高考数学模拟试题专题训练:函数的图象含解析

合集下载

高考数学函数的图像专题卷

高考数学函数的图像专题卷

高考数学函数的图像专题卷一、单选题(共28题;共56分)1. ( 2分) (2020高三上·兴宁期末)函数y=xcos x+sin x的图象大致为( ).A. B.C. D.2. ( 2分) (2021高三上·宝安月考)函数的图象大致为()A. B.C. D.3. ( 2分) (2021高三上·河南月考)函数的大致图象为()A. B.C. D.4. ( 2分) (2021高三上·河北期中)函数的图象大致为()A. B.C. D.5. ( 2分) (2021高三上·湖北期中)函数的图象大致为()A. B.C. D.6. ( 2分) (2021·芜湖模拟)函数的部分图象可能为()A. B.C. D.7. ( 2分) (2020高三上·天津月考)函数的图象大致是()A. B. C. D.8. ( 2分) 函数的图象大致为()A. B.C. D.9. ( 2分) (2020高三上·杭州期中)函数的部分图象大致为()A. B.C. D.10. ( 2分) (2021高三上·赣州期中)已知函数,则函数的大致图象为()A. B.C. D.11. ( 2分) (2021高三上·湖州期中)函数的图象可能是()A. B. C. D.12. ( 2分) (2021高三上·金华月考)已知,函数,,则图象为上图的函数可能是()A. B. C. D.13. ( 2分) (2021高三上·杭州期中)函数的图象可能是()A. B.C. D.14. ( 2分) (2021高三上·陕西月考)在同一直角坐标系中,函数,,(,且)的图像可能是()A. B.C. D.15. ( 2分) (2021高三上·贵州月考)函数f(x)= 的大致图象不可能是()A. B.C. D.16. ( 2分) (2020高三上·温州月考)函数的图像可能是()A. B.C. D.17. ( 2分) (2021·四川模拟)函数及,则及的图象可能为()A. B.C. D.18. ( 2分) 已知函数f(x)=ka x﹣a﹣x(a>0且a≠1)在R上是奇函数,且是增函数,则函数g(x)=log a (x﹣k)的大致图象是()A. B. C. D.19. ( 2分) (2021高三上·重庆月考)函数的大致图象如图所示,则a,b,c 大小顺序为()A. B. C. D.20. ( 2分) (2021·株洲模拟)若函数的大致图象如图所示,则()A. B. C. D.21. ( 2分) (2020高三上·浙江开学考)已知函数的图像如图所示,则下列判断正确的个数是()(1),(2),(3),(4)A. 1个B. 2个C. 3个D. 4个22. ( 2分) 如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A. B.C. D.23. ( 2分) (2021·新乡模拟)如图,在正方形中,点M从点A出发,沿向,以每2个单位的速度在正方形的边上运动;点N从点B出发,沿方向,以每秒1个单位的速度在正方形ABCD的边上运动.点M与点N同时出发,运动时间为t(单位:秒),的面积为(规定共线时其面积为零,则点M第一次到达点A 时,的图象为()A. B.C. D.24. ( 2分) (2017高三上·九江开学考)如图,圆C:x2+(y﹣1)2=1与y轴的上交点为A,动点P从A点出发沿圆C按逆时针方向运动,设旋转的角度∠ACP=x(0≤x≤2π),向量在=(0,1)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()A. B.C. D.25. ( 2分) 在边长为1的正方体中,E,F,G,H分别为A1B1,C1D1,AB,CD的中点,点P从G出发,沿折线GBCH匀速运动,点Q从H出发,沿折线HDAG匀速运动,且点P与点Q运动的速度相等,记E,F,P,Q四点为顶点的三棱锥的体积为V,点P运动的路程为x,在0≤x≤2时,V与x的图象应为()A. B. C. D.26. ( 2分) 如图,正△ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量在=(1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()A. B.C. D.27. ( 2分) (2013·江西理)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A. B.C. D.28. ( 2分) (2016高三上·崇明期中)如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成,它们的圆心分别为O,O1,O2.动点P从A点出发沿着圆弧按A→O→B→C→A→D→B的路线运动(其中A,O1,O,O2,B五点共线),记点P运动的路程为x,设y=|O1P|2,y与x的函数关系为y=f (x),则y=f(x)的大致图象是()A. B.C. D.答案解析部分一、单选题1.【答案】D【考点】函数的图象【解析】【解答】由于函数y=xcosx+sinx为奇函数,故它的图象关于原点对称,所以排除B,由当时,y=1>0,当x=π时,y=π×cosπ+sinπ=−π<0.由此可排除A和C,故正确的选项为D.故答案为:D.【分析】利用奇函数的定义证出函数为奇函数,再利用奇函数的图象关于原点对称的性质结合特殊值法及函数值与0的大小关系,再利用排除法得出函数y=xcos x+sin x的大致图象。

高考数学最新真题专题解析—函数的图象及性质

高考数学最新真题专题解析—函数的图象及性质

高考数学最新真题专题解析—函数的图象及性质考向一 由函数图像求解析式【母题来源】2022年高考全国乙卷(文科)【母题题文】如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A. 3231x x y x -+=+B. 321x x y x -=+C. 22cos 1x x y x =+D.22sin 1x y x =+ 【答案】A【试题解析】设()321x x f x x -=+,则()10f =,故排除B; 设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x x h x x x =<≤++,故排除C;设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D.故选:A. 【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的周期性,判断图像的循环往复.(5) 从函数的特征点,排除不合要求的图象.考向二 由解析式判断图像【母题来源】2022年高考全国乙卷(文科)【母题题文】函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( ) A. B. C. D.【答案】A【试题解析】令()()33cos ,,22x x f x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦, 则()()()()()33cos 33cos x x x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A. 【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图像的循环往复.(5)从函数的特征点,排除不合要求的图象.真题汇总及解析1.函数()22cos6x x y x -=-的图像大致是( )A .B .C .D .【答案】C【解析】【分析】利用排除法求解,先判断函数的奇偶性,再利用函数的变化情况判断即可【详解】定义域为R ,因为()()()22cos(6)22cos6()x x x x f x x x f x ---=--=--=-,所以函数为奇函数,所以排除AB , 当012x π<<时,062x π<<,则cos60x >,因为当012x π<<时,220x x -->,所以当012x π<<时,()22cos60x x y x -=->,所以排除D ,故选:C 2.从函数y x =,2y x ,2x y -=,sin y x =,cos y x =中任选两个函数,记为()f x 和()g x ,若()()()h x f x g x =+或()()()h x f x g x =-的图象如图所示,则()h x =( )A .2sin x x -B .cos x x +C .2sin x x -+D .cos x x -【答案】C【解析】【分析】 根据图象可知函数()h x 过定点(0,1),当0x <时()1h x >,为减函数;当0x >时()0h x >或()0h x <交替出现,结合排除法和选项中函数的图象与性质,即可得出结果.【详解】由图象可知,函数()h x 过定点(0,1),当0x <时,()1h x >,为减函数;当0x >时,()0h x >或()0h x <交替出现.若2()sin h x x x =-,则()00h =,不符合题意,故A 错误;若()cos h x x x =+,则(0)1h =,即函数()h x 过定点(0,1),又1cos 1x -≤≤,当1x <-时,()cos 0h x x x =+<,不符合题意,故B 错误;若()cos h x x x =-,则(0)1h =-,不符合题意,故D 错误.故选:C3.函数()2cos sin ln 2cos x f x x x-=⋅+的部分图象大致为( ) A .B .C .D .【答案】C【解析】【分析】先判断函数的奇偶性得函数为奇函数,进而排除AB 选项,再根据0,4x π⎛⎫∈ ⎪⎝⎭时的函数符号排除D 选项得答案.【详解】解:由题意可知,函数()f x 的定义域为R ,因为2cos()2cos ()sin()ln sin ln ()2cos()2cos x x f x x x f x x x----=-=-⋅=-+-+, 所以()f x 为奇函数,图象关于原点对称,排除选项A ,B ;当0,4x π⎛⎫∈ ⎪⎝⎭时,sin 0,2cos 2cos 0x x x >+>->,所以2cos 012cos x x -<<+, 所以2cos ()sin ln02cos x f x x x-=⋅<+,排除D. 故选:C.4.已知R α∈,则函数()e x x f x α=的图象不可能是( ) A . B .C .D .【答案】C【分析】 令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】 当12α=时,()e x x f x =且0x ≥,则12()e x x f x x-'=, 所以1(0,)2上 ()0f x '>,()f x 递增;1(,)2+∞上 ()0f x '<,()f x 递减,且(0)0f =, 所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=, 所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上 ()0f x '>,()f x 递增,(2,)+∞上 ()0f x '<,()f x 递减,所以B 图象可能;当1α=-时,1()e xf x x =且0x ≠,则21()e x x f x x +'=-, 所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上 ()0f x '<,()f x 递减,(0,)+∞上 ()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >,所以D 图象可能;综上,排除A 、B 、D.故选:C5.函数()2222x xx x f x -+=+的部分图象大致是( ) A . B . C . D .【答案】B【分析】先判断()f x 的奇偶性,可排除A ,再由单调性、特值点排除选项C 、D ,即可得出答案.【详解】函数的定义域为R ,因为()()2222x x x x f x f x -+-==+,所以()f x 是偶函数,排除选项A ;当x →+∞时,考虑到22y x x =+和22x x y -=+的变化速度,知x →+∞时,()0f x →,故排除选项C ,D .故选:B .6.函数()22x f x x -=⋅在区间[]22-,上的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵()()22x f x x f x --=⋅=,∴()f x 是偶函数,函数图象关于y 轴对称,排除A ,B 选项;∵()()122f f ==,∴()f x 在[0,2]上不单调,排除D 选项.故选:C7.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=-D .21x y =--【答案】A【解析】【分析】 根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,1y =-,故排除B 、D 两项; 当1x >时,函数图象单调递增,无限接近于0,对于C 项,当1x >时,12x y -=-单调递减,故排除C 项.故选:A.8.函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <【答案】D【解析】【分析】 由函数的单调性得到a 的范围,再根据函数图像平移关系分析得到b 的范围.【详解】由函数()x b f x a -=的图像可知,函数()x b f x a -=在定义域上单调递减,01a ∴<<,排除AB 选项;分析可知:函数()x b f x a -=图像是由x y a =向左平移所得,0b ∴->,0b ∴<.故D 选项正确. 故选:D9.已知函数()f x ax b =+的图象如图所示,则函数()x g x a b =+的图象可能是( )A .B .C .D .【答案】B【解析】【分析】由函数()f x ax b =+的图象可得1a >,1b <-,从而可得()x g x a b =+的大致图象.【详解】由()f x ax b =+的图象可得(0)1f b =<-,(1)0f a b =+>,所以1a >,1b <-,故函数()x g x a b =+为增函数,相对x y a =向下平移大于1个单位故选:B10.设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( )A .y =f (|x )B .y =-|f (x )| )C .y =-f (-|x )D .y =f (-|x )【答案】C【解析】 由题意结合指数函数的图象及函数图象的变换可得函数图象对应的函数解析式,即可得解.【详解】由图象可知函数图象对应的函数解析式是||2x y -=-,所以函数图象对应的函数解析式是y =-f (-|x |).故选:C .【点睛】本题考查了指数函数的图象及函数图象变换的应用,属于基础题.11.函数()cos f x x x =的图像大致是( )A .B .C .D .【答案】A【解析】【分析】先根据函数奇偶性的概念可知()()f x f x -=-,即函数()f x 为奇函数,排除选项D ;再利用三角函数的性质排除BC 即得.【详解】()cos()cos ()f x x x x x f x -=--=-=-,∴函数()f x 为奇函数,排除选项D ; 当(0,)2x π∈时,0x >,0cos 1x <<, 0()f x x ∴<<,排除选项BC . 故选:A .12.下列各个函数图像所对应的函数解析式序号为( )①||()e sin x f x x = ②()ln ||=-g x x x ③2()sin =t x x x ④2e ()xh x x =A .④②①③B .②④①③C .②④③①D .④②③①【答案】A【解析】【分析】先通过函数定义域和奇偶性进行判断,再利用导数对①求导,求其在()0,π上的最大值.【详解】()f x ,()t x 的定义域为R ,()g x ,()h x 的定义域为{}|0x x ≠2e ()0xh x x =>在定义域内恒成立,则前两个对应函数分别为④②当()0,πx ∈时,则()e sin x f x x =()π()e sin cos 2e sin 4x x f x x x x ⎛⎫'=+=+ ⎪⎝⎭,令()0f x '>,则30π4x <<()f x 在30,π4⎛⎫ ⎪⎝⎭上单调递增,在3π,π4⎛⎫ ⎪⎝⎭上单调递减,则3π432()(π)e 542f x f ≤=>①对应的为第三个函数故选:A .。

高考数学复习高频考点题型专题讲解与训练10---函数的图象(附解析答案)

高考数学复习高频考点题型专题讲解与训练10---函数的图象(附解析答案)

高考数学复习高频考点题型专题讲解与训练专题10:函数的图象1. 设函数 f (x )=e x (2x −1)−ax +a ,其中 a <1,若存在唯一的整数 x 0 使得 f (x 0)<0,则 a 的取值范围是 ( )A. [−32e ,1)B. [−32e ,34)C. [32e ,34)D. [32e ,1)2. 已知定义在 R 上的函数 y =f (x ) 对任意的 x 都满足 f (x +2)=f (x ),当 −1≤x <1 时,f (x )=x 3,若函数 g (x )=f (x )−log a ∣x∣(a >0,且 a ≠1)至少有 6 个零点,则 a 的取值范围是 ( )A. (0,15]∪(5,+∞)B. (0,15)∪(5,+∞)C. (17,15]∪(5,7]D. (17,15)∪[5,7)3. 如图,长方形 ABCD 的边 AB =2,BC =1,O 是 AB 的中点,点 P 沿着边 BC ,CD 与 DA 运动,记 ∠BOP =x .将动点 P 到 A ,B 两点距离之和表示为 x 的函数 f (x ),则 y =f (x ) 的图象大致为 ( )A. B. C. D.4. 将函数y=ln(x+1)(x≥0)的图象绕坐标原点逆时针方向旋转角θ(θ∈(0,α]),得到曲线C,若对于每一个旋转角θ,曲线C都仍然是一个函数的图象,则α的最大值为( )A. πB. π2C. π3D. π45. 如图,正三角形ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量OP⃗⃗⃗⃗⃗ 在a= (1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是( )A. B.C. D.6. 经济学家在研究供求关系时,一般用纵轴表示产品价格(自变量),用横轴表示产品数量(因变量).某类产品的市场供求关系在不受外界因素(如政府限制最高价格等)的影响下,市场会自发调解供求关系:当产品价格P1低于均衡价格P0时,则需求量大于供应量,价格会上升为P2;当产品价格P2高于均衡价格P0时,则供应量大于需求量,价格又会下降,价格如此继续波动下去,产品价格将会逐渐靠近均衡价格P0.能正确表示上述供求关系的图形是( )A. B.C. D.7. 设 f (x )=∣lnx∣,若函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点,则实数 a 的取值范围是 ( )A. (0,1e )B. (ln33,e)C. (0,ln33]D. [ln33,1e )8. 已知函数 f (x )=x −4+9x+1,x ∈(0,4).当 x =a 时,f (x ) 取得最小值 b ,则函数 g (x )=(1a )∣x+b∣ 的图象为 ( )A. B.C. D.9. 定义在 R 上的奇函数 f (x ) 满足:①对任意 x ,都有 f (x +3)=f (x ) 成立;②当 x ∈[0,32] 时,f (x )=32−∣∣32−2x ∣∣,则方程 f (x )=1∣x∣在区间 [−4,4] 上根的个数是 ( ) A. 4B. 5C. 6D. 710. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x ≥0 时,f (x )=12(∣x −a 2∣+∣x −2a 2∣−3a 2).若 ∀x ∈R ,f (x −1)≤f (x ),则实数 a 的取值范围为 ( ) A. [−16,16]B. [−√66,√66]C. [−13,13]D. [−√33,√33]11. 如图可能是下列哪个函数的图象 ( )A. y=2x−x2−1B. y=2x sinx4x+1C. y=(x2−2x)e xD. y=xlnx12. 如图,圆C:(x−1)2+(y−1)2=1在直线l:y=x+t下方的弓形(阴影部分)的面积为S,当直线l由下而上移动时,面积S关于t的函数图象大致为( ).A. B.C. D.13. 已知函数 f (x )=x −[x ],其中 [x ] 表示不超过实数 x 的最大整数.若关于 x 的方程f (x )=kx +k 有三个不同的实根,则实数 k 的取值范围是 ( )A. (−1,−12]∪[14,13)B. [−1,−12)∪(14,13]C. [−13,−14)∪(12,1]D. (−13,−14]∪[12,1)14. 已知函数 f (x )={∣log 2x ∣,0<x <2,sin (π4x),2≤x ≤10, 若存在实数 x 1,x 2,x 3,x 4,满足 x 1<x 2<x 3<x 4,且 f (x 1)=f (x 2)=f (x 3)=f (x 4),则(x 3−2)⋅(x 4−2)x 1⋅x 2 的取值范围是( )A. (4,16)B. (0,12)C. (9,21)D. (15,25)15. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数 f (x )={1,x ∈Q,0,x ∈∁R Q.被称为狄利克雷函数,其中 R 为实数集,Q 为有理数集,则关于函数 f (x ) 有如下四个命题:①f(f (x ))=1;②函数 f (x ) 是偶函数;③任取一个不为零的有理数 T ,f (x +T )=f (x ) 对任意的 x ∈R 恒成立;④存在三个点 A(x 1,f (x 1)),B(x 2,f (x 2)),C(x 3,f (x 3)),使得 △ABC 为等边三角形.其中真命题的个数为 ( )A. 1B. 2C. 3D. 416. 已知函数 f (x )=∣log 2∣x −1∣∣,且关于 x 的方程 [f (x )]2+af (x )+2b =0 有 6 个不同的实数根,若最小的实数根为 −3,则 a +b 的值为 ( )A. −2B. 4C. 6D. 817. 定义在 R 上的函数 f (x )=xsin2xx 2+a 的图象如图所示,则实数 a 的可能值为 ( )A. 16B. 14C. 12D. 118. 下列四个函数①f (x )=x +1,②f (x )=2x 3,③f (x )=xsinx ,④f (x )=x cosx 的图象能等分圆 O:x 2+y 2=1 的面积的是 ( )A. ②③B. ②④C. ②③④D. ①②③④19. 某市2015年前n个月空气质量优良的总天数S n与n之间的关系如图所示.若前m月的月平均空气质量优良天数最大,则m值为( )A. 7B. 9C. 10D. 1220. 如图,已知l1⊥l2,圆心在l1上,半径为1m的圆O沿l1以1m/s的速度匀速竖直向上移动,且在t=0时,圆O与l2相切于点A,圆O被直线l2所截得到的两段圆弧中,位于l2上方的圆弧的长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )A. B.C. D.21. 一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n(n∈N∗),则该函数的图象是( )A. B.C. D.22. 已知函数f(x)=x2−2(a+2)x+a2,g(x)=−x2+2(a−2)x−a2+8,设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A−B=( )A. 16B. −16C. a2−2a−16D. a2+2a−1623. 如图,已知l1⊥l2,圆心在l1上,半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )A. B.C. D.24. 给出幂函数(1) f (x )=x ,(2) f (x )=x 2,(3) f (x )=x 3,(4) f (x )=√x ,(5) f (x )=1x ,其中满足条件 f (x 1+x 22)>f (x 1)+f (x 2)2(x 1>x 2>0) 的函数的个数是 ( ) 个.A. 1B. 2C. 3D. 425. 已知函数 f (x )={x 2+5x,x ≥0,−e x +1,x <0.若 f (x )≥kx ,则 k 的取值范围是 ( ) A. (−∞,0]B. (−∞,5]C. (0,5]D. [0,5]26. 若函数 y =a x +b 的图象如图所示,则函数 y =1x+a +b +1 的图象为 ( )A. B.C. D.27. 设函数 f (x )=∣2x −1∣,c <b <a ,且 f (c )>f (a )>f (b ),则 2a +2c 与 2 的大小关系式 ( )A. 2a +2c >2B. 2a +2c ≥2C. 2a +2c ≤2D. 2a +2c <228. 函数 f (x )=e x +e −xe x −e −x (x ≠0) 的图象大致为 ( ) A. B.C. D.29. 若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称.则称点对[P,Q]是函数y=f(x)的一对"友好点对"(点对[P,Q]与[Q,P]看作同一对"友好点对").已知函数f(x)={log2x(x>0)−x2−4x(x≤0),则此函数的"友好点对"有( )A. 0对B. 1对C. 2对D. 3对30. 若函数f(x)=a2x−4,g(x)=log a∣x∣(a>0且a≠1),且f(2)⋅g(−2)<0,则函数f(x)、g(x)在同一坐标系内的大致图象是( )A. B.C. D.31. 定义域为R的函数f(x)={1∣x−1∣,x≠11,x=1,若关于x的函数ℎ(x)=f2(x)+bf(x)+12有5个不同的零点x1,x2,x3,x4,x5,则x12+x22+x32+x42+x52等于( )A. 2b 2+2b2B. 16C. 5D. 1532. 关于x的方程(x2−1)2−∣x2−1∣+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根.其中假命题的个数是( )A. 0B. 1C. 2D. 333. 已知a>0且a≠1,函数f(x)={(a−1)x+3a−4(x≤0),a x(x>0)满足对任意实数x1≠x2,都有f(x2)−f(x1)x2−x1>0成立,则a的取值范围是( )A. (0,1)B. (1,+∞)C. (1,53]D. [53,2)34. 已知函 f (x )={∣lgx ∣,0<x ≤10−12x +6,x >10,若 a ,b ,c 互不相等,且 f (a )=f (b )=f (c ),则 abc 的取值范围是 ( )A. (1,10)B. (5,6)C. (10,12)D. (20,24)35. 已知函数 f (x )=x 2+2x +a (a >0),f (m )<0,则 ( )A. f (m +x +1x )<0B. f (m +x +1x )≤0C. f (m +x +1x )>0D. f (m +x +1x ) 符号不确定36. 已知函数 f (x )={kx +k (1−a 2),(x ≥0,)x 2+(a 2−4a )x +(3−a )2,(x <0),其中 a ∈R ,若对任意的非零实数 x 1,存在唯一的非零实数 x 2(x 2≠x 1),使得 f (x 2)=f (x 1) 成立,则 k 的最小值为 ( )A. −115B. 5C. 6D. 837. 若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的"自公切线".下列方程:①x2−y2=1,②y=x2−∣x∣,③y=3sinx+4cosx,④∣x∣+1=√4−y2,对应的曲线中存在"自公切线"的有( )A. ①③B. ①④C. ②③D. ②④38. 已知函数f(x)的定义域为R.若∃常数c>0,对∀x∈R,有f(x+c)>f(x−c),则称函数f(x)具有性质P.给定下列三个函数:①f(x)=∣x∣;②f(x)=sinx;③f(x)=x3−x.其中,具有性质P的函数的序号是( )A. ①B. ③C. ①②D. ②③39. f(x)=(x−a)(x−b)−2(其中a<b),且α,β是方程f(x)=0的两根,α<β,则实数a,b,α,β的大小关系为( )A. α<a<b<βB. α<a<β<bC. a<α<b<βD. a<α<β<b40. 已知函数f(x)=ln(x+1),x∈(0,+∞),下列结论错误的是( )A. ∀x1,x2∈(0,+∞),(x2−x1)[f(x2)−f(x1)]≥0B. ∀x 1∈(0,+∞),∃x 2∈(0,+∞),f (x 1)−f (x 2)<x 2−x 1C. ∀x 1∈(0,+∞),∃x 2∈(0,+∞),x 2f (x 1)>x 1f (x 2)D. ∃x 1,x 2∈(0,+∞),f (x 1)+f (x 2)2>f (x 1+x 22)41. 设定义域为 R 的函数 f (x )={|lg|x −1||,x ≠1,0,x =1,则关于 x 的方程 [f (x )]2+bf (x )+c =0 有 7 个不同实数解的充要条件是 ( )A. b <0 且 c >0B. b >0 且 c <0C. b <0 且 c =0D. b ≥0 且 c =042. 已知函数 f (x )=x 1+∣x∣(x ∈R ) 时,则下列结论不正确的是 ( )A. ∀x ∈R ,等式 f (−x )+f (x )=0 恒成立B. ∃m ∈(0,1) ,使得方程 ∣f (x )∣=m 有两个不等实数根C. ∀x 1,x 2∈R ,若 x 1≠x 2 ,则一定有 f (x 1)≠f (x 2)D. ∃k ∈(1,+∞) ,使得函数 g (x )=f (x )−kx 在 R 上有三个零点43. 定义:区间 [x 1,x 2](x 1<x 2) 的长度等于 x 2−x 1.函数 y =∣log a x ∣(a >1) 的定义域为 [m,n ](m <n ),值域为 [0,1].若区间 [m,n ] 的长度的最小值为 34,则实数 a 的值为 ( )A. 54B. 2C. 154D. 444. 直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数 f(x) 的图象恰好通过 k(k ∈N ∗) 个格点,则称函数 f(x) 为 k 阶格点函数.下列函数:①f(x)=sinx ;②f(x)=π(x −1)2+3 ;③f(x)=(13)x ;④f(x)=log 0.6x .其中是一阶格点函数的有 ( )A. ①②B. ①④C. ①②④D. ①②③④45. 已知函数 f (x )=4∣x∣+2−1 的定义域为 [a,b ],其中 a 、b ∈Z ,且 a <b .若函数 f (x )的值域为 [0,1],则满足条件的整数对 (a,b ) 共有 ( )A. 2 个B. 5 个C. 6 个D. 8 个46. 已知函数 f (x )={−x x+1,−1<x ≤0,x,0<x ≤1与函数 g (x )=a (x +1) 在 (−1,1] 上有 2 个交点,若方程 x −1x =5a 的解为正整数,则满足条件的实数 a 有 ( )A. 0 个B. 1 个C. 2 个D. 3 个47. 已知函数 f (x )={2x+2+a,x ≤0,f (x −1)+1,x >0,若对任意的 a ∈(−3,+∞),关于 x 的方程 f (x )=kx 都有 3 个不同的根,则 k 等于 ( )A. 1B. 2C. 3D. 448. 已知函数 y =f (−∣x∣) 的图象如图所示,则函数 y =f (x ) 的图象不可能是 ( )A. B.C. D.49. 设函数的集合 P ={f (x )=log 2(x +a )+b∣∣a =−12,0,12,1;b =−1,0,1},平面上点的集合 Q ={(x,y )∣x =−12,0,12,1;y =−1,0,1},则在同一直角坐标系中,P 中函数 f (x ) 的图象恰好经过 Q 中两个点的函数的个数是 ( )A. 4B. 6C. 8D. 1050. 已知函数 f (x )=∣x 2+3x ∣,x ∈R .若方程 f (x )−a∣x −1∣=0 恰有 4 个互异的实数根,则实数 a 的取值范围为 .51. 已知函数 f (x )=x (lnx −ax ) 有两个极值点,则实数 a 的取值范围是 .52. 已知函数 f (x )={(12)x +34,x ≥2,log 2x,0<x <2. 若函数 g (x )=f (x )−k 有两个不同的零点,则实数 k 的取值范围是 .53. 对于函数 f (x )={sinπx,x ∈[0,2],12f (x −2),x ∈(2,+∞), 有下列 5 个结论: ①任取 x 1,x 2∈(0,+∞),都有 ∣f (x 1)−f (x 2)∣≤2;②函数 y =f (x ) 在区间 (4,5) 上单调递增;③f (x )=2kf (x +2k )(k ∈N +),对一切 x ∈(0,+∞) 恒成立;④函数 y =f (x )−ln (x −1) 有 3 个零点;⑤若关于 x 的方程 f (x )=m (m <0) 有且只有两个不同实根 x 1,x 2,则 x 1+x 2=3. 则其中所有正确结论的序号是 .(请写出全部正确结论的序号)54. 关于函数 f (x )=b ∣x∣−a (a >0,b >0) 有下列命题:①函数 f (x ) 的值域为 (−∞,0)∪(0,+∞);②直线 x =k 与函数 f (x ) 的图象有唯一交点;③函数 y =f (x )+1 有两个零点;④函数定义域为 D ,则任意的 x ∈D ,f (x )=f (−x ).其中所有叙述正确的命题序号是 .55. 如果是函数y=sinπxx2−bx+c 的图象的一部分,若图象的最高点的坐标为(12,43),则b+c=.56. 设a∈R,若x>0时均有[(a−1)x−1](x2−ax−1)≥0,则a=.57. 对于函数y=f(x)(x∈R),给出下列命题:(1)在同一直角坐标系中,函数y=f(1−x)与y=f(x−1)的图象关于直线x=0对称;(2)若f(1−x)=f(x−1),则函数y=f(x)的图象关于直线x=1对称;(3)若f(1+x)=f(x−1),则函数y=f(x)是周期函数;(4)若f(1−x)=−f(x−1),则函数y=f(x)的图象关于点(0,0)对称.其中所有正确命题的序号是 .58. 已知函数 f (x )={|log 3x|,0<x <313x 2−103x +8,x ≥3,若存在实数 a ,b ,c ,d ,满足f (a )=f (b )=f (c )=f (d ),其中 d >c >b >a >0,则 abcd 的取值范围是 .59. 在平面直角坐标系 xOy 中,将函数 y =√3+2x −x 2−√3(x ∈[0,2]) 的图象绕坐标原点 O 按逆时针方向旋转角 θ,若 ∀θ∈[0,α],旋转后所得曲线都是某个函数的图象,则 α 的最大值为 .60. 已知函数 f (x )={∣log 3x ∣,0<x <3,sin π3x,3≤x ≤9,若存在实数 a ,b ,c ,d 满足 a <b <c <d ,且 f (a )=f (b )=f (c )=f (d ),则 (c−3)(d−3)ab 的取值范围是 .61. 已知函数 f (x )={∣2x −1∣−1,x ≤1x 2−3x+3x−1,x >1,下列关于函数 g (x )=[f (x )]2+af (x )−1(其中 a 为常数)的叙述中:①对 ∀a ∈R ,函数 g (x ) 至少有一个零点;②当a=0时,函数g(x)有两个不同零点;③∃a∈R,使得函数g(x)有三个不同零点;④函数g(x)有四个不同零点的充要条件是a<0.其中真命题有.(把你认为真命题的序号都填上)62. 已知函数y=x(x−1)(x+1)的图象如图所示.令f(x)=x(x−1)(x+1)+0.01,则下列关于f(x)=0的解的叙述正确的是(填写序号).①有三个实根;②当x>1时,恰有一个实根;③当0<x<1时,恰有一个实根;④当−1<x<0时,恰有一个实根;⑤当x<−1时,恰有一个实根(有且只有一个实根).63. 某食品的保鲜时间t(单位:小时)与储藏温度x(单位:∘C)满足函数关系t={64,x≤0,2kx+6,x>0.且该食品在4∘C的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论:①.该食品在6∘C的保鲜时间是8小时;②.当x∈[−6,6]时,该食品的保鲜时间t随着x增大而逐渐减少;③.到了此日13时,甲所购买的食品还在保鲜时间内;④.到了此日14时,甲所购买的食品已然过了保鲜时间.其中,所有正确结论的序号是.64. [x]表示不超过x的最大整数,定义函数f(x)=x−[x].则下列结论中正确的有.①函数f(x)的值域为[0,1];②方程 f (x )=12 有无数个解;③函数 f (x ) 的图象是一条直线;④函数 f (x ) 是 [k,k +1](k ∈Z ) 上的增函数.65. 已知函数 f (x )=∣∣log a ∣x −1∣∣∣(a >0,a ≠1),若 x 1<x 2<x 3<x 4,且 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 1x 1+1x 2+1x 3+1x 4= .66. 将函数 y =∣∣12x −1∣∣+∣∣12x −2∣∣+1 的图象绕原点顺时针方向旋转角 θ(0≤θ≤π2) 得到曲线 C .若对于每一个旋转角 θ,曲线 C 都是一个函数的图象,则 θ 的取值范围是 .67. 设函数 f (x )={x 2−4x +1(x ≥0),3x +2(x <0), 若互不相等的实数 x 1,x 2,x 3 满足 f (x 1)=f (x 2)=f (x 3),则 x 1+x 2+x 3 的取值范围是 .68. 已知函数f(x)=∣lg(x−1)∣.若a≠b,f(a)=f(b),则a+2b的取值范围是.69. 已知函数y=f(x)和y=g(x)在[−2,2]的图象如图所示.给出下列四个命题:①方程f[g(x)]=0有且仅有6个根;②方程g[f(x)]=0有且仅有3个根;③方程f[f(x)]=0有且仅有5个根;④方程g[g(x)]=0有且仅有4个根,其中正确的命题是.(将所有正确的命题序号填在横线上)70. 对于实数 a 和 b ,定义运算" ∗ ":a ∗b ={a 2−ab,a ≤b,b 2−ab,a >b.设 f (x )=(2x −1)∗(x −1),且关于 x 的方程 f (x )=m (m ∈R ) 恰有三个互不相等的实数根 x 1,x 2,x 3,则 x 1x 2x 3 的取值范围是 .71. 设函数 f 0(x )=(12)∣x∣,f 1(x )=∣∣f 0(x )−12∣∣,f n (x )=∣∣∣f n−1(x )−(12)n ∣∣∣,n ≥1,n ∈N ,则方程 f n (x )=(1n+2)n有 个实数根.72. 已知 f (x )=m (x −2m )(x +m +3),g (x )=2x −2.若同时满足条件:①∀x ∈R ,f (x )<0 或g (x )<0;②∃x ∈(−∞,−4),f (x )g (x )<0,则 m 的取值范围是 .73. 已知 f (x ) 是定义在 [1,+∞) 上的函数,且 f (x )={1−∣2x −3∣,1≤x <212f (12x),x ≥2,则函数 y =2xf (x )−3 在区间 (1,2015) 上的零点的个数为 .74. 如图所示,函数 y =f (x ) 的图象由两条射线和三条线段组成.若 ∀x ∈R ,f (x )>f (x −1),则正实数 a 的取值范围为 .75. 已知函数 f (x )={∣x 2+5x +4∣,x ≤0,2∣x −2∣,x >0,若函数 y =f (x )−a∣x∣ 恰有 4 个零点,则实数 a 的取值范围为 .76. 已知定义在 [−1,1] 上的函数 f (x )=−2∣x∣+1,设 f 1(x )=f (x ),f n+1(x )=f [f n (x )],n ∈N +,若关于 x 的方程 f 3(x )−mx +m =0 有 5 个实数解,则实数 m 的取值范围是 .77. 设函数 f (x ) 的定义域为 D ,若存在非零实数 l 使得对于任意 x ∈M (M ⊆D ),有 x +l ∈D ,且 f (x +l )≥f (x ),则称 f (x ) 为 M 上的 l 高调函数.(1)如果定义域为 [−1,+∞) 的函数 f (x )=x 2 为 [−1,+∞) 上的 m 高调函数,那么实数 m 的取值范围是 .(2)如果定义域为 R 的函数 f (x ) 是奇函数,当 x ≥0 时,f (x )=∣x −a 2∣−a 2,且f (x ) 为 R 上的 4 高调函数,那么实数 a 的取值范围是 .参考答案,仅供参考1. D 【解析】法一:考虑函数 g (x )=e x (2x −1),以及函数 ℎ(x )=a (x −1),则题意要求存在唯一的整数 x 0 使得 g (x 0)<ℎ(x 0).注意到 gʹ(x )=e x (2x +1),尤其注意到 y =x −1 为 y =g (x ) 在 (0,−1) 处的切线,如图.于是可以确定符合题意的唯一整数 x 0=0,则 {f (0)<0f (1)≥0f (−1)≥0,解得 32e ≤a <1.法二:首先 f (0)=−1+a <0,所以唯一的整数为 0.而 f (−1)=−3e+2a ≥0,解得 a ≥32e .又 a <1,对 f (x ) 求导得 fʹ(x )=e x (2x +1)−a , 当 x <−12 时,fʹ(x )<0;当 x >0 时,fʹ(x )>0.从而 f (x ) 在 (−∞,−12) 上单调递减,在 (0,+∞) 上单调递增. 而当 a ≥32e 时,有 f (−1)≥0,f (0)<0,f (1)>0, 故在 (−∞,−1]∪[1,+∞) 上 f (x )≥0,f (0)<0,满足题意.所以满足条件的 a 的取值范围为 [32e ,1).2. A 【解析】由题意得,函数 g (x )=f (x )−log a ∣x∣ 的零点个数即为 y =f (x ) 与 y =log a ∣x∣ 的图象的交点个数. 因为 f (x +2)=f (x ),所以函数 f (x ) 是周期为 2 的周期函数, 又因为 f (x )=x 3(−1≤x <1), 所以函数 f (x ) 的图象如图所示.在同一坐标系中作出函数 y =log a ∣x∣={log a x,x >0log a (−x ),x <0 的图象(a >1 时,如图(1);0<a <1 时,如图(2)).由图象得,要使y=f(x)与y=log a∣x∣的图象至少有6个交点,则当a>1时log a5<1;当0<a<1时,log a5≥−1,解得a>5或0<a≤15.3. B【解析】当点P在BC上时,x∈[0,π4],y=PA+PB=√4+tan2x+tanx,y随x增大而增大,且y与x不为线性关系.由对称性可知,当P在DA上时,y单调递减,且y与x不为线性关系,当x=π4时,y=√5+1;当P在CD上运动时,x∈(π4,3π4],当x=π2时,PA+PB=2√2<√5+1,结合选项,故选B.4. D5. C【解析】设BC与y轴交于点M,则AGGM =21,又G(0,1),A(0,2),所以M(0,12),正三角形边长为√3.当点P运动到点B时,∠AGP=2π3,此时射影y取到最小值−√32,所以排除A,B.当点P从点B向点M运动时,2π3≤x≤π,∠PGM=π−x,所以−y12=tan(π−x),得y=12tanx,结合图象应该选C.6. D7. D【解析】函数g(x)=f(x)−ax在区间(0,3]上有三个零点即函数f(x)=∣lnx∣与y= ax在区间(0,3]上有三个交点.画图如下.当a≤0时,显然,不合乎题意,当a>0时,由图知,当x∈(0,1]时,存在一个交点,当x>1时,f(x)=lnx,可得g(x)=lnx−ax(x∈(1,3]),gʹ(x)=1x −a=1−axx,若gʹ(x)<0,可得x>1a ,g(x)为减函数,若gʹ(x)>0,可得x<1a,g(x)为增函数,此时y=f(x)与y=ax必须在[1,3]上有两个交点,即y=g(x)在[1,3]上有两个零点,所以{g(1a)>0,g(3)≤0,g(1)≤0,解得ln33≤a<1e,故函数g(x)=f(x)−ax在区间(0,3]上有三个零点时,ln33≤a<1e.8. B 【解析】f (x )=x −4+9x+1=(x +1)+9x+1−5≥2√(x +1)×9(x+1)−5=1, 当且仅当 (x +1)2=9,即 x =2(x =−4 舍去)时等号成立,故 a =2,b =1,所以函数 g (x )=(12)∣x+1∣,其图象是把函数 y =(12)∣x∣的图象向左平移一个单位得到.9. B 【解析】因为 f (x +3)=f (x ),所以 f (x ) 周期为 3,当 x ∈[0,32] 时,f (x )={2x,0<x ≤34,3−2x,34<x ≤32.画出 y =f (x ) 和 y =1∣x∣的图象如下.由图象知方程 f (x )=1∣x∣ 在区间 [−4,4] 上根的个数是 5 个. 10. B【解析】函数 f (x )=12(∣x −a 2∣+∣x −2a 2∣−3a 2).在 x ≥0 时的解析式等价于 f (x )={−x,0≤x ≤a 2,−a 2,a 2<x <2a 2,x −3a 2,x ≥2a 2. 因此根据奇函数的图象关于原点对称作出函数 f (x ) 在 R 上的大致图象如下,由∀x∈R,f(x−1)≤f(x),可得2a2−(−4a2)≤1,解得a∈[−√66,√66].11. C【解析】A 中,因为y=2x−x2−1,当x趋向于−∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,所以函数y=2x−x2−1的值小于0,所以 A 中的函数不满足条件;B 中,因为y=sinx是周期函数,所以函数y=2x sinx4x+1的图象是以x轴为中心的波浪线,所以 B 中的函数不满足条件;C 中,因为函数y=x2−2x=(x−1)2−1,当x<0或x>1时,y>0,当0<x<1时,y<0;且y=e x>0恒成立,所以y=(x2−2x)e x的图象在x趋向于−∞时,y>0,0<x<1时,y<0,在x趋向于+∞时,y趋向于+∞;所以 C 中的函数满足条件;D 中,y=xlnx 的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,所以y=xlnx<0,所以 D 中函数不满足条件.12. C【解析】由图1知当t≤−√2时,S=0.由图2知当t≥√2时,S=π.,且阴影部分的面积以t=0为分界点,离t=0越近增长得越快,对照当t=0时,S=π2图象知 C 符合题意.13. A【解析】如下图所示:y=kx+k表示恒过点A(−1,0)斜率为k的直线.若方程f(x)=kx+k有3个相异的实根,则函数f(x)=x−[x]与函数g(x)=kx+k的图象有且仅有3个交点.由图可得:当直线y=kx+k过(2,1)点时,k=13;当直线y=kx+k过(3,1)点时,k=14;当直线y=kx+k过(−2,1)点时,k=−1;当直线y=kx+k过(−3,1)点时,k=−12.则实数k的取值范围是14≤k<13或−1<k≤−12.14. B【解析】画出f(x)的图象如图所示,由图中可以看出:x1<1<x2<2<x3<4<8<x4<10,因为f(x1)=f(x2)=f(x3)= f(x4),所以−log2x1=log2x2,x3+x4=12,从而有x1⋅x2=1,又(x3−2)⋅(x4−2)= (x3−2)⋅(12−x3−2)=−(x3−6)2+16,所以(x3−2)⋅(x4−2)x1⋅x2的取值范围是(0,12) .15. D【解析】由狄利克雷函数的定义:若x∈Q,则f(f(x))=f(1)=1,若x∈∁R Q,则f(f(x))=f(0)=1;若x∈Q,则−x∈Q,则f(−x)=f(x)=1;若x∈∁R Q,则−x∈∁R Q,则f(−x)=f(x)=0;所以函数f(x)是偶函数;若x∈Q,因为T是非零的有理数,所以x+T∈Q,所以有f(x+T)=f(x)=1;若x∈∁R Q,则x+T∈∁R Q,所以f(x+T)=f(x),所以对任意的x∈R,有f(x+T)=f(x)恒成立;取A(−√33,0),B(√33,0),C(0,1),则△ABC为等边三角形,所以存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.16. A【解析】画出函数f(x)=∣log2∣x−1∣∣的图象,如图所示.设f(x)=t,则t2+at+2b=0.若关于x的方程[f(x)]2+af(x)+2b=0有6个不同的实数根,则关于t的方程t2+at+2b=0一定有一根为0,另一根为正,从而b=0,a<0,且两根分别为t1=0、t2=−a.(i)方程f(x)=−a(a<0)有4个实根,由最小的根为−3,得f(−3)=−a,解得a=−2;(ii)方程f(x)=0有x=0和x=2两个实根.综上,a+b=−2.17. A18. B19. C20. B【解析】解法一如图,设∠MON=α,由弧长公式知x=α,在Rt△AOM中,∣AO∣=1−t,cos x2=∣OA∣∣OM∣=1−t,所以y=cosx=2cos2x2−1=2(t−1)2−1(0≤t≤1).故其对应的大致图象应为 B.解法二由题意可知,当t=1时,圆O在直线l2上方的部分为半圆,所对应的弧长为π×1=π,所以cosπ=−1,排除 A,D;当t=12时如图所示,易知∠BOC=2π3,所以cos2π3=−12<0,排除 C.21. A【解析】由已知得f(a n)>a n,即y=f(x)的图象在y=x的图象的上方.22. B【解析】由f(x)=g(x),得(x−a)2=4.所以,当x=a−2和x=a+2时,两函数值相等,又f(x)的图象为开口向上的抛物线,g(x)的图象为开口向下的抛物线,则H1(x)={f(x),x≤a−2,g(x),a−2<x<a+2,f(x),x≥a+2, H2(x)={g(x),x≤a−2,f(x),a−2<x<a+2,g(x),x≥a+2.所以A=H1(x)min=f(a+2)=−4a−4,B=H2(x)max=g(a−2)=−4a+12,所以A−B=−16.23. B【解析】通过圆心角α将弧长x与时间t联系起来,圆半径为1,设弧长x所对的圆心角为α,则α=x,如图所示,cosα2=1−t,即cos x2=1−t,则y=cosx=2cos2x2−1=2(1−t)2−1=2(t−1)2−1(0≤t≤1).其图象为开口向上,在[0,1]上的一段抛物线.24. A【解析】①不满足,函数f(x)=x的图象是一条直线,故当x1>x2>0时,f(x1+x22)=f(x1)+f(x2)2;②不满足,在第一象限,函数f(x)=x2的图象是凹形曲线,故当x1>x2>0时,f(x1+x22)<f(x1)+f(x2)2;③不满足,在第一象限,函数f(x)=x3的图象是凹形曲线,故当x1>x2>0时,f(x1+x22)<f(x1)+f(x2)2;④满足,函数f(x)=√x的图象是凸形曲线,故当x1>x2>0时,f(x1+x22)>f(x1)+f(x2)2;⑤不满足,当x1>x2>0时,f(x1+x22)<f(x1)+f(x2)2.25. D【解析】f(x)的图象如下图所示:令g(x)=kx,则使得f(x)的图象在g(x)图象的上方即可.g(x)的两个临界状态分别是k=0和与y=x2+5x(x≥0)相切的时候.当g(x)与y=x2+5x(x≥0)相切时,k=yʹx=0=5.所以0≤k≤5.26. C【解析】由图可知0<a<1,−2<b<−1.又函数y=1x+a+b+1的图象是由y=1x向左平移a个单位,向下平移∣b+1∣单位而得到的.结合四个选项可知C正确.27. D28. A【解析】提示:因为函数f(x)是奇函数,又f(x)=1+2e2x−1在x∈(−∞,0)∪(0,+∞)上单调递减.29. C【解析】函数f(x)={log2x(x>0)−x2−4x(x≤0)的图象(实线部分)及函数f(x)=−x2−4x(x≤0)的图象关于原点对称的图象(虚线部分)如图所示:则 A ,B 两点关于原点的对称点一定在函数 f (x )=−x 2−4x (x ≤0) 的图象上,故函数 f (x ) 的"友好点对"有 2 对. 30. B【解析】f (2)⋅g (−2)=a 0log a 2<0,得 0<a <1,所以 f (x )=a 2x−4 在 R 上为减函数,g (x )=log a ∣x ∣ 在 (0,+∞) 上为减函数,在 (−∞,0) 上为增函数.31. D 【解析】令 ℎ(x )=0,即 f 2(x )+bf (x )+12=0,由其有 5 个不同零点,结合函数 f (x ) 图象,可知,f (x )=1 应满足上述方程,再结合,两根之积为 12,则 f (x )=12 也满足方程; 因此,解上述 f (x )=1 和 f (x )=12,可得方程的 5 个不同的零点为 x 1=0 、 x 2=1 、 x 3=2 、 x 4=−1 、 x 5=3.32. A【解析】根据题意可令∣x2−1∣=t(t≥0),则原方程化为t2−t+k=0,设方程t2−t+k=0的两根为t1,t2(不妨设t1≤t2),则Δ=1−4k≥0,得k≤14.则{t1+t2=1,t1⋅t2=k,结合t=∣x2−1∣的图象可知:①当k<0时,t1<0<1<t2,所以原方程有2个不同的实根.②当k=0时,t1=0,t2=1,所以原方程有5个不同的实根.③当k=14时,t1=t2=12,所以原方程有4个不同的实根.④当0<k<14时,0<t1<t2<1,所以原方程有8个不同的实根.33. C【解析】由题意知f(x)在R上为增函数,画出函数图象的草图如图所示:所以 {a −1>0,a >1,3a −4≤1, 解得 1<a ≤53.34. C 【解析】作出函数 f (x ) 的图象如图, 不妨设 a <b <c ,则 −lga =lgb =−12c +6∈(0,1) ab =1,0<−12c +6<1 则 abc =c ∈(10,12).35. C【解析】设 f (x ) 的两个根分别为 x 1,x 2,且 x 1<x 2,则 (x 1−x 2)2=(x 1+x 2)2−4x 1x 2=4−4a ,因为 a >0,所以 x 2−x 1<2. 由 f (m )<0 可知 x 1<m <x 2,利用均值不等式可知 m +x +1x ≥m +2 或 m +x +1x ≤m −2,结合二次函数图象知 m +x +1x >x 2 或 m +x +1x <x 1,所以 f (m +x +1x )>0. 36. D 【解析】因为函数 f (x )={kx +k (1−a 2),(x ≥0),x 2+(a 2−4a )x +(3−a )2,(x <0),,其中 a ∈R ,所以x=0时,f(x)=k(1−a2).又由对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立,所以函数必须为连续函数,即在x=0附近的左右两侧函数值相等,易知k≤0时,结合图象可知,不符合题意.所以k>0,且(3−a)2=k(1−a2),即(k+1)a2−6a+9−k=0有实数解,所以△=62−4(k+1)(9−k)≥0,解得k<0或k≥8.又因为k>0,所以k的取值范围为[8,+∞).37. C【解析】①中x2−y2=1是一个等轴双曲线,它不存在"自公切线";②如图所示,曲线在点(−12,−14)和点(12,−14)处的切线重合;③y=3sinx+4cosx=5sin(x+φ)(tanφ=43).如图,在所有的最高点处的切线重合,所以③存在"自公切线";④中曲线如图所示,不存在"自公切线".38. B【解析】对于①:因为f(x)=∣x∣是偶函数,所以当x=0时,对于∀c∈R,都有f(x+c)=f(x−c)成立,所以该函数不具有性质P;对于②:对于∀常数c>0,当x+c=−π2时,有f(x+c)≤f(x−c)成立,故该函数也不具有性质P;对于③:因为 f (x )=x 3−x 在 (−∞,−√33),(√33,+∞) 上单调递增,在 (−√33,√33) 上单调递减,所以 ∃ 常数 c >√33>0,对 ∀x ∈R ,有 f (x +c )>f (x −c ) 成立,所以该函数具有性质 P .39. A 【解析】f (x )=(x −a )(x −b )−2 的图象是由 f (x )=(x −a )(x −b ) 的图象向下平移 2 个单位得到的,如图:由图可得 α<a <b <β. 40. D【解析】函数图象可由 y =lnx 向左平移一个单位得到:当 x ∈(0,+∞) 时,函数 f (x )=ln (x +1) 为上凸的增函数,∣EF ∣=f (x 1)+f (x 2)2,∣EG ∣=f (x 1+x 22),∣EF ∣<∣EG ∣.41. C【解析】函数f(x)的图象如图所示,再由题关于x的方程[f(x)]2+bf(x)+c=0有7个不同的实数解,所以,关于f(x)的方程有两个不同解,且[f(x)]1=0,[f(x)]2>0,因此,c=0且b<0.42. D【解析】因为f(−x)=−x1+∣x∣=−f(x),所以f(x)为奇函数,故A正确;方程∣f(x)∣=m根的个数,就是函数y=∣f(x)∣与函数y=m的图象交点的个数,由图2可得B对;当x≥0时fʹ(x)=1(1+x)2>0,则f(x)在(0,+∞)为增函数,又因为f(x)为奇函数,所以f(x)在(−∞,0)上也为增函数,可得C对;对于D中,当x>0时,f(x)−kx=0,解得x=0或x=1k −1,由x=1k−1>0,得0<k<1,故D错.43. D【解析】作出函数y=∣log a x∣(a>1)的图象(如图),。

