UF(超滤)操作说明书资料

合集下载

超滤操作手册

超滤操作手册

一、超滤系统简介超滤(UF)超滤是一种膜分离技术,其膜为多孔不对称结构。

过滤过程是一抹两侧压差为驱动力,以机械筛分原理为基础的一种溶液分离过程,使用压力通常为0.03~0.6MPa,筛分孔径从0.005~0.1μm,截流分子量为1000~500000道尔顿左右。

诺芮特超滤膜我公司选用的是荷兰诺瑞芮特的外置错流管式超滤膜,型号:38CRH-XLTF5385。

生化池的渗滤液通过外置管式超滤膜实现泥水分离,直接得到高质量的超滤产水,浓水回流至生化池。

该管式膜以其优异的强度、PVDF裁量的耐污染性和运行维护简便性得到认可,设计通量高达70~100L/(m2?h),过滤精度可达30nm,8mm的大通道可以将污泥有效截留并且不会造成膜管堵塞。

膜的高效截留作用使得生化池内的污泥浓度可高达25g/L,微生物菌群活性及微生物降解效率大大提高,因此废水中的绝大多数难降解有机物得以有效去除,特别适合于垃圾渗滤液等高浓度污水的深度处理。

外置式管式膜生物反应器(简称TMBR)是一种主要针对垃圾渗滤液等高浓度浓水处理的MBR工艺,主要由生化系统和外置式管式超滤膜系统组成。

在外置式膜生物反应器中生物反应器与膜单元相对独立,通过混合液循环泵使得处理水通过膜组件后外排,其中的生物反应器与膜分离装置之间的相互干扰较小。

目前垃圾渗沥液处理中采用的外置式膜生化反应器,超滤膜一般均选用错流式管式超滤膜。

即循环泵为混合液(污泥)提供一定的流速(3.5-5m/s),使混合液在管式膜中形成紊流状态,避免污泥在膜表面沉积。

错流过滤与传统全流过滤不同,传统过滤是将溶液垂直通过过滤介质来除去其中的悬浮固体,所有的液体在通过滤媒后由同一出口流出。

此类过滤装置包括袋式过滤器,砂滤等,粗过滤法只能去除超过1um的不溶性颗粒。

传统过滤中被截留的物质积累在过滤介质上,必须定期清洗更换介质。

薄膜分离系统可以去除小颗粒及溶盐其原理是:加压的原液平行通过薄膜表面,部分的水流通过薄膜,被截留的颗粒在剩余的水流中浓度越来越高。

UF操作手册

UF操作手册

中空纤维超滤装置操作维护手册1、超滤工作原理中空纤维超滤膜分离技术是一种广泛应用于溶液和气体物质分离、浓缩和提纯的分离技术。

它利用具有选择透过能力的薄膜做分离介质,膜壁密布微孔,原液在一定压力下通过膜的一侧,溶剂及小分子溶质透过膜壁为滤出液,而较大分子的溶质被膜截留,从而达到物质分离及浓缩的目的。

膜分离过程为动态过滤过程,大分子溶质被膜壁阻隔,随浓缩液流出膜组件,膜不易被堵塞,可连续长期使用。

过滤过程可在常温、低压下运行,无相态变化,高效节能。

中空纤维膜是分离膜的一种重要形式。

在单位体积膜组件中,中空纤维膜的有效膜面积最大,过滤分离效率高,容易清洗,结构简单,操作方便,在生产过程中不产生二次污染。

该结构是中空纤维膜结构,由纤维挤压形成。

这种纤维具有非对称结构且细如发丝。

数百万支纤维形成一束,将等长的多孔塑料管插入束中作给水分布器。

纤维束两端用环氧树脂封装,一头密闭,一头开口形成产水流道。

中空纤维膜采用进口聚砜材质膜元件,外压式结构,化学稳定性优越,耐氧化剂能力强,亲水性好,污堵后容易清洗恢复。

原水经前级过滤后进入中空纤维膜元件,产水由中空纤维膜中心出水孔流出,浓水流出,同时带走膜表面的污染物。

超滤组件选用湖州东洋水处理设备有限公司生产的CZW-1614A中空纤维膜元件,该膜元件属外压型超滤膜,具有结构紧凑,产水量特别大,操作压力低,耐余氯侵蚀性好,适用PH范围广的优点。

