主排水设备、人员提升设备等的正常运转,这是必须满足的条件。

煤矿井下供电设计规范 GB50417

煤矿井下供电设计规范 GB50417

煤矿井下供电设计标准GB50417煤矿井下供配电设计标准GB50417-2022中华人民共和国建设部2022 年05月21日发布 2022 年12月01日实施1煤矿井下供配电设计标准GB50417-20222022 —05—21 发布 2022 —12—01 实施中华人民共和国国家建设部联合发布中华人民共和国国家质量监督检验检疫总局、中华人民共和国国家标准、中国煤炭建设协会主编、中华人民共和国建设部公告第646号,建设部关于发布国家标准《煤矿井下供配电设计标准》的公告,现批准《煤矿井下供配电设计标准》为国家标准,编号为 GB50417—2022 ,自 2022 年12月1日起实施。

其中,第2.0.1、2.O.3、2.0.5、2.0.6、2.0.9、4.1.1、4.2.1、4.2.9、5.1.3、5.1.4(4.5.6)、6.1.4、6.3.1(4)、7.1.1、7.1.2、7.1.3、7.1.4、7.1.5、7.2.1、7.2.8 条(款)为强制性条文,必须严格执行。

本标准由建设部标准定额研究所组织中国方案出版社出版发行。

中华人民共和国建设部二OO七年五月二十一日前言本标准是根据建设部建标函[2022]124号文件《关于印发“2022年工程建设标准制定、修订方案(第二批)〞的通知》的要求,由中煤国际工程集团武汉设计研究院会同有关单位共同编制完成的。

本标准在编制过程中,编制组认真分析、总结和吸取了十几年来国内外煤矿井下供配电采用新技术、新装备的经验及新的科研成果。

所引用的技术参数和指标,是生产实践经验数据的总结。

特别是高产高效工作面近几年开展较快,其供配电系统有了比拟成熟的运行实践经验。

编制组广泛征求了有关单位意见,经反复修改,最后经审查定稿。

本标准共8 章,内容涉及煤矿井下供电的各个方面,主要包括:总那么、井下供配电系统与电压等级、井下电力负荷统计与计算、井下电缆选择与计算、井下主(中央)变电所设计、采区供配电设计、井下电气设备保护及接地、井下照明等。

GB50417-2007煤矿井下供电设计规范标准

GB50417-2007煤矿井下供电设计规范标准

煤矿井下供配电设计规范GB50417-20072007—05—21 发布 2007—12—01 实施中华人民共和国国家建设部联合发布中华人民共和国国家质量监督检验检疫总局中华人民共和国国家标准中国煤炭建设协会主编中华人民共和国建设部公告第646 号建设部关于发布国家标准《煤矿井下供配电设计规范》的公告现批准《煤矿井下供配电设计规范》为国家标准,编号为 GB50417—2007,自 2007 年12 月1 日起实施。

其中,第2.0.1、2·O·3、2·0.5、2.0.6、2.0.9、4.1.1、 4.2.1、4.2.9、5.1.3、5·1·4(4、5、6)、6.1.4、6.3.1(4)、7.1.1、7.1.2、7. 1.3、7·1·4、7·1·5、7.2.1、7.2.8 条(款)为强制性条文,必须严格执行。

本规范由建设部标准定额研究所组织中国计划出版社出版发行。

中华人民共和国建设部二OO 七年五月二十一日前言本规范是根据建设部建标函(2005}124 号文件《关于印发“2005 年工程建设标准制定、修订计划(第二批)”的通知》的要求,由中煤国际工程集团武汉设计研究院会同有关单位共同编制完成的。

本规范在编制过程中,编制组认真分析、总结和吸取了十几年来国内外煤矿井下供配电采用新技术、新装备的经验及新的科研成果。

所引用的技术参数和指标,是生产实践经验数据的总结。

特别是高产高效工作面近几年发展较快,其供配电系统有了比较成熟的运行实践经验。

编制组广泛征求了有关单位意见,经反复修改,最后经审查定稿。

本规范共8 章,内容涉及煤矿井下供电的各个方面,主要包括:总则、井下供配电系统与电压等级、井下电力负荷统计与计算、井下电缆选择与计算、井下主(中央)变电所设计、采区供配电设计、井下电气设备保护及接地、井下照明等。