高考数学专题《函数的图象》习题含答案解析

高考数学专题《函数的图象》习题含答案解析

专题3.7 函数的图象1.(2021·全国高三专题练习(文))已知图①中的图象是函数()y f x=的图象,则图②中的图象对应的函数可能是()A.(||)y f x=B.|()|y f x=C.(||)y f x=-D.(||)y f x=--【答案】C【解析】根据函数图象的翻折变换,结合题中条件,即可直接得出结果.【详解】图②中的图象是在图①的基础上,去掉函数()y f x=的图象在y轴右侧的部分,然后将y轴左侧图象翻折到y轴右侧,y轴左侧图象不变得来的,∴图②中的图象对应的函数可能是(||)y f x=-.故选:C.2.(2021·浙江高三专题练习)函数()lg1y x=-的图象是()A.B.C.练基础D .【答案】C【解析】将函数lg y x =的图象进行变换可得出函数()lg 1y x =-的图象,由此可得出合适的选项.【详解】将函数lg y x =的图象先向右平移1个单位长度,可得到函数()lg 1y x =-的图象,再将所得函数图象位于x 轴下方的图象关于x 轴翻折,位于x 轴上方图象不变,可得到函数()lg 1y x =-的图象.故合乎条件的图象为选项C 中的图象.故选:C.3.(2021·全国高三专题练习(理))我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,经常用函数的图象来研究函数的性质,也经常用函数的解析式来研究函数图象的特征.若函数()y fx =在区间[],a b 上的图象如图,则函数()y f x =在区间[],a b 上的图象可能是( )A .B .C .D .【答案】D【解析】先判断出函数是偶函数,根据偶函数的图像特征可得选项.【详解】 函数()y f x =是偶函数,所以它的图象是由()y f x =把0x ≥的图象保留,再关于y 轴对称得到的.结合选项可知选项D 正确,故选:D .4.(2021·全国高三专题练习(文))函数()5xf x x x e =-⋅的图象大致是( ). A . B .C .D .【答案】B【解析】由()20f >和()20f -<可排除ACD ,从而得到选项.【详解】由()()2223222160f e e =-=->,可排除AD ;由()()2223222160f e e ---=-+=-<,可排除C ;故选:B.5.(2021·陕西高三三模(理))函数x y b a =⋅与()log a y bx =的图像在同一坐标系中可能是()A .B .C .D .【答案】C【解析】根据指数函数和对数函数的单调性,以及特殊点函数值的范围逐一判断可得选项.【详解】令x f x b a ,()()log a g x bx =,对于A 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,所以log >0a b ,而()1log 0a g b =<,所以矛盾,故A 不正确;对于B 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,而()1log >0a g b =,所以矛盾,故B 不正确;对于C 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,又()1log 0a g b =<,故C 正确;对于D 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,而()()log a g x bx =中01a <<,所以矛盾,故D 不正确;故选:C . 6.(2021·宁夏吴忠市·高三其他模拟(文))已知函数()()()ln 2ln 4f x x x =-+-,则( ). A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】先求出函数的定义域.A :根据函数图象关于直线对称的性质进行判断即可;B :根据函数图象关于点对称的性质进行判断即可;C :根据对数的运算性质,结合对数型函数的单调性进行判断即可;D :结合C 的分析进行判断即可.【详解】 ()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+- 函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增, 在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A7.(2021·安徽高三二模(理))函数()n xf x x a =,其中1a >,1n >,n 为奇数,其图象大致为( ) A . B .C .D .【答案】B【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n n x x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.8.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( ) A . B .C .D .【答案】D【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.【详解】因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩, 所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩, 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .9.【多选题】(2021·浙江高一期末)如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =.关于下列法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过280mD .若浮萍蔓延到22m 、24m 、28m 所经过的时间分别是1t 、2t 、3t ,则2132t t t =+【答案】AD【解析】根据图象过点求出函数解析式,根据四个选项利用解析式进行计算可得答案.【详解】由图象可知,函数图象过点(1,3),所以3a =,所以函数解析式为3ty =, 所以浮萍每月的增长率为13323233t t tt t +-⨯==,故选项A 正确; 浮萍第一个月增加的面积为10332-=平方米,第二个月增加的面积为21336-=平方米,故选项B 不正确;第四个月时,浮萍面积为438180=>平方米,故C 不正确;由题意得132t =,234t =,338t =,所以13log 2t =,23log 4t =,33log 8t =,所以2133333332log 2log 8log (28)log 16log 42log 42t t t +=+=⨯====,故D 正确.故选:AD10.(2020·全国高一单元测试)函数()2x f x =和()3g x x =的图象如图所示,设两函数的图象交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出图中曲线1C ,2C 分别对应的函数;(2)结合函数图象,比较(3)f ,(3)g ,(2020)f ,(2020)g 的大小.【答案】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =;(2)(2020)(2020)(3)(3)f g g f >>>.【解析】(1)根据指数函数和一次函数的函数性质解题;(2)结合函数的单调性及增长快慢进行比较.【详解】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =.(2)(0)1f =,(0)0g =,(0)(0)f g ∴>,又(1)2f =,(1)3g =,(1)(1)f g ∴<,()10,1x ∴∈;(3)8f =,(3)9g =,(3)(3)f g ∴<,又(4)16f =,(4)12g =,(4)(4)f g ∴>,()23,4x ∴∈.当2x x >时,()()f x g x >,(2020)(2020)f g ∴>.(2020)(2020)(3)(3)f g g f ∴>>>.1.(2021·湖南株洲市·高三二模)若函数()2()mx f x e n =-的大致图象如图所示,则( )A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B【解析】令()0f x =得到1ln x n m =,再根据函数图象与x 轴的交点和函数的单调性判断.【详解】令()0f x =得mx e n =,即ln mx n =,解得1ln x n m =,由图象知1l 0n x m n =>,当0m >时,1n >,当0m <时,01n <<,故排除AD ,当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C故选:B2.(2021·甘肃高三二模(理))关于函数()ln |1|ln |1|f x x x =++-有下列结论,正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的图象关于直线1x =对称 练提升C .函数()f x 的最小值为0D .函数()f x 的增区间为(1,0)-,(1,)+∞【答案】D 【解析】A.由函数的奇偶性判断;B.利用特殊值判断;C.利用对数函数的值域求解判断;D.利用复合函数的单调性判断. 【详解】2()ln |1|ln |1|ln |1|f x x x x =++-=-,由1010x x ⎧+>⎪⎨->⎪⎩,解得1x ≠±,所以函数的定义域为{}|1x x ≠±, 因为()ln |1|ln |1|ln |1|ln |1|()f x x x x x f x -=-++--=++-=,所以函数为偶函数,故A 错误. 因为(0)ln |1|0,(3)ln8f f =-==,所以(0)(3)f f ≠,故B 错误;因为 ()2|1|0,x -∈+∞,所以()f x ∈R ,故C 错误;令2|1|t x =-,如图所示:,t 在(),1,[0,1)-∞-上递减,在()(1,0],1,-+∞上递增,又ln y t =在()0,∞+递增,所以函数()f x 的增区间为(1,0)-,(1,)+∞,故D 正确; 故选:D3.(2021·吉林长春市·东北师大附中高三其他模拟(理))函数ln xy x=的图象大致为( )A .B .C .D .【答案】C 【解析】 求出函数ln xy x=的定义域,利用导数分析函数的单调性,结合排除法可得出合适的选项. 【详解】 对于函数ln xy x =,则有0ln 0x x >⎧⎨≠⎩,解得0x >且1x ≠, 所以,函数ln xy x=的定义域为()()0,11,+∞,排除AB 选项;对函数ln x y x =求导得()2ln 1ln x y x -'=.当01x <<或1x e <<时,0y '<;当x e >时,0y '>. 所以,函数ln xy x=的单调递减区间为()0,1、()1,e ,单调递增区间为(),e +∞, 当01x <<时,0ln xy x =<,当1x >时,0ln x y x=>,排除D 选项. 故选:C.4.(2021·海原县第一中学高三二模(文))函数2xx xy e+=的大致图象是( )A .B .C .D .【答案】D 【解析】利用导数可求得2xx xy e+=的单调性,由此排除AB ;根据0x >时,0y >可排除C ,由此得到结果. 【详解】 由题意得:()()222211x xxxx e x x e x x y e e +-+-++'==,令0y '=,解得:1x =,2x =,∴当11,,22x ∞∞⎛⎛⎫+∈-⋃+ ⎪ ⎪⎝⎭⎝⎭时,0y '<;当11,22x ⎛+∈ ⎝⎭时,0y '>;2x x x y e +∴=在1,2⎛--∞ ⎝⎭,1,2⎛⎫++∞ ⎪ ⎪⎝⎭上单调递减,在1122⎛⎫-+ ⎪ ⎪⎝⎭上单调递增,可排除AB ; 当0x >时,0y >恒成立,可排除C. 故选:D.5.(2021·天津高三三模)意大利画家列奥纳多·达·芬奇的画作《抱银鼠的女子》(如图所示)中,女士颈部的黑色珍珠项链与她怀中的白貂形成对比.光线和阴影衬托出人物的优雅和柔美.达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,形成的曲线是什么?这就是著名的“悬链线问题”.后人研究得出,悬链线并不是抛物线,而是与解析式为2x x e e y -+=的“双曲余弦函数”相关.下列选项为“双曲余弦函数”图象的是( )A .B .C .D .【答案】C 【解析】分析函数2x xe e y -+=的奇偶性与最小值,由此可得出合适的选项.【详解】令()e e 2x x f x -+=,则该函数的定义域为R ,()()2x xe ef x f x -+-==,所以,函数()e e 2x xf x -+=为偶函数,排除B 选项.由基本不等式可得()112f x ≥⨯=,当且仅当0x =时,等号成立,所以,函数()f x 的最小值为()()min 01f x f ==,排除AD 选项. 故选:C.6.(2021·浙江高三月考)函数()3log 01a y x ax a =-<<的图象可能是( )A .B .C .D .【答案】B 【解析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3log a f x x ax =-,必有30x ax -≠,则0x ≠且x ≠即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =±,当3x >时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间,33⎛⎫- ⎪ ⎪⎝⎭上,()0g x '<,则()g x 在区间,33⎛⎫- ⎪ ⎪⎝⎭上为减函数,在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上,()0g x '>,则()g x 在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上为增函数,0g=,则()g x 存在极小值33339g a ⎛⎛⎫=-⨯=- ⎪ ⎪⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A , 故选:B.7.(2019·北京高三高考模拟(文))当x∈[0,1]时,下列关于函数y=2(1)mx -的图象与y =的图象交点个数说法正确的是( ) A .当[]m 0,1∈时,有两个交点 B .当(]m 1,2∈时,没有交点 C .当(]m 2,3∈时,有且只有一个交点 D .当()m 3,∞∈+时,有两个交点【答案】B 【解析】设f (x )=2(1)mx -,g (x ) ,其中x∈[0,1]A .若m=0,则()1f x =与()g x =[0,1]上只有一个交点(1,1),故A 错误.B .当m∈(1,2)时,111()(0)1,()(0)1()()2f x f g x g f x g x m<<∴≤=≥=>∴<即当m∈(1,2]时,函数y=2(1)mx -的图象与y =x∈[0,1]无交点,故B 正确,C .当m∈(2,3]时,2111()(1)(1),()(1)32f x f mg x g m <<∴≤=-≤=2(1)m >-时()()f x g x <,此时无交点,即C 不一定正确.D .当m∈(3,+∞)时,g (0)1,此时f (1)>g (1),此时两个函数图象只有一个交点,故D 错误,故选:B.8.(2021·浙江高三专题练习)若关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,则实数a的取值范围是()A.1,14⎡⎫⎪⎢⎣⎭B.10,4⎛⎤⎥⎝⎦C.3,14⎡⎫⎪⎢⎣⎭D.30,4⎛⎤⎥⎝⎦【答案】A 【解析】转化为当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,根据图象列式可解得结果.【详解】由题意知关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,所以当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,由图可知0111log 22a a <<⎧⎪⎨≥⎪⎩,解得114a ≤<. 故选:A9.对a 、b ∈R ,记{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24()f x x x x x =--+∈R .(1)求(0)f ,(4)f -.(2)写出函数()f x 的解析式,并作出图像.(3)若关于x 的方程()f x m =有且仅有3个不等的解,求实数m 的取值范围.(只需写出结论) 【答案】见解析.【解析】解:(1)∵{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24f x x x x =--+,∴{}(0)max 0,44f ==,{}(4)max 4,44f -=-=.(2)(3)5m =或m 10.(2021·全国高一课时练习)函数()2xf x =和()()30g x xx =≥的图象,如图所示.设两函数的图象交于点()11A x y ,,()22B x y ,,且12x x <.(1)请指出示意图中曲线1C ,2C 分别对应哪一个函数;(2)结合函数图象,比较()8f ,()8g ,()2015f ,()2015g 的大小. 【答案】(1)1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =;(2)()()()()2015201588f g g f >>>.【解析】(1)根据图象可得结果;(2)通过计算可知1282015x x <<<,再结合题中的图象和()g x 在()0+∞,上的单调性,可比较()8f ,()8g ,()2015f ,()2015g 的大小.【详解】(1)由图可知,1C 的图象过原点,所以1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =.(2)因为11g =(),12f =(),28g =(),24f =(),()9729g =,()9512f =,()101000g =,()101024f =,所以11f g >()(),22f g <()(),()()99f g <,()()1010f g >.所以112x <<,2910x <<.所以1282015x x <<<.从题中图象上知,当12x x x <<时,()()f x g x <;当2x x >时,()()f x g x >,且()g x 在()0+∞,上是增函数,所以()()()()2015201588f g g f >>>.1. (2020·天津高考真题)函数241xy x =+的图象大致为( ) 练真题A .B .C .D .【答案】A 【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A.2.(2019年高考全国Ⅲ卷理)函数3222x xx y -=+在[]6,6-的图像大致为( ) A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .3.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D 【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.4.(2019年高考全国Ⅱ卷理)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-,如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.5.(2017·天津高考真题(文))已知函数f(x)={|x|+2,x <1x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是 A .[−2,2] B .[−2√3,2] C .[−2,2√3] D .[−2√3,2√3] 【答案】A【解析】满足题意时f (x )的图象恒不在函数y =|x2+a|下方,当a =2√3时,函数图象如图所示,排除C,D 选项;当a =−2√3时,函数图象如图所示,排除B 选项,本题选择A 选项.6.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .。