超滤膜元件为PS材质,在水质处理过程中无相变,体积小,易于实行编程自控,适应范围广,无环境污染等优点。

超滤膜组件规格为:φ160×1380,截留分子量50000,单根实际产水流量≥5000l/h、25℃,设计产水流量≥1200l/h、25℃。

回收率为80-90%。

中空超滤装置性能指标表12、安装调试与运行装置的安装调试由本公司专业人员负责指导。

2.1 安装注意事项2.1.1 装置运到现场后,应置于室内通风干燥处,不得阳光直射,冬季应有保温装置,保证室温≥5℃;夏季室温不得高于40℃。

超滤操作规程-仅供参考

超滤操作规程-仅供参考

超滤系统操作规程(仅供参考)1超滤系统操作说明1.1超滤(UF)技术概述超滤是一种筛孔分离技术,超滤膜表面分布有一定形状和大小的孔,在压力作用下,溶剂水和小尺寸的溶质粒子透过膜而到达产水侧,大尺寸粒子组分被膜阻挡。

可用微孔模型来描绘超滤过程:以膜两侧的压差作为推动力,根据膜的孔径来选择分离溶液中所含的微粒或大分子。

X-Flow Aquaflex HP超滤膜的孔径最大为25nm。

超滤膜是由表面致密薄层(过滤分离层)和相对较厚的致密层的支撑层构成的不对称膜。

超滤能够有效地去除水中的悬浮物、胶体、有机大分子、细菌、微生物等杂质。

由于超滤具有优良的过滤性能,因而被广泛应用于各种水处理系统中。

1.2超滤的技术优点(1) 出水水质大幅度提高,可以去除绝大部分悬浮物、胶体、微生物、大分子有机物。

超滤产水污染指数SDI15<3。

(2) 出水水质稳定,不随时间和进水水质的变化而变化。

(3) 大幅减少后级RO膜的污染趋势,延长反渗透膜的使用寿命。

(4) 操作强度大大降低,易实现全自动控制。

(5) 大大节省占地面积。

1.3超滤装置的特性超滤(UF)装置是本系统预处理部分的关键设备,而超滤装置的核心部分为荷兰X-Flow公司生产的Aquaflex HP膜组件。

该膜组件由亲水性的聚醚砜中空纤维组成的,每一根膜组件由上千根中空纤维组成,膜组件长度为1.5m,外径220mm。

有效过滤面积为55 m2,截留分子量为150,000道尔顿。

原水在中空纤维的内部流动,而产水则是在原水流经膜的过程中逐渐由内壁向外壁透过(称为内压式),收集后,成为超滤产水从产水端排出。

被截留的悬浮物、细菌、大分子有机物、胶体等就堆积在纤维内表面,此时膜的进水侧与产水侧的压差会逐渐增加,经运行一段时间后(设计过滤时间为35min),就需要停止过滤操作,进行水力清洗(HC),反冲洗水为超滤产水。

经多次反冲洗后,可能在膜表面粘附着不易冲洗掉的污染物和微生物,此时就采用含有一定浓度的化学药剂的水进行反冲洗和浸泡,即化学加强水力清洗(CEB),以增强水力清洗效果。

荣世达uF80型3019超滤净水器使用说明

荣世达uF80型3019超滤净水器使用说明

荣世达uF80型3019超滤净水器使用说明
一、荣事达净水器使用方法
净水机使用前应严格按以下步骤进行冲洗,否则会影响净水机性能和前期制水水质。

1.将自来水龙头、自来水进水球阀、净化水龙头全部打开,冲洗15分钟直到产水清澈无泡沫为止。

冲洗过程中频繁的开关自来水龙
头(关3秒、开10秒)使水流形成脉动式的冲击,会使冲洗效果更好。

2.关闭排污水龙头,打开净化水龙头,制水5分钟后可正常使用。

二、荣事达净水器日常使用方法
1.经常顺冲洗:在日常使用自来水龙头取水的过程也就是对净水机进行了冲洗,建议在取用净化水后打开自来水龙头冲洗一下,及时将截留的污染物冲走,保持净水机较高的水通量,从而延长使用寿命。