适用于煤矿井下供电设计咨询的各个阶段。

煤矿井下供电设计规范解释条文

煤矿井下供电设计规范解释条文

煤矿井下供电设计规范解释条文1总则1.0.1本条文明确了《煤矿井下供电设计规范》(以下简称“本规范”)的指导思想和制定本规范的目的。

1.0.2规定了本规范的适用范围1.0.3技术创新是工程设计的灵魂,只有不断创新和进步,在矿井建设中适用安全可靠的新设备、新器材,才能不断促进矿井的安全生产,不断提高矿井建设的经济效益;设计规范是工程实践的总结,当设计规范的某些条款明显落后与工程实践时,工程设计可以有条件地、慎重地突破规范的规定,及时采用经工程实践证明是成熟可靠的新技术。

2井下供配电系统与电压等级2.0.1本条文对突然中断供电可能造成重大的人身伤亡或经济财产损失的井下主排水设备、人员提升设备等规定按一级负荷要求供电。

为一级负荷供电的两个电源及线路,要求在任何情况下都不至于同时受到损坏,以确保供电的连续性,从而保证主排水设备、人员提升设备等的正常运转,这是必须满足的条件。

2.0.2本条文对突然中断供电可能造成生产秩序混乱或较大经济财产损失的井下主要生产设备等规定按二级负荷要求供电。

二级负荷要求在条件许可时应尽量采用两回路电源线路供电,但并不要求两回路电源线路必须来自两个电源;在条件不具备时,第二路电源线路可引自其他二级负荷用电设备或采用单回专用电源线路供电。

2.0.3井下主(中央)变电所主要向井下主排水泵房的一级用电负荷和主要生产负荷供电,要求供电可靠、电能充足。

所以,要求供电电源线路不少于2回,且当任何一回路停止供电时,其余回路的供电能力应承担井下全部负荷的用电要求。

2.0.4 本条文之所以规定井下供电的变压器或向井下供电的变压器或发电机中性点不直接接地,是因为变压器或发电机中性点直接接地系统存在以下问题:1.人身触电电流太大。

在变压器中性点直接接地系统中,人身触电电流为:IΦ= I cp/ (R z+ R r)在人身电阻R r(=1000Ω)不变情况下,由于井下环境潮湿,中性点接地电阻R z一般都小于2Ω,因此,井下人身触电电流IΦ都远大于30mA的安全触电电流。

煤炭工业部煤矿井下供电设计技术规定

煤炭工业部煤矿井下供电设计技术规定

煤炭工业部煤矿井下供电设计技术规定煤炭工业部煤矿井下供电设计技术规定是针对我国煤矿井下供电的一个标准,该标准是为了保障煤矿井下供电安全和提高煤矿井下供电的效率而制定的。

本文将对该规定进行详细的解析,介绍其主要内容、意义以及实施的必要性。

一、煤炭工业部煤矿井下供电设计技术规定的主要内容该规定主要包括以下几个方面的内容:1、煤矿井下供电的原则和要求:该规定明确规定了煤矿井下供电应严格按照国家安全标准进行,提高供电的安全性,同时还要保障供电的可靠性和持续性。

2、煤矿井下供电的基本参数和标准:规定了煤矿井下供电的电压、电流、频率等技术参数标准,保证井下供电的稳定性。

3、煤矿井下电源装置的选择和设计:规定了井下电源装置的选择和设计,保证其能够满足煤矿井下供电的需求,同时还要考虑其安全性和节能性。

4、煤矿井下配电系统的设计和布置:规定了煤矿井下配电系统的设计和布置,保证井下的电力供应能够覆盖全面,且不受外界干扰。

5、煤矿井下电缆和线路的选用和敷设:规定了煤矿井下电缆和线路的选用和敷设,保证井下电线的安全性和可靠性。

二、煤炭工业部煤矿井下供电设计技术规定的意义1、保障煤矿井下供电的安全性:煤矿井下电力供应是煤矿具有生命力的重要支撑,煤炭工业部煤矿井下供电设计技术规定的制定,旨在从井下供电的角度出发,制定严格的安全标准,保证井下供电的稳定性和可靠性,同时最大限度地保障煤矿工人的生命安全。