高考数学复习重点知识专题讲解与练习05 函数图象的辨析(解析版)

高考数学复习重点知识专题讲解与练习05 函数图象的辨析(解析版)

高考数学复习重点知识专题讲解与练习专题05 函数图象的辨析1.(2021·江西赣州·高三期中(文))已知函数||()122x xx f x =+,则函数()y f x =的大致图象为( )A .B .C .D .【答案】D 【分析】函数图像的识别,通常利用性质+排除法进行判断: 利用函数的奇偶性排除B ,利用特殊点的坐标排除A 、C. 【详解】 由||()22x xx f x -=+,得()f x 的定义域为R ,(0)0f =,排除A 选项. 而||()()22x xx f x f x --==+,所以()f x 为偶函数,图像关于y 轴对称,排除B 选项.()1141421,1152522f f ⎛⎫====< ⎪⎝⎭+,排除C 选项. 故选:D .2.(2021·浙江·高三月考)函数sin 2x y x=的图象可能是( )A .B .C .D .【答案】B 【分析】判断当3,22x x ππ==的符号,可排除AC ,求导,判断函数在()0,π上的单调性,可排除D ,即可得出答案. 【详解】解:由()()sin 02x y f x x x==≠得,1310,0223f f ππππ⎛⎫⎛⎫=>=-< ⎪ ⎪⎝⎭⎝⎭,故排除AC , ()2cos sin 2x x x f x x -'=,令()cos sin g x x x x =-,则()sin g x x x '=-,当0πx <<时,()0g x '<, 所以函数()g x 在()0,π上递减, 所以()()00g x g <=在()0,π上恒成立, 即()2cos sin 02x x xf x x-'=<在()0,π上恒成立, 所以函数()f x 在()0,π上递减,故排除D. 故选:B.3.(2021·江苏省前黄高级中学高三月考)已知215()sin ,()42f x x x f x π⎛⎫+⎪⎭'=+ ⎝为()f x 的导函数,则()f x '的图象是( )A .B .C .D .【答案】A 【分析】求出导函数,判断导函数的奇偶性,再利用特殊值即可得出选项. 【详解】22co 151()si s n424f x x x x x π⎛⎫=++= +⎪⎝⎭, ()1sin 2f x x x '∴=-,∴函数()f x '为奇函数,排除B 、D.又1024f ππ⎛⎫'=-< ⎪⎝⎭,排除C.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.4.(2021·浙江·高二开学考试)函数())ln cos f x x x x =+⋅在[]2,2ππ-上的图象可能是( )A .B .C .D .【答案】C 【分析】确定奇偶性,可排除两个选项,然后确定函数在3[,2]2ππ上的单调性可再排除一个选项,从而得正确选项. 【详解】())cos())cos ()f x x x x x x x f x -=-+-=--=-,()f x 是奇函数,排除AB ,在3[,2]2x ππ∈时,由复合函数单调性知)y x =是增函数,且)0y x =>,又cos y x =增函数,且cos 0y x =>,所以)cos y x x =是增函数,而y x =是增函数,所以()f x 是增函数,排除D . 故选:C .5.(2021·浙江金华·高三月考)函数|ln()|x ay x a +=-的图象,不可能是( )A .B .C .D .【答案】D 【分析】通过函数的定义域、值域以及特殊值对四个选项中的函数图像一一分析即可判断.【详解】对于A ,当0a =时,ln xy x=,其定义域为{}0,1x x x >≠,且0y >恒成立,故A 正确; 对于B ,由函数定义域可知,0a <,当0y =,x a =-,当x a >-时,0y >,当x a <-时,0y <,故B 正确;对于C ,由函数定义域可知,0a >,当1x a -=时,函数无意义,且0y ≥恒成立,故C 正确;对于D ,由函数定义域可知,0a <,当0y =,x a =-,当x a <-时,0y <,但图中0y >,不满足条件,故D 错误; 故选:D.6.(2021·全国·高三专题练习)函数2x y π=的图像大致是( )A .B .C .D .【答案】A 【分析】由02x <<时()0f x >,排除B 和C ;再探究出函数()f x 的图象关于直线1x =对称,排除D. 【详解】当02x <<时,sin 02x π>,所以()sin02xy f x π==>,故排除B 和C ;又(2)(2)sinsin()22x xf x f x ππ--===,所以函数()f x 的图象关于直线1x =对称,排除D. 故选:A. 【点睛】方法点睛:解决函数图象的识别问题的技巧:一是活用性质,常利用函数的定义域、值域、单调性与奇偶性来排除不合适的选项;二是取特殊点,根据函数的解析式选择特殊点,即可排除不合适的选项,从而得出正确的选项.7.(2021·天津市新华中学高三月考)函数23sin ()x x x x x f x e e--=+的图象大致为( )A .B .C .D .【答案】B 【分析】先判断函数的奇偶性排除A,D,再根据(1)0f >,排除C 即得解. 【详解】解:根据题意,23sin ()x x x x x f x e e--=+,其定义域为R ,有23sin ()()x xx x xf x f x e e---==+,则函数f (x )为偶函数,排除A ,D , 3sin11(1)01f e e-=>+,排除C , 故选:B . 【点睛】方法点睛:根据函数的解析式找图象,一般先找差异,再验证. 8.(2021·全国·高三专题练习)函数2()1cos e 1x f x x ⎛⎫=+⎪-⎝⎭的大致图象为( ) A . B .C .D .【答案】B 【分析】判断图像类问题,首先求定义域,其次判断函数的奇偶性()()f x f x -=-;再次通过图像或函数表达式找特殊值代入求值,()0f x =时,即e 1cos 0e 1x x x +⋅=-,此时只能是cos 0x =;也可通过单调性来判断图像.主要是通过排除法得解. 【详解】函数()f x 的定义域为{}0x x ≠,因为2e 12e 1()1cos cos cos e 1e 1e 1x x x x x f x x x x ⎛⎫⎛⎫-++⎛⎫=+⋅=⋅=⋅ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,并且()()00e 1e e 1e ()cos cos cos e 1e e 1ex x xx x xf x x x x f x --+++-=⋅-=⋅=⋅=----, 所以函数()f x 为奇函数,其图象关于原点对称,可排除A C ,;当()0f x =时,即e 1cos 0e 1x x x +⋅=-,此时只能是cos 0x =,而cos 0x =的根是2x x k k ππ⎧⎫=+∈⎨⎬⎩⎭Z ,,可排除D . 故选:B 【点睛】函数的定义域,奇偶性,特殊值,单调性等是解决这类问题的关键,特别是特殊值的选取很重要,要结合图像的特征来选取.9.(2022·全国·高三专题练习(理))函数()232sin log y x x x π=⋅⋅的图象大致为( )A .B .C .D .【答案】B 【分析】分析函数()232sin log y x x x π=⋅⋅的定义域、奇偶性及其在()0,1上的函数值符号,结合排除法可得出合适的选项. 【详解】设()()()2322sin log sin log f x x x x x x ππ=⋅⋅=⋅,该函数的定义域为{}0x x ≠,()()()()22sin log sin log f x x x x x f x ππ-=-⋅-=⋅=-,函数()f x 为奇函数,排除AC 选项;当01x <<时,0x ππ<<,()sin 0x π>,则()0f x <,排除D 选项. 故选:B. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.10.(2022·全国·高三专题练习)函数()3log 01a y x ax a =-<<的图象可能是( )A .B .C .D .【答案】B 【分析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3loga f x x ax =-,必有30x ax -≠,则0x ≠且x ≠, 即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =,当x 时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间⎛⎝⎭上,()0g x '<,则()g x 在区间⎛ ⎝⎭上为减函数,在区间⎫+∞⎪⎪⎝⎭上,()0g x '>,则()g x 在区间⎫+∞⎪⎪⎝⎭上为增函数,0g =,则()g x 存在极小值3g a =-=⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A ,故选:B. 【点睛】函数图象的辨识可以从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.11.(2022·全国·高三专题练习)函数()122cos cos 4421x x f x x x ππ+-⎛⎫⎛⎫=+- ⎪ ⎪+⎝⎭⎝⎭的图象为( ) A . B .C .D .【答案】D【分析】先将()f x 的解析式化简,然后判断()f x 的奇偶性,再根据()f π的取值特点判断出对应的函数图象. 【详解】因为()12221cos cos 2442121x x x x f x x x x x x x ππ+⎫⎫--⎛⎫⎛⎫=+-=⋅⋅⋅+⎪⎪ ⎪ ⎪⎪⎪++⎝⎭⎝⎭⎝⎭⎝⎭()222121cos sin cos22121x x x x x x x --=⋅-=⋅++, 所以()()()2112cos 2cos22112x xx x f x x x f x -----=⋅-=⋅=-++且定义域为R 关于原点对称, 所以()f x 为奇函数,排除A 和C ;由()21cos2021f ππππ-=>+,排除B , 故选:D . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.12.(2021·河南·温县第一高级中学高三月考(理))函数()ln |||sin |,(f x x x x ππ=+-≤≤且0)x ≠的图象大致是( )A .B .C .D .【答案】B 【分析】根据解析式判断奇偶性,在0x π>>上0x +→有()f x →-∞,利用导函数,结合函数图象分析0x π>>内极值点的个数,即可确定正确函数图象. 【详解】函数()ln |||sin()|ln |||sin |()f x x x x x f x -=-+-=+=,(x ππ-≤≤且0)x ≠是偶函数,A 不合要求. 当0x π>>时,()ln sin f x x x =+:当0x +→,()f x →-∞,C 不合要求;而1()cos 0f x x x'=+=时,1,cos y y x x==-在0x π>>上只有一个交点(如下图示),即区间内只有一个极值点. D不合要求,B 符合要求.故选:B. 【点睛】关键点点睛:利用导函数,应用数形结合分析函数的交点情况,判断函数在区间上极值点个数.13.(2021·全国·高三专题练习(文))已知函数()f x ,()g x 满足()()()()x x f x g x e f x g x e -⎧+=⎪⎨-=⎪⎩,则()()()sin 2x h x f x g x π⎛⎫+ ⎪⎝⎭=⋅的图像大致是( ) A . B .C .D .【答案】C 【分析】依题意得()()()221=4x x f x g x e e --⋅,根据奇偶性定义知()h x 为奇函数,再结合特征点即可得答案. 【详解】因为()()()()x x f x g x e f x g x e -⎧+=⎪⎨-=⎪⎩解得()()()()11=,=22x x x xf x e eg x e e --+- 所以()()()221=4x x f x g x e e --⋅,则()()()22sin 4cos 2=x xx x h x f x g x e e π-⎛⎫+ ⎪⎝⎭=⋅- ()h x 定义域为{}0x x ≠因为()()224cos x xxh x h x e e --==--,故()h x 是奇函数,则B ,D 错;当02x π<<时,()224cos 0x xxh x e e -=>-,则C 正确,故选:C 【点睛】思路点睛:函数图象的识别可以以下方面入手: (1)从函数定义域判断; (2)从函数单调性判断; (3)从函数奇偶性判断; (4)从函数特征点判断.14.(2021·湖南·长郡中学二模)函数sin cos 4411()x x f x ee ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭的图像可能是( )A .B .C .D .【答案】A 【分析】本题首先可通过()()f x f x -=-判断出函数()f x 为奇函数,C 、D 错误,然后取04x π<≤,通过sin cos 44x x ππ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭判断出此时()0f x <,即可得出结果.【详解】 因为sin cos cos sin 44441111()()x x x x f x f x ee e e ππππ⎛⎫⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝==-⎭⎝⎭,x ∈R ,所以函数()f x 为奇函数,C 、D 错误,当04x π<≤,442x πππ<+≤,sin cos 44x x ππ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭,sin cos 4411x x e e ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,sin cos 4411()0x x f x ee ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎭<⎝,B 错误,故选:A. 【点睛】方法点睛:本题考查函数图像的判断,在判断函数的图像的时候,可以通过函数的单调性、奇偶性、周期性、函数值的大小、是否过定点等函数性质来判断,考查数形结合思想,是中档题.15.(2021·福建龙岩·高一期末)已知函数()cos6x xxf x e e -=-,则()f x 的图象大致是( )A .B .C .D .【答案】C 【分析】分析函数()f x 的奇偶性及其在区间0,12π⎛⎫⎪⎝⎭上的函数值符号,由此可得出合适的选项.【详解】 对于函数()cos6x xxf x e e-=-,0x x e e --≠,解得0x ≠,函数()f x 的定义域为{}0x x ≠, ()()()cos 6cos6x xx xx xf x f x e e e e----==-=---,所以,函数()f x 为奇函数,排除BD 选项, 当0,12x π⎛⎫∈ ⎪⎝⎭时,60,2x π⎛⎫∈ ⎪⎝⎭,则cos60x >且0x x e e -->,此时,()0f x >,排除A 选项. 故选:C. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.16.(2021·湖北武汉·高一期末)函数()32241x xxx y -=+的部分图像大致为( )A .B .C .D .【答案】A 【分析】研究函数奇偶性和区间(的函数值的正负,利用排除法即得结果. 【详解】函数()33222()4122x x xxxx x x y f x ---===++,定义域为R , 对于任意的自变量x ,()333222()()222222x xx x x x x xx x x x f x f x -------===++-=-+++,故函数()y f x =是奇函数,图象关于原点中心对称,故CD 错误;又(32()2222x x x xx x x x x y f x --+-===++,故(x ∈时,00,0,202x x x x x ->+>+>,,即()0y f x =<,故A 正确,B 错误. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象. 17.(2021·全国·高三专题练习(理))函数()x x f x -=的图象大致为( )A .B .C .D .【答案】A 【分析】分析函数()f x 的奇偶性,以及当0x >时,()f x 的符号,进而可得出合适的选项. 【详解】 设())lng x x =,对任意的x ∈Rx x >≥-0x >,则函数()g x 的定义域为R ,())ln xxg x x-==)()lnx g x ==-=-,所以,函数())ln g x x =为奇函数,令())ln0g x x ==1x =1x =-,所以,10x -≥,可得1x ≤1x =-可得()2211x x +=-,解得0x =. 所以,函数()x x f x -=的定义域为{}0x x ≠,()()()()2222x x x xf x f xg x g x --++-==-=--,所以,函数()f x 为奇函数,排除BD 选项,当0x >时,)ln ln10x >=,220x x -+>,所以,()0f x >,排除C 选项.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.18.(2021·全国全国·高三月考(理))已知函数()31sin f x x x x ⎛⎫=-⋅ ⎪⎝⎭,则其图象为( ) A . B .C .D .【答案】A 【分析】分析函数()f x 的定义域、奇偶性以及该函数在()0,1上的函数值符号,结合排除法可得出合适的选项. 【详解】 函数()31sin f x x x x ⎛⎫=-⋅ ⎪⎝⎭的定义域为{}0x x ≠,排除D 选项; ()()()()()()333111sin sin sin f x x x x x x x f x x x x ⎡⎤⎛⎫⎛⎫⎢⎥-=--⋅-=-+⋅-=-⋅= ⎪ ⎪⎝⎭⎝⎭⎢⎥-⎣⎦, 所以,函数()f x 为偶函数,排除B 选项;当01x <<时,433110x x x x--=<,sin 0x >,此时()0f x <,排除C 选项.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.19.(2020·全国全国·模拟预测(文))函数()()ee sin 32xx xf x -+⋅=在55,22⎡⎤-⎢⎥⎣⎦上的图象大致是( )A .B .C .D .【答案】B 【分析】先判断函数奇偶性得函数为奇函数,故排除A,再结合π0,3x ⎛⎫∈ ⎪⎝⎭时,()0f x >排除C ,最后讨论函数在对应区间内的零点个数即可得答案. 【详解】∵()()()()()e e sin 3e e sin 322xx xx x f f xx x --+⋅-+⋅==-=--,∴()f x 是奇函数,排除A .当π0,3x ⎛⎫∈ ⎪⎝⎭时,()0f x >,排除C .由()0f x =得sin30x =,又15153,22x ⎡⎤∈-⎢⎥⎣⎦, ∴30x =或π±或2π±,∴()f x 在55,22⎡⎤-⎢⎥⎣⎦上有5个零点,排除D .故选:B . 【点睛】本题考查利用函数性质确定函数图象,考查了函数的奇偶性,考查数形结合思想,属于基础题.思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.20.(2020·山西·河津中学高三月考(理))函数(),()sin f x x g x x x ==+,则()()()h x f x g x =的图象大致为( )A .B .C .D .【答案】A 【分析】由()h x 为偶函数,故排除选项B ,当0x >时,()0,f x >且()f x 为增函数,()g x 在(0,)+∞上为增函数,所以当0x >时,()()00g x g >=,所以当0x >时,()()()0h x f x g x =>,排除选项D ,从而可得出()h x 在(0,)+∞上为增函数,排除选项C ,得到答案.【详解】()(sin )h x x x x =+,则()()()()sin sin h x x x x x x x h x -=---=+=,所以()h x 为偶函数,故排除选项B. 当0x >时,()0,f x >且()f x 为增函数.()1cos 0g x x '=+≥恒成立,所以()g x 在(0,)+∞上为增函数,所以当0x >时,()()00g x g >=所以当0x >时,()()()0h x f x g x =>,排除选项D. 设120x x <<,则()()120f x f x <<,()()120g x g x << 则()()()()()()121122g g h x h x f x x f x x -=-()()()()()()()()11121222g g g g f x x f x x f x x f x x =-+- ()()()()()()()()112212g g g f x x x x f x f x =-+- ()()()()()()()()112212g g g f x x x x f x f x =-+-由条件()10f x >,()()12g g 0x x -<,则()()()()112g g 0f x x x -<()2g 0x >,()()120f x f x -<,则()()()()212g 0x f x f x -<所以()()()()()()()()112212g g g 0f x x x x f x f x -+-<,即()()12h x h x < 因此()h x 在(0,)+∞上为增函数,排除选项C 故选:A 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.。

2024年高考数学模拟试题含答案(一)

2024年高考数学模拟试题含答案(一)

2024年高考数学模拟试题含答案(一)一、选择题(每题5分,共40分)1. 若函数f(x) = 2x - 1在区间(0,2)上是增函数,则实数a的取值范围是()A. a > 0B. a ≥ 1C. a ≤ 1D. a < 0【答案】C【解析】由题意知,f'(x) = 2 > 0,所以函数在区间(0,2)上是增函数。

又因为f(0) = -1,f(2) = 3,所以f(x)在区间(0,2)上的取值范围是(-1,3)。

要使得f(x)在区间(0,2)上是增函数,只需保证a ≤ 1。

2. 已知函数g(x) = x² - 2x + 1,则下列结论正确的是()A. 函数g(x)在区间(-∞,1)上是增函数B. 函数g(x)在区间(1,+∞)上是减函数C. 函数g(x)的对称轴为x = 1D. 函数g(x)的顶点坐标为(1,0)【答案】D【解析】函数g(x) = x² - 2x + 1 = (x - 1)²,所以函数的顶点坐标为(1,0),对称轴为x = 1。

根据二次函数的性质,当x > 1时,函数g(x)递增;当x < 1时,函数g(x)递减。

3. 已知数列{an}的前n项和为Sn,且满足Sn =2an - 1,则数列{an}的通项公式是()A. an = 2^n - 1B. an = 2^nC. an = 2^n + 1D. an = 2^(n-1)【答案】D【解析】由Sn = 2an - 1,得an = (Sn + 1) / 2。

当n = 1时,a1 = (S1 + 1) / 2 = 1。

当n ≥ 2时,an = (Sn + 1) / 2 = (2an - 1 + 1) / 2 = 2an-1。

所以数列{an}是首项为1,公比为2的等比数列,通项公式为an = 2^(n-1)。

4. 已知函数h(x) = |x - 2| - |x + 1|,则函数h(x)的图像是()A. 两条直线B. 两条射线C. 一个三角形D. 一个抛物线【答案】B【解析】函数h(x) = |x - 2| - |x + 1|表示数轴上点x到点2的距离减去点x到点-1的距离。

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析1.函数在上的图像大致为()【答案】A【解析】函数是奇函数,所以C,D被排除;当时,,,由此判断,函数原点右侧开始时应该是正数,所以选A.【考点】函数的图像与性质2.如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )【答案】B【解析】通过圆心角α将弧长x与时间t联系起来.圆半径为1,设弧长x所对的圆心角为α,则α=x,如图所示,cos=1-t,即cos=1-t,则y=cos x=2cos2-1=2(1-t)2-1=2(t-1)2-1(0≤t≤1).其图象为开口向上,在[0,1]上的一段抛物线.3.若函数的图像如右图所示,则下列函数图像正确的是()【答案】B【解析】由题意可得.所以函数是递减的即A选项不正确.B正确. 是递减,所以C不正确. 图象与关于y轴对称,所以D不正确.故选B.【考点】函数的图象.4.已知函数f(x)=|lgx|,若a≠b,且f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【答案】C【解析】函数f(x)=|lgx|的图象如图所示,由图象知a,b一个大于1,一个小于1,不妨设a>1,0<b<1.∵f(a)=f(b),∴f(a)=|lga|=lga=f(b)=|lgb|=-lgb=lg.∴a=.∴a+b=b+>2=2.5.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为________.【答案】【解析】由题意知,y=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y=m与y=x2-5x+4(x∈[0,3])的图像如图所示,结合图像可知,当x∈[2,3]时,y=x2-5x+4∈,故当m∈时,函数y=m与y=x2-5x+4(x∈[0,3])的图像有两个交点.6.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.7.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.8.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.9.已知,则函数的零点个数为()A.1B.2C.3D.4【答案】D【解析】由题意可知,要研究函数的零点,只要研究函数与函数的交点个数,画出两个函数的图象,如图,很明显是4个交点.【考点】1.函数的零点;2.函数的图象.10.函数的图象大致是().【答案】C【解析】不难知道,函数是奇函数,故排除A;又,令得,而此方程有无穷个解,且在每个解的两边函数值不同号,所以函数有无穷多个极值点,故可排除B,D.11.已知,点在曲线上,若线段与曲线相交且交点恰为线段的中点,则称为曲线关于曲线的一个关联点.记曲线关于曲线的关联点的个数为,则( ) A.B.C.D.【答案】B【解析】设则的中点为所以有,因此关联点的个数就为方程解得个数,由于函数在区间上分别单调增及单调减,所以只有一个交点,即.【考点】函数图像12.如图,不规则四边形ABCD中,AB和CD是线段,AD和BC是圆弧,直线于E,当从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设,左侧部分面积为,则关于的图像大致为( )【答案】C【解析】由直线的变化可知,开始时圆弧那段变化较慢,所以排除A,B选项,由于左边的面积始终在增大,所以D选项不正确.【考点】1.图形的变化规律.2.关注局部图形的变化.13.已知函数y=f(x)的图象如图所示,请根据已知图象作出下列函数的图象:①y=f(x+1);②y=f(x)+2;【答案】【解析】(1)将函数y=f(x)的图象向左平移一个单位得到y=f(x+1)的图象(如图①所示),将函数y=f(x)的图象向上平移两个单位得到y=f(x)+2的图象(如图②所示).14.已知函数,,若在区间内,函数与轴有3个不同的交点,则实数的取值范围是()A.B.C.D.【答案】C【解析】∵,∴,∴,∴,∴,∴当时,,∵函数与x轴有3个不同交点,∴函数与有3个不同的交点,函数的图像如图所示,直线与相切是一个边界情况,直线过时是一个边界情况,符合题意的直线需要在这2条直线之间,∵,∴,∴,所以切线方程为,与相同,即,当过点时,,综上可得:,故选C.【考点】1.导数的运算;2.函数图像;3.曲线的切线.15.函数y=lnx-1的图象关于直线y=x对称的图象大致是 ( )A. B. C. D.【答案】A【解析】因为关于直线y=x对称点的关系为,所以函数y=lnx-1的关于直线y=x对称的函数的解析式为.即相当于将函数的图像向左平移一个单位,显然B,D不正确,C 选项中的图像在y轴的交点过低,所以不正确.故选A.【考点】1.函数的对称性.2.指数函数的图像.3.函数图像的平移知识.16.下列函数图象与x轴均有公共点,其中能用二分法求零点的是().【答案】C【解析】只有零点两侧的函数值符号相反且在零点附近连续时才可用二分法.17.函数y=的图象大致是().【答案】D【解析】由y=知为奇函数,排除A,B.根据函数有两个零点x=±1,排除C.18.函数y=-2sin x的图象大致是 ().【答案】C【解析】当x=0时,y=0-2sin 0=0,故函数图象过原点,可排除A.又∵y′=-2cos x,当x在y轴右侧趋向0时,f′(x)<0,此时函数为减函数;当x=2 π时,f′(2 π)=-2 cos 2 π=-<0,所以x=2 π应在函数的减区间上,故选C19.函数的图象大致是( )【答案】D【解析】因为的定义域为,且,故可排除,所以应选D.【考点】1、函数的定义域;2、函数的性质;函数的图象.20.函数的图象大致是( )【答案】A【解析】,故此函数在上为增函数,在为减函数;且只有一个根,故只有一个零点.所以选A.【考点】函数的性质与图像.21.随着生活水平的提高,私家车已成为许多人的代步工具。

2022年全国高考数学真题及模拟题汇编:函数(附答案解析)

2022年全国高考数学真题及模拟题汇编:函数(附答案解析)