2.反冲洗恢复产水量:如果净水机通过顺冲洗后产水量还比较小,则可以考虑对净水机进行反冲洗。

三、荣事达净水器使用注意事项
1.净水器使用后应一直保持超滤膜滤芯处于湿润状态。

如果超滤膜滤芯干化,会导致产水量急剧下降并且无法恢复。

2.超过三天不使用净水器,再次使用时应对净水器反复进行顺冲洗2-5分钟,直到净水器内的存水排尽为止。

3.在自来水停水的情况下,请先打开排污水龙头将自来水管内的泥沙、铁锈等排尽后,再打开净化水龙头使用净水。

UF(超滤)操作说明书资料

UF(超滤)操作说明书资料
油≤ 2mg/L
四 . 设备安装 设备应安装在平整度、水平较好的平面上。
五 . 设备工艺流程图(见附页) 六 . 设备安装完毕后,手动操作如下: 1. 超滤装置开启之前,必须检查经过预处理的来水是否 达到超滤装置进水指标要求,否则设备不得投入使用。 2. 检查各管路是否按工艺要求接妥,电器线路是否完 整,接线是否可靠。 3. 系统工作前,预处理必须调试合格,手动调整进水压 力为 0.07 - 0.1MPa, 手动状态使超滤设备全部充满水,把系 统气体排净,然后将系统转入自动状态。
七 . 设备自动操作如下:
1.按超滤程控启动按钮 ,启动系统,处在自动状态下的 超滤运行 ,运行包括两步 : 依次打开上排阀、产水排放阀(手
动),再开进水阀, 稍后打开产品水阀, 关闭产水排放阀 (手
动)、上排阀,手动调节进水手动阀,使流量达到系统要求,
设备进入运行状态。
2.设定运行至反洗间隔时间为 30 分钟(时间可调:由 多种因素决定。 如产水量下降 10- 20%,压力升高 10-20%,
工艺流程推荐恰当的清洗方案。
一般推荐清洗药品配方:
酸溶液 常用溶液有盐酸、 柠檬酸、草酸等,调配溶液的 PH=2-
清 洗 3,利用循环清洗或者浸泡 0.5h - 1h 后循环清洗,
对无机杂质去除效果较好。
碱溶液 常用的碱主要有有 NaOH,调配溶液的 PH=10 - 12
清 洗 左右,利用水循环清洗或者浸泡 0.5h - 1h 后循环
泵。 3)、停止反洗程序时,停止加入药剂的加药泵 3、注意问题: 1)、随时保证加药箱内加药量充足 2)、定期检查加药泵工作情况
十一 . 设备的停用贮存 1. 如设备短期贮存 1~ 3 天(根据环境温度决定) ,可不 加任何药品,在设备中注满超滤水存放即可。具体操作步骤 为将设备自动控制切换至手动,手动打开反洗进水阀,启动 反冲洗水泵,将超滤设备注满超滤水。 2. 设备长期存放 把设备清洗干净,膜组件中的残液放干净,然后根据不 同行业选用适当的防腐剂。 3. 如在冬季存放,可适当增加甘油。 一般: 0~ -5 ℃为 10%

超滤操作手册

超滤操作手册

一、超滤系统简介1.1超滤(UF)超滤是一种膜分离技术,其膜为多孔不对称结构。

过滤过程是一抹两侧压差为驱动力,以机械筛分原理为基础的一种溶液分离过程,使用压力通常为0.03~0.6MPa,筛分孔径从0.005~0.1μm,截流分子量为1000~500000道尔顿左右。