2、提高煤矿井下供电的效率:煤炭工业部煤矿井下供电设计技术规定的制定,旨在通过优化井下电气设备的选型、设计和布置,以及电缆线路的选用和敷设等方面来提高井下供电的效率,将煤矿井下供电的效果最大化。

3、实现可持续发展:该规定的实施,有助于优化能源利用和节能减排,以达到可持续化发展的目的。

三、煤炭工业部煤矿井下供电设计技术规定的实施必要性1、满足国家对煤矿井下供电安全的要求:随着我国国民经济的快速发展,对煤炭的需求日益增加,同时煤炭工业也面临着越来越严格的安全要求,煤炭工业部煤矿井下供电设计技术规定的实施,从井下供电的角度出发,为煤炭工业安全生产提供了保障。

采掘工作面供电设计标准规范

采掘工作面供电设计标准规范

采掘供电设计规范一、设计依据1、煤矿安全规程2、煤矿供电设计手册3、煤矿井下低压电网短路保护装置的整定细则4、煤矿井下低压检漏保护装置的安装、运营、维护与检修细则5、煤矿井下保护接地装置的安装、检查、测定工作细则6、供电设计软件二、设计规定1、采掘工作面重要排水地点(涌水量30m3及以上)及有地质钻场的排水设备、局部通风机必须实现双回路供电。

2、掘进工作面瓦斯异常区域的局部通风机应采用三专(专用变压器、专用开关、专用线路)供电,高瓦斯及突出矿井推广采用双三专供电。

使用局部通风机供风的地点必须实行风电闭锁,保证停风后切断停风区内所有非本质安全型电气设备的电源。

使用2台局部通风机供风的,2台局部通风机都必须同时实现风电闭锁,保证当正常运转的局部通风机停止运转或停风后能切断停风区域内所有本质安全型电气设备的电源。

3、采掘供电不能混用,应分开供电。

4、煤巷掘进工作面风机配电点原则上设立在车场风门外侧。

三、供电计算范例1、负荷记录与变压器选择1.1负荷记录计算变压器负荷登记表公式参数说明:K x——需用系数;cosφpj——平均功率因数;cosφe——额定功率因数;P max——最大一台电动机功率,kW;S b——变压器需用容量,kV•A;∑P e——变压器所带设备额定功率之和,kW;P d——变压器短路损耗,W;S e——变压器额定容量,k V•A;U e2——变压器二次侧额定电压,V;U z——变压器阻抗压降;1.2 变压器的选择根据供电系统的拟订原则,变压器的选择原理如下:1.2.1 变压器 T1:K x = 0.4 + 0.6×P max∑P ecos φpj = ∑(P i ×cosφei )∑P i将K x 值和cos φpj 值代入得 S b =K x ×∑P ecos φpj选用KBSGZY-××/6/0.693 型号符合规定。

1.2.2 变压器 T2: K x = 0.4 + 0.6×P max∑P eA = ∑(P i ×cosφei )B = ∑P i cos φpj = AB将K x 值和cos φpj 值代入得S b = K x ×∑P ecos φpj选用KBSGZY-××/6/0.693 型号符合规定。

煤矿电力设计规范

煤矿电力设计规范

煤矿电力设计规范矿山电力设计规范第一章总则第1.0.1条为使矿山工程电力设计认真执行国家的技术经济政策,做到安全可靠、技术先进、经济合理,制订本规范。

第1.0.2条本规范适用于新建、扩建的矿山工程电力设计,不适用于石油矿电力设计。

第1.0.3条矿山工程电力设计,应根据矿山工程规模、服务年限和远景规划,正确处理近期建设和远景发展的关系。

做到近、远期建设,以近期为主,合理地兼顾远期建设。

条件允许时,应使基建与生产用电设施相结合。

第1.0.4 条矿山工程电力设计,必须从全局出发,统筹兼颐,按负荷性质、用电容量、工程特点、工艺设备和地区供电条件,正确处理供、用电的关系,合理确定设计方案。

第1.0.5条矿山工程电力设计,除应符合本规范外,尚应符合国家现行有关标准、规范的规定。

第二章矿山工程供配电第2.0.1条矿井工程电力负荷分级,应符合下列规定:一、一级负荷:1.因事故停电有淹井危险的主排水泵;2.有爆炸,火灾危险的矿井主通风机;3.对人体健康及生命有危害气体矿井的主通风机;4.具有本条1—3项之一所列危险矿井经常使用的立井载人提升装置;5.无平硐或无斜井作安全出口的立井,其深度超过150m,且经常使用的载人提升装置;6.矿井瓦斯抽放设备。