2022年全国高考数学真题及模拟题汇编:函数一.选择题(共7小题)1.函数()3f x lgx x =+-的定义域为( )A .[0,3]B .(0,3]C .[0,)+∞D .(-∞,3]2.函数||22()x y x x R =-∈的大致图象是( )A .B .C .D .3.已知函数()3f x x x =--0.2(3)a f =,3(0.2)b f =,0.2(log 3)c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >> 4.已知函数212()(5)f x log x ax =-+,在(4,)x ∈+∞单调递减,则a 的取值范围是( )A .(-∞,8]B .21(,)4-∞C .(,8)-∞D .21(,]4-∞5.已知3log 2a =,0.1b e =,0.5ln c e =,则三者大小关系为( )A .a c b <<B .c a b <<C .c b a <<D .a b c << 6.已知12a e =,3log 5b =,6log 8c =(其中e 为自然对数的底数, 2.718)e ≈,下列关系正确的是( )A .a b c >>B .a c b >>C .b a c >>D .c a b >>7.若1a >,则1()x y a=与log a y x =在同一坐标系中的图象大致是( ) A . B .C .D .二.多选题(共3小题) 8.下列函数中,属于奇函数并且值域为R 的有( )A .3y x =B .1y x x =+C .1y x x =-D .22x x y -=+9.下列函数中,值域是(0,)+∞的是( )A .12x y -=B .21y x =C .(1)y ln x =+D .||y x =10.下列函数中,是奇函数且在(,)-∞+∞上是单调递增函数的是( )A .()f x x =B .()||f x x x =C .()22x x f x -=-D .2()f x x =三.填空题(共5小题)11.函数22(1)3(0)f x x x x -=-+>,则f (3)= .12.函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点 .13.已知212x =,21log 3y =,则x y +的值为 . 14.已知函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则3log f (3)= .15.若幂函数()f x 的图象经过点1(,4)4,则(2)f -= . 四.解答题(共7小题)16.已知函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+.(1)当0x 时,求函数()f x 的解析式;(2)解关于m 的不等式:(2)(2)23f m f m m +--.17.设函数4()221xx f x =--,0x >. (1)求函数()f x 的值域;(2)设函数2()1g x x ax =-+,若对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,求正实数a 的取值范围.18.设函数21y mx mx =--.(1)若函数21y mx mx =--有两个零点,求m 的取值范围;(2)若命题:x R ∃∈,0y ,是假命题,求m 的取值范围;(3)若对于[1x ∈,3],2(1)3y m x ++恒成立,求m 的取值范围.19.已知函数()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性并给出证明;(3)若(1)1f -<,求a 的取值范围.20.已知函数1()21x f x a =-+为奇函数. (1)求a 的值,并判断函数()f x 的单调性;(2)若x R ∀∈,2(1)()0f x f kx ++<,求实数k 的取值范围.21.计算下列各式.(1)1206310.064()(2021)3π--+-+;(2)2731329log 5log 42log 5log -++. 22.计算:(100.539()()54--++ (2)22log 62222523lg lg -+--2022年全国高考数学真题及模拟题汇编:函数参考答案与试题解析一.选择题(共7小题)1.函数()3f x lgx x =+-的定义域为( )A .[0,3]B .(0,3]C .[0,)+∞D .(-∞,3]【考点】函数的定义域及其求法【分析】由对数式的真数大于0,根式内部的代数式大于等于0联立不等式组求解.【解答】解:要使原函数有意义,则030x x >⎧⎨-⎩,解得03x <. ∴函数()3f x lgx x =+-的定义域为(0,3].故选:B .【点评】本题考查函数的定义域及其求法,是基础题.2.函数||22()x y x x R =-∈的大致图象是( )A .B .C .D .【考点】函数的图象与图象的变换【分析】根据题意分析可得()f x 为偶函数,通过0x =函数的值,排除函数的图象即可.【解答】解:根据题意有||2||2()2()2()x x f x x x f x --=--=-=,所以函数是偶函数,又函数||22x y x =-,当0x =时,1y =,排除C ,故选:A .【点评】本题考查函数的图象分析,注意分析函数的奇偶性,属于基础题.3.已知函数()3f x x x =--0.2(3)a f =,3(0.2)b f =,0.2(log 3)c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>【考点】函数单调性的性质与判断【分析】首先求出函数()f x 的单调性,再判断0.2log 3,30.2,0.23的大小关系,从而得出a ,b ,c 的大小关系. 【解答】解:因为函数()3f x x x =-所以30x -,可得3x ,即()f x 的定义域为(-∞,3], 所以()3f x x x =-(-∞,3]单调递增,因为0.20331>=,3000.20.21<<=,0.2log 30<,所以30.20.2log 30.23<<,所以30.20.2(log 3)(0.2)(3)f f f <<,所以c b a <<.故选:A .【点评】本题主要考查函数单调性的性质与判断,考查函数值大小的比较,考查逻辑推理能力,属于基础题.4.已知函数212()(5)f x log x ax =-+,在(4,)x ∈+∞单调递减,则a 的取值范围是( )A .(-∞,8]B .21(,)4-∞C .(,8)-∞D .21(,]4-∞ 【考点】复合函数的单调性【分析】令25t x ax =-+,12log y t =,分析内层函数与外层函数的单调性以及对数真数在所给区间恒为正数,可得出关于a 的不等式组,进而求得实数a 的取值范围.【解答】解:令25t x ax =-+,易知12log y t =在其定义域上单调递减,要使()f x 在(4,)+∞上单调递减,则25t x ax =-+在(4,)+∞单调递增,且250t x ax =-+>,即2424450a a ⎧⎪⎨⎪-+⎩, 所以8214a a ⎧⎪⎨⎪⎩,即214a 因此实数a 的取值范围是(-∞,21]4. 故选:D. 【点评】本题考查复合函数的单调性,考查学生的运算能力,属于中档题.5.已知3log a =0.1b e =,0.5ln c e =,则三者大小关系为( )A .a c b <<B .c a b <<C .c b a <<D .a b c <<【考点】对数值大小的比较【分析】直接利用对数的运算性质化简得答案.【解答】解:33log log 0.5a =<=,0.101b e e =>=,0.50.5ln c e ==,a cb ∴<<.故选:A .【点评】本题考查对数值的大小比较,考查对数的运算性质,是基础题.6.已知12a e =,3log 5b =,6log 8c =(其中e 为自然对数的底数, 2.718)e ≈,下列关系正确的是( )A .a b c >>B .a c b >>C .b a c >>D .c a b >> 【考点】对数值大小的比较【分析】利用对数函数的单调性得到a b >,a c >,再利用对数的运算法则,换底公式,基本不等式得到b c >,求解即可.【解答】解:1232a e =>,33log 5log 3b =<332=, 6443log 8log 81log 22c =<=+=, a b ∴>,a c >,25858583363535lg lg lg lg lg lg lg b c lg lg lg lg lg lg -⋅∴-=->-=⋅ 222222(83)2425555444353535lg lg lg lg lg lg lg lg lg lg lg lg lg +--->=>⋅⋅⋅ 2255035lg lg lg lg -==⋅, b c ∴>,a b c ∴>>,故选:A .【点评】本题考查了对数的运算法则,换底公式,对数函数的单调性,基本不等式的应用,考查了计算能力,属于中档题.7.若1a >,则1()x y a=与log a y x =在同一坐标系中的图象大致是( ) A . B .C .D .【考点】对数函数的图象与性质;指数函数的图象与性质【分析】由指数函数与对数函数的性质依次判断即可. 【解答】解:1()x y a=与log a y x =分别过(0,1),(1,0)点, 又1a >, ∴1()x y a=与log a y x =分别为定义域内的减函数,增函数, 故选:D .【点评】本题考查了指数函数与对数函数的性质应用,属于基础题.二.多选题(共3小题)8.下列函数中,属于奇函数并且值域为R 的有( )A .3y x =B .1y x x =+C .1y x x =-D .22x x y -=+【考点】函数的值域;函数奇偶性的性质与判断【分析】根据题意,依次分析选项是否正确,综合可得答案.【解答】解:根据题意,依次分析选项:对于A ,3()f x x =是奇函数,且值域为R ,符合题意;对于B ,1()f x x x =+,当0x >时,1()2f x x x=+,当0x <时,()2f x -,即()f x 的值域为(-∞,2][2-,)+∞,不符合题意;对于C ,1()f x x x=-,是奇函数,且在(0,)+∞上单调递增,当0x +→时,()f x →-∞,x →+∞时,()f x →+∞,其值域为R ,符合题意;对于D ,()22x x f x -=+,是奇函数,且()2f x (当且仅当0x =时取“= “),其值域不为R ,不符合题意;故选:AC .【点评】本题考查函数奇偶性的判断以及值域的计算,考查逻辑推理能力与运算求解能力,属于中档题.9.下列函数中,值域是(0,)+∞的是( )A .12x y -=B .21y x =C .(1)y ln x =+D .||y x =【考点】函数的值域【分析】利用函数的性质求出值域即可判断.【解答】解:对于:1A x R -∈,120x y -∴=>,故A 正确,对于:0B x ≠,20x ∴>,210y x ∴=>,故B 正确, 对于:10C x +>,(1)(y ln x ∴=+∈-∞,)+∞,故C 错误,对于:D x R ∈,||[0y x ∴=∈,)+∞,故D 错误.故选:AB .【点评】本题主要考查函数值域的求解和判断,结合函数的性质求出函数的值域是解决本题的关键,是基础题.10.下列函数中,是奇函数且在(,)-∞+∞上是单调递增函数的是( )A .()f x x =B .()||f x x x =C .()22x x f x -=-D .2()f x x =【考点】奇偶性与单调性的综合【分析】由常见函数的奇偶性和单调性可得结论.【解答】解:()f x x =为奇函数,且在(,)-∞+∞上是单调递增,故A 符合题意;()||f x x x =满足()()f x f x -=-,()f x 为奇函数,且在[0,)+∞递增,在(-∞,0]也递增,则()f x 在(,)-∞+∞上是单调递增,故B 符合题意;()22x x f x -=-的定义域为R ,满足()()f x f x -=-,()f x 为奇函数,且2x y =和2x y -=-在R 上递增,则()f x 在R 上递增,故C 符合题意;2()f x x =为偶函数,故D 不符题意.故选:ABC .【点评】本题考查函数的奇偶性和单调性的判断,考查运算能力和推理能力,属于基础题.三.填空题(共5小题)11.函数22(1)3(0)f x x x x -=-+>,则f (3)= 5 .【考点】函数的值【分析】令213x -=得2x =,再代入即可.【解答】解:令213x -=得,2x =或2x =-(舍去),故f (3)2(21)f =-22235=-+=,故答案为:5.【点评】本题考查了复合函数函数值的求法,属于基础题.12.函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点 (1,2)-- .【考点】对数函数的图象与性质【分析】令21x +=,解得1x =-,当1x =-时,022y =-=-,即可求解.【解答】解:令21x +=,解得1x =-,当1x =-时,022y =-=-,故函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点(1,2)--.故答案为:(1,2)--.【点评】本题主要考查对数函数的性质,考查定点问题,属于基础题.13.已知212x =,21log 3y =,则x y +的值为 2 . 【考点】对数的运算性质【分析】先把指数式化为对数式,再利用对数的运算性质求解.【解答】解:212x =,2log 12x ∴=,222112log 423x y log log ∴+=+==, 故答案为:2.【点评】本题主要考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.14.已知函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则3log f (3)= 2 .【考点】幂函数的概念、解析式、定义域、值域;指数函数的单调性与特殊点【分析】求出(2,4)P ,由幂函数()a y f x x ==过(2,4)P ,求出a ,得到()f x 的解析式,再计算3log f (3)即可.【解答】解:函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,则(2,4)P ,∴幂函数()a y f x x ==过(2,4)P ,24a ∴=,解得2a =,2()f x x ∴=,3log f ∴(3)3log 92==.故答案为:2.【点评】本题考查函数值的求法,考查函数的性质等基础知识,考查运算求解能力,是基础题.15.若幂函数()f x 的图象经过点1(,4)4,则(2)f -= 12- . 【考点】幂函数的概念、解析式、定义域、值域【分析】设出幂函数的解析式,代入点的坐标,求出函数的解析式,求出(2)f -的值即可.【解答】解:设幂函数的解析式为()f x x α=, 则1()44α=,解得:1α=-, 故1()f x x =,故1(2)2f -=-, 故答案为:12-. 【点评】本题考查了求幂函数的定义,考查函数求值问题,是基础题.四.解答题(共7小题)16.已知函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+.(1)当0x 时,求函数()f x 的解析式;(2)解关于m 的不等式:(2)(2)23f m f m m +--.【考点】函数奇偶性的性质与判断【分析】(1)根据奇函数的性质进行转化求解即可.(2)将不等式进行转化,利用函数奇偶性和单调性的性质进行转化求解即可.【解答】解:(1)函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+. (0)0f ∴=,当0x >,则0x -<,则2()2()f x x x f x -=--=-,即2()2(0)f x x x x =+<,综上2()2(0)f x x x x =+.(2)由(2)(2)23f m f m m +--.得(2)2(2)2(2)2f m m f m m f m m +--+-=-+-. 设()()g x f x x =+,则不等式等价为(2)(2)g m g m -,作出函数()f x 的图象如图:则()f x 在R 上是增函数,则()()g x f x x =+也是增函数, 则由(2)(2)g m g m -,得22m m -,得23m, 即实数m 的取值范围是(-∞,2]3.【点评】本题主要考查函数解析式的求解,根据函数奇偶性和单调性的定义将不等式进行转化是解决本题的关键,是中档题.17.设函数4()221xx f x =--,0x >. (1)求函数()f x 的值域;(2)设函数2()1g x x ax =-+,若对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,求正实数a 的取值范围.【考点】函数的值域【分析】(1)由已知41()2212121x x x x f x =-=-+--,,利用基本不等式可求函数()f x 的值域;(2)由对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,可得函数函数()f x 在[1,2]上的值域包含于函数()g x 在[1,2]上的值域,由此可求正实数a 的取值范围.【解答】解:(1)24(2)111()2221212121x x x x x x f x -+=-=-=-+---,0x >,210x ->, 则11()212(21)22121x x x x f x =-+-⋅=--,,当且仅当1x =时取“=”, 所以()[2f x ∈,)+∞,即函数()f x 的值域为[2,)+∞;(2)设21x t =-,[1x ∈,2],[1t ∴∈,3], 函数1y t t=+在[1,3]上单调递增, 则函数()f x 在[1,2]上单调递增,()[2f x ∴∈,10]3, 设[1x ∈,2]时,函数()g x 的值域为A ,由题意知[2,10]3A ⊆, 又因为函数()g x 图象的对称轴为02a x =>, 当12a ,即02a <时,函数()g x 在[1,2]上递增,则(1)210(2)3g g ⎧⎪⎨⎪⎩,解得506a <, 当122a <<时,即24a <<时,函数()g x 在[1,2]上的最大值为g (1),g (2)中的较大者,而g (1)20a =-<且g (2)521a =-<,不合题意,当22a >,即4>时,函数()g x 在[1,2]上递减,则10(1)3(2)2g g ⎧⎪⎨⎪⎩,满足条件的a 不存在. 综上,5(0,]6a ∈. 【点评】本题考查了求函数的值域及分类讨论思想,采用了换元法求值域,换元后对参数t 的范围要进行确认,这是易错点,属于中档题.18.设函数21y mx mx =--.(1)若函数21y mx mx =--有两个零点,求m 的取值范围;(2)若命题:x R ∃∈,0y ,是假命题,求m 的取值范围;(3)若对于[1x ∈,3],2(1)3y m x ++恒成立,求m 的取值范围.【考点】函数恒成立问题;二次函数的性质与图象【分析】(1)利用零点的定义,结合二次方程根的个数问题,求解即可;(2)将问题转化为210mx mx --<对于x R ∀∈恒成立,分0m =和0m ≠两种情况,结合二次函数的图象与性质,列式求解即可;(3)将问题转化为4()m x x-+在[1x ∈,3]恒成立,利用基本不等式求解最值,即可得到答案.【解答】解:(1)因为函数21y mx mx =--有两个零点,所以方程210mx mx --=有两个不同的实数根,则2040m m m ≠⎧⎨=+>⎩,解得4m <-或0m >, 故实数m 的取值范围为(-∞,4)(0-⋃,)+∞;(2)命题:x R ∃∈,0y ,是假命题,则命题:x R ∀∈,0y <,是真命题,则210mx mx --<对于x R ∀∈恒成立,当0m =时,不等式为10-<恒成立,符合题意;当0m ≠时,则2040m m m <⎧⎨=+<⎩,解得40m -<<. 综上所述,实数m 的取值范围为(4-,0];(3)因为对于[1x ∈,3],2(1)3y m x ++恒成立, 即240x mx ++对于[1x ∈,3]恒成立,即4()m x x-+在[1x ∈,3]恒成立, 则4[()]max m x x-+, 因为4424x x x x+⋅=, 当且仅当4x x=,即2x =时取等号, 所以4[()]4max x x -+=-, 则4m -,所以实数m 的取值范围为[4-,)+∞.【点评】本题考查了函数零点的理解与应用,函数与方程的应用,函数与不等式的综合应用,命题真假的应用以及不等式恒成立问题,要掌握不等式恒成立问题的一般求解方法:参变量分离法、数形结合法、最值法等,属于中档题.19.已知函数()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性并给出证明;(3)若(1)1f -<,求a 的取值范围.【考点】函数奇偶性的性质与判断【分析】(1)依题意,得2020x x +>⎧⎨->⎩,解之可得函数()f x 的定义域; (2)()f x 为奇函数;利用奇函数的定义证明即可;(3)1(1)13aa f log log a -<⇔<,通过对a 的范围的分类讨论,可求得答案. 【解答】解:(1)()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠,∴202202x x x x +>>-⎧⎧⇒⎨⎨-><⎩⎩, ∴函数()f x 的定义域为(2,2)-;(2)()f x 为奇函数. 证明:22()()022a a x x f x f x log log x x-+-+=+=+-, ()()f x f x ∴-=-,(2,2)x ∈-,()f x ∴为奇函数;(3)(1)1f -<,∴1(1)3a a f log log a -=<, ①01a <<,()f x 单调递减,∴103a <<; ②1a >,()f x 单调递增,∴13a >,1a ∴>; 综上:103a <<或1a >,即(0a ∈,1)(13⋃,)+∞. 【点评】本题考查函数奇偶性的性质与判断,考查分析推理能力与运算求解能力,属于中档题.20.已知函数1()21x f x a =-+为奇函数. (1)求a 的值,并判断函数()f x 的单调性;(2)若x R ∀∈,2(1)()0f x f kx ++<,求实数k 的取值范围.【考点】奇偶性与单调性的综合【分析】(1)由奇函数在R 上有定义,可得(0)0f =,求得a 的值,再由指数函数的单调性可得()f x 的单调性;(2)由奇函数()f x 的单调性可将不等式的两边的“f ”去掉,结合二次不等式恒成立,运用判别式法,解不等式可得所求范围.【解答】解:(1)函数1()21x f x a =-+为奇函数,定义域为R , 可得(0)0f =,即102a -=,解得12a =, 则1112()12212xx xf x -=-=++,满足()()0f x f x -+=, 所以12a =成立; 由2x y =在R 上递增,可得112xy =+在R 上递减, 所以()f x 在R 上为递减函数;(2)x R ∀∈,2(1)()0f x f kx ++<,即为2(1)()()f x f kx f kx +<-=-,因为()f x 在R 上为递减函数,所以21x kx +>-,即210x kx ++>恒成立,则△0<,即240k -<,解得22k -<<,则k 的取值范围是(2,2)-.【点评】本题考查函数的奇偶性和单调性的判断和运用:解不等式,考查转化思想和运算能力、推理能力,属于基础题.21.计算下列各式.(1)1206310.064()(2021)3π--+-+; (2)2731329log 5log 42log 5log -++. 【考点】对数的运算性质;有理数指数幂及根式【分析】(1)利用有理数指数幂的运算性质求解.(2)利用对数的运算性质求解.【解答】解:(1)原式1113662332043132⨯⨯⨯=⋅-++⨯ 23220.49198917255=-++⨯=-++=. (2)原式333log 527log 9log 527211=+++-=++=.【点评】本题主要考查了有理数指数幂的运算性质和对数的运算性质,是基础题.22.计算:(100.539()()54--++(2)22log 62222523lg lg -+-- 【考点】有理数指数幂及根式;对数的运算性质【分析】利用有理指数幂及对数的运算性质依次化简即可.【解答】解:(100.539()()54--++221133e e =-+++;(2)22log 62222523lg lg -+--421100632lg =--⨯ 211=-=.【点评】本题考查了有理指数幂及对数的运算,属于基础题.。

高中数学函数的图象与性质考试题(含答案解析)

高中数学函数的图象与性质考试题(含答案解析)

函数的图象与性质试题课程名称高考数学二轮复习模拟考试教研室___________________ 高三数学组_________________复习时间年月日时分至适用专业班级成绩开卷A卷闭卷_±B卷班级_______________________ 姓名______________________ 学号___________________ 考生注童:舞弊万莫償,那祥要退学,自爱当守诺,最怕錯上第,若真不及格,努力下次过。

答案耳在答题娥上,耳在试题妖上无效。

一、选择题一、选择题1. (2017-高考山东卷)设函数y=\/4二x2的定义域为A,函数y=\n(\~x)的定义域为b则AHB=()A・(1, 2) B. (1, 2C・(一2, 1) D. -2, 1)[log4 工.工>0 •2・(2017-沈阳模拟)已知函数f(x)= \则师4))的值为()A. —£B. —99D.3. (2017-湖南东部六校联考)函数y=\M()A・是偶函数,在区间0)上单调递增B.是偶函数,在区间(一8, 0)上单调递减C.是奇函数,在区间(0, +8)上单调递增 D ・是奇函数,在区间(0, +8)上单调递减5. (2017-西安模拟)对于函数y=f(x),部分x 与y 的对应关系如下表:上,则 Xl+X2~\ ----- X2 017 = ( ) A. 7 554B. 7 540C. 7 561D. 7 5646. 已知/(x)是定义在R 上的奇函数,且在[0, +8)上单调递增,若/(lgx)<0, 则x 的取值范围是() A. (0, 1) B ・(1, 10) C. (1, +8)D. (10, +8)7. (2016-福州质检)已知偶函数/⑴满足:当xi, x 2e(0, +8)时,(x!-x2)[/(xi) -Ax2)]>0 恒成立.设 “=/(一4), b=/(l), c=/(3),则 d, h, c 的大小关系为( ) A. a<b<c B ・ h<a<c C. b<c<aD. c<b<a8. 函数/W 的定义域为R.若/(x+2)为偶函数,且血)=1,则/⑻+/(9)=( )A. —2B. —1C. 0试 题 共页 第页.V1 2 3 4 5 6 7 8 9 y375961824D. 1数列{忌}满足:xi = 1,且对于任B 点3,亦1)都在函数y=f(x)的图象9. (2017-高考山东卷)设/⑴=心,0<x<l, 1 U H),Q.若何%+】)'©=()A. 2 C. 6B. 4 D. 810. (2017•山西四校联考)已知函数/W满足:①定义域为R;®VxeR,都有/U+2)=/U);③当A-G[-1, 1]时,/W=—Lrl+1.则方程/W=*log2lxl在区间[一3, 5]内解的个数是()A. 5 C. 7B. 6 D. 811.(2017.天津模拟)已知函数爪)的图象如图所示,则/⑴的解析式可能是()A. x2cos xC. xsin x12・已知定义在R上的奇函数几兀)满足/(A—4)=-/«,且在区间[0, 2]上是增函数,贝|J()A.X-25)<All)</(80)B./(80)</(ll)</(-25)C.几11)勺(80)勺(一25)D・人一25)彳80)今(11)二、填空题13. (2017-高考全国卷II)已知函数/(x)是定义在R上的奇函数,当兀丘(一8, 0)时,X A)=2A3+A2,则f(2)= _____________ ・试题共页第页14.若函数f(x) = 2x+a^x为奇函数,则实数4= ____________ ・215・已知函数几丫)=苑丁+sin卅则人一2 017)+几一2 016)+用))土A2 016)+/(2 017)= ________ .16.已知定义在R上的函数/U)满足:①函数y=f(x-V)的图象关于点(1, 0)对称;②VxeR,石一"=石+寸:③当炸(一扌,一弓时,_/W = log2( — 3卄1).则/(2 017)= _______ ・(-log., T>0,且何一厶则曲「) = ()B.-扌5C・-42.(2017-高考北京卷)已知函数妙=3'—(分,则金)()A. 是奇函数, 且在R上是增函数B. 是偶函数, 且在R上是增函数C.D.3.4.A.C.是奇函数,是偶函数,且在R上是减函数且在R上是减函数函数劝2站的图象大致是(函数y=kl(l—x)在区间4上是增函数,那么区间4是()B •卜 I](―°°,0)[0, +oo) D.伶 +8)A. — log377D・_4函数/(x)的上确界.则函数用・)=是奇函数,则实数。

高考数学模拟试题-第06讲 函数及其表示(解析版)

高考数学模拟试题-第06讲 函数及其表示(解析版)

第6讲 函数及其表示学校:___________姓名:___________班级:___________考号:___________【基础巩固】1.(2022·江苏南通·模拟预测)若函数f (x )满足f (2x )=x ,则f (5)=( ) A .25 B .52C .log 52D .log 25【答案】D【解析】25x =.∴2log 5x =,∴()25log 5f =, 故选:D .2.(2022·重庆市朝阳中学高三开学考试)函数()f x = )A .(][),16,-∞-⋃+∞B .()[),16,⋃-∞-+∞C .(]1,6-D .[]2,3【答案】C【解析】256010x x x ⎧-++≥⎨+≠⎩,解得16x -<即函数()f x 的定义域(]1,6- 故选:C3.(2022·山东济南·二模)已知函数()1221,0,,0,x x f x x x ⎧-≤⎪=⎨⎪>⎩若()3f m =,则m 的值为( )AB .2C .9D .2或9【答案】C【解析】∴函数()1221,0,0x x f x x x ⎧-≤⎪=⎨⎪>⎩,()3f m =,∴2130m m ⎧-=⎨≤⎩或1230m m ⎧⎪=⎨⎪>⎩, 解得9m =. 故选:C.4.(2022·全国·高三专题练习)已知函数()f x 的定义域为()0,∞+,且()121f x f x ⎛⎫= ⎪⎝⎭,则()f x =( )A ()203x > B ()103x >C ()10x >D ()10x >【答案】B【解析】∴()121f x f x ⎛⎫= ⎪⎝⎭,∴,∴1()2()1f f x x =,∴,由∴∴联立解得1(),(0)3f x x =>. 故选:B .5.(2022·全国·高三专题练习)若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范围是( ) A . (0,4] B . 254,4⎡⎤⎢⎥⎣⎦C . 3,32⎡⎤⎢⎥⎣⎦D . 3,2⎡⎫+∞⎪⎢⎣⎭【答案】C 【解析】223253424y x x x ⎛⎫=--=-- ⎪⎝⎭,当32x =时,254y =-;当0x =或3时,4y =-. 因此当332m ≤≤时,函数234y x x =--在区间[]0,m 上的最小值为254-, 最大值为4-,所以,实数m 的取值范围是3,32⎡⎤⎢⎥⎣⎦.故选:C.6.(2022·全国·高三专题练习)若函数()f x 满足()122f x f x x ⎛⎫-=+ ⎪⎝⎭,则()2f =( )A .0B .2C .3D .3-【答案】D【解析】由()122f x f x x ⎛⎫-=+ ⎪⎝⎭,可得()1122f f x x x ⎛⎫-=+ ⎪⎝⎭,联立两式可得()1223f x x x ⎛⎫=-+- ⎪⎝⎭,代入2x =可得()23f =-.故选:D.7.(2022·江苏泰州·模拟预测)设函数f (x )={x 2+2x,x ≤0−x 2,x >0,若()()()20f f a f a -+=,则实数a 的值为( )A1 B .1- C 1 D .1【答案】B【解析】令()f a t =,()()()20f f a f a -+=,则()2f t t =- 1°0t ≤时,222t t t +=-,则220t t ++=无解. 2°0t >时,22t t -=-,∴1t =,∴()1f a =0a ≤时,221a a +=,则1a =;0a >时,21a -=无解综上:1a =. 故选:B .8.(2022·江苏南京·三模)已知()22,0,0x x f x x x ⎧≥=⎨-<⎩,若∴x ≥1,f (x +2m )+mf (x )>0,则实数m 的取值范围是( ) A .(-1,+∞) B .1,4⎛⎫-+∞ ⎪⎝⎭C .(0,+∞)D .1,12⎛⎫- ⎪⎝⎭【答案】B【解析】0m ≥时,()()()22220f x m mf x x m mx ++=++>,符合题意;0m <时,()()20f x m mf x ++>,即()())2f x m mf x f+>-=显然()f x 在R 上递增,则2x m +>对1x ∀≥恒成立(120x m +>对1x ∀≥恒成立则:10104120m m ⎧>⎪⇒-<<⎨>⎪⎩; 综上,1,4m ∞⎛⎫∈-+ ⎪⎝⎭,故选:B .9.(多选)(2022·全国·高三专题练习)已知函数()()1lg ,0e ,0x x x f x x -⎧-<=⎨⎩,若()()213f f a +=,则a 的值可能为( ) A .1 B .1- C .10 D .10-【答案】AD【解析】()01e 1f ==,因为()()213f f a +=,所以()1f a =,当0a <时,()()lg 1f a a =-=,解得:10a =-,当0a >时,()1e 1af a -==,解得:1a =,故选:AD10.(多选)(2022·全国·高三专题练习)已知221()1x f x x +=-,则()f x 满足的关系有( ) A .()()f x f x -=- B .1()f f x x ⎛⎫=- ⎪⎝⎭C .1()f f x x ⎛⎫= ⎪⎝⎭D .1()f f x x ⎛⎫-=- ⎪⎝⎭【答案】BD【解析】因为221()1x f x x +=-,所以()f x -=221()1()x x +---=2211x x +-()f x =,即不满足A 选项; 1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项, 22221111111x f x x x x ⎛⎫+- ⎪⎛⎫⎝⎭-== ⎪⎝⎭⎛⎫-- ⎪⎝+-⎭,1()f f x x ⎛⎫-=- ⎪⎝⎭,即满足D 选项. 故选:BD11.(2022·湖北武汉·模拟预测)函数()f x =的定义域为______.【答案】[)()0,11,+∞【解析】由题知,021********x x x x x x x ⎧⎧≥-≥≥⎧⎪⎪⇒⇒⎨⎨⎨≠-≠-≠≠⎪⎪⎩⎩⎩且,所以()f x 的定义域为[)()0,11,+∞,故答案为:[)()0,11,+∞.12.(2022·山东临沂·二模)已知函数()()4log ,03,0x x f x f x x >⎧=⎨+≤⎩,则()4f -的值为__________.【答案】12【解析】因为()()4log ,03,0x x f x f x x >⎧=⎨+≤⎩,则()()()414462log 22f f f -=-+===.故答案为:12.13.(2022·浙江温州·三模)已知函数11()1261x f x x x x ⎧>-⎪=+⎨⎪--≤-⎩,, 若[()]0f f a =,则实数a 的值等于___________. 【答案】32-【解析】∴当1a >-即10a +>时,1()=11f a a >-+,则110112a f a a a +⎛⎫==⇒=- ⎪++⎝⎭(舍) ∴当1a ≤-即10a +≤时,()26f a a =--∴:当261a --≤-,即512a -≤≤- 时,有3(26)2(26)602f a a a --=----=⇒=-∴:当261a -->- 时,即52a <- 时,有1(26)0261f a a --==⇒--+a 无解 综上,32a =-.故答案为:32-14.(2022·湖北·荆州中学模拟预测)设a ∈R ,函数33(0)()log (0)ax x f x x x ⎧≤=⎨>⎩.若1[()]93f f ≥,则实数a 的取值范围是_________. 【答案】(,2]-∞-【解析】3()lo 113g 13f ==-,1(())(1)393af f f -=-=≥所以2-≥a 即2a ≤- 故答案为:(,2]-∞-15.(2022·浙江·模拟预测)设函数3,0()(3),0x x f x x f x x ⎧+>⎪=⎨⎪+≤⎩,则()4f -=________,若()(2)=-f a f ,则实数a 的最大值为_______. 【答案】723 【解析】由题意得37(4)(1)(2)222f f f -=-==+=, 又()(2)(1)4f a f f =-==,结合解析式可知a 的最大值一定是正数, 当0x > 时,3()f x x x=+ ,()f x在上递减,在)+∞上单调递增, 且(1)(3)4f f ==,若3,()(3)4x f x f >>=,所以实数a 的最大值为3,故答案为:72,3.16.(2022·全国·高三专题练习)根据下列条件,求函数的解析式: (1)已知f1)=x +(2)若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1;(3)已知f (0)=1,对任意的实数x ,y 都有f (x -y )=f (x )-y (2x -y +1).【解】(1)(方法1)(换元法):设t1,1t ≥,则x =(t -1)2(t ≥1).代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.∴f (x )=x 2-1(x ≥1).(方法2)(配凑法):∴x +2+1-1=1)2-1, ∴f1)=1)2-1≥1),即f (x )=x 2-1(x ≥1).(2)用-x 换x 得2f (-x )-f (x )=-3x +1,与原式2f (x )-f (-x )=3x +1联立消去f (-x )得f (x )=x +1. (3)令x =0,得f (-y )=f (0)-y (-y +1)=1+y 2-y=()()21y y -+-+,所以f (y )=y 2+y +1,即f (x )=x 2+x +1.17.(2022·全国·高三专题练习)已知函数25,0()6,0x x f x x x ⎧-≥=⎨+<⎩(1)若()4f m =,求m 的值;(2)若()211f a -->,求a 的取值集合.【解】(1)当0m ≥时,2()54f m m =-=,解得3m =或3m =-(舍去); 当0m <时,()64f m m =+=, 解得2m =-. ∴m 的值为3或-2.(2)对任意实数a R ∈,210a --<,()221161f a a ∴--=--+>,24a <,解得22a -<<.∴a 的取值集合是{}22x a -<<.【素养提升】1.(2022·全国·高三专题练习)设函数()f x =42x f f x ⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭的定义域为( ) A .1,42⎡⎤⎢⎥⎣⎦B .[]2,4C .[)1,+∞D .1,24⎡⎤⎢⎥⎣⎦【答案】B【解析】由题意,函数()f x =满足10x -≥,即1≥x ,所以函数42x f f x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭满足12x ≥且41x ≥,解得24x ≤≤,即函数42x f f x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的定义域为[]2,4,故选B .2.(2022·上海市七宝中学模拟预测)已知()f x 为定义在(0,)+∞上的增函数,且任意0x >,均有()()11f f x x f x ⎡⎤+=⎢⎥⎣⎦,则(1)f =_____.【解析】设(1)f a =,令1x =得:()()()111111f f f a f a ⎡⎤+=⇒+=⎣⎦; 令1x a =+得:()()()111111111f f a f a f a f a a a ⎡⎤⎛⎫++=⇒+== ⎪⎢⎥+++⎣⎦⎝⎭, 因为()f x 为定义在(0,)+∞上的增函数,所以1111a a a +=⇒=+,当()1f a ==时,由()()11111101a f a f a a a a +>⇒+>⇒>⇒<-<<或矛盾.故()1f a ==.3.(2022·全国·高三专题练习)已知函数32()f x x ax bx c =+++,(2017)2018f =,(2018)2019f =,(2019)2020f =,则(2020)f =________.【答案】2027解:因为函数32()f x x ax bx c =+++, 又(2017)2018f =,(2018)2019f =,(2019)2020f =, 所以321x ax bx c x +++=+的根为2017,2018,2019, 即方程32(1)10x ax b x c ++-+-=的根为2017,2018,2019, 所以32(1)1(2017)(2018)(2019)x ax b x c x x x ++-+-=---, 所以32()(2017)(2018)(2019)1f x x ax bx c x x x x =+++=---++,所以(2020)(20202017)(20202018)(20202019)202012027f =-⨯-⨯-++=, 故答案为:20274.(2022·全国·高三专题练习)已知函数f (x )=22221,0,2,0.x ax a x x a x x ⎧-++≤⎪⎨+->⎪⎩(1)若对于任意的x ∴R ,都有f (x )≥f (0)成立,求实数a 的取值范围; (2)记函数f (x )的最小值为M (a ),解关于实数a 的不等式M (a -2)<M (a ). 【解】(1)当x ≤0时,f (x )=(x -a )2+1,因为f (x )≥f (0),所以f (x )在(-∞,0]上单调递减,所以a ≥0, 当x >0时,()222f x x x '=-, 令2220xx ,得x =1,所以当0<x <1时()0f x '<,当x >1时,()0f x '>, 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以f min (x )=f (1)=3-a , 因为f (x )≥f (0)=a 2+1,所以3-a ≥a 2+1,解得-2≤a ≤1. 又a ≥0,所以a 的取值范围是[0,1].(2)由(1)可知当a ≥0时,f (x )在(-∞,0]上的最小值为f (0)=a 2+1, 当a <0时,f (x )在(-∞,0]上的最小值为f (a )=1, f (x )在(0,+∞)上的最小值为f (1)=3-a ,解不等式组2130a aa ⎧+≤-⎨≥⎩,得0≤a ≤1,解不等式组130aa ≤-⎧⎨<⎩,得a <0,所以()21,011,03,1a a M a a a a ⎧+≤≤⎪=<⎨⎪-≥⎩.所以M (a )在(-∞,0)上为常数函数,在(0,1)上是增函数,在(1,+∞)上是减函数, 作出M (a )的函数图象如图所示:令3-a =1得a =2, 因为M (a -2)<M (a ), 所以0<a <2.5.(2022·上海·高三专题练习)对定义域,f g D D 的函数()y f x =,()y g x =,规定: 函数()()()()(),,,f gf g f g f x g x x D D h x f x x D x D g x x D x D⎧∈⋂⎪=∈∉⎨⎪∉∈⎩且且(1)若函数()11f x x =-,()2g x x =,写出函数()h x 的解析式; (2)求问题(1)中函数()h x 的值域;(3)若()()g x f x α=+,其中α是常数,且[]0,απ∈,请设计一个定义域为R 的函 数()y f x =,及一个α的值,使得()cos4h x x =,并予以证明. 【解】(1)()()()2,,11,{11,1x x h x x x ∈-∞⋃+∞=-=.(2)当时,()211211x h x x x x =-++--, 若1x >时, 则()4h x ≥,其中等号当2x =时成立, 若1x <时, 则()0h x ≤,其中等号当0x =时成立,∴ 函数()h x 的值域是(]{}[),014,-∞⋃⋃+∞. (3) 令,则()()sin 2cos 2cos 2sin 244g x f x x x x x ππα⎛⎫⎛⎫=+=+++=- ⎪ ⎪⎝⎭⎝⎭,于是()()()()()·sin 2cos2cos2sin 2cos4h x f x f x x x x x x α=+=+-=,另解令()()()12,,2f x xg x f x παα===+()1212x x π=+=,于是()()()()()·1212cos 4h x f x f x x x x α=+==.。

高考数学复习考点知识与题型专题讲解训练04 函数的图象、零点及应用(含解析)

高考数学复习考点知识与题型专题讲解训练04 函数的图象、零点及应用(含解析)