1.2诺芮特超滤膜我公司选用的是荷兰诺瑞芮特的外置错流管式超滤膜,型号:38CRH-XLT F5385。

生化池的渗滤液通过外置管式超滤膜实现泥水分离,直接得到高质量的超滤产水,浓水回流至生化池。

该管式膜以其优异的强度、PVDF裁量的耐污染性和运行维护简便性得到认可,设计通量高达70~100L/(m2•h),过滤精度可达30nm,8mm的大通道可以将污泥有效截留并且不会造成膜管堵塞。

膜的高效截留作用使得生化池内的污泥浓度可高达25g/L,微生物菌群活性及微生物降解效率大大提高,因此废水中的绝大多数难降解有机物得以有效去除,特别适合于垃圾渗滤液等高浓度污水的深度处理。

外置式管式膜生物反应器(简称TMBR)是一种主要针对垃圾渗滤液等高浓度浓水处理的MBR工艺,主要由生化系统和外置式管式超滤膜系统组成。

在外置式膜生物反应器中生物反应器与膜单元相对独立,通过混合液循环泵使得处理水通过膜组件后外排,其中的生物反应器与膜分离装置之间的相互干扰较小。

目前垃圾渗沥液处理中采用的外置式膜生化反应器,超滤膜一般均选用错流式管式超滤膜。

即循环泵为混合液(污泥)提供一定的流速(3.5-5m/s),使混合液在管式膜中形成紊流状态,避免污泥在膜表面沉积。

错流过滤与传统全流过滤不同,传统过滤是将溶液垂直通过过滤介质来除去其中的悬浮固体,所有的液体在通过滤媒后由同一出口流出。

此类过滤装置包括袋式过滤器,砂滤等,粗过滤法只能去除超过1um的不溶性颗粒。

传统过滤中被截留的物质积累在过滤介质上,必须定期清洗更换介质。

薄膜分离系统可以去除小颗粒及溶盐其原理是:加压的原液平行通过薄膜表面,部分的水流通过薄膜,被截留的颗粒在剩余的水流中浓度越来越高。

超滤使用说明书

超滤使用说明书

24T/H超滤系统说明书超滤(ULTRAFILTRATION,简称UF)是一种固液分离制程中,以中空纤维过滤膜滤除非溶解性固体的装置。

本超滤系统,其分子量滤除点(Molecular Weight Cut-off)在100,000左右,专设计用于去除原水中的微粒、细菌或悬浮物等,降低原水的浊度值。

本系统选用CREFLUX PUF-8060型膜组件8支。

PUF-8060型膜组件以高通量、高品质的外压中空纤维膜为基础,并根据其主要用途进行了结构改进,以适应较高的进水浊度和频繁的水反洗及化学清洗。

1、设计规范(1)、控制方式:全自动PLC或手动(2)、产水流量:24m3/h(3)、pH值范围:2~13(4)、工作温度:5~40°C(5)、工作压力:〈 0.3 MPa(6)、最大压差:〈 0.18 MPa2、设计规格(1)、 UF膜 CREFLUX 8支(2)、膜材料 PP聚丙烯(3)、膜型号 PUF 80603.使用前注意事项(1)、选择装设地点应可防止日晒、雨淋及通风的地方;(2)、连接管材必须是PVC或SUS#316以防止铁锈污染;(3)、检查各固定锁夹及螺丝是否松脱;(4)、送电前应将电器箱上所有开关置于OFF位置;(5)、马达运转方向测试,确认马达运转方向正确。

4. 控制原理UF系统有两种操作模式:(1)自动(2)手动(1)、自动:在自动操作模式下,系统运行受PLC程式控制,当系统发生超出预定值时,系统提供自动报警功能,让操作人员及时采取措施,以免造成系统损坏。