二、二级负荷:1.不属于一级负荷的大、中型矿井井下的主要生产设备;2.大、中型矿井地面主要生产流程的生产设备和照明设备;3.大、中型矿井的安全监控及环境监测设备;4.没有携带式照明灯具的井下照明设备。

三、三级负荷:不属于一级和二级负荷的生产设备和照明设备。

第2.0.2条露天矿工程电力负荷分级,应符合下列规定:一、一级负荷:1.用井巷疏干的排水没备;2.有淹没采掘场危险的主排水设备和疏干设备;3.大型铁路车站的信号电源。

二、二级负荷:1.大、中型露天矿的疏干设备和采掘场排水设备;2.大、中型露天矿采煤(采矿)、掘进、运输、排土设备;3.大、中型露天矿地面生产系统中主要生产设备及照明设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

负荷计算与变压器选择工作面电力负荷计算是选择变压器和移动变电站台数、容量的依据, 也是配电网络计算的依据之一。

1、负荷统计按表1-1内容,把工作面的每一种负荷进行统计。

表1-1 工作面负荷统计表格式功 率'P e (kw)加权平均功率因数 cospj 平均功率因数计算公式: cospj_ P 1COS 訂 R2COS e2 …P n COS en已P e2…P en加权平均效率计算公式: P jp n+ + p ne1 e1 e2 e2en en已+Py...+ F en注:负荷统计表的设计参考北京博超公司的负荷统计表的设计2、负荷计算单体支架各用电设备无一定顺序起动的一般机组工作面,按下式计算需用系数:P心=0.286 0.714-曲自移式支架,各用电设备按一定顺序起动的机械化采煤工作面,按下式计算需用系数:K x = W 焉Pn ax最大一台电动机功率,kw1) 变压器需用容量 Sb 计算值为:S b =K x —coS pjKVA2) 3)井下其它用电设备需用系数及平均功率因数表井下负荷名称需用系数K x 平均功率因数coS 综米工作面:综合机械化工作面(自移支架)0.4+0.6P max/送P e 0.7〜0.7 一般机械化工作面(单体支架)0.286 + 0.714 P max/送P e0.6一般机械化工作面(倾斜机采面)0.6〜0.75 0.6〜0.7缓倾斜煤层(炮采工作面)0.4〜0.5 0.6急倾斜工作面(炮采工作面)0.5〜0.6 0.7掘进工作面:采用掘进机的0.5 0.6〜0.7非掘进机的0.3 〜0.4 0.6电机车:架线式电机车0.5〜0.65 0.9蓄电池电机车0.8 0.9其它运输设备(如输送机、绞车等)0.5 0.7井底车场:无主排水设备0.6-0.7 0.7有主排水设备0.75〜0.85 0.8一、咼压电缆选择计算和校验1按长时负荷电流选择电缆截面工P e k^103长时负荷电流计算方法:l g =-3U e C0S pj pj、、P e――高压电缆所带的设备额定功率之和kw;(见变压器负荷统计中的结果)k x ――需用系数;计算和选取方法同前。

(见变压器负荷统计中的结果)U e ――高压电缆额定电压(V)10000V、6000V ;cos订一一加权平均功率因数;(见变压器负荷统计中的结果)pj ――加权平均效率。

0.8-0.92、电缆截面的选择选择要求是:KI y - I gI > 1g—>长时最大允许负荷电流应满足:l y ,初步筛选出符合条件的电缆KI g ――电缆的工作电流计算值, A ;I y ――环境温度为25° C时电缆长时允许负荷电流, A ;K ――环境温度校正系数。