高考数学复习考点知识与题型专题讲解训练专题04 函数的图象、零点及应用考点1 作函数的图象 1.作出下列函数的图象. (1)y =⎩⎨⎧-2x +3,x ≤1,-x 2+4x -2,x >1;(2)y =2x +2;【解析】(1)分段分别画出函数的图象,如图①所示.(2)y =2x +2的图象是由y =2x 的图象向左平移2个单位长度得到的,其图象如图②所示.考点2 识图与辨图2.已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )【答案】D【解析】法一:先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象; 然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D. 法二:先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.3.(2021·浙江省诸暨市第二高级中学高三模拟)函数()21xy x e =-的图象是( )A .B .C .D .【答案】A【解析】因为()21xy x e =-,则()21xy x e '=+,1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()210x y x e '=+<,所以函数()21x y x e =-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()210x y x e '=+>,所以函数()21x y x e =-在1,2⎛⎫-∞- ⎪⎝⎭上单调递增,且12x <时,()210xy x e =-<,所以BCD 均错误,故选:A.4.(2021·吉林高三模拟)函数()6cos 2sin xf x x x=-的图象大致为( ).A .B .C .D .【答案】A 【解析】函数()6cos 2sin xf x x x=-为奇函数,所以排除选项BC ,又当0x >时,()f x 第一个零点为2x π=,所以令4x π=,则有222sin 0,cos0242x x ππ--=>=>,所以排除D.故选:C 考点3 函数图象的应用 考向1 研究函数的性质5.已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0) 【答案】C【解析】将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎨⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.6.(2021·山东烟台高三模拟)设函数()2,01,0x x f x x -⎧≤=⎨>⎩,则满足()()12f x f x +<的x 的取值范围是( ) A .(],1-∞- B .()0,∞+ C .()1,0- D .(),0-∞【答案】D【解析】作出函数()f x 的图象如下图所示:所以,函数()f x 在(),0-∞上为减函数,且当0x ≥时,()1f x =, 因为()()12f x f x +<,观察图象可得2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是(),0-∞.故选:D. 考向2 求不等式解集7.若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( ) A .(1,2] B.)1,22(C .(1,2) D .(2,2) 【答案】A【解析】要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].8.(2021·甘肃省会宁县第一中学高三模拟)已知)(f x 在R 上是可导函数,)(f x 的图象如图所示,则不等式)()(2230x x f x '-->解集为( )A .)()(,21,-∞-⋃+∞B .)()(,21,2-∞-⋃C .)()()(,11,02,-∞-⋃-⋃+∞D .)()()(,11,13,-∞-⋃-⋃+∞ 【答案】D【解析】原不等式等价于()22300x x f x '⎧-->⎪⎨>⎪⎩或()22300x x f x '⎧--<⎪⎨<⎪⎩,结合)(f x 的图象可得,3111x x x x ><-⎧⎪⎨-⎪⎩或或或1311x x -<<⎧⎨-<<⎩,解得1x <-或3x >或11x -<<.故选:D . 考点4 函数图象对称性的应用9.已知lga +lgb =0,函数f(x)=a x 与函数g(x)=-log b x 的图像可能是( )【答案】B【解析】∵lga +lgb =0,∴lgab =0,ab =1,∴b =1a .∴g(x)=-log b x =log a x ,∴函数f(x)与g(x)互为反函数,图像关于直线y =x 对称,故选B.10.(2021·云南高三模拟)已知函数()f x 是R 上的奇函数,且满足()()11f x f x =+-,当(]0,1x ∈,()ln f x x =,则下列关于函数()f x 叙述正确的是( )A .函数()f x 的最小正周期为1B .函数()f x 在()0,2021内单调递增C .函数()f x 相邻两个对称中心的距离为2D .函数()ln y f x x =+在区间()0,2021内有1010个零点 【答案】D【解析】由()()11f x f x =+-得:()()2f x f x +=,()f x ∴最小正周期为2,A 错误; 当(]0,1x ∈时,()ln f x x =,又()f x 为R 上的奇函数,则()00f =, 可得()f x 大致图象如下图所示:由图象可知:()f x 在()0,2021上没有单调性,B 错误;()f x 的对称中心为()()0,k k Z ∈,则相邻的对称中心之间距离为1,C 错误;()ln y f x x =+在区间()0,2021内的零点个数等价于()f x 与ln y x =-在()0,2021内的交点个数,在平面直角坐标系中画出()f x 与ln y x =-大致图象如下图所示:由图象可知:()f x 与ln y x =-在每个()()2,22k k k Z +∈内都有1个交点,且在区间内的交点横坐标等于或小于21k +,∴两个函数在()0,2021内有1010个交点,即()ln y f x x =+在区间()0,2021内有1010个零点,D正确.故选:D.11.(2021·山东淄博高三模拟)已知函数()y f x =的定义域为{|0}x x x ∈≠R ,,且满足()()0f x f x --=,当0x >时,()ln 1f x x x =-+,则函数()y f x =的大致图象为().A .B .C .D .【答案】D【解析】由()()0f x f x --=得函数()f x 为偶函数,排除A 、B 项, 又当0x >时,()ln 1f x x x =-+,∴(1)0f =,()20f e e =-<.故选:D 考点5 判断函数零点所在的区间12.设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间)1,1(e,(1,e)内均有零点B .在区间)1,1(e,(1,e)内均无零点C .在区间)1,1(e 内有零点,在区间(1,e)内无零点D .在区间)1,1(e内无零点,在区间(1,e)内有零点【答案】D【解析】法一:图象法 令f (x )=0得13x =ln x .作出函数y =13x 和y =ln x 的图象,如图, 显然y =f (x )在)1,1(e内无零点,在(1,e)内有零点.法二:定理法当x ∈),1(e e 时,函数图象是连续的,且f ′(x )=13-1x =x -33x <0,所以函数f (x )在),1(e e 上单调递减.又f )1(e =13e +1>0,f (1)=13>0,f (e)=13e -1<0,所以函数有唯一的零点在区间(1,e)内.13.(2021·黑龙江高三模拟)函数()1293xf x x ⎛⎫=-- ⎪⎝⎭的零点所在的一个区间是()A .()1,2B .()1,0-C .()0,1D .()2,1--【答案】D【解析】如图,绘出函数13xy ⎛⎫= ⎪⎝⎭与函数29y x =+的图像,结合图像易知,函数()1293xf x x ⎛⎫=-- ⎪⎝⎭的零点所在的一个区间是()2,1--,故选:D.考点6 判断函数零点(或方程根)的个数14.(2021·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .3【答案】C【解析】解方程法,令f (x )+3x =0, 则⎩⎨⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x +3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.15.(2021·山东潍坊高三模拟)已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围( ) A .()1,0- B .[]1,0-C .(0,1)D .[]0,1【答案】C【解析】因为函数()()g x f x m =-有3个零点,所以()()0g x f x m =-=有三个实根,即直线y m =与函数()y f x =的图象有三个交点.作出函数()y f x =图象,由图可知,实数m 的取值范围是(0,1).故选:C .16.(2021·浙江镇海中学高三模拟)函数4()log (||1)cos f x x x π=+-的零点个数为( ) A .9 B .8C .7D .6【答案】D【解析】令()4log (||1)x g x =+ ,因为10x +>恒成立,则()g x 的定义域为R , 由()()44log (||1)log (||1)x g x x g x --+=+==,所以()g x 为偶函数, 当0x >时,()4log (1)g x x +=,在()0,∞+上单调递增,令()cos h x x π=, 分别画出()g x 与()h x 的函数图象,由图可知,()g x 与()h x 有六个交点, 即函数4()log (||1)cos f x x x π=+-有六个零点.故选: D.考点7 函数零点的应用 考向1 根据零点的范围求参数17.若函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D .(0,2) 【答案】C【解析】由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a -3)<0,解之得0<a<3.18.(2021·浙江高一期末)已知函数()()2log 1,1212,1x x x f x x ⎧-<-⎪=⎨-+≥-⎪⎩,若函数()()F x f x k =- 恰有3个零点,则实数k 的取值范围是( )A .52,2⎛⎤⎥⎝⎦B .()2,3C .(]3,4D .()2,+∞【答案】A【解析】函数()()F x f x k =- 恰有3个零点,即函数()y f x =与()h x k =的图象有三个交点,分别画出()y f x =与()h x k =的图象,如图所示,5(1)2f -=,观察图象可得,当522k <≤时,两图象有3个交点,即函数()()F x f x k =-恰有3个零点.故选:A.19.(2021·江西高三模拟)设函数,10()11,01(1)x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩,若函数()4y f x t =-在区间()1,1-内有且仅有一个零点,则实数的取值范围是( )A .1,4⎛⎫-+∞ ⎪⎝⎭B .1,04⎛⎫- ⎪⎝⎭C .1,4⎛⎫-∞- ⎪⎝⎭D .1,{0}4⎛⎤-∞- ⎥⎝⎦【答案】D【解析】因为()(),1011,011x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩所以(),1011,011x x f x x x -<≤⎧⎪=⎨+<<⎪-⎩,其图象如下:函数()4y f x t =-在区间()1,1-内有且仅有一个零点,等价于()40f x t -=在区间()1,1-内有且仅有一个实数根,又等价于函数()y f x =的图象与直线4y t =在区间()1,1-内有且仅有一个公共点. 于是41t ≤-或40t =,解得14t ≤-或0t =.故选:D 考向2 已知函数零点或方程根的个数求参数20.(2020·湖南高三模拟)已知函数2141,0()1,02x x x x f x x +⎧-+≥⎪=⎨⎛⎫<⎪ ⎪⎝⎭⎩,若()()g x f x a =-恰好有3个零点,则实数a 的取值范围为( ) A .[0,1) B .(0,1)C .1,12⎡⎫⎪⎢⎣⎭D .1,12⎛⎤ ⎥⎝⎦【答案】D【解析】由条件可知()0f x a -=()a f x ⇒=()()g x f x a =-恰好有3个零点,等价于y a =与()y f x =有3个交点,如图画出函数的图象,由图象可知112a <≤.故选:D21.(2021·安庆摸底)若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________.【答案】]2,41[-【解析】∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =2)412(-x -14,∵x ∈[-1,1],∴2x ∈]2,21[,∴2)412(-x -14∈]2,41[-∴实数a 的取值范围是]2,41[-考点8 用函数图象刻画变化过程22.甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④ 【答案】B【解析】由题知速度v =st 反映在图象上为某段图象所在直线的斜率.由题知甲骑自行车速度最大,跑步速度最小,甲与图①符合,乙与图④符合.23.(2021·重庆高三模拟)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A【解析】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,xhr H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得2223333222333r H vt H v h vt h h t H r r πππ⋅=⇒=⇒=⋅,而,,r H v 都是常数,即2323H v r π是常数,所以盛水的高度h 与注水时间t 的函数关系式是23323H v h tr π=⋅,203r H t v π≤≤,223323103H v h t r π-'=⋅>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同.故选:A 24.(2021·浙江高三模拟)如图,设有圆O 和定点C ,当l 从0l 开始在平面上绕O 匀速旋转(旋转角度不超过90︒)时,它扫过圆内阴影部分面积S 是时间t 的函数,它的图像大致是如下哪一种( )A .B .C .D .【答案】C【解析】当直线l 从初始位置0l 转到经过点C 的过程中阴影部分面积增加的越来越快,图像越来越“陡峭”;l 从过点C 的位置转至结束时阴影部分面积增加的越来越慢,图像越来越“平缓”,故选:C.考点9 应用所给函数模型解决实际问题25.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎨⎧C ,0<x ≤A ,C +B x -A ,x >A .已知某家庭2018年前三个月的煤气费如表: 月份 用气量 煤气费 一月份 4 m 3 4元 二月份 25 m 3 14元 三月份35 m 319元若四月份该家庭使用了20 m 3的煤气,则其煤气费为( ) A .11.5元 B .11元 C .10.5元 D .10元 【答案】A【解析】根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎪⎨⎪⎧4,0<x ≤5,4+12x -5,x >5,所以f (20)=4+12×(20-5)=11.5.26.(2021·湖南高三期末)某工厂8年来某种产品年产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速度越来越慢; ③第三年后这种产品停止生产; ④第三年到第八年每年的年产量保持不变. 其中说法正确的序号是________. 【答案】②④【解析】由图可知,前3年的产量增长的速度越来越慢,故①错误,②正确; 第三年后这种产品的产量保持不变,故③错误,④正确; 综合所述,正确的为:②④. 故答案为:②④.27.(【百强校】福建师范大学附属中学2020-2021学年高一上学期期末考试数学试题)如图所示,边长为 1的正方形PABC 沿 x 轴从左端无穷远处滚向右端无穷远处,点B 恰好能经过原点.设动点P 的纵坐标关于横坐标的函数解析式为()y f x =,则对函数()y f x =有下列判断:①函数()y f x = 是偶函数; ②()y f x =是周期为 4 的函数;③函数 ()y f x =在区间[10,12] 上单调递减; ④函数 ()y f x = 在区间[1,1] 上的值域是[1,2] 其中判断正确的序号是_______.(写出所有正确结论的序号) 【答案】①②④【解析】当2x 1-≤<-时,P 的轨迹是以A 为圆心,半径为1的14圆当1x 1-≤<时,P 的轨迹是以B 为圆心,半径为2的14圆 当1x 2≤<时,P 的轨迹是以C 为圆心,半径为1的14圆当2x 3≤≤时,P 的轨迹是以A 为圆心,半径为1的14圆 故函数的周期为4因此最终构成图象如下所示:①根据图象的对称性可知函数()y f x =是偶函数;故正确②由图可得()f x 的周期为4,故正确③函数()y f x =在区间[2,4]上为增函数,故在区间[10,12]上也是增函数,故错误 ④在区间[1,1]上的值域是[1,2],故正确 综上,正确的序号是①②④考点10 构建函数模型解决实际问题 考向1 构建二次函数模型28.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计) 【答案】2 500【解析】设围成的矩形场地的长为x m ,则宽为200-x4 m ,则S =x ·200-x 4=14(-x 2+200x ). 当x =100时,S max =2 500 (m 2).29.(2021·四川高三模拟)某市出租车的计价标准为1.2元/km ,起步价为6元,即最初3km (不含3km )计费6元.若某人乘坐该市的出租车去往13km 处的目的地,且一路畅通,等候时间为0,那么他需要支付的车费为_____. 【答案】19.2【解析】乘车距离为x km ,车费为y 元,由题意得:6,036 1.2,346 1.22,456 1.23,56x x y x x <<⎧⎪+≤<⎪⎪=+⨯≤<⎨⎪+⨯≤<⎪⎪⎩, 所以当13x =时,()6132 1.219.2y =+-⨯=元,所以他需要支付的车费为19.2元,故答案为:19.230(2021·河南郑州一中高三模拟)在“绿水青山就是金山银山”的环保理念指引下,结合最新环保法规和排放标准,各企业单位勇于担起环保的社会责任,采取有针对性的管理技术措施,开展一系列卓有成效的改造.已知某化工厂每月收入为100万元,若不改善生产环节将受到环保部门的处罚,每月处罚20万元.该化工厂一次性投资500万元建造垃圾回收设备,一方面可以减少污染避免处罚,另一方面还能增加废品回收收入.据测算,投产后的累计收入是关于月份x 的二次函数,前1月、前2月、前3月的累计收入分别为100.5万元、202万元和304.5万元.当改造后累计纯收入首次多于不改造的累计纯收入时,x =( )A .18B .19C .20D .21【答案】A【解析】不妨设投产后的累计收入2y ax bx c =++,则100.520242304.593a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩,解得1,100,02a b c ===, 211002y x x ∴=+, ∴改造后累计纯收入为215001005002y x x -=+-, 不改造的累计纯收入为()10020x -,令()21100500100202x x x +->-, 即212050002x x +->, 解得201014x >-+201014x <--,20101417.4x ∴>-+,x N *∈,x 的最小值为18.故选:A 考向2 构建指数函数、对数函数模型31.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况【答案】B【解析】设该股民购进这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损.32.声强级1L (单位:dB )与声强I 的函数关系式为:11210lg 10I L -⎛⎫= ⎪⎝⎭.若普通列车的声强级是95dB ,高速列车的声强级为45dB ,则普通列车的声强是高速列车声强的( ) A .610倍B .510倍C .410倍D .310倍【答案】B【解析】设普通列车的声强为1I ,高速列车的声强为2I ,因为普通列车的声强级是95dB ,高速列车的声强级为45dB ,所以1129510lg 10I -⎛⎫= ⎪⎝⎭,2124510lg 10I -⎛⎫= ⎪⎝⎭, ()11129510lg 10lg 1210I I -⎛⎫==+ ⎪⎝⎭,解得12.5lg I -=,所以 2.5110I -=, ()22124510lg 10lg 1210I I -⎛⎫==+ ⎪⎝⎭,解得27.5lg I -=,所以7.5210I -=, 两式相除得 2.5517.52101010I I --==, 则普通列车的声强是高速列车声强的510倍.故选:B.33.(2020·重庆市酉阳第一中学校高三月考)为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,英国天文学家普森又提出了亮度的概念,并提出著名的普森公式:22112.51g E m m E -=-,联系两个天体的星等1m 、2m 和它们对应的亮度1E 、2E .这个星等尺度的定义一直沿用至今.已知南十字星座的“十字架三”星等是1.26,猎户星座的“参宿一”星等是1.76,则“十字架三”的亮度大约是“参宿一”的( )倍.(当x 较小时,2101 2.3 2.7x x x ≈++)A .1.567B .1.568C .1.569D .1.570 【答案】B【解析】设“十字架三”的星等是1m ,“参宿一”的星等是2m ,“十字架三”的亮度是1E ,“参宿一”的亮度是2E ,则1 1.26m =,2 1.76m =,设12E rE =, 两颗星的星等与亮度满足22112.51gE m m E -=-, 211.76 1.26 2.51g E E ∴-=-,0.21210E E =0.22101 2.30.2 2.7(0.2) 1.568r ∴=≈+⨯+⨯=,∴与r 最接近的是1.568,故选B . 考向3 构建分段函数模型34(2021·广东江门市·高三模拟)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.【答案】7916【解析】当01t ≤≤时,函数图象是一个线段,由于过原点与点()1,4,故其解析式为4,01y t t =≤≤,当 1t ≥时,函数的解析式为12t a y -⎛⎫= ⎪⎝⎭,因为()1,4M 在曲线上,所以1142a -⎛⎫= ⎪⎝⎭,解得 3a =, 所以函数的解析式为31,12t y t -⎛⎫=≥ ⎪⎝⎭, 综上,34(01)()1(1)2t t t y f t t -≤<⎧⎪==⎨⎛⎫≥ ⎪⎪⎝⎭⎩,由题意有340.2510.252t t -≥⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩,解得1165t t ⎧≥⎪⎨⎪≤⎩,所以1516t ≤≤, 所以服药一次治疗疾病有效的时间为17951616-=个小时,故答案为:7916. 35.(2020·福建三明市·三明一中高三期中)某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是21300,0300()245000,300x x x P x x ⎧-≤<⎪=⎨⎪≥⎩,则总利润最大时店面经营天数是__________,最大总利润是__________.【答案】200 10000元【解析】由题意,0300x ≤<时,221130010010000(200)1000022y x x x x =---=--+,200x ∴=时,10000max y =;300x ≥时,4500010010000350001005000y x x =--=-≤,200x ∴=天时,总利润最大为10000元 故答案为:200, 10000元。

2022版新高考数学总复习真题专题--函数的图象(解析版)

2022版新高考数学总复习真题专题--函数的图象(解析版)

2022版新高考数学总复习--§2.5函数的图象—五年高考—考点1函数的图象1.(2021浙江,7,4分)已知函数f(x)=x2+14,g(x)=sin x,则图象为下图的函数可能是()A.y=f(x)+g(x)-14B.y=f(x)-g(x)-14C.y=f(x)g(x)D.y=g(x)f(x)答案D2.(2020浙江,4,4分)函数y=x cos x+sin x在区间[-π,π]上的图象可能是()答案A3.(2020天津,3,5分)函数y=4xx2+1的图象大致为()答案A4.(2019课标Ⅰ,文5,理5,5分)函数f(x)=sinx+xcosx+x2在[-π,π]的图象大致为()答案D5.(2019浙江,6,4分)在同一直角坐标系中,函数y=1a x ,y=log a(x+12)(a>0,且a≠1)的图象可能是()答案D6.(2018课标Ⅱ,文3,理3,5分)函数f(x)=e x-e-xx2的图象大致为()答案B7.(2018课标Ⅲ理,7,5分)函数y=-x4+x2+2的图象大致为()答案D8.(2018浙江,5,4分)函数y=2|x|sin 2x的图象可能是()答案D以下为教师用书专用(1—8)的部分图象大致为() 1.(2017课标Ⅰ文,8,5分)函数y=sin2x1-cosx答案 C 本题考查函数图象的识辨. 易知y =sin2x1-cosx 为奇函数,图象关于原点对称,故排除B 选项;sin 2≈sin 120°=√32,cos 1≈cos 60°=12,则f (1)=sin21-cos1=√3,故排除A 选项;f (π)=sin2π1-cos π=0,故排除D 选项,故选C .方法总结 已知函数解析式判断函数图象的方法:(1)根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置; (2)根据函数的单调性判断图象的变化趋势; (3)根据函数的奇偶性判断图象的对称性; (4)根据函数的周期性判断图象的循环往复.2.(2017课标Ⅲ文,7,5分)函数y =1+x +sinxx 2的部分图象大致为( )答案 D 当x ∈(0,1)时,sin x >0,∴y =1+x +sinxx 2>1+x >1,排除A 、C . 令f (x )=x +sinx x 2,则f (-x )=-x +sin (-x )(-x )2=-f (x ),∴f (x )=x +sinxx 2是奇函数, ∴y =1+x +sinxx 2的图象关于点(0,1)对称,故排除B .故选D .解后反思 函数图象问题,一般从定义域、特殊点的函数值、单调性、奇偶性等方面入手进行分析.选择题通常采用排除法.3.(2016课标Ⅰ,理7,文9,5分)函数y =22-e |x |在[-2,2]的图象大致为( )答案 D 当x =2时,y =8-e 2∈(0,1),排除A ,B ;易知函数y =2x 2-e |x |为偶函数,当x ∈[0,2]时,y =2x 2-e x,求导得y'=4x -e x ,当x =0时,y'<0,当x =2时,y'>0,所以存在x 0∈(0,2),使得y'=0,故选D .4.(2016浙江,3,5分)函数y =sin x 2的图象是 ( )答案 D 排除法.由y =sin x 2为偶函数判断函数图象的对称性,排除A ,C ;当x =π2时,y =sin (π2)2=sin π24≠1,排除B ,故选D .5.(2015课标Ⅱ,理10,文11,5分)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x.将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 B 当点P 与C 、D 重合时,易求得PA +PB =1+√5;当点P 为DC 的中点时,有OP ⊥AB ,则x =π2,易求得PA +PB =2PA =2√2.显然1+√5>2√2,故当x =π2时, f (x )没有取到最大值,则C 、D 选项错误.当x ∈[0,π4)时, f (x )=tan x +√4+tan 2x ,不是一次函数,排除A ,故选B .6.(2015安徽文,10,5分)函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是 ( )A.a >0,b <0,c >0,d >0B.a >0,b <0,c <0,d >0C.a <0,b <0,c >0,d >0D.a >0,b >0,c >0,d <0答案 A 由f (x )的图象易知d >0,且f '(x )=3ax 2+2bx +c 的图象是开口向上的抛物线,与x 轴正半轴有两个不同的交点,则{a >0,-b 3a>0,c >0,即{a >0,b <0,c >0,故选A .评析 本题考查导数的应用及运用图象解题的能力.7.(2015浙江,5,5分)函数f (x )=(x -1x )cos x (-π≤x ≤π且x ≠0)的图象可能为 ( )答案 D 因为f (-x )=(-x +1x )cos (-x )=-(x -1x )cos x =-f (x ),所以函数f (x )为奇函数,排除A 、B .当0<x <1时,x -1x <0,cos x >0,所以f (x )<0,排除C ,故选D .8.(2012课标理,10,5分)已知函数f (x )=1ln (x+1)-x ,则y =f (x )的图象大致为( )答案 B 令g (x )=ln (x +1)-x ,则g'(x )=1x+1-1=-xx+1, ∴当-1<x <0时,g'(x )>0,当x >0时,g'(x )<0,∴g (x )max =g (0)=0.∴f (x )<0,排除A 、C ,又由定义域可排除D ,故选B .评析 本题考查了函数的图象,考查了利用导数判断函数单调性,求值域,考查了数形结合的数学思想.考点2 函数图象的应用1.(2020北京,6,4分)已知函数f (x )=2x-x -1,则不等式f (x )>0的解集是 ( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.(-∞,0)∪(1,+∞) 答案 D2.(2017天津文,8,5分)已知函数f (x )={|x |+2,x <1,x +2x,x ≥1.设a ∈R ,若关于x 的不等式f (x )≥|x2+a|在R 上恒成立,则a 的取值范围是 ( )A.[-2,2]B.[-2√3,2]C.[-2,2√3]D.[-2√3,2√3] 答案 A以下为教师用书专用(1—2)1.(2016课标Ⅱ,12,5分)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x+1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i=1m(x i +y i )=( )A.0B.mC.2mD.4m答案 B 由f (-x )=2-f (x )可知f (x )的图象关于点(0,1)对称,又易知y =x+1x =1+1x的图象关于点(0,1)对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,∴∑i=1m(x i +y i )=0×m2+2×m 2=m.故选B .思路分析 分析出函数y =f (x )和y =x+1x的图象都关于点(0,1)对称,进而得两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,从而得出结论.2.(2015安徽文,14,5分)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为 . 答案 -12解析 若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则方程2a =|x -a |-1只有一解,即方程|x -a |=2a +1只有一解,故2a +1=0,所以a =-12.— 三年模拟 —A 组 考点基础题组考点1 函数的图象1.(2020河北新时代NT 教育模拟)已知函数f (x )={e x -4,x ≥0,e -x -4,x <0,则函数g (x )=x 2f (x )的大致图象是 ( )答案 A2.(2020湖南炎陵一中仿真考试)函数f (x )=x 4e x -e -x 的部分图象可能是( )答案 B3.(2021湖南岳阳一模,3)函数f (x )=x +ln |x |x的图象大致为 ( )A BCD答案 A4.(2021辽宁沈阳市郊联体一模,4)函数f (x )=xcosx -1的部分图象大致是 ( )A BCD答案 D5.(2021山东德州二模,5)函数f (x )=2x+1·ln |x |4x +1的部分图象大致为 ( )A BCD答案 A6.(2020普通高等学校招生全国统一考试考前演练)某函数的部分图象如图,则下列函数中可以作为该函数的解析式的是 ( )A.y =sin2xe sin2xB.y =cos2xe cos2x C.y =|cos2x |e cos2xD.y =|cosx |e cosx答案 C7.(2021福建三明三模,5)若函数y =f (x )的大致图象如图所示,则f (x )的解析式可能是 ( )A. f (x )=x|x |-1 B. f (x )=x1-|x | C. f (x )=xx 2-1 D. f (x )=x1-x 2答案Ce|x|在[-32,32]上的图象大致为()8.(2020山东百师联盟自测,7)函数f(x)=2|x|cos x-12答案A考点2函数图象的应用(多选题)(2021江苏南通一模,12)已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=e x(x+1),则下列命题正确的是()A.当x>0时,f(x)=-e-x(x-1)B.函数f(x)有3个零点C. f(x)<0的解集为(-∞,-1)∪(0,1)D.∀x1,x2∈R,都有|f(x1)-f(x2)|<2答案BCDB组综合应用题组时间:30分钟分值:30分一、单项选择题(每小题5分,共20分)1.(2021山东日照一模,6)如图所示,单位圆上一定点A与坐标原点重合.若单位圆从原点出发沿x轴正向滚动一周,则A点形成的轨迹为()A BCD 答案 A2.(2021上海普陀二模,16)已知函数f (x )=3x 1+3x ,设x i (i =1,2,3)为实数,且x 1+x 2+x 3=0.给出下列结论: ①若x 1·x 2·x 3>0,则f (x 1)+f (x 2)+f (x 3)<32;②若x 1·x 2·x 3<0,则f (x 1)+f (x 2)+f (x 3)>32.其中正确的是 ( ) A.①与②均正确 B.①正确,②不正确C.①不正确,②正确D.①与②均不正确答案 A3.(2020河北邯郸备考检测,8)函数f (x )=e x +1e x -1·cos x 的部分图象大致为 ( )答案 A4.(2020普通高等学校招生全国统一考试考前演练,9)设符号min {x ,y ,z }表示x ,y ,z 中的最小者,已知函数f (x )=min {|x -2|,x 2,|x +2|},则下列结论正确的是 ( )A.∀x ∈[0,+∞), f (x -2)>f (x )B.∀x ∈[1,+∞), f (x -2)>f (x )C.∀x ∈R , f (f (x ))≤f (x )D.∀x ∈R , f (f (x ))>f (x )答案 C二、多项选择题(每小题5分,共10分)5.(2021江苏七市第二次调研,10)已知函数f (x )=√|x 2-a |(a ∈R ),则y =f (x )的大致图象可能为 ( )AB C D答案 ABD 6.(2021山东聊城二模,12)用符号[x ]表示不超过x 的最大整数,例如:[0.6]=0,[2.3]=2.设f (x )=(1-ln x )(ax 2+2ln x )有3个不同的零点x 1,x 2,x 3,则 ( )A.x =e 是f (x )的一个零点B.x 1+x 2+x 3=2√e +eC.a 的取值范围是(-1e ,0)D.若[x 1]+[x 2]+[x 3]=6,则a 的范围是[-2ln39,-ln24) 答案 AD — 一年原创 —1.(2021 5·3原创题)已知某函数图象如图所示,则该函数有可能是 ( )A.f (x )=(x 2-cx )e xB.f (x )=(x 2-cx )ln (x +3) C.f (x )=13x 3-cx D.f (x )=x 2-cx e x答案 A2.(2021 5·3原创题)若偶函数f (x )=ax 2+(b -2)x 的图象过点A (1,2),则函数g (x )=bx +a x ,x ∈[-3,-12]的值域为 .答案 [-203,-4]。

高中数学函数的图象与性质考试题(含答案解析)

高中数学函数的图象与性质考试题(含答案解析)

---------------------------------------------------------------装--------------------订--------------------线-------------------------------------------------------------函数的图象与性质试题成绩课程名称高考数学二轮复习模拟考试开卷闭卷√教研室高三数学组A卷√B卷复习时间年月日时分至时分适用专业班级班级姓名学号考生注意:舞弊万莫做,那样要退学,自爱当守诺,最怕错上错,若真不及格,努力下次过。