(2)、手动:在手动操作模式下,系统依操作者设定执行运转,当系统发生超出预定值时,系统无法提供自动停机保护功能,因此正常运转时不建议使用此模式。

UF装置运行步骤为了使UF装置持续产出满足需要的过滤水,必须满足三个条件。

它们包括:合格的进水水质,合适的反洗时间间隔,及时的化学清洗。

上面的任一条件不满足,装置将难以稳定产出满足需要的过滤水。

超滤反渗透操作说明书

超滤反渗透操作说明书

操作使用手册caozuoshiyongshouce超滤+反渗透设备北京惠源三达水处理设备有限公司Beijing Huiyuans Sinmem water treatment equiment CO .,LTD一、技术概述1.1、超滤技术概述超滤是二十世纪八十年代兴起的一项膜分离新技术,由于超滤过程是一种简单的物理分离,在操作过程中无相应变化,不添加任何化学药剂;其次超滤设备的操作比较简单,滤膜可以反复、多次使用。

因而超滤膜已应用面非常广泛,小至家用净水器,大到现代工业生产,从普通民用到高新技术领域都有不同规模的应用,甚至于在环境保护方面也有极大的使用潜力,超滤是一种最有发展前途的膜法分离技术。

超滤膜是一个压力驱动过程,其介于微滤和纳滤之间,且三者之间无明显分界线。

一般来说,超滤膜的截留相对分子质量在1000-300000之间,而相对的孔径在5-100nm之间,操作压力一般为0.05-0.5MPa,主要用于截留去除水中的悬浮物、胶体、微粒、大分子有机物、细菌和病毒等大分子物质。

超滤膜常用的有醋酸纤维素膜和聚砜膜,膜组件分为板式、管式、卷式和中空纤维膜式。

其中中空纤维膜是现代水处理生产常用膜。

在单位体积膜组件中,中空纤维膜的有效膜面积最大,过滤分离效率高,容易清洗,结构简单,操作方便,在生产过程中不产生二次污染。

超滤膜的物理结构具有不对称性,实际上可分为两层,一层是超薄活化层,约0.25μm,孔径为5.0-20.0nm,对溶液的分离起主要作用;另一层是多孔层,约75-25μm,孔径约0.4μm,具有很高的透水性,只起支撑作用。

超滤组件选用三达膜科技(北京)有限公司生产的中空纤维膜元件,该膜元件属内压型超滤膜,具有结构紧凑,产水量特别大,操作压力低,耐余氯侵蚀性好,适用PH范围广的优点。

1.2、反渗透技术概述我国自七十年代引进反渗透膜脱盐技术,至今有三十几年的历史。

随着反渗透膜元件性能的不断提高,该技术已广泛应用于电力、石油、电子、食品、饮料、医疗、制药、海水淡化等多个领域。

UF(超滤)操作说明书

UF(超滤)操作说明书

超滤装置使用说明书山东招金膜天有限责任公司一.超滤工作原理中空纤维超滤膜是以高分子材料采用特殊工艺制成的不对称膜。

它呈中空毛细管状,管壁密布微孔,在压力的作用下,原液在膜内流动,其中的溶剂或小分子物质可以透过膜,经收集而成为超滤液,而其中的高分子物质(蛋白质、核酸、多糖等)以及胶体粒子则被阻止在膜表面,被循环流动的原液带走而成为浓缩液,从而达到了物质的分离,浓缩和提纯的目的。

二.超滤的特点1、超滤过程无相转化,不需加热,常温操作,节约能源,对热敏性物质的分离尤为适宜。

超滤过程简单,配套装置少,操作运转简便,维修费用低。

2、超滤膜耐化学药品侵蚀,PH适应范围广。

超滤装置单位体积中膜面积最大,投资费用最低,请洗简单。

三.主要技术指标1、材质:聚砜2、工作压力:≤0.2MPa3、工作温度:≤45℃4、PH值:2~135、入口水质:混浊度≤2mg/L油≤2mg/L四.设备安装设备应安装在平整度、水平较好的平面上。

五.设备工艺流程图(见附页)六.设备安装完毕后,手动操作如下:1.超滤装置开启之前,必须检查经过预处理的来水是否达到超滤装置进水指标要求,否则设备不得投入使用。

2.检查各管路是否按工艺要求接妥,电器线路是否完整,接线是否可靠。

3.系统工作前,预处理必须调试合格,手动调整进水压力为0.07 - 0.1MPa,手动状态使超滤设备全部充满水,把系统气体排净,然后将系统转入自动状态。

七.设备自动操作如下:1.按超滤程控启动按钮,启动系统,处在自动状态下的超滤运行,运行包括两步:依次打开上排阀、产水排放阀(手动),再开进水阀,稍后打开产品水阀,关闭产水排放阀(手动)、上排阀,手动调节进水手动阀,使流量达到系统要求,设备进入运行状态。