不同环境温度下的电缆载流量修正系数K电缆芯线最咼允许° 5 10 15 20 25 30 35 40 45 工作温度/ C65 1.22 1.17 1.12 1.06 1.0 0.935 0.865 0.791 0.7073、按经济电流密度选择高压电缆截面I gnl\I j ――经济电流密度; n ――同时工作电缆的根数。

经济择表备注:年最大负荷利用小时数一班作为 1000〜3000h ,两班作业为3000〜5000h ,三班作业为5000h 以上。

经济截面是指按降低电能损耗、 确定的符合总经济利益的导体截面。

密度。

4、按热稳定校验电缆截面计算方法:S s降低线路投资、节约有色金属等因素,综合 与经济截面相应的电流密度,叫做经济电流A min ——电缆短路时热稳定要求的最小截面,2mm ;(3)三相最大稳态短路电流,S s ――变电所母线的短路容量, MVA ; 一般指地面变电所6KV , 10KV 和井下中央变电所6KV , 10KV 母线的短路容量,计算地面高低压短路电流时, 以地面变电所6KV ,10KV 母线为基准。

计算井下高低压短路电流时,以井 下变电所6KV ,10KV 母线为基准U p ――平均电压,KV ; t f ――短路电流作用的假想时间;C ――电缆芯线热稳定系数。

对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路, 则应按一路故障情况加以考虑。

5、按允许电压损失 校验咼压电缆截面高压电缆电压损失计算方法:P ――高压电缆所带的负荷计算功率kw ;P 二 KZ F > ;a Fe ――高压电缆带的所有设备额定功率之和,kw ;K x ――需用系数,计算和选取方法同前;1tan 「一一电网平均功率因数对应的正切值;tan 「=.12. -1 \ cos 申U e ――高压额定电压6kV , 10kV ;R ,X — —所选高压电缆的 每公里电阻和电抗 11/kM ;Lg —高压电缆长度km 。

U g % 二PL giou eR X tan注:电压损失正常情况下 不得超过7%,故障状态下不超过10%]三、低压电缆选择计算和校验1、按长时负荷电流初选电缆截面长时负荷电流的计算方法:1)向单台或两台 电动机供电的电缆,可以取单台或两台电动机的额定电流之和。

I g , I e ――分别为通过电缆的电动机工作电流与额定电流;P ,——电动机的额定功率,KW ; U e ——电动机的额定电压,V ;e ——电动机的额定效率;COS’ e ――电动机的额定效率因数。

2)向三台及以上电动机供电的电缆长时负荷电流计算方法:K x ――需用系数,需用系数计算和选取方法同上;pj ――平均效率,取pj= 0.8 ~ 0.9 ;cos ' pj ――平均功率因数,可以取 0.7。

3)中途分支干线电缆的工作电流I …送Pe103g e• 3U e e COS e(A)。

P e103(A)g中途分支干线电缆的工作电流可以分别各段电缆进行计算, 各段 电缆的工作电流可以参照单台、两台或三台以上电动机工作电流公式 进行计算2、电缆截面的选择选择要求是:Wi gI g ――电缆的工作电流计算值, A ;1y ――环境温度为25° C 时电缆长时允许负荷电流, A ;K ――环境温度校正系数。

不同环境温度下的电缆载流量修正系数K3、按允许电压损失校验电缆截面变压器二次侧电压损失 包括三部分:(变压器电压损失,干线电缆电压损失,支线电缆电压损失)电压总损失=变压器电压损失+干线电缆电压损失+支线电缆电压损失注:各部分电压损失计算方法如下。

变电器电压损失计算正常负荷时变压器内部电压损失百分数U b% 今U r COS pj U x Sin pj S eU r――变电器电阻压降;U x ――变电器电抗压降;S)――选择变压器时计算的需用容量,KVA ;COS「pj ――选择变压器时的加权平均功率;sin \ = J _ cos2 \S e――选择的变压器额定容量。

变压器电压损失绝对值:U b 二U b%U e2 V注:正常运行时电动机的电压降应不低于额定电压的7% ~10%。

准确计算低压电缆干线和支线电压损失:U % pL? & X。

tanIOU eP ――电缆所带的负荷计算功率kw;P 二 2 P e、P,――电缆带的所有设备额定功率之和,kw;K x――需用系数,计算和选取方法同前;tan ‘:一一平均功率因数对应的正切值;U e――低压电缆线路的额定电压;R),X O—电缆每公里电阻和电抗11 /kM ;L—电缆长度km。