答案写在答题纸上,写在试题纸上无效。

A组一、选择题一、选择题1.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1) D.[-2,1)2.(2017·沈阳模拟)已知函数f(x)=则f(f(4))的值为() A.-19B.-9C.19D.93.(2017·湖南东部六校联考)函数y=lg|x|()A.是偶函数,在区间(-∞,0)上单调递增B.是偶函数,在区间(-∞,0)上单调递减试题共页第页C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减4.函数f(x)=2|log2x|-⎪⎪⎪⎪⎪⎪x-1x的图象为()5.(2017·西安模拟)对于函数y=f(x),部分x与y的对应关系如下表:x 123456789y 37596182 4数列{x n}满足:x1=1,且对于任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,则x1+x2+…+x2 017=()A.7 554 B.7 540C.7 561 D.7 5646.已知f(x)是定义在R上的奇函数,且在[0,+∞)上单调递增,若f(lg x)<0,则x的取值范围是()A.(0,1) B.(1,10)C.(1,+∞) D.(10,+∞)7.(2016·福州质检)已知偶函数f(x)满足:当x1,x2∈(0,+∞)时,(x1-x2)[f(x1)-f(x2)]>0恒成立.设a=f(-4),b=f(1),c=f(3),则a,b,c的大小关系为() A.a<b<c B.b<a<cC.b<c<a D.c<b<a8.函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=() A.-2 B.-1C.0 D.1---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 9.(2017·高考山东卷)设f(x)=⎩⎨⎧x,0<x<1,2(x-1),x≥1.若f(a)=f(a+1),f(1a)=() A.2 B.4C.6 D.810.(2017·山西四校联考)已知函数f(x)满足:①定义域为R;②∀x∈R,都有f(x+2)=f(x);③当x∈[-1,1]时,f(x)=-|x|+1.则方程f(x)=12log2|x|在区间[-3,5]内解的个数是()A.5 B.6C.7 D.811.(2017·天津模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.x2cos x B.sin x2C.x sin x D.x2-16x412.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则()A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)二、填空题13.(2017·高考全国卷Ⅱ)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=________.试题共页第页---------------------------------------------------------------装--------------------订--------------------线-------------------------------------------------------------B组1.已知函数f(x)=⎩⎨⎧2x-2,x≤0,-log3x,x>0,且f(a)=-2,则f(7-a)=() A.-log37 B.-34C.-54D.-742.(2017·高考北京卷)已知函数f(x)=3x-(13)x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数3.函数y=(x3-x)2|x|的图象大致是()4.函数y=|x|(1-x)在区间A上是增函数,那么区间A是() A.(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12C.[0,+∞) D.⎝⎛⎭⎪⎫12,+∞试题共页第页5.若函数f(x)=⎩⎨⎧x2-5x,x≥0,-x2+ax,x<0是奇函数,则实数a的值是()A.-10 B.10C.-5 D.56.(2017·贵阳模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=e1-x2 B.f(x)=e x2-1C.f(x)=e x2-1 D.f(x)=ln(x2-1)7.定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)时,f(x)=2x+15,则f(log220)=()A.1 B.45C.-1 D.-458.(2017·陕西宝鸡中学第一次月考)已知函数f(x)=⎩⎨⎧(3a-1)x+4a,x<1,log a x,x≥1满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则实数a的取值范围是()A.⎝⎛⎭⎪⎫0,13 B.⎝⎛⎭⎪⎫13,1C.⎣⎢⎡⎭⎪⎫17,13 D.⎣⎢⎡⎭⎪⎫17,19.对于函数f(x),使f(x)≤n成立的所有常数n中,我们把n的最小值G叫做函数f(x)的上确界.则函数f(x)=的上确界是()试题共页第页A组答案解析1.解析:∵4-x2≥0,∴-2≤x≤2,∴A=[-2,2].∵1-x>0,∴x<1,∴B=(-∞,1),∴A∩B=[-2,1).故选D.答案:D2.解析:因为f(x)=所以f(f(4))=f(-2)=19.答案:C3.解析:因为lg|-x|=lg|x|,所以函数y=lg|x|为偶函数,又函数y=lg|x|在区间(0,+∞)上单调递增,由其图象关于y轴对称,可得y=lg|x|在区间(-∞,0)上单调递减,故选B.答案:B4.解析:由题设条件,当x≥1时,f(x)=2log2x-⎝⎛⎭⎪⎫x-1x=1x;当0<x<1时,f(x)=2-log2x-⎝⎛⎭⎪⎫1x-x=1x-⎝⎛⎭⎪⎫1x-x=x.故f(x)=⎩⎪⎨⎪⎧1x,x≥1,x,0<x<1.故选D.答案:D5.解析:∵数列{x n}满足x1=1,且对任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,∴x n+1=f(x n),∴由图表可得x2=f(x1)=3,x3=f(x2)=5,x4=f(x3)=6,x5=f(x4)=1,…,∴数列{x n}是周期为4的周期数列,∴x1+x2+…+x2 017=504(x1+x2+x3+x4)+x1=504×15+1=7 561.故选C.答案:C6.答案:A7.解析:因为f(x)为偶函数,故f(-4)=f(4).因为(x1-x2)·[f(x1)-f(x2)]>0,故函数f(x)在(0,+∞)上单调递增,故f(-4)=f(4)>f(3)>f(1),即a>c>b,故选C.---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 答案:C8.答案:D9.解析:若0<a<1,由f(a)=f(a+1)得a=2(a+1-1),∴a=14,∴f(1a)=f(4)=2×(4-1)=6.若a≥1,由f(a)=f(a+1)得2(a-1)=2(a+1-1),无解.综上,f(1a)=6.故选C.答案:C10.解析:画出y1=f(x),y2=12log2|x|的图象如图所示,由图象可得所求解的个数为5.答案:A11.解析:由图象可得f ⎝⎛⎭⎪⎫π2>0,故可排除A选项.由于函数f(x)在区间⎝⎛⎭⎪⎫0,π2上先增后减,而函数y=x sin x在⎝⎛⎭⎪⎫0,π2上单调递增(因为y=x及y=sin x均在⎝⎛⎭⎪⎫0,π2上单调递增,且函数取值恒为正),故排除C选项.对函数y=x2-16x4而言,y′=2x-23x3=23x(3-x2),当x∈⎝⎛⎭⎪⎫0,π2时,y′=23x(3-x2)>0,故y=x2-16 x4在区间⎝⎛⎦⎥⎤0,π2上单调递增,与图象不符,故排除D选项.故选B. 答案:B12.解析:由f(x-4)=-f(x)得f(x+2-4)=f(x-2)=-f(x+2),由f(-x)=-f(x)试题共页第页---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 1.解析:当a≤0时,2a-2=-2无解;当a>0时,由-log3a=-2,解得a =9,所以f(7-a)=f(-2)=2-2-2=-74,故选D.答案:D2.解析:∵函数f(x)的定义域为R,f(-x)=3-x-(13)-x=(13)x-3x=-f(x),∴函数f(x)是奇函数.∵函数y=(13)x在R上是减函数,∴函数y=-(13)x在R上是增函数.又∵y=3x在R上是增函数,∴函数f(x)=3x-(13)x在R上是增函数.故选A.答案:A3.解析:易判断函数为奇函数,由y=0得x=±1或x=0.且当0<x<1时,y<0;当x>1时,y>0,故选B.答案:B4.解析:y=|x|(1-x)=⎩⎨⎧x(1-x),x≥0,-x(1-x),x<0=⎩⎨⎧-x2+x,x≥0,x2-x,x<0=⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫x-122+14,x≥0,⎝⎛⎭⎪⎫x-122-14,x<0.试题共页第页试题共页第页。

重难点06 函数的图像-2023年高考数学(热点 重点 难点)专练(全国通用)(解析版)

重难点06 函数的图像-2023年高考数学(热点 重点 难点)专练(全国通用)(解析版)

重难点06 函数的图像1.函数图象平移变换的八字方针(1)“左加右减”,要注意加减指的是自变量. (2)“上加下减”,要注意加减指的是函数值. 2.函数图象自身的轴对称(1)f (-x )=f (x )⇔函数y =f (x )的图象关于y 轴对称.(2)函数y =f (x )的图象关于x =a 对称⇔f (a +x )=f (a -x )⇔f (x )=f (2a -x )⇔f (-x )=f (2a +x ). (3)若函数y =f (x )的定义域为R ,且有f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2对称.3.函数图象自身的中心对称(1)f (-x )=-f (x )⇔函数y =f (x )的图象关于原点对称.(2)函数y =f (x )的图象关于(a ,0)对称⇔f (a +x )=-f (a -x )⇔f (x )=-f (2a -x )⇔f (-x )=-f (2a +x ).(3)函数y =f (x )的图象关于点(a ,b )成中心对称⇔f (a +x )=2b -f (a -x )⇔f (x )=2b -f (2a -x ). 4.两个函数图象之间的对称关系(1)函数y =f (a +x )与y =f (b -x )的图象关于直线x =b -a2对称(由a +x =b -x 得对称轴方程);(2)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称; (3)函数y =f (x )与y =2b -f (-x )的图象关于点(0,b )对称.2023高考函数图象部分仍以考查图像识别为重点和热点,难度为中档,也可能考查利用函数图象解函数不等式或函数零点问题,为难题,题型为选择题.(建议用时:40分钟)一、单选题1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ).A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【答案】D【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2), 不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D. 2.函数f (x )=1-11x -( ) A .在(-1,+∞)上单调递增 B .在(1,+∞)上单调递增 C .在(-1,+∞)上单调递减 D .在(1,+∞)上单调递减 【答案】B【解析】f (x )图象可由y =-1x图象沿x 轴向右平移一个单位长度,再向上平移一个单位长度得到,如图所示.故选:B3.已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D【解析】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,22120221642y ππ⎛⎫'=⨯++⨯> ⎪⎝⎭,与图象不符,排除C. 故选:D. 4.函数2ln ||2x y x =+的图像大致为( ) A . B .C .D .【答案】B【解析】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称,又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.5.向高为H 的水瓶内注水,一直到注满为止,如果注水量V 与水深h 的函数图象如图所示,那么水瓶的形状大致是( )A .B .C .D .【答案】B【解析】当容器是圆柱时,容积V =πr 2h ,r 不变,V 是h 的正比例函数,其图象是过原点的直线,∴选项D 不满足条件;由函数图象可以看出,随着高度h 的增加V 也增加,但随h 变大,每单位高度的增加,体积V 的增加量变小,图象上升趋势变缓,∴容器平行于底面的截面半径由下到上逐渐变小, ∴A 、C 不满足条件,而B 满足条件. 故选:B .6.函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【答案】A【解析】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.7.函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )A .B .C .D .【答案】C【解析】根据函数2()1log f x x =+过1,02⎛⎫⎪⎝⎭排除A;根据1()2x g x -+=过()0,2排除B 、D, 故选C .8.将函数21y =+的图象按向量平移得到函数的图象,则 A .(11)a =--,B .(11)a =-,C .(11)a =, D .(11)a =-,【答案】 A【解析】以函数y=2的图像为参照系,函数21x y =+的图象向上平移了1个单位,函数12x y +=的图象向左平移了一个单位,因此,只需把函数21x y =+的图象向下平移一个单位,再向左平移一个单位,即可得到函数12x y +=的图象,选A.9.函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>,所以舍去C ;因此选B.2,12,1x x x x x ⎧+<⎪⎨+≥⎪⎩2x R 则a 的取值范围是 A .[2,2]- B .[3,2]- C .[2,23]- D .[23,23]-【答案】A【解析】满足题意时()f x 的图象恒不在函数2xy a =+下方, 当23a =时,函数图象如图所示,排除C,D 选项;当23a =-时,函数图象如图所示,排除B 选项,本题选择A 选项. 11.函数()21x f x x-=的图像为( )A .B .C .D .【答案】D【解析】函数()21x f x x -=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误; 又当0x <时,()210x f x x-=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D.12.已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )A .7,4⎛⎫+∞ ⎪⎝⎭B .7,4⎛⎫-∞ ⎪⎝⎭C .70,4⎛⎫⎪⎝⎭D .7,24⎛⎫ ⎪⎝⎭【答案】D 【解析】函数恰有4个零点,即方程,即有4个不同的实数根,即直线与函数的图象有四个不同的交点.又做出该函数的图象如图所示,由图得,当时,直线与函数的图象有4个不同的交点,故函数恰有4个零点时,b 的取值范围是故选D .二、填空题13.设奇函数()f x 的定义域为[-5,5].若当x ∈[0,5]时,()f x 的图象如图,则不等式()f x <0的解集是________.【答案】(2,0)(2,5)-⋃【解析】利用函数()f x 的图象关于原点对称. ()0f x ∴<的解集为(2,0)(2,5)-⋃.故答案为:(2,0)(2,5)-⋃ 14.已知函数y =211x x --的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________. 【答案】(0,1)∪(1,4)【解析】y =1,11-x-1,11x x x x +≤->⎧⎨-<<⎩或 函数y =kx -2的图象恒过定点M (0,-2), kMA =0,kMB =4.当k =1时,直线y =kx -2在x >1或x ≤-1时与直线y =x +1平行,此时有一个公共点,∴k ∈(0,1)∪(1,4)时,两函数图象恰有两个交点.15.已知函数,,则方程实根的个数为______ 【答案】4【解析】试题分析:如图与交点个数为416.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围为________.【答案】[-1,1]【解析】画出曲线|y|=2x+1与直线y=b的图象如图所示由图象可得|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].。

函数的图象(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)

函数的图象(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)

考向12 函数的图象【2022·全国·高考真题(理)】函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解. 【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.【2022·全国·高考真题(文)】如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+ 【答案】A 【解析】 【分析】由函数图像的特征结合函数的性质逐项排除即可得解. 【详解】设()321x xf x x -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C; 设()22sin 1xg x x =+,则()2sin 33010g =>,故排除D. 故选:A.1.函数图象的画法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)转化法:含有绝对值符号的函数,可去掉绝对值符号,转化为分段函数来画图象. 2.图象变换法若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.3.识图的三种常用方法(1).抓住函数的性质,定性分析:①由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; ②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性; ④由函数的周期性,判断图象的循环往复. (2).抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题. (3).根据实际背景、图形判断函数图象的方法:①根据题目所给条件确定函数解析式,从而判断函数图象(定量分析); ②根据自变量取不同值时函数值的变化、增减速度等判断函数图象(定性分析).(1)若()()f m x f m x +=-恒成立,则()y f x =的图像关于直线x m =对称.(2)设函数()y f x =定义在实数集上,则函数()y f x m =-与()y f m x =-(0)m >的图象关于直线x m =对称.(3)若()()f a x f b x +=-,对任意x ∈R 恒成立,则()y f x =的图象关于直线2a bx +=对称. (4)函数()y f a x =+与函数()y f b x =-的图象关于直线2a bx +=对称. (5)函数()y f x =与函数(2)y f a x =-的图象关于直线x a =对称. (6)函数()y f x =与函数2(2)y b f a x =--的图象关于点()a b ,中心对称. (7)函数平移遵循自变量“左加右减”,函数值“上加下减”.一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数.二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等).2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数); 若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y f x -=与()y f x =的图像关于y x =对称. (3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到.1.(2022·青海·海东市第一中学模拟预测(理))函数sin cos yx x x 在[]π,π-上的图像大致是( )A .B .C .D .【答案】D 【解析】 【分析】利用函数的单调性,奇偶性和特值点等性质来判断图像. 【详解】易知f (x )是偶函数,排除B ,C 项;当0πx ≤≤时,sin 0x ≥,所以sin cos 0y x x x =≥,排除A 项. 故选:D2.(2022·青海·模拟预测(理))已知函数()f x 的部分图像如图所示,则函数()f x 的解析式可能为( )A .()ln sin f x x x =+B .()ln cos f x x x =-C .()ln cos f x x x =+D .()ln sin f x x x =-【答案】B 【解析】 【分析】判断函数的奇偶性,可判断A,D;利用特殊值可判断C;结合三角函数性质以及函数的奇偶性,可判断B. 【详解】对于A ,()ln sin ,0f x x x x =+≠,()ln sin ()f x x x f x -=--≠,即()ln sin ,0f x x x x =+≠不是偶函数,不符合题意;对于C, ()ln cos ,0f x x x x =+≠,()πln πcos π=ln π11f =+-<,不符合题意; 对于D ,()ln sin ,0f x x x x =-≠,()ln sin ()f x x x f x -=-+≠,不符合题意; 对于B ,()ln cos ,0f x x x x =-≠,()ln cos ()f x x x f x -=--=, 故()f x 为偶函数,结合函数cos y x =的性质,可知B 符合题意, 故选:B3.(2022·浙江·三模)函数1sin 22x xxy -+=+在区间[,]-ππ上的图像可能是( )A .B .C .D .【答案】A 【解析】 【分析】直接由特殊点通过排除法求解即可. 【详解】 当0x =时,12y =,排除C 选项;当2x π=-时,0y =,排除B 、D 选项.故选:A.4.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据时间和h 的对应关系分别进行排除即可. 【详解】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B , 故选B . 【点睛】本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.5.(多选题)(2022·全国·模拟预测)在下列四个图形中,二次函数2y ax bx =+与指数函数xb y a ⎛⎫= ⎪⎝⎭的图象可能是( )A .B .C .D .【答案】ABD 【解析】 【分析】根据,,0a b 的关系与各图形一个个检验即可判断. 【详解】当0a b >>时,A 正确;当0b a >>时,B 正确; 当0a b >>时,D 正确;当0b a >>时,无此选项. 故选:ABD .1.(2022·青海·海东市第一中学模拟预测(文))函数()2222x xx xf x -+=+的部分图像大致是( ) A . B .C .D .【答案】B 【解析】 【分析】先判断()f x 的奇偶性,可排除A ,再由单调性、特值点排除选项C 、D ,即可得出答案. 【详解】函数的定义域为R ,因为()()2222x xx xf x f x -+-==+,所以()f x 是偶函数,排除选项A ;当x →+∞时,考虑到22y x x =+和22x x y -=+的变化速度,知x →+∞时,()0f x →,故排除选项C ,D .故选:B .2.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()f x 图象如图所示,那么该函数可能为( )A .ln ()||xf x x =B .()()22ln (0)ln (0)x x x f x x x x ⎧->⎪⎪=⎨-⎪<⎪⎩C .()()1(0)e 1e (0)xx x x f x x x -⎧>⎪=⎨⎪+<⎩D .ln ||()x f x x=【答案】D 【解析】 【分析】根据所给函数的图象,利用排除法分析ABC 即可得解. 【详解】由图象可知,函数定义域为(,0)(0,)-∞+∞,图象关于原点对称,函数是奇函数, 1x >时()0f x >, 据此,ln ()||xf x x =定义域不符合,排除A; 若 ()()22ln (0)ln (0)x x x f x x x x ⎧->⎪⎪=⎨-⎪<⎪⎩,则1x >时,()0f x <,不符合图象,故排除B ;若()()1(0)e 1e (0)x x x x f x x x -⎧>⎪=⎨⎪+<⎩,则当x 趋向于0+时,1()e x x f x -=趋向于1-,当x 趋向于0-时,()(1)e xf x x =+趋向于1,不符合图象,故排除C; 故选:D3.(2022·湖北·模拟预测)函数()[]()0,1y f x x =∈对任意()10,1a ∈,由()()*1n n a f a n +=∈N 得到的数列{}n a 均是单调递增数列,则下列图像对应的函数符合上述条件的是( )A .B .C .D .【答案】A 【解析】 【分析】由题可得()n n f a a >,进而可得函数()f x 的图像在直线y x =的图像上方,即得. 【详解】由题可知()()*1n n a f a n +=∈N ,1n n a a +>,∴()n n f a a >,故函数()f x 满足()f x x >,即函数()f x 的图像在直线y x =的图像上方,故排除BCD. 故选:A.4.(2022·浙江湖州·模拟预测)已知函数()2ln1(),cos x x f x a R x a+=∈+的图像如图所示,则实数a 的值可能是( )A .2-B .12-C .12D .2【答案】C 【解析】 【分析】根据函数的定义域分析即可 【详解】由题意,2210x x x x x x +->-=-≥,故210x x +->,分子一定有意义.又根据图象可得,当23x π=时分式无意义,故此时分母为0,故2cos 03a π+=,即102a -+=,12a =故选:C5.(2022·浙江绍兴·模拟预测)下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--【答案】A 【解析】 【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,1y =-,故排除B 、D 两项; 当1x >时,函数图象单调递增,无限接近于0,对于C 项,当1x >时,12x y -=-单调递减,故排除C 项.故选:A.6.(2022·河南·平顶山市第一高级中学模拟预测(文))函数sin 22cos x xy x=-的部分图像大致为( )A .B .C .D .【答案】A 【解析】 【分析】 设()sin 22cos x x f x x =-,分析函数()f x 的定义域、奇偶性及其在0,2π⎛⎫⎪⎝⎭上的函数值符号,结合排除法可得出合适的选项. 【详解】 设()sin 22cos x xf x x=-,则对任意的x ∈R ,2cos 0x ->,则()()()()sin 2sin 22cos 2cos x x x xf x f x x x---===---,所以函数()f x 是偶函数,排除B 、D .当0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈,则sin 20x >,所以()0f x >,排除C .故选:A .7.(2022·浙江·模拟预测)如图所示的是函数()y f x =的图像,则函数()f x 可能是( )A .sin y x x =B .cos y x x =C .sin cos y x x x x =+D .sin cos y x x x x =-【答案】C 【解析】 【分析】由图象确定函数的性质,验证各选项是否符合要求即可. 【详解】由图可知:()f x 是非奇非偶函数,且在y 轴右侧,先正后负.若()sin f x x x =,则()()()sin sin f x x x x x -=--=,所以函数sin y x x =为偶函数, 与条件矛盾,A 错,若()cos f x x x =,则()()()cos cos f x x x x x -=--=-,所以函数cos y x x =为奇函数,与条件矛盾,B 错,若()sin cos f x x x x x =-,则()2sin 4f x x x π⎛⎫=- ⎪⎝⎭,当04x π⎛⎫∈ ⎪⎝⎭,时,()2sin 04f x x x π⎛⎫=-< ⎪⎝⎭,与所给函数图象不一致,D 错,若()sin cos f x x x x x =+,则()2sin 4f x x x π⎛⎫=+ ⎪⎝⎭,当304x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,又2()44f ππ=, ()04f π-=,所以函数sin cos y x x x x =+为非奇非偶函数,与所给函数图象基本一致,故选:C .8.(2022·福建省福州第一中学三模)已知函数()()2()ln 1cos 3f x x x x ϕ=++⋅+.则当[0,]ϕπ∈时,()f x 的图象不可能是( )A .B .C .D .【答案】D 【解析】 【详解】首先设()()2ln 1g x x x =+,得到()g x 为奇函数,再分别令0,,2πϕπ=,依次判断选项即可.【点睛】设()(2ln 1g x x x =+,定义域为R ,()()((()2222ln 1ln 1ln 10g x g x x x x x x x +-=++-+=+-=, 所以()()g x g x -=-,()g x 为奇函数.当0ϕ=时,cos3y x =为偶函数,(2()ln 1cos3f x x x x =+⋅为奇函数.()0062f f f ππ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,018f π⎛⎫> ⎪⎝⎭,所以选项B 可能. 当ϕπ=时,()cos 3cos3y x x π=+=-为偶函数,(2()ln 1cos3f x x x x =-+⋅为奇函数.()0062f f f ππ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,018f π⎛⎫< ⎪⎝⎭,所以选项A 可能. 当2ϕπ=时,cos 3sin 32y x x π⎛⎫=+=- ⎪⎝⎭为偶函数,(2()ln 1sin3f x x x x =-+⋅为偶函数.因为()20033f f f ππ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,018f π⎛⎫< ⎪⎝⎭,,所以选项C 可能. 故选:D9.(2022·吉林·三模(理))下列各个函数图像所对应的函数解析式序号为( )①||()e sin x f x x = ②()ln ||=-g x x x ③2()sin =t x x x ④2e ()xh x x=A .④②①③B .②④①③C .②④③①D .④②③①【答案】A 【解析】 【分析】先通过函数定义域和奇偶性进行判断,再利用导数对①求导,求其在()0,π上的最大值. 【详解】()f x ,()t x 的定义域为R ,()g x ,()h x 的定义域为{}|0x x ≠2e ()0xh x x=>在定义域内恒成立,则前两个对应函数分别为④②当()0,πx ∈时,则()e sin x f x x =()π()e sin cos 2e sin 4x x f x x x x ⎛⎫'=+=+ ⎪⎝⎭,令()0f x '>,则30π4x <<()f x 在30,π4⎛⎫ ⎪⎝⎭上单调递增,在3π,π4⎛⎫ ⎪⎝⎭上单调递减,则3π432()(π)e 542f x f ≤=>①对应的为第三个函数 故选:A .10.(2022·浙江·镇海中学模拟预测)图象为如图的函数可能是( )A .()sin(cos )f x x =B .()sin(sin )f x x =C .()cos(sin )f x x =D .()cos(cos )f x x =【答案】A 【解析】 【分析】从特殊的函数(0)f 为最大值排除两个选项,再由余弦函数性质确定函数值的正负排除一个选项后得正确结论. 【详解】因为(0)f 为最大值,排除BD ;又因为cos(sin )0x >,排除C . 故选:A .11.(2022·浙江·模拟预测)已知函数()f x 的部分图像如图所示,则该函数的解析式可能是( )A .22cos ()ln 2cos xf x x x +=+-B .32cos ()ln 2cos xf x x x+=-C .32sin ()ln 2sin xf x x x+=+-D .22sin ()ln2sin xf x x x+=-【答案】B 【解析】 【分析】观察图象确定函数的性质,结合函数的性质和特殊点的取值判断各选项. 【详解】观察函数图象可得该函数图象关于原点对称,所以函数()f x 为奇函数,由图象可得(2)0f <,对于函数22cos ()ln2cos xf x x x+=+-,因为()()()222cos 2cos ()lnln ()2cos 2cos x xf x x x f x x x+-+-=-+=+=---,所以函数22cos ()ln2cos xf x x x+=+-为偶函数,A 错,对于函数32sin ()ln2sin x f x x x+=+-,()32sin ()ln()2sin x f x x f x x --=-+=-+, 所以函数32sin ()ln2sin x f x x x+=+-为奇函数,又32sin 2(2)2ln02sin 2f +=+>-,与图象不符,故C 错误, 对于函数22sin ()ln2sin x f x x x+=-,()22sin ()ln()2sin x f x x f x x --=-=-+, 所以函数22sin ()ln2sin x f x x x+=-为奇函数,又22sin 2(2)2ln02sin 2f +=>-,与图象不符,故D 错误, 对于函数32cos ()ln2cos x f x x x+=-,因为()32cos ()ln()2cos x f x x f x x +-=-=--, 所以函数32cos ()ln2cos x f x x x+=-为奇函数,且32cos 2(2)2ln02cos 2f +=<-,与图象基本相符,B 正确, 故选:B.12.(2022·四川眉山·三模(理))四参数方程的拟合函数表达式为()01ba d y d x x c -=+>⎛⎫+ ⎪⎝⎭,常用于竞争系统和免疫检测,它的图象是一个递增(或递减)的类似指数或对数曲线,或双曲线(如1y x -=),还可以是一条S 形曲线,当4a =,1b =-,1c =,1d =时,该拟合函数图象是( ) A .类似递增的双曲线 B .类似递增的对数曲线 C .类似递减的指数曲线 D .是一条S 形曲线【答案】A 【解析】 【分析】 依题意可得1311y x -=++,()0x >,整理得341y x -=++,()0x >,再根据函数的变换规则判断可得; 【详解】解:依题意可得拟合函数为1311y x -=++,()0x >, 即()31333 114111x x y x x x +--=+=+=++++,()0x >, 由3y x -=()1x >向左平移1个单位,再向上平移4个单位得到3 41y x -=++,()0x >, 因为3y x-=在()1,+∞上单调递增,所以拟合函数图象是类似递增的双曲线; 故选:A13.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式( )A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭【答案】C 【解析】 【分析】分三步进行图像变换①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 【详解】12()()(1)(12)x x x x x xy f x y f x y f x y f x →-→-→=→=-→=-→=-①②③①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 故选:C.14.(2022·浙江绍兴·模拟预测)在同一直角坐标系中,函数()log a y x =-,()10a y a x-=>,且1a ≠的图象可能是( )A .B .C .D .【答案】C 【解析】 【分析】由函数()log a y x =-的图象与函数log a y x =的图象关于y 轴对称,根据对数函数的图象与性质及反比例函数的单调性即可求解. 【详解】解:因为函数()log a y x =-的图象与函数log a y x =的图象关于y 轴对称, 所以函数()log a y x =-的图象恒过定点()1,0-,故选项A 、B 错误;当1a >时,函数log a y x =在()0,∞+上单调递增,所以函数()log a y x =-在(),0∞-上单调递减, 又()11a y a x-=>在(),0∞-和()0,∞+上单调递减,故选项D 错误,选项C 正确. 故选:C.15.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A【解析】【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案.【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x .在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A16.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解.【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x h r H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅, 令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =, 于是得2223333222333r H vt H v h vt h h t H r r πππ⋅=⇒=⇒ 而,,r H v 2323H v r π是常数, 所以盛水的高度h 与注水时间t 的函数关系式是23323H v h t r π=203r H t v π≤≤,223323103H v h t r π-'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同.故选:A1.(2022·全国·高考真题(理))函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( ) A . B .C .D .【答案】A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22x x f x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦, 则()()()()()33cos 33cos x x x x f x x x f x ---=--=--=-, 所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C. 故选:A.2.(2022·全国·高考真题(文))如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x x y x -+=+B .321x x y x -=+C .22cos 1x x y x =+D .22sin 1x y x =+ 【答案】A【解析】【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设()321x x f x x -=+,则()10f =,故排除B; 设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<, 所以()222cos 2111x x x h x x x =<≤++,故排除C; 设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D. 故选:A. 3.(2021·天津·高考真题)函数2ln ||2x y x =+的图像大致为( ) A . B .C .D .【答案】B【解析】【分析】由函数为偶函数可排除AC ,再由当()0,1∈x 时,()0f x <,排除D ,即可得解.【详解】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称,又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.4.(2021·浙江·高考真题)已知函数21(),()sin 4f x x g x x =+=,则图象为如图的函数可能是()A .1()()4y f x g x =+- B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D【解析】【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭, 当4x π=时,22120221642y ππ⎛⎫'=⨯++⨯> ⎪⎝⎭,与图象不符,排除C. 故选:D.5.(2020·天津·高考真题)函数241x y x =+的图象大致为( ) A . B .C .D .【答案】A【解析】【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:()()241x f x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误. 故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.6.(2020·浙江·高考真题)函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .【答案】A【解析】【分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象.【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.7.(2019·浙江·高考真题)在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是A .B .C .D .【答案】D【解析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1x y a =过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.8.(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( ) A . B .C .D .【答案】B【解析】【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.9.(2017·全国·高考真题(文))函数y =1+x +2sin x x 的部分图象大致为( ) A . B . C . D .【答案】D【解析】由题意比较函数的性质及函数图象的特征,逐项判断即可得解.【详解】当x =1时,y =1+1+sin1=2+sin1>2,排除A 、C ;当x →+∞时,y →+∞,排除B.故选:D.【点睛】本题考查了函数图象的识别,抓住函数图象的差异是解题关键,属于基础题.10.(2015·浙江·高考真题(文))函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( ) A . B . C .D .【答案】D【解析】【详解】因为11()()cos ()cos ()f x x x x x f x x x-=-+=--=-,故函数是奇函数,所以排除A ,B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D. 考点:1.函数的基本性质;2.函数的图象.11.(2018·浙江·高考真题)函数y =||2x sin2x 的图象可能是A .B .C .D .【答案】D【解析】【详解】分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择. 详解:令||()2sin 2x f x x =,因为,()2sin 2()2sin 2()x x x R f x x x f x -∈-=-=-=-,所以||()2sin 2x f x x =为奇函数,排除选项A,B;因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.12.(2018·全国·高考真题(理))函数422y x x =-++的图像大致为 A . B .C .D .【答案】D【解析】【详解】分析:根据函数图象的特殊点,利用函数的导数研究函数的单调性,由排除法可得结果.详解:函数过定点()0,2,排除,A B ,求得函数的导数()()32'42221f x x x x x =-+=--,由()'0f x >得()22210x x -<, 得22x <-或202x <<,此时函数单调递增,排除C ,故选D. 点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.13.(2017·全国·高考真题(文))函数sin21cos x y x=-的部分图像大致为 A . B . C . D .【答案】C【解析】【详解】由题意知,函数sin 21cos x y x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos2y =>-,故排除A .故选C .点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.14.(2015·安徽·高考真题(理))函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <【答案】C【解析】【详解】试题分析:函数在P 处无意义,由图像看P 在y 轴右侧,所以0,0c c -><,()200,0b f b c =>∴>,由()0,0,f x ax b =∴+=即b x a =-,即函数的零点000.0,0b x a a b c a=->∴<∴<,故选C . 考点:函数的图像。