2.设定运行至反洗间隔时间为30分钟(时间可调:由多种因素决定。

如产水量下降10-20%,压力升高10-20%,进水水质变化,或者反洗后通量未恢复等因素决定该时间的增减),设定时间到后超滤系统将退出运行,进入反洗过程,反洗后立即投入运行。

4040膜芯UF使用指南

4040膜芯UF使用指南

组件型号:4040不锈钢外壳超滤组件1、性能: (1)初始纯水通量: 800-1200 L/H(2) 产水浊度:< 0.1NTU(3) 悬浮物(大于2um ): 99.99%⑷TOC 去除率:20-60%(具体由有机物来源类型决定 )(5)测试条件测试溶液:非污染性水 测试温度:25 C ,PH=6.5-8.5 测试压力:0.15Mpa 单支膜回收率:95%2、规格:过滤类型及结构:内压式中空纤维 膜丝材料:亲水性聚丙烯腈(PAN截留分子量:10万道尔顿(可根据用户需要制作组件长度/直径:1090/105mm 中空纤维内/外径:1.0/1.6mm3、适用领域: 食品饮料、分离提纯、饮用水处理、反渗透预处理. .34、 适用单个模块(M/h ) : 10T/h 以下工程计算系数:系统稳定通量=设计产水量X0.95、 使用条件: 设计产水通量: (1)自来水/地下水:400-600L/h⑵地表水:300-500L/h最大耐压值:0.40 Mpa最大进水压力:0.20 Mpa (建议运行压力 0.15-0.18Mpa ) 最大透膜压差:0.20 Mpa 最大进水浊度:<3 NTU 温度使用范围:5-40 C材料L 封头不锈钢外壳分内牙分内牙 分内牙分内牙过滤液出口 原液入口图1 4040超滤膜组件膜有效面积: 2.7 m 器件外壳(食品级):ABS 组件外壳:SUS304 圭寸端胶黏剂:环氧树脂 密圭寸圈:硅橡胶 中空纤维填充量:1000根3-10万道尔顿)单支膜回收率:85-95% 单支膜回收率:80-90%PH值耐受范围:2-10瞬时抗余氯承受浓度:100PPM连续抗余氯承受浓度:5PPM运行方式:全量过滤或错流过滤6、建议清洗工艺条件(1) 顺向冲洗(正洗)顺向冲洗压力:等同进水压力顺向冲洗流量:等同进水流量顺向冲洗时间:20-60S ( 应视水源质量试验确定)(2) 纯水反冲洗反冲洗压力:0.10-0.12 Mpa反冲洗渗透速率:200-280 L/m 2.h反洗时间:20-60S反洗频率:每15-60分钟冲洗一次(视水源质量或试验确定)(3) 化学清洗化学清洗压力:0.10Mpa2化学清速率:150-200L/m .h化学清洗时间:30-60分钟或以上化学清洗频率:每15天至1个月或以上一次或TMP超过0.15Mpa(4) 消毒灭菌(微生物处理)灭菌方法①在药箱投加10-15PPm的NaCIO或1%的亚硫酸氢钠溶液②或0.5%甲醛或50PPm异噻唑啉酮的溶液灭菌频率③每周一次,长时间的停机前必须要消毒灭菌后密封保存(保护液:1%亚硫酸氢钠+30%丙三醇+69%ROK)④根据环境的不同应适时消毒灭菌。