四、解析法计算短路电流1、高压短路电流计算标准电压/kV 0.127 0.22 0.38 0.66 1.140 3.3 6 10 35 110 平均电压/kV 0.133 0.23 0.40 0.69 1.20 3.4 6.3 10.5 37 1152)短路点的选定:一般选定变压器、移动变电站高压进线端作为短路点,或选每段高压电缆的末端作为短路点计算高压短路电流。

3)系统电抗计算方法:U 2X s —11根据母线短路容量和变压器一次侧(平均)电压计算系统电抗SsX s――电源系统电抗,门;U p――平均电压,KV ;S s――变电所母线的短路容量,MVA;一般指地面变电所6KV,10KV和井下中央变电所6KV,10KV母线的短路容量,计算地面高低压短路电流时,以地面变电所6KV,10KV母线为基准。

计算井下高低压短路电流时,以井下中央变电所6KV,10KV母线为基准。

4)电抗器电抗计算方法:X k%100X k % ——电抗器的电抗百分值;U e ――电抗器的额定电压,KV ;I e——电抗器的额定电流,KA。

5)6KV,10KV电缆线路阻抗:(1)6KV,10KV电缆线路电抗计算方法:X i ――第i 段高压电缆每公里电抗,门/KM ;L i ——基准母线到变压器或移动变电站第i 段高压电缆的长度, m 。

(2) 6KV ,10KV 电缆线路电阻计算方法:nR g 八i TR i ――第i 段高压电缆每公里电阻,11 /KM ;L i ——基准母线到变压器或移动变电站第 i 段高压电缆的长度,m 。

6)短路回路中的总阻抗:Z 「尺 X s X k X g 27)三相短路电流为:I (3) I d8)两相短路电流为:9)短路容量为:S d 二 \3l d (3)U p 10"MVA(注:在供电设计软件数据库中,变压器的二次侧电压U 2e 值与U p 值相等。

)2、低压短路电流计算1)系统电抗计算方法:nX i L i(0 )R 丄i 10003ZI d(2)\ 3[⑶X s ——电源系统电抗,门;2)6KV , 10KV 电缆线路电阻计算方法:R g 八竺11gi d1000R i ――第i 段高压电缆每公里电阻,门;L i ――基准母线到变压器或移动变电站第i 段高压电缆的长度,km o3)6KV , 10KV 电缆线路电抗计算方法:gi^ 1000X i ――第i 段高压电缆每公里电抗,门/KM ;L i ――基准母线到变压器或移动变电站第i 段高压电缆的长度,km o‘巳U ;S e 2每相电抗X r 1):X s 王 SS sU p平均电压,KV 。

4)变压器内部阻抗计算: (添加变压器时数据库中已经计算出结果)R i ――第i 段低压电缆每公里电阻,门;6)低压电缆线路 电抗计算方法:X i ――第i 段低压电缆每公里电抗,门;低压侧的总电阻和电压侧的总电抗:计算低压短路电流时,短路点一般选在变压器的二次母线上和低压配电线路的首、末端。

1)三相短路电流的计算U 2eU 2e ――变压器二次平均电压, V ;5)低压电缆线路 电阻计算方法:R TnR i L iRd 「i=11000L i变压器二次侧第i 段低压电缆的长度,X dnX i L iL i变压器二次侧第i 段低压电缆的长度,注:计算低压网络短路电流时,一般计入电弧电阻0.01」X gX t X dR t R d 0.01|(3)三相短路电流,(3) 1d2X T 二二 0.866 ——/ U;e2屈匹R$ +匹X fU ieU 2e五、供电保护装置整定计算高压配电箱1、保护一台变压器(1)短路(速断)保护动作电流计算方法K b ――变压比;K x ――需用系数,计算和选取方法同上;l eq ——最大一台电机的启动电流;K i ――电流互感器变流比;二I e —其余电机的额定电流之和, A 。

相关文档
最新文档