高考数学函数专题训练《指数函数》含答案解析

高考数学函数专题训练《指数函数》含答案解析

高考数学函数专题训练 指数函数一、选择题1.设0n >,且1n n b a <<,则( ) A .01b a <<< B .01a b <<< C .1b a << D .1a b <<【答案】C【解析】因为100n n>⇒>,所以当1n n a b >>时,11()()1n n n n a b >>,即 1a b >>,故选C.2.函数(21)xy x e =-的图象是( )【答案】A【解析】因为函数只有1个零点,所以排除C,D 两项,由()21e xy x '=+,可知函数在12x =-处取得极小值,所以不是定义域上的单调增函数,所以B 不对,只能选A .3.已知函数()2x xe ef x --=, 1x 、2x 、3x R ∈,且120x x +>, 230x x +>, 310x x +>,则()()()123f x f x f x ++的值(______)A.一定等于零.B.一定大于零.C.一定小于零.D.正负都有可能.【答案】B【解析】由已知可得()f x 为奇函数,且()f x 在R 上是增函数,由12120x x x x +>⇒>-⇒()()()122f x f x f x >-=-,同理可得()()23f x f x >-, ()()()()3112f x f x f x f x >-⇒+()()()()()()()()32311230f x f x f x f x f x f x f x +>-++⇒++>.4.已知函数()93xxf x m =⋅-,若存在非零实数0x ,使得()()00f x f x -=成立,则实数m 的取值范围是( )A .12m ≥B .2m ≥C .02m <<D .102m << 【答案】D【解析】函数()93xxf x m =⋅-关于y 轴的对称函数为()()()93xx g x m g x f x --=-∴=g 有解,即33119393332099332x x xxxxx xx x x x m m m m --------=⋅-∴==+≥∴<<-+g Q5.已知点n A (n ,n a )(∈n N *)都在函数x y a =(01a a >≠,)的图象上,则46a a +与52a 的大小关系是( ) A .46a a +>52a B .46a a +<52aC .46a a +=52aD .46a a +与52a 的大小与a 有关 【答案】A【解析】点代入函数式得nn a a =,数列{}n a 为等比数列2464655222a a a a a a ∴+>==6.已知实数,a b 满足23,32ab==,则函数()xf x a x b =+-的零点个数是( )A .0B .1C .2D .3 【答案】B【解析】依题意, 23log 31,0log 21a b =><=<,令()0f x =, x a x b =-+, xy a =为增函数,y x b =-+为减函数,故有1个零点.7.已知则之间的大小关系是( )A .B .C .D .无法比较【答案】A 【解析】设,则,.∴,,∵,∴,即.故选A.8.设平行于x 轴的直线l 分别与函数和的图象相交于点A ,B ,若在函数的图象上存在点C ,使得△ABC 为等边三角形,则这样的直线l ( )A .至少一条B .至多一条C .有且只有一条D .无数条 【答案】C【解析】设直线l 的方程为,由,得,所以点.由,得,所以点,从而|AB|=1.如图,取AB 的中点D ,连接CD ,因为△ABC 为等边三角形,则CD ⊥AB , 且|AD|=,|CD|=,所以点.因为点C 在函数的图象上,则,解得,所以直线l 有且只有一条,故选C.9.已知函数()2x f x m =-的图象与函数()y g x =的图象关于y 轴对称,若函数()y f x =与函数()y g x =在区间[]1,2上同时单调递增或同时单调递减,则实数m 的取值范围是A .[)1,4,2⎛⎤-∞⋃+∞ ⎥⎝⎦ B .1,42⎡⎤⎢⎥⎣⎦C .[]2,4D .[)4,+∞ 【答案】B【解析】因为函数()y g x =与()2x f x m =-的图象关于y 轴对称,所以()2x g x m -=-,函数()y f x =与函数()y g x =在区间[]1,2上同时单调递增或同时单调递减,所以函数()2x f x m =-和函数()2x g x m -=-在[]1,2上单调性相同,因为2x y m =-和函数2x y m -=-的单调性相反,所以()()220xx m m ---≤在[]1,2上恒成立,即()21220x x m m --++≤在[]1,2上恒成立,即22x x m -≤≤在[]1,2上恒成立,得122m ≤≤,即实数m 的取值范围是1,22⎡⎤⎢⎥⎣⎦,故选B.10.已知0a b >>,b a a b =,有如下四个结论:①e b <;②b e >;③a b ∃,满足2a b e ⋅<;④2a b e ⋅>. 则正确结论的序号是( ) A .①③ B .②③C .①④D .②④【答案】C 【解析】0,,b a a b a b >>=Q 则ln ln ln ln a bb a a b a b=⇒=,设函数ln ,0xy x x =>, 1ln ,0x y x x ='->,可知函数ln ,0x y x x=>在()0,e 单调递增,在(),e +∞上单调递减,如图所示,可知0b e << ,显然2ln ln 1ln ln 22a ba b a b e +>⇒+>⇒⋅> ,故选C 11.设0,0a b >>,则下列不等式成立的是( )A. 若2223a b a b +=+,则a b >B. 若2223a b a b +=+,则a b <C. 若2223a b a b -=-,则a b >D. 若2223a b a b -=-,则a b < 【答案】A【解析】设()22x f x x =+,则()f x 在R 上单调递增,且()()222322a b b f a a b b f b =+=+>+=则a>b,因此A正确.12.已知函数,,则下列四个结论中正确的是()①图象可由图象平移得到;②函数的图象关于直线对称;③函数的图象关于点对称;④不等式的解集是.A.①②④B.①③④C.①②③D.①②③④【答案】C【解析】对于①,若的图象向左平移个单位后得到的图象,若的图象向右平移个单位后得到的图象,所以①正确;对于②,设,则,,,关于对称,所以②正确;对于③,设,,,,关于对称,所以③正确;对于④,由得,化为,,若,若,所以④错误,故选C.二、填空题13.若直线2y a =与函数1(0xy a a =->且1)a ≠的图象有两个公共点,则a 的取值范围是_____. 【答案】1(0,)2【解析】(1)当01a <<时,作出函数1xy a =-的图象,如图所示, 若直线2y a =与函数1(0xy a a =->且1)a ≠的图象有两个公共点, 由图象可知021a <<,解得102a <<; (2)当1a >时,作出函数1xy a =-的图象,如图所示,若直线2y a =与函数1(0xy a a =->且1)a ≠的图象有两个公共点, 由图象可知021a <<,此时无解, 综上所述,实数a 的取值范围是1(0,)2.14.若111,52=+==ba mb a 且,则m = . 【答案】10.【解析】m b a ==52Θ,m b m a 52log ,log ==∴,即5log 1,2log 1m m b a ==,则110log 11==+m ba ,即10=m .15. 已知函数()()01x f x a b a a =+>≠,的定义域和值域都是[]10-,,则a b += . 【答案】32-【解析】 分情况讨论:①当1a >时,()=+xf x a b 在[]1,0-上递增.又()[]1,0∈-f x ,所以()()1100f f -=-⎧⎪⎨=⎪⎩,无解;②当01a <<时,()=+xf x a b 在[]1,0-上递减.又()[]1,0∈-f x ,所以()()1001f f -=⎧⎪⎨=-⎪⎩,解得122a b ⎧=⎪⎨⎪=-⎩,所以32a b +=-. 16.已知,又(),若满足的有三个,则的取值范围是__________. 【答案】【解析】 由题意得, ,当时,当时,设,则要使得有三个不同的零点,则方程有两个不同的根, 其中一个根在之间,一个根在之前,即且设,则,即实数的取值范围是.。

高考数学专题《三角函数的图象与性质》习题含答案解析

高考数学专题《三角函数的图象与性质》习题含答案解析

专题5.3 三角函数的图象与性质1.(2021·北京市大兴区精华培训学校高三三模)下列函数中,既是奇函数又以π为最小正周期的函数是()A .cos 2y x =B .sin2y x=C .sin cos y x x=+D .tan 2y x=【答案】B 【解析】由三角函数的奇偶性和周期性判断即可得出答案.【详解】解:A 选项:cos 2y x =是周期为π的偶函数,故A 不正确;B 选项:sin2y x =是周期为π的奇函数,故B 正确;C选项:sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,周期为2π且非奇非偶函数,故C 不正确;D 选项:tan 2y x =是周期为2π的奇函数,故D 不正确.故选:B.2.(2021·海南高三其他模拟)下列函数中,既是偶函数又存在零点的是( )A .ln y x =B .21y x =+C .sin y x=D .cos y x=【答案】D 【解析】根据题意,依次分析选项中函数的奇偶性以及是否存在零点,综合即可得答案.【详解】解:根据题意,依次分析选项:对于A ,y lnx =,为对数函数,不是奇函数,不符合题意,对于B ,21y x =+,为二次函数,是偶函数,但不存在零点,不符合题意,对于C ,sin y x =,为正弦函数,是奇函数,不符合题意,对于D ,cos y x =,为余弦函数,既是偶函数又存在零点,符合题意,故选:D .练基础3.(2021·浙江高三其他模拟)函数y =sin tan x e xx在[-2,2]上的图像可能是( )A .B .C .D .【答案】B 【解析】利用同角三角函数的商数关系并注意利用正切函数的性质求得函数的定义域,可以化简得到()cos ,2x k f x e x x k Z π⎛⎫=≠∈ ⎪⎝⎭,考察当x 趋近于0时,函数的变化趋势,可以排除A,考察端点值的正负可以评出CD.【详解】()sin cos ,tan 2x x e x k f x e x x k Z x π⎛⎫==≠∈ ⎪⎝⎭,当x 趋近于0时,函数值趋近于0cos 01e =,故排除A;()22cos 20f e =<,故排除CD,故选:B4.(2021·全国高三其他模拟(理))函数y =tan(3x +6π)的一个对称中心是( )A .(0,0)B .(6π,0)C .(49π,0)D .以上选项都不对【答案】C 【解析】根据正切函数y =tan x 图象的对称中心是(2k π,0)求出函数y =tan(3x +6π)图象的对称中心,即可得到选项.【详解】解:因为正切函数y =tan x 图象的对称中心是(2k π,0),k ∈Z ;令3x +6π=2k π,解得618k x ππ=-,k ∈Z ;所以函数y =tan(3x +6π)的图象的对称中心为(618k ππ-,0),k ∈Z ;当k =3时,C 正确,故选:C.5.(2019年高考全国Ⅱ卷文)若x 1=,x 2=是函数f (x )=(>0)两个相邻的极值点,则=( )A .2B .C .1D .【答案】A【解析】由题意知,的周期,解得.故选A .6.(2021·临川一中实验学校高三其他模拟(文))若函数cos (0)y x ωω=>的图象在区间,24ππ⎛⎫- ⎪⎝⎭上只有一个对称中心,则ω的取范围为( )A .12ω<≤B .ω1≤<2C .13ω<≤D .13ω≤<【答案】A 【解析】根据题意可得422πππω≤<,即可求出.【详解】4π43πsin x ωωω3212()sin f x x ω=232()44T ωπππ==-=π2ω=由题可知,cos (0)y x ωω=>在,42ππ⎡⎫⎪⎢⎣⎭上只有一个零点,又2x πω=,2x πω=,所以422πππω≤<,即12ω<≤.故选:A.7.(2019年高考北京卷文)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】时,,为偶函数;为偶函数时,对任意的恒成立,即,,得对任意的恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.8.(2021·青海西宁市·高三二模(文))函数()cos 218f x x π⎛⎫=-- ⎪⎝⎭图象的一个对称中心为( )A .,14π⎛⎫-- ⎪⎝⎭B .,14π⎛⎫-⎪⎝⎭C .,116π⎛⎫-- ⎪⎝⎭D .3,116π⎛⎫-- ⎪⎝⎭【答案】D 【解析】根据余弦函数的对称中心整体代换求解即可.【详解】令2()82x k k πππ-=+∈Z ,可得5()216k x k ππ=+∈Z .所以当1k =-时,316x π=-,故3,116π⎛⎫-- ⎪⎝⎭满足条件,当0k =时,516x π=,故5,116π⎛⎫-⎪⎝⎭满足条件;故选:D0b =()cos sin cos f x x b x x =+=()f x ()f x ()=()f x f x -x ()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=-sin 0b x =x 0b =0b =()f x9.(2021·全国高一专题练习)设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为2πB .()f x 的图象关于直线23x π=对称C .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减D .()f x 的一个零点为6x π=【答案】C 【解析】根据解析式结合余弦函数的性质依次判断每个选项的正误即可.【详解】函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,()f x ∴的最小正周期为2π,故A 正确;22(cos 1333f πππ⎛⎫=+=- ⎪⎝⎭,∴()f x 的图象关于直线23x π=对称,故B 正确;当x ∈,2ππ⎛⎫⎪⎝⎭时,54,363πππx ⎛⎫+∈ ⎪⎝⎭,()f x 没有单调性,故C 错误;()cos 0663f πππ⎛⎫=+= ⎪⎝⎭,∴()f x 的一个零点为6x π=,故D 正确.综上,错误的选项为C.故选:C.10.(2017·全国高考真题(理))函数f (x )=s in 2x +3cosx ―34(x ∈0,__________.【答案】1【解析】化简三角函数的解析式,则f (x )=1―cos 2x+3cos x ―34=―cos 2x +3cos x +14= ―(cos x ―32)2+1,由x ∈[0,π2]可得cos x ∈[0,1],当cos x =32时,函数f (x )取得最大值1.练提升1.(2021·河南高二月考(文))已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+ ⎪⎝⎭><<的相邻的两个零点之间的距离是6π,且直线18x π=是()f x 图象的一条对称轴,则12f π⎛⎫=⎪⎝⎭( )A.B .12-C .12D【答案】D 【解析】由相邻两个零点的距离确定周期求出6ω=,再由对称轴确定6π=ϕ,代入12x π=可求出结果.【详解】解:因为相邻的两个零点之间的距离是6π,所以26T π=,23T ππω==,所以6ω=,又sin 6sin 118183f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且02πϕ<<,则6π=ϕ,所以()sin 66f x x π⎛⎫=+ ⎪⎝⎭,则sin 612126f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.故选:D.2.(2020·山东潍坊�高一期末)若函数的最小正周期为,则( )A .B .C .D .【答案】C 【解析】由题意,函数的最小正周期为,可得,解得,即,()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭π(2)(0)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭(0)(2)5f f f π⎛⎫->> ⎪⎝⎭()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭πwππ=1w =()tan()4f x x π=+令,即,当时,,即函数在上单调递增,又由,又由,所以.故选:C.3.(2021·广东佛山市·高三二模)设()0,θπ∈,则“6πθ<”是“1sin 2θ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】由条件即06πθ<<,由06πθ<<,得1sin 2θ<;反之不成立,可举反例.再由充分必要条件的判定得答案.【详解】由()0,θπ∈,则6πθ<,即06πθ<<所以当06πθ<<时,由正弦函数sin y x =的单调性可得1sin sin62πθ<=,即由6πθ<可以得到1sin 2θ<.反之不成立,例如当56πθπ<<时,也有1sin 2θ<成立,但6πθ<不成立.故“6πθ<”是“1sin 2θ<”的充分不必要条件故选:A4.(2021·四川省华蓥中学高三其他模拟(理))已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的最,242k x k k Z πππππ-+<+<+∈3,44k x k k Z ππππ-+<<+∈1k =544x ππ<<()f x 5(,)44ππ4(0)(),()()()555f f f f f πππππ=-=-+=425ππ>>(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭大值为2,其图象相邻两条对称轴之间的距离为2π且()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,则下列判断不正确的是()A .要得到函数()f x 的图象,只需将2cos 2y x =的图象向右平移12π个单位B .函数()f x 的图象关于直线712x π=对称C .,126x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x D .函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减【答案】C 【解析】根据最大值为2,可得A ,根据正弦型函数的周期性,可求得ω,根据对称性,可求得ϕ,即可得()f x 解析式,根据正弦型函数的单调性、值域的求法,逐一分析选项,即可得答案.【详解】由题意得A =2,因为其图象相邻两条对称轴之间的距离为2π,所以22Tπ=,可得2T ππω==,所以2ω=,所以()2sin(2)f x x ϕ=+,因为,06π⎛⎫-⎪⎝⎭为对称中心,所以2,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭,因为||2ϕπ<,令k =0,可得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭.对于A :将2cos 2y x =的图象向右平移12π个单位,可得2cos 22cos 22cos 22sin 22sin 21266263y x x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=--=+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故A 正确;对于B :令2,32x k k Z πππ+=+∈,解得,212k x k Z ππ=+∈,令k =1,可得712x π=,所以函数()f x 的图象关于直线712x π=对称,故B 正确;对于C :因为,126x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,363x πππ⎡⎤+∈⎢⎥⎣⎦,所以当236x ππ+=时,min ()2sin16f x π==,故C 错误;对于D :令3222,232k x k k Z πππππ+≤+≤+∈,解得7,1212k x k k Z ππππ+≤≤+∈,令k =0,可得一个单调减区间为7,1212ππ⎡⎤⎢⎥⎣⎦,因为57,,6121212ππππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故D 正确.故选:C5.(2021·玉林市第十一中学高三其他模拟(文))已知函数()sin (0)f x x ωω=>的图象向右平移4π个单位长度得y =g (x )的图象,若函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则a 的取值范围是( )A .[416,)39B .1620,[)99C .[208,93D .[8,4)3【答案】B 【解析】由函数的平移可得()sin 4g x x πωω⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质可得ω满足的不等式,即可得解.【详解】由题意,()sin sin 44g x x x ππωωω⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,3,444x πωπωπωω⎡⎤-∈-⎢⎥⎣⎦,因为函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则3542,2433122,2433k k k k πωπππππωππππ⎧⎛⎤-∈-+-+ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩或3412,2433272,2433k k k k πωπππππωππππ⎧⎛⎤-∈-++ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩,k Z ∈,又0>ω,所以1620,99ω⎡∈⎫⎪⎢⎣⎭.故选:B.6.(2020·北京四中高三其他模拟)函数tan 42y x ππ⎛⎫=- ⎪⎝⎭ 的部分图象如图所示,则 ()OA OB AB +⋅=( )A .6B .5C .4D .3【答案】A 【解析】根据正切函数的图象求出A 、B 两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令tan 42y x ππ⎛⎫=- ⎪⎝⎭=0,即42x ππ-=kπ,k Z∈k =0时解得x =2,令tan 42y x ππ⎛⎫=-⎪⎝⎭=1,即424x πππ-=,解得x =3,∴A (2,0),B (3,1),∴()()()2,0,3,1,1,1OA OB AB ===,∴()()()5,11,1516OA OB AB +⋅=⋅=+=.故选:A .7.(2020·全国高三其他模拟(文))若函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆222:O x y n +=上,则()1f =( )A B .C .-D .【答案】A 【解析】首先由题意判断该正弦型函数的大概图象及相邻最高点和最低点与圆的交点情况.从而解得n 的取值,再代入1x =求解.【详解】解:设两交点坐标分别为()11,x y ,()22,x y ,则1y =,2y =-又函数()(0)xf x n nπ=>为奇函数,∴12x x =-,当22xnx n ππ=⇒=时,函数取得最大值,∴12n x =-,22nx =,由题,函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆22: O x y n +=上,∴22242n n n ⎛⎫+=⇒= ⎪⎝⎭,则(1)4f π==.故选:A.8.【多选题】(2021·全国高三其他模拟)已知函数()2sin(),(0,0)f x x ωϕωϕπ=+><<图象的一条对称轴为23x π=,4⎛⎫= ⎪⎝⎭f π,且()f x 在2,43ππ⎛⎫ ⎪⎝⎭内单调递减,则以下说法正确的是( )A .7,012π⎛⎫-⎪⎝⎭是其中一个对称中心B .145ω=C .()f x 在5,012π⎛⎫- ⎪⎝⎭单増D .16f π⎛⎫-=- ⎪⎝⎭【答案】AD 【解析】先根据条件求解函数的解析式,然后根据选项验证可得答案.【详解】∵f (x )关23x π=对称,4⎛⎫= ⎪⎝⎭f π,f (x )在2,43ππ⎛⎫ ⎪⎝⎭单调递减,232232,22643k k ωπωϕπππππϕωϕπ⎧=+=+⎧⎪⎪⎪∴∴⎨⎨=⎪⎪+=+⎩⎪⎩,B 错误;()2sin 2,6f x x π⎛⎫=+ ⎪⎝⎭令2,6x k k ππ+=∈Z ,可得,,122k x k ππ=-+∈Z 当1k =-时,7,12x π=-即()f x 关于7,012π⎛⎫- ⎪⎝⎭对称,A 正确;令222,262k x k πππππ-+<+<+得,312k x k ππππ-+<<+∴()f x 在,312ππ⎡⎤-⎢⎥⎣⎦单调递増,即C 错误;2sin 2sin 16366f ππππ⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 正确,故选:AD.9.【多选题】(2021·重庆市蜀都中学校高三月考)已知函数()f x 满足x R ∀∈,有()(6)f x f x =-,且(2)(2)f x f x +=-,当[1,1]x ∈-时,)()lnf x x =-,则下列说法正确的是( )A .(2021)0f =B .(2020,2022)x ∈时,()f x 单调递增C .()f x 关于点(1010,0)对称D .(1,11)x ∈-时,方程()sin 2f x x π⎛⎫=⎪⎝⎭的所有根的和为30【答案】CD 【解析】利用已知条件可知()f x 在[1,1]x ∈-上为奇函数且单调递减,关于21x k =+、(2,0)k ,k Z ∈对称,且周期为4,即可判断各选项的正误.【详解】由题设知:()))()f x x x f x -===-=-,故()f x 在[1,1]x ∈-上为奇函数且单调递减,又(2)(4)(2)f x f x f x +=-=-,即关于21x k =+、(2,0)k ,k Z ∈对称,且最小周期为4,A :(2021)(50541)(1)1)0f f f =⨯+==-≠,错误;B :(2020,2022)x ∈等价于(0,2)x ∈,由上易知:(0,1)上递减,(1,2)上递增,故()f x 不单调,错误;C :由上知:()f x 关于(2,0)k 对称且k Z ∈,所以()f x 关于(1010,0)对称,正确;D :由题意,只需确定()f x 与sin 2xy π=在(1,11)x ∈-的交点,判断交点横坐标的对称情况即可求和,如下图示,∴共有6个交点且关于5x =对称,则16253410x x x x x x +=+=+=,∴所有根的和为30,正确.故选:CD10.(2021·浙江杭州市·杭州高级中学高三其他模拟)设函数sin 3xy π=在[,1]t t +上的最大值为()M t ,最小值为()N t ,则()()M t N t -在3722t ≤≤上最大值为________.【答案】1【解析】依题意可得函数在39,22⎡⎤⎢⎥⎣⎦上单调递减,则39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦,所以()()cos 36t M t N t ππ⎛⎫-=-+⎪⎝⎭,即可求出函数的最大值;【详解】解:函数sin3xy π=的周期为6,函数sin3xy π=在39,22⎡⎤⎢⎥⎣⎦上单调递减,当3722t ≤≤时,39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦(1)()()sinsin2cos sin cos 3336636tt t t M t N t πππππππ+⎛⎫⎛⎫⎛⎫-=-=+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3722t ≤≤,所以243363t ππππ≤+≤,所以11cos 362t ππ⎛⎫-≤+≤-⎪⎝⎭所以1()()12M t N t ≤-≤当52t =时取最大值1故答案为:11.(2021·全国高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A 【解析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .2.(2021·全国高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( )练真题A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.3.(2019年高考全国Ⅰ卷文)函数f (x )=在的图象大致为( )A .B .C .D .【答案】D2sin cos ++x xx x[,]-ππ【解析】由,得是奇函数,其图象关于原点对称,排除A .又,排除B ,C ,故选D .4.(2020·全国高考真题(理))设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+()f x 22π1π42π2(1,π2π()2f ++==>2π(π)01πf =>-+5.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.6.(2018·北京高考真题(理))设函数f (x )=cos(ωx ―π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为f (x )≤f (π4)对任意的实数x 都成立,所以f (π4)取最大值,所以π4ω―π6=2k π(k ∈Z ),∴ω=8k +23(k∈Z ),因为ω>0,所以当k =0时,ω取最小值为23.。

2022年高考数学核心考点专题训练专题8 函数的图象及应用(含解析)

2022年高考数学核心考点专题训练专题8 函数的图象及应用(含解析)

2022年高考数学核心考点专题训练专题8函数的图象及应用一、单选题(本大题共10小题,共50.0分)1.设函数f(x)的导函数为f'(x),若f(x)为偶函数,且在(0,1)上存在极大值,则f'(x)的图象可能为( )A. B. C. D.2.设函数f(x)=xln1+x1−x,则函数f(x)的图象可能为( )A. B.C. D.3.已知函数f x=8x−4−e,x≤1−lnx,x>1,记g x=f x−ex−a,若g x存在3个零点,则实数a的取值范围是()A.−2e,−32eB.−2e,−eC.−32e,−eD.−e,−12e4.已知如下六个函数:y=x,y=x2,y=lnx,y=2x,y=sinx,y=cosx,从中选出两个函数记为f x和g x,若F x=f x+g x的图像如图所示,则F x=A.x2+cosxB.x2+sinxC.2x+cosxD.2x+sinx5.如图,函数f x的图象为两条射线CA,CB组成的折线,如果不等式f x≥x2−a的解集中有且仅有1个整数,那么a取值范围是().A.a|−2≤a<0B.a|−2<a<0C.a|0≤a<1D.a|−2≤a<16.已知函数f(x)=2x|log2x|x≤0x>0,若a<b<c,且满足f(a)=f(b)=f(c),则abc的取值范围为()A.(−∞,−1]B.(−∞,0]C.[−2,0]D.[−4,0]7.如图所示,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l // l1与半圆相交于F,G 两点,与三角形ABC两边相交于F,D两点,设弧FG的x(0<x<π),y=EB+BC+CD,若l从l1平行移动带l2,则函数y=f(x)图象大致是()A. B. C. D.8.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图像大致为A. B. C. D.9.设f(x)是定义在R上的函数,g(x)=f(x−1).若函数g(x)满足下列条件:①g(x)是偶函数;②g(x)在区间[0,+∞)上是增函数;③g(x)有一个零点为2.则不等式(x+1)f(x)>0的解集是A.(−3,−1)∪(1,+∞)B.(1,+∞)C.(−∞,−3)∪(1,+∞)D.(−∞,−1)∪(1,+∞)10.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=4−x−1,g(x)=x2+2x,x<0log2(x+1),x≥0,若g(f(a))≤3,则实数a的取值范围为()A.−12,12B.−3,−2∪0,12C.−12,−2∪0,8D.−2,8二、单空题(本大题共4小题,共20.0分)11.若函数y=f(x)图象上不同两点M,N关于原点对称,则称点对[M,N]是函数y=f(x)的一对“和谐点对”(点对[M,N]与[N,M]看作同一对“和谐点对”).已知函数f(x)=e x,x<0,x2−4x,x>0,则此函数的“和谐点对”有_______对.12.已知函数f(x)=|x−1|+|x+1|−12|x|,若函数g(x)=f(x)−b恰有四个零点,则实数b的取值范围是________.13.已知函数f(x)=|log2|1−x||(a>0,且a≠1),若x1<x2<x3<x4,且f x1=f x2=f x3=f x4,则1x1+1x2+1x3+1x4=__________.14.函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=≤x≤2)−1,(x>2),若关于x的方程[f(x)]2+ af(x)+b=0,a,b∈R,有且仅有6个不同实数根,则实数a的取值范围是_____________.三、解答题(本大题共3小题,共30分)15.已知函数f x=sinωx+φ+bω>0,0<φ<π的图象两相邻对称轴之间的距离是π2,若将f x的图象先向右平移π3个单位长度,再向上平移2个单位长度后,所得图象关于y轴对称且经过坐标原点.(1)求f x(2)若对任意x∈f x2−af x+a+1≤0恒成立,求实数a的取值范围.16.已知二次函数f(x)满足f(x+1)−f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[−1,1]上,函数y=f(x)的图象恒在直线y=2x+m的图象上方,试确定实数m的取值范围.17.已知①函数f(x)=3sinωxcosωx+cos2ωx(ω>0),周期是π2;②函数f(x)=Asin(ωx+φ)+k(A> 0,ω>0,|φ|<π2,k∈R)的图像如图所示;在以上两个条件中选择一个解答下列问题.(注:如果选择多个条件分别进行解答,则按第一个解答进行计分.)(1)求f(x)的解析式,以及x∈−π12f(x)的值域;(2)将f(x)图像上所有点的横坐标扩大到原来的2倍,纵坐标不变,再向左平移π3个单位,最后将整个函数图像向上平移32个单位后得到函数g(x)的图像,若|g(x)−m|<1成立的充分条件是0≤x≤5π12,求m的取值范围.专题8函数的图象及应用一、单选题(本大题共10小题,共50.0分)18.设函数f(x)的导函数为f'(x),若f(x)为偶函数,且在(0,1)上存在极大值,则f'(x)的图象可能为( )A. B. C. D.【答案】C【解析】解:根据题意,若f(x)为偶函数,则其导数f'(x)为奇函数,分析选项:可以排除B、D,又由函数f(x)在(0,1)上存在极大值,则其导数图象在(0,1)上存在零点,且零点左侧导数值符号为正,右侧导数值符号为负,分析选项:可以排除A,C符合;故选:C.19.设函数f(x)=xln1+x1−x,则函数f(x)的图象可能为( )A. B.C. D.【答案】B【解析】解:函数f(x)=xln1+x1−x的定义域为(−1,1),由f(−x)=−xln1−x1+x=xln1+x1−x=f(x),得f(x)为偶函数,排除A,C;又f(12)=12ln1+121−12=12ln3>0,排除D.故选:B.20.已知函数f x=8x−4−e,x≤1−lnx,x>1,记g x=f x−ex−a,若g x存在3个零点,则实数a的取值范围是()A.−2e,−32eB.−2e,−eC.−32e,−eD.−e,−12e【答案】C【解析】解:结合函数f(x)={|8x−4|−e,x⩽1−1nx,x>1与y=ex+a的图像,若g x=f x−ex−a存在三个零点,则y=ex+a在点12,−e上方,在1,0下方∴−e<12e+ae+a<0解得:−32e<a<−e故选C.21.已知如下六个函数:y=x,y=x2,y=lnx,y=2x,y=sinx,y=cosx,从中选出两个函数记为f x和g x,若F x=f x+g x的图像如图所示,则F x=A.x2+cosxB.x2+sinxC.2x+cosxD.2x+sinx【答案】D【解析】解:由图象可知,函数F(x)过定点(0,1),当x>0时,F(x)>1,为增函数,当x<0时,F(x)>0或,F(x)<0交替出现,因为y=2x的图象经过点(0,1),且当x>0时,y>1,当x<0时,0<y<1,若为y=cosx,当x=0时,y=1,2x+cosx不满足过点(0,1),所以只有当F(x)=2x+sinx才满足条件,故选:D.22.如图,函数f x的图象为两条射线CA,CB组成的折线,如果不等式f x≥x2−a的解集中有且仅有1个整数,那么a取值范围是().A.a|−2≤a<0B.a|−2<a<0C.a|0≤a<1D.a|−2≤a<1【答案】A【解析】解:f x=2x+2,x⩽0−x+2,x>0,不等式f x≥x2−a等价于a⩾x2−f x,设g(x)=x2−f(x)=x2−2x−2 ,x≤0x2+x−2 ,x>0,x≤0,g'(x)=2x−2<0,函数单调递减,x>0,g'(x)=2x+1>0,函数单调递增,又g(0)=−2,g(1)=1+1−2=0,g(−1)=1+2−2=1,要使a≥g(x)只有1个整数,那么a取值范围是−2⩽a<0.故选A.23.已知函数f(x)=2x|log2x|x≤0x>0,若a<b<c,且满足f(a)=f(b)=f(c),则abc的取值范围为()A.(−∞,−1]B.(−∞,0]C.[−2,0]D.[−4,0]【答案】B【解析】解:由函数f x=2x,x≤02x,x>0,作出函数的图象;结合函数f x=2x,x≤02x,x>0图象可得a∈−∞,0,12≤b<1<c≤2,由f(a)=f(b)=f(c)可得−log2b=log2c,从而bc=1.所以abc=a∈−∞,0.故选B.24.如图所示,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l // l1与半圆相交于F,G 两点,与三角形ABC两边相交于F,D两点,设弧FG的x(0<x<π),y=EB+BC+CD,若l从l1平行移动带l2,则函数y=f(x)图象大致是()A. B. C. D.【答案】D【解析】解:当x=0时,y=EB+BC+CD=BC=当x=π时,此时y=AB+BC+CA=3=23;当x=π3时,∠FOG=π3,三角形OFG为正三角形,此时AM=OH=在正△AED中,AE=ED=DA=1,∴y=EB+BC+CD=AB+BC+CA−(AE+AD)=32×1=23−2.如图,又当x=π3时,图中y0=13(23=>23−2.故当x=π3时,对应的点(x,y)在图中红色连线段的下方,对照选项,D正确.故选D.25.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图像大致为A. B. C. D.【答案】A【解析】【试题解析】解:最初零时刻和最后终点时刻没有变化,导数取零,排除C;总面积一直保持增加,没有负的改变量,排除B;考察A、D的差异在于两肩位置的改变是否平滑,考虑到导数的意义,判断此时面积改变为突变,产生中断,选择A.故选:A26.设f(x)是定义在R上的函数,g(x)=f(x−1).若函数g(x)满足下列条件:①g(x)是偶函数;②g(x)在区间[0,+∞)上是增函数;③g(x)有一个零点为2.则不等式(x+1)f(x)>0的解集是A.(−3,−1)∪(1,+∞)B.(1,+∞)C.(−∞,−3)∪(1,+∞)D.(−∞,−1)∪(1,+∞)【答案】A【解析】解:由g(x)=f(x−1),可得g(x+1)=f(x),即f(x)为g(x)向左平移一个单位得到.故由g(x)是偶函数,可得f(x)关于直线x=−1对称;又由g(x)在区间[0,+∞)上是增函数,可得f(x)在区间[−1,+∞)上是增函数;由g(x)有一个零点为2,可得f(x)有一个零点为1,结合图象,可得f(x)>0的解集为−∞,−3∪1,+∞,f(x)<0的解集为−3,1,(x +1)f(x)>0即x +1>0f x >0或x +1<0f x <0,解得x >1或−3<x <−1,故不等式解集为(−3,−1)∪(1,+∞).故选A .27.已知函数f(x)是定义在R 上的奇函数,当x >0时,f(x)=4−x −1,g(x)=x 2+2x,x <0log 2(x +1),x ≥0,若g(f(a))≤3,则实数a 的取值范围为()A.−12,12B.−3,−2∪0,12C.−12,−2∪0,8D.−2,8【答案】C【解析】由g(x)≤3可得,当x <0时,x 2+2x⩽3,得−3⩽x <0,当x⩾0时,log 2(x +1)⩽3,得0⩽x⩽7,故g(x)≤3的解为{x|−3⩽x⩽7}∴g(f(a))≤3的解即−3≤f(a)≤7的解,函数f(x)=4−x −1,x >00, x =0−4+x +1,x <0作出f(x)的图象如下,∵f(12)=−7,f(8)=−3,∴f(−12)=7,∴当a ∈[−12,−2]∪[0,8]时,g(f(a))≤3.故选C .二、单空题(本大题共4小题,共20.0分)28.若函数y =f(x)图象上不同两点M ,N 关于原点对称,则称点对[M,N]是函数y =f(x)的一对“和谐点对”(点对[M,N]与[N,M]看作同一对“和谐点对”).已知函数f(x)=e x ,x <0,x 2−4x,x >0,则此函数的“和谐点对”有_______对.【答案】2【解析】作出函数f(x)={e x,x<0,x2−4x,x>0的图象,f(x)的“和谐点对”数可转化为y1=e x(x<0)和y2=−x2−4x(x<0)的图象的交点个数(如图).由图象知,函数f(x)有两对“和谐点对”.29.已知函数f(x)=|x−1|+|x+1|−12|x|,若函数g(x)=f(x)−b恰有四个零点,则实数b的取值范围是________.,2【解析】由题意,分段函数f x的解析式为f x=x, x⩾1−12x, 0⩽x<1+12x, −1⩽x<032x, x<−1,其图像如下图所示:由图像可知,当b∈时,方程f x=b有4个交点,此时函数g x=f x−b=0恰有四个零点.,2.30.已知函数f(x)=|log2|1−x||(a>0,且a≠1),若x1<x2<x3<x4,且f x1=f x2=f x3=f x4,则1x1+1x2+1x3+1x4=__________.【答案】2【解析】因为f(x)=|log a|x−1||a>0且a≠1,所以f(x)的图象关于x=1对称,又因为x1<x2<x3<x4且f(x1)=f(x2)=f(x3)=f(x4),所以x1<x2<1<x3<x4,故log a|x1−1|=−log a|x2−1|,−log a|x3−1|=log a|x4−1|,即(x1−1)(x2−1)=1,(x3−1)(x4−1)=1,解得x1x2=x1+x2,x3x4=x3+x4,所以1x1+1x2+1x3+1x4=x1+x2x1x2+x3+x4x3x4=1+1=2.故答案为2.31.函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=≤x≤2)−1,(x>2),若关于x的方程[f(x)]2+ af(x)+b=0,a,b∈R,有且仅有6个不同实数根,则实数a的取值范围是_____________.【答案】(−14,1)∪(−12,−14)【解析】作出f(x)的函数图象如图所示:令f(x)=t,显然,当t=0时,方程f(x)=t有三个解,当0<t<14时,方程f(x)=t有四个解,当t=14或−1<t<0时,方程f(x)=t有两解,当t≤−1或t>14时,方程f(x)=t无解.∵关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,∴关于t的方程t2+at+b=0,t∈R有两根,不妨设为t1,t2,且t1=14,0<t2<14或−1<t1<0,0<t2<14∴t1+t2∈(14,12)或者t1+t2∈(−1,14);又∵−a=t1+t2,∴a∈(−14,1)∪(−12,−14),故答案为:(−14,1)∪(−12,−14)三、解答题(本大题共3小题,共30分)32.已知函数f x=sinωx+φ+bω>0,0<φ<π的图象两相邻对称轴之间的距离是π2,若将f x的图象先向右平移π3个单位长度,再向上平移2个单位长度后,所得图象关于y轴对称且经过坐标原点.(1)求f x(2)若对任意x∈f x2−af x+a+1≤0恒成立,求实数a的取值范围.【答案】解:(1)由题意f(x)=+φ)+b(ω>0,0<φ<π),其周期为T=π2×2=π,故T=2πω=π,即得ω=2.将f(x)的图象向右平移π3个单位长度,再向上平移2个单位长度得到y=sin (2(x−π3)+φ)+b+2.即y=sin (2x+φ−2π3)+b+2,由题设条件得φ−2π3=π2+kπ,即φ=7π6+kπ, k∈Z,因为0<φ<π,当k=−1时满足条件,即φ=π6,又函数f x的图像经过坐标原点,即得sin (φ−2π3)+b+2=0,故b=−1.故f(x)=sin (2x+π6)−1.(2)因为x∈[0,π4],故2x+π6∈[π6,2π3],故sin (2x+π6)∈[12,1],f(x)∈[−12,0].设t=f(x)∈[−12,0],即t2−at+a+1⩽0恒成立.即g(t)=t2−at+a+1的最大值小于等于零即可.故满足:g(−12)⩽0g(0)⩽0,+12a+a+1⩽0+1⩽0,解得a⩽−1.故实数a的取值范围为−∞,−1.已知二次函数f(x)满足f(x+1)−f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[−1,1]上,函数y=f(x)的图象恒在直线y=2x+m的图象上方,试确定实数m的取值范围.【答案】解:(1)由f(0)=1,可设f(x)=ax2+bx+1(a≠0),故f(x+1)−f(x)=a(x+1)2+b(x+1)+1−(ax2+bx+1)=2ax+a+b,又f(x+1)−f(x)=2x,所以2a=2a+b=0,解得a=1b=−1,故f(x)=x2−x+1.(2)由题意,得x2−x+1>2x+m,即x2−3x+1>m,对x∈[−1,1]恒成立.令g(x)=x2−3x+1(x∈[−1,1]),则问题可转化为g(x)min>m.又g(x)在[−1,1]上单调递减,所以g(x)min=g(1)=−1,故m<−1.所以m的取值范围为(−∞,−1).33.已知①函数f(x)=3sinωxcosωx+cos2ωx(ω>0),周期是π2;②函数f(x)=Asin(ωx+φ)+k(A> 0,ω>0,|φ|<π2,k∈R)的图像如图所示;在以上两个条件中选择一个解答下列问题.(注:如果选择多个条件分别进行解答,则按第一个解答进行计分.)(1)求f(x)的解析式,以及x∈−π12f(x)的值域;(2)将f(x)图像上所有点的横坐标扩大到原来的2倍,纵坐标不变,再向左平移π3个单位,最后将整个函数图像向上平移32个单位后得到函数g(x)的图像,若|g(x)−m|<1成立的充分条件是0≤x≤5π12,求m的取值范围.【答案】解:选择条件 ①解答如下(1)f(x)=3sinωxcosωx+cos2ωx=32sin2ωx+12(cos2ωx+1)=sin(2ωx+π6)+12由T=2π2ω=π2,解得ω=2,所以函数f(x)=sin(4x+π6)+12因为x∈[−π12,7π24],所以−π64x+π6≤4π3,≤sin(4x+π6)+12≤32,即函数f(x)在x∈[−π12,7π24](2)将f(x)图象上所有点的横坐标扩大到原来的2倍,得y=sin(2x+π6)+12,纵坐标不变,再向左平移π3个单位,得y=sin[2(x+π3)+π6]+12=sin(2x+5π6)+12,最后将整个函数图象向上平移32个单位后,得到g(x)=sin(2x+5π6)+12+32=sin(2x+5π6)+2因为|g(x)−m|<1,所以g(x)−1<m<g(x)+1,∵|g(x)−m|<1成立的充分条件是0≤x≤5π12,∴当x∈[0,5π12]时,g(x)−1<m<g(x)+1恒成立,所以只需[g(x)−1]max<m<[g(x)+1]min,转化为求g(x)的最大值与最小值当x∈[0,5π12]时,2x+5π6∈[5π6,5π3],所以g(x)max=g(0)=12+2=52,g(x)min=g(π3)=−1+2=1,从而[g(x)−1]max=32,[g(x)+1]min=2,即32<m<2,所以m的取值范围是(32,2)选择条件 ②解答如下:(1)由己知A=32−(−12)2=1,k=32+(−12)2=12,∵T2=π3−π12=π4,∴T=π2,∴ω=2πT=4,∴f(x)=sin(4x+φ)+12,过点(π12,32),且|φ|<π2,∴4×π12+φ=π2,∴φ=π6,∴f(x)=sin(4x+π6)+12因为x∈[−π12,7π24],所以−π64x+π6≤4π3,≤sin(4x+π6)+12≤32,即函数f(x)在x∈[−π12,7π24](2)将f(x)图象上所有点的横坐标扩大到原来的2倍,得y=sin(2x+π6)+12,纵坐标不变,再向左平移π3个单位,得y=sin[2(x+π3)+π6]+12=sin(2x+5π6)+12,最后将整个函数图象向上平移32个单位后,得到g(x)=sin(2x+5π6)+12+32=sin(2x+5π6)+2,因为|g(x)−m|<1,所以g(x)−1<m<g(x)+1∵|g(x)−m|<1成立的充分条件是0≤x≤5π12,∴当x∈[0,5π12]时,g(x)−1<m<g(x)+1恒成立,所以只需[g(x)−1]max<m<[g(x)+1]min,转化为求g(x)的最大值与最小值当x∈[0,5π12]时,2x+5π6∈[5π6,5π3],所以g(x)max=g(0)=12+2=52,g(x)min=g(π3)=−1+2=1,从而[g(x)−1]max=32,[g(x)+1]min=2,即32<m<2所以m的取值范围是(32,2)。