摩恩 超滤净水器 UF1030 超滤净水器 UF1130 使用说明书

摩恩 超滤净水器 UF1030 超滤净水器 UF1130 使用说明书

尊敬的顾客:非常感谢您选用摩恩产品,本产品将在今后多年中为您提供可靠的服务。

每个摩恩产品均采用了高标准的材料和新的生产工艺技术,因而每个摩恩产品都具有极好的耐用性。

我们确信在今后多年中,您都可以享受摩恩产品为您带来的舒适和方便。

为了您的安装顺利,请仔细阅读这些指南。

摩恩服务热线:400-630-8866生产企业:摩恩(上海)厨卫有限公司地 址:中国(上海)自由贸易试验区富特北路399号注意事项1.为了保证本净水器的安全及正常使用,我公司在此郑重告知用户:产品必须由我公司授权的安装、维护服务商进行安装、维修,否则对因为安装、维修而导致的事故,我公司概不承担任何责任!2.本净水器为家庭用户设计,在其它场所使用请咨询服务热线或授权服务商。

3.本净水器的维护、滤芯更换请联系授权售后服务人员或咨询服务热线。

4.在对本净水器进行任何操作前,请仔细阅读和理解使用说明书。

5.净水器在运输、安装和使用中严禁倾斜。

6.切勿将净水器安装在阳光直射、雨淋或含有有害化学品的地方,或有掉落、被撞击等可能使本净水器受到损害的任何地方。

7.确保本净水器远离热源,不可将其接入热水管路上,不要试图把本机反向、倒置安装。

8.严禁将本净水器安装在可能受到冰冻的地方。

净水器温度使用范围为:5℃-38℃,当水温或环境环境温度低于5°C时,请关闭本净水器的供水管线(同时关闭快接三通阀),并排出净水器内的存水。

如果供水管线或净水器冻结,可能造供水管线或外壳的损坏,甚至破裂,影响使用。

9.工作压力:0.1~0.4MPa,使用过程中应保证压力不小于0.1MPa。

若进水水压超过0.4Mpa,必须加装减压阀(需另行购买)。

10.若超过3天不使用本净水器,再次使用前,需进行冲洗,冲洗过程中请勿取水饮用。

11.为保证出水水质,应及时更换滤芯。

各级滤芯使用期限应根据当地水质和用户要求,由专业人员完成更换。

12.定期检查净水器及水管配件看是否漏水,避免漏水给家中财物造成损失。

Pellicon 超滤(UF) 浓稠化(DF)操作指南说明书

Pellicon 超滤(UF) 浓稠化(DF)操作指南说明书

Notice: The information in this document is subject to change without notice and should not be construed as a commitment by Merck Millipore or an affiliate. Neither Merck Millipore nor any of its affiliates assumes responsibility for any errors that may appear in this document.Introduction .........................................................................................................................................3Objectives, Methods and Materials ...............................................................................................4Installation ...........................................................................................................................................6Pre-use Flushing Procedure ............................................................................................................7Normalized Water Permeability (NWP) Measurement ............................................................9Determination of System Hold-up Volume..............................................................................11System Equilibration ......................................................................................................................12Determination of Optimum TMP ................................................................................................13Concentration ..................................................................................................................................14Diafiltration ......................................................................................................................................15Recovery Operations ......................................................................................................................17Clean In Place (CIP) ........................................................................................................................19Post CIP Normalized Water Permeability Measurement .....................................................20Storage ...............................................................................................................................................21Appendix 1: Diafiltration Buffer Volume Requirements (22)Pellicon ® Ultrafiltration (UF)/ Diafiltration (DF) Operations Protocol GuideIntroductionObjectives of a UF/DF StudyThe objectives of a UF/DF study include determination of cassette capacity (volume/area) and sizing estimations for large volume processing of a given feed stream.Methods of a UF/DF StudyFeed StreamThe feed stream used in the study should be as representative (as possible) to the actual process (temperature, concentration, density, etc.). Initial and filtrate (post-testing) samples should be taken and tested for product recovery.MaterialsPellicon® 3 88 cm2 Cassettes with Ultracel® MembranePellicon® 3 88 cm2 Cassettes with Biomax® MembranePellicon® 2 Mini Cassettes with Ultracel® MembraneObjectives, Methods and Materials AccessoriesAdditional Ordering Information1.1 Set up system per general arrangement drawing. In principle, the tubing lengths should be minimized so as to minimize the working volume of the system. This enhances the