2020年山东新高考函数及其应用精选模拟试题(含解析)

2020年山东新高考函数及其应用精选模拟试题(含解析)

专题4 函数及其应用1.关于函数图象的考查: (1)函数图象的辨识与变换;(2)函数图象的应用问题,运用函数图象理解和研究函数的性质,数形结合思想分析与解决问题的能力; 2.关于函数性质的考查:以考查能力为主,往往以常见函数(二次函数、指数函数、对数函数)为基本考察对象,以绝对值或分段函数的呈现方式,与不等式相结合,考查函数的基本性质,如奇偶性、单调性与最值、函数与方程(零点)、不等式的解法等,考查数学式子变形的能力、运算求解能力、等价转化思想和数形结合思想.其中函数与方程考查频率较高.涉及函数性质的考查;3.常见题型,除将函数与导数相结合考查外,对函数独立考查的题目,不少于两道,近几年趋向于稳定在选择题、填空题,易、中、难的题目均有可能出现.预测2020年将保持对数形结合思想的考查,主要体现在对函数图象、函数性质及其应用的考查,客观题应特别关注分段函数相关问题,以及与数列、平面解析几何、平面向量、立体几何的结合问题.主观题依然注意与导数的结合.一、单选题1.(2020届山东省潍坊市高三下学期开学考试)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073D .10932.(2020届山东省高考模拟)若a ,b ,c 满足23a =,2log 5b =,32c =.则( ) A .c a b <<B .b c a <<C .a b c <<D .c b a <<3.(2020·山东高三模拟)函数1()f x ax x=+在(2,)+∞上单调递增,则实数a 的取值范围是( ) A .1,4⎛⎫+∞⎪⎝⎭B .1,4⎡⎫+∞⎪⎢⎣⎭C .[1,)+∞D .1,4⎛⎤-∞ ⎥⎝⎦4.(2020·山东高三模拟)已知15455,log 5,log 2a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .c b a >>5.(2020·山东高三模拟)对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3xf x =的两对“线性对称点”,则c 的最大值为( ) A .3log 4B .3log 41+C .43D .3log 41-6.(2020届山东省高考模拟)函数()()22ln xxf x x -=+的图象大致为( )A .B .C .D .7.(2020·山东高三下学期开学)设133a =,13log 2b =,1213c ⎛⎫= ⎪⎝⎭,则( )A .b a c <<B .c b a <<C .b c a <<D .c a b <<8.(2020届山东省潍坊市高三模拟一)若1294a ⎛⎫= ⎪⎝⎭,83log 3b =,1323c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .c b a <<B .a b c <<C .b a c <<D .c a b << 9.(2020届山东省潍坊市高三模拟一)函数()1ln 1y x x =-+的图象大致为( )A .B .C .D .10.(2020·2020届山东省淄博市高三二模)函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .11.(2020届山东省潍坊市高三模拟二)函数ln ||cos ()sin x xf x x x⋅=+在[,0)(0,]ππ-U 的图像大致为( )A .B .C .D .12.(2020届山东省六地市部分学校高三3月线考)已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图像交点为()11,x y ,()22,x y ,…,()88,x y ,则128128x x x y y y +++++++L L 的值为( )A .20B .24C .36D .4013.(2020届山东省济宁市第一中学高三二轮检测)若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .│a │>│b │14.(2020届山东省济宁市第一中学高三一轮检测)函数3cos 1()x f x x+=的部分图象大致是( ). A . B .C .D .15.(2020·2020届山东省烟台市高三模拟)函数()22xf x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3B .()1,2C .()0,3D .()0,216.(2020届山东济宁市兖州区高三网络模拟考)已知函数()x xg x e e -=-,()()f x xg x =,若53,,(3)22⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭a fb fc f ,则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a17.(2020届山东省淄博市部分学校高三3月检测)已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)18.(2020届山东省济宁市第一中学高三二轮检测)已知正项等比数列{}n a 满足:2853516,20a a a a a =+=,若存在两项,m n a a 32m n a a =,则14m n+的最小值为 A .34B .910C .32D .9519.(2020·山东滕州市第一中学高三3月模拟)已知1(,1)x e -∈,ln a x =,ln 1()2x b =,ln xc e =,则,,a b c的大小关系为( )A .c b a >>B .b c a >>C .a b c >>D .b a c >>20.(2020届山东省泰安市肥城市一模)若a ,b ,c 满足23a =,2log 5b =,32c =.则( ) A .c a b <<B .b c a <<C .a b c <<D .c b a << 21.(2020届山东省泰安市肥城市一模)对数函数且与二次函数在同一坐标系内的图象可能是( )A .B .C .D .22.(2020·山东滕州市第一中学高三3月模拟)函数()()()2sin xx e e x f x x eππ-+=-≤≤的图象大致为( )A .B .C .D .23.(2020届山东省泰安市肥城市一模)函数2log y x x =-的图象大致是( )A .B .C .D .24.(2020届山东省泰安市肥城市一模)已知函数31(0)()2(0)x a x f x x x -⎧+≤=⎨+>⎩,若((1))18f f -=,那么实数a的值是( )A .4B .1C .2D .3二、多选题25.(2020届山东省淄博市部分学校高三3月检测)函数()f x 在[,]a b 上有定义,若对任意12,[,]x x a b ∈,有[]12121()()()22x x f f x f x +≤+则称()f x 在[,]a b 上具有性质P .设()f x 在[1,3]上具有性质P ,则下列说法错误的是:( )A .()f x 在[1,3]上的图像是连续不断的;B .2()f x 在上具有性质P ;C .若()f x 在2x =处取得最大值1,则()1f x =,[1,3]x ∈;D .对任意[]1234,,,1,3x x x x ∈,有[]123412341()()()+()+()44x x x x f f x f x f x f x +++≤+26.(2020·山东高三模拟)定义在R 上的奇函数()f x 满足(3)()f x f x -=-,当[0,3]x ∈时,2()3f x x x =-,下列等式成立的是( )A .(2019)(2020)(2021)f f f +=B .(2019)(2021)(2020)f f f +=C .2(2019)(2020)(2021)f f f +=D .(2019)(2020)(2021)f f f =+27.(2020届山东省潍坊市高三模拟二)若104a =,1025b =,则( ) A .2a b +=B .1b a -=C .281g 2ab >D .lg6b a ->28.(2020届山东省烟台市高三模拟)下列函数中,既是偶函数,又在(0,)+∞上单调递增的是( )A .3)y x =B .e e x x y -=+C .21y x =+D .cos 3y x =+29.(2020届山东省济宁市第一中学高三一轮检测)已知函数()y f x =是R 上的偶函数,对于任意x ∈R ,都有(6)()(3)f x f x f +=+成立,当12,[0,3]x x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,给出下列命题,其中所有正确命题为( ). A .(3)0f =B .直线6x =-是函数()y f x =的图象的一条对称轴C .函数()y f x =在[9,6]--上为增函数D .函数()y f x =在[9,9]-上有四个零点30.(2020·山东高三下学期开学)定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B.⎣⎦是()f x 的一个“完美区间” C .()f x 的所有“完美区间”的“复区间长度”的和为3D .()f x 的所有“完美区间”的“复区间长度”的和为3+31.(2020届山东省菏泽一中高三2月月考)已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( ) A .1MB .2MC .3MD .4M32.(2020届山东省菏泽一中高三2月月考)德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” ()1,0,R x Qy f x x C Q∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为( ) A .函数()f x 是偶函数B .1x ∀,2R xC Q ∈,()()()1212f x x f x f x +=+恒成立C .任取一个不为零的有理数T ,()()f x T f x +=对任意的x ∈R 恒成立D .不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形 33.(2020届山东省青岛市高三上期末)已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( ) A .1M B .2M C .3M D .4M三、填空题34.(2020届山东省潍坊市高三下学期开学考试)已知函数()f x 为奇函数,且当0x >时,()21f x x x=+,则()1f -=______.35.(2020届山东省菏泽一中高三2月月考)2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间T(单位:年)的衰变规律满足573002T N N -=⋅(0N 表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的______;经过测定,良渚古城遗址文物样本中碳14的质量是原来的37至12,据此推测良渚古城存在的时期距今约在5730年到______年之间.(参考数据:lg 20.3≈,lg 70.84≈,lg30.48≈)36.(2020·山东滕州市第一中学高三3月模拟)已知函数2,0()(2),0x x f x f x x ⎧<=⎨-≥⎩,则()2log 3f =________.37.(2020届山东省济宁市第一中学高三一轮检测)已知定义域为R 的函数()f x 满足:当(1,1]x ∈-时,2,10()122,01x xx f x x x -⎧--<≤⎪=+⎨⎪-<≤⎩,且(2)()f x f x +=对任意的x ∈R 恒成立,若函数()()(1)g x f x m x =-+在区间[1,5]-内有6个零点,则实数m 的取值范围是________.38.(2020届山东省高考模拟)已知函数()22,,x x af x x x a⎧≤=⎨>⎩,若1a =,则不等式()2f x ≤的解集为__________,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是__________. 39.(2020届山东省六地市部分学校高三3月线考)对于函数()f x ,若在定义域内存在实数0x 满足()()00f x f x -=-,则称函数()f x 为“倒戈函数”.设()321x f x m =+-(m R ∈,且0m ≠)是定义在[﹣1,1]上的“倒戈函数”,则实数m 的取值范围是_____.40.(2020届山东济宁市兖州区高三网络模拟考)已知函数()(](]2,2132,4x f x x x ∈-=--∈⎪⎩,满足()()33f x f x -=+,若在区间[]4,4-内关于x 的方程()()35f x k x =-恰有4个不同的实数解,则实数k 的取值范围是___________.41.(2020届山东省潍坊市高三模拟一)已知集合{}001A x x =<<.给定一个函数()y f x =,定义集合{}1(),n n A y y f x x A -==∈ 若1n n A A φ-=I 对任意的*n N ∈成立,则称该函数()y f x =具有性质“ϕ”(I)具有性质“ϕ”的一个一次函数的解析式可以是 _____; (Ⅱ)给出下列函数:①1y x =;②21y x =+;③cos()22y x π=+,其中具有性质“ϕ”的函 数的序号是____.(写出所有正确答案的序号)一、单选题1.(2020届山东省潍坊市高三下学期开学考试)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073 D .1093【答案】D 【解析】设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D. 2.(2020届山东省高考模拟)若a ,b ,c 满足23a =,2log 5b =,32c =.则( ) A .c a b << B .b c a <<C .a b c <<D .c b a <<【答案】A 【解析】Q 23a =,12232<<,∴12a <<, Q 22log 5log 4b =>,∴2b >, Q 32c =,01323<<,∴01c <<, ∴c a b <<,故选:A.3.(2020·山东高三模拟)函数1()f x ax x=+在(2,)+∞上单调递增,则实数a 的取值范围是( ) A .1,4⎛⎫+∞⎪⎝⎭B .1,4⎡⎫+∞⎪⎢⎣⎭C .[1,)+∞D .1,4⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】当0a ≤时,函数1()f x ax x=+在(2,)+∞上单调递减, 所以0a >,1()f x axx =+的递增区间是⎫+∞⎪⎭, 所以2≥14a ≥. 故选:B.4.(2020·山东高三模拟)已知15455,log log 2a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .c b a >>【答案】A 【解析】由题知105441551,1log log 22a b =>=>=>=,551log 2log 2c =<=,则a b c >>. 故选:A.5.(2020·山东高三模拟)对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3xf x =的两对“线性对称点”,则c 的最大值为( ) A .3log 4 B .3log 41+C .43D .3log 41-【答案】D 【解析】依题意知,a 与b 为函数()3xf x =的“线性对称点”,所以333a b a b +=+=≥, 故34a b +≥(当且仅当a b =时取等号). 又+a b 与c 为函数()3xf x =的“线性对称点,所以333b c a b c a ++++=,所以3143131313a b ca b a b +++==+≤--,从而c 的最大值为3log 41-. 故选:D.6.(2020届山东省高考模拟)函数()()22ln x xf x x -=+的图象大致为( )A .B .C .D .【答案】B 【解析】()f x Q 定义域为{}0x x ≠,且()()()()22ln 22ln x x x x f x x x f x ---=+-=+= ()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C . 本题正确选项:B7.(2020·山东高三下学期开学)设133a =,13log 2b =,1213c ⎛⎫= ⎪⎝⎭,则( )A .b a c <<B .c b a <<C .b c a <<D .c a b <<【答案】C 【解析】 因为1331a =>,13log 20b =<,121013c ⎛⎫<=< ⎪⎝⎭,所以b c a <<.故选:C8.(2020届山东省潍坊市高三模拟一)若1294a ⎛⎫= ⎪⎝⎭,83log 3b =,1323c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c <<C .b a c <<D .c a b <<【答案】D 【解析】9342a ==,33322222log 3log 3log 2log 221b a ==>==>13213c ⎛⎫=< ⎪⎝⎭,故c a b <<,故选D.9.(2020届山东省潍坊市高三模拟一)函数()1ln 1y x x =-+的图象大致为( )A .B .C .D .【答案】A 【解析】由题意,函数()1ln(1)fx x x =-+,可得()11ln 20f =->,可排除C 、D , 又由()222111ln 1011f e e e e -=-=-<--,排除B ,故选A. 10.(2020·2020届山东省淄博市高三二模)函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .【答案】B 【解析】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B .11.(2020届山东省潍坊市高三模拟二)函数ln ||cos ()sin x xf x x x⋅=+在[,0)(0,]ππ-U 的图像大致为( )A .B .C .D .【答案】D 【解析】 因为ln ||cos ()()sin x xf x f x x x⋅-=-=-+,所以()f x 为奇函数,关于原点对称,故排除A ,又因为()10f ±=,()02f π±=,()03f π>,()0f π<,故排除B 、C ,故选:D .12.(2020届山东省六地市部分学校高三3月线考)已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图像交点为()11,x y ,()22,x y ,…,()88,x y ,则128128x x x y y y +++++++L L 的值为( )A .20B .24C .36D .40【答案】D 【解析】由于()f x 满足(2)(2)6f x f x -++=,当0x =时,()23f =,所以()f x 关于()2,3中心对称.由于()325315()3222x x g x x x x -+-===+---,所以()g x 关于()2,3中心对称.故()f x 和()g x 都关于()2,3中心对称.所以()f x 与()g x 的图像交点()11,x y ,()22,x y ,…,()88,x y ,两两关于()2,3对称.所以128128x x x y y y +++++++L L 828340=⨯+⨯=.故选:D.13.(2020届山东省济宁市第一中学高三二轮检测)若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C 【解析】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .14.(2020届山东省济宁市第一中学高三一轮检测)函数3cos 1()x f x x+=的部分图象大致是( ). A . B .C .D .【答案】A 【解析】根函数()f x 是奇函数,排除D ,根据x 取非常小的正实数时()0f x >,排除B ,x π=是满足310cosx +<的一个值,故排除C ,故选:A .15.(2020·2020届山东省烟台市高三模拟)函数()22xf x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3 B .()1,2 C .()0,3 D .()0,2【答案】C 【解析】由题,显然函数()22xf x a x=--在区间()1,2内连续,因为()f x 的一个零点在区间()1,2内,所以()()120f f <,即()()22410a a ----<,解得0<<3a ,故选:C16.(2020届山东济宁市兖州区高三网络模拟考)已知函数()x xg x e e -=-,()()f x xg x =,若53,,(3)22⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭a fb fc f ,则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a【答案】C 【解析】依题意,有()()g x g x -=-,则()e e xxg x -=-为奇函数,且在R 上单调递增,所以()f x 为偶函数. 当0x >时,有()(0)g x g >,任取120x x >>,则()()120g x g x >>,由不等式的性质可得()()11220x g x x g x >>, 即()()120f x f x >>,所以,函数()f x 在(0)+∞,上递增, 因此,355(3)222f f f f ⎛⎫⎛⎫⎛⎫<-=<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:C .17.(2020届山东省淄博市部分学校高三3月检测)已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞) D .[1,+∞)【答案】C 【解析】分析:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图像(将(0)xe x >去掉),再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a =--与曲线()y f x =有两个交点,从而求得结果.详解:画出函数()f x 的图像,xy e =在y 轴右侧的去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程()f x x a =--有两个解, 也就是函数()g x 有两个零点, 此时满足1a -≤,即1a ≥-,故选C.18.(2020届山东省济宁市第一中学高三二轮检测)已知正项等比数列{}n a 满足:2853516,20a a a a a =+=,若存在两项,m n a a 32m n a a =,则14m n+的最小值为 A .34B .910C .32D .95【答案】A 【解析】因为数列{}n a 是正项等比数列,28516a a a =,3520a a +=,所以2285516a a a a ==,516a =,34a =,所以253a a q =,2q =,451a a q =,11a =,1112n n n a a q --==,因为32m n a a =,所以1110222m n --=,12m n +=,()()()414114112125n m mn m n mn m n +=++=++ ()()431124520,0n mm n m n ??>>,当且仅当2n m =时“=”成立,所以14m n +的最小值为34,故选A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的图象一、题点全面练1.函数f (x )=x e-|x |的图象可能是( )解析:选C 因为函数f (x )的定义域为R ,f (-x )=-f (x ),所以函数f (x )为奇函数,排除A 、B ;当x ∈(0,+∞)时,f (x )=x e -x,因为e -x>0,所以f (x )>0,即f (x )在x ∈(0,+∞)时,其图象恒在x 轴上方,排除D ,故选C.2.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln x +a ,x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2解析:选C 由图象可得-a +b =3,ln(-1+a )=0,得a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln x +2,x ≥-1,故f (-3)=2×(-3)+5=-1,故选C.3.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )解析:选B 函数y =f (x )的图象与函数y =f (a -x )的图象关于直线x =a2对称,令a =2可得与函数y =ln x 的图象关于直线x =1对称的是函数y =ln(2-x )的图象.故选B.4.已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( )解析:选D 在坐标平面内画出函数y =f (x )的图象,将函数y =f (x )的图象向右平移1个单位长度,得到函数y =f (x -1)的图象,因此A 正确;作函数y =f (x )的图象关于y 轴的对称图形,得到y =f (-x )的图象,因此B 正确;y =f (x )在[-1,1]上的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,C 正确;y =f (|x |)的定义域是[-1,1],且是偶函数,当0≤x ≤1时,y =f (|x |)=x ,这部分的图象不是一条线段,因此选项D 不正确.故选D.5.若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( )解析:选C 要想由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后向左平移一个单位长度得到y =-f (x +1)的图象,根据上述步骤可知C 正确.6.(2019·汉中模拟)函数f (x )=⎝⎛⎭⎪⎫21+e x -1·sin x 的图象大致为( )解析:选 A ∵f (x )=⎝⎛⎭⎪⎫21+e x -1·sin x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1·sin(-x )=-⎝ ⎛⎭⎪⎫2e x1+e x -1·sin x =⎝ ⎛⎭⎪⎫21+e x -1·sin x =f (x ),∴函数f (x )为偶函数,故排除C 、D ;当x =2时,f (2)=⎝⎛⎭⎪⎫21+e 2-1·sin 2<0,故排除B ,选A.7.若函数f (x )=(ax 2+bx )e x的图象如图所示,则实数a ,b 的值可能为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-2解析:选B 令f (x )=0,则(ax 2+bx )e x=0,解得x =0或x =-ba ,由图象可知,-b a>1,又当x >-b a时,f (x )>0,故a >0,结合选项知a =1,b =-2满足题意,故选B.8.定义max{a ,b ,c }为a ,b ,c 中的最大值,设M =max{2x,2x -3,6-x },则M 的最小值是( )A .2B .3C .4D .6解析:选C 画出函数M =max{2x,2x -3,6-x }的图象如图中实线部分所示,由图可得,函数M 在点A (2,4)处取得最小值,最小值为4,故选C.9.已知在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),该函数的图象与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )解析:选B 由题意知,当-1<t <0时,S 越来越大,但增长的速度越来越慢.当t >0时,S 的增长速度会越来越快,故在S 轴右侧图象的切线斜率逐渐增大,选B.10.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集为________.解析:令y =log 2(x +1),作出函数y =log 2(x +1)图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +1,得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.答案:{x |-1<x ≤1}11.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.解析:如图,作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).答案:[-1,+∞)12.已知函数f (x )=|x |(x -a ),a >0. (1)作出函数f (x )的图象; (2)写出函数f (x )的单调区间;(3)当x ∈[0,1]时,由图象写出f (x )的最小值. 解:(1)f (x )=⎩⎪⎨⎪⎧x x -a ,x ≥0,-xx -a ,x <0,其图象如图所示.(2)由图知,f (x )的单调递增区间是(-∞,0),⎝ ⎛⎭⎪⎫a 2,+∞;单调递减区间是⎝ ⎛⎭⎪⎫0,a2.(3)由图象知,当a2>1,即a >2时,f (x )min =f (1)=1-a ;当0<a2≤1,即0<a ≤2时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=-a 24.综上,f (x )min =⎩⎪⎨⎪⎧-a 24,0<a ≤2,1-a ,a >2.二、专项培优练(一)易错专练——不丢怨枉分1.(2019·大同质检)已知函数f (2x +1)是奇函数,则函数y =f (2x )的图象关于下列哪个点成中心对称( )A .(1,0)B .(-1,0)C.⎝ ⎛⎭⎪⎫12,0D.⎝ ⎛⎭⎪⎫-12,0 解析:选C 因为f (2x +1)是奇函数,所以图象关于原点成中心对称,而f (2x )的图象是由f (2x +1)的图象向右平移12个单位得到的,故f (2x )关于⎝ ⎛⎭⎪⎫12,0成中心对称. 2.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).3.(2019·合肥质检)对于函数f (x ),如果存在x 0≠0,使得f (x 0)=-f (-x 0),则称(x 0,f (x 0))与(-x 0,f (-x 0))为函数图象的一组奇对称点.若f (x )=e x-a (e 为自然对数的底数)的图象上存在奇对称点,则实数a 的取值范围是________.解析:依题意,知f (x )=-f (-x )有非零解,由f (x )=-f (-x )得,e x-a =-(e -x-a ),即a =12⎝⎛⎭⎪⎫e x+1ex >1(x ≠0),所以当f (x )=e x -a 存在奇对称点时,实数a 的取值范围是(1,+∞).答案:(1,+∞)(二)素养专练——学会更学通4.[数学建模]如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t (0≤t ≤a )经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分),若函数y =f (x )的大致图象如右图所示,那么平面图形的形状不可能是( )解析:选C 由y =f (x )的图象可知面积递增的速度先快后慢,对于选项C ,后半程是匀速递增,所以平面图形的形状不可能是C.5.[直观想象]已知函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -1,x >0,若方程f (x )=x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0]B .[0,1)C .(-∞,1)D .[0,+∞)解析:选C 当x >0时,f (x )=f (x -1),所以f (x )是以1为周期的函数.又当0<x ≤1时,x -1≤0,所以f (x )=f (x -1)=21-x-1=2⎝ ⎛⎭⎪⎫12x-1.方程f (x )=x +a 的根的个数可看成是两个函数y =f (x )与y =x +a 的图象的交点个数,画出函数的图象,如图所示,由图象可知实数a 的取值范围是(-∞,1).(三)难点专练——适情自主选6.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+a x,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围. 解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x(x ≠0).(2)g (x )=f (x )+a x =x +a +1x ,∴g ′(x )=1-a +1x2.∵g (x )在(0,2]上为减函数, ∴1-a +1x2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立, ∴a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞). 7.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,求a 的取值范围.解:不等式4a x -1<3x -4等价于ax -1<34x -1. 令f (x )=ax -1,g (x )=34x -1,当a >1时,在同一坐标系中作出两个函数的图象如图(1)所示,由图知不满足条件; 当0<a <1时,在同一坐标系中作出两个函数的图象如图(2)所示,当x ≥2时,f (2)≤g (2), 即a2-1≤34×2-1, 解得a ≤12,所以a 的取值范围是⎝ ⎛⎦⎥⎤0,12.。

相关文档
最新文档