ability to reach higher concentrations and lowersnon-recoverable volumes (recovery loss).1.2 The permeate (or filtrate) pressure gauge may be omitted in standard UF operation since there should not be any filtrate pressure in this line.1.3 Install the membrane as per the installation guide included in the membrane device box. Silicone gaskets areincluded in the Pellicon® 2 Device Box and must be used with the Pellicon® 2 membranes to achieve a proper device to holder seal. Pellicon® 3 devices (mini and micro) have gaskets that are integral to the device that make the device to holder seal.1.3.1 When working with micro (0.88cm 2) devices the required torque might be lower than the specification. If during the flushing procedure a high feed pressure (≥14psig) is observed loosen the membrane fromthe holder and re-torque to 140 in-pounds.3-Way Figure 1.UF/DF SystemGeneral Arrangement2.1 Pellicon® devices come from the factory pre-wet with preservative solution that must be removed beforeprocessing product. See Table 1 for flush volume recommendations.2.2 Arrange the system flowpath into the Single-Pass Filtrate Open mode (SPFO) as shown in Figure 2.2.3 Fill the feed vessel with the required purified water volume from Table 1.3-Way Figure 2.Single-Pass Filtrate Open mode (SPFO) ArrangementTable 1.Sanitization Solution and Flushing VolumeMethods2.4 Set the retentate Valve to fully open. Set the pump to supply 5 LMM (L/min/m 2) feed flow rate.2.5 Start the pump and monitor the feed pressure gauge. The pressure should stabilize to between 5-14 psig. If the pressure is outside this guideline, re-check the installation and torque wrench settings.2.6 Set the retentate pressure to 5 psig so as to ensure that the membrane is being fully flushed. Continue until the volume in the feed vessel is minimized, then stop the pump. Do not entrain air into the system.2.7 See Table 1 and add required volume of sanitization solution, to the feed vessel. Set the system in ‘Single Pass’ flow path. Start thepump to displace the water from the lines and the internal volume of the membrane to avoid dilution. When the sanitization solution level in the feed vessel had been minimized, stop the pump before air is entrained into the system.2.8 Set the system flowpath to the total recycle mode (Figure 3). Fill the vessel with required volume of sanitization solution,see Table 1.2.9 Recirculate at 5 LMM feed flowrate for 30-60 min. Set the retentate pressure to ~5 psig to ensure CIP (Clean-In-Place) of the full membrane area.2.10 Stop the pump after the CIP time interval. Return the system flowpath to the SPFO mode (Figure 2). Start the pump again andpump the feed vessel out to the receiver vessel. When CIP solution level in the feed vessel had been minimized, stop the pump before air is entrained into the system.2.11 Fill the feed vessel with purified water and start the pump. Flush the system to drain back to neutral pH. A microcassette basedsystem will require approximately 1 L of purified water. Monitor pH with a meter or pH paper that sensitive in the neutral range.Check both retentate and permeate lines separately to ensure the system is truly back to neutral pH. Stop the pump.Figure 3.Total Recycle Mode3.1 Add additional purified water to the feed vessel if necessary to ensure that the NWP measurement can be made without entraining air into the system.3.2 Set the system flowpath to the total recycle mode. Start the pump and manipulating the feedflow, set the system feed pressure to read 10 psig and the retentate pressure to read 5 psig.3.3 Allow the system to recirculate for a minute or two. Measure the temperature of the feed vessel contents. Set the system flowpath to the UFconcentration mode (Figure 4) and measure the change in mass over an elapsed time of 1 min, to find the permeate flowrate.3.4 Calculate the Normalized Water Permeability of the membrane using the following formulas:Equation 1J = Qp/AWhere: J= Volumetric Flux (L/M 2/Hr) Qp = permeate flow rate in L/hrA =Area of the membrane device(s)andEquation 2NWP = J * F /Transmembrane pressure (TMP)Where: NWP = Normalized Water Permeability (L/M 2/Hr/psid) J= Volumetric Flux (L/M 2/Hr) F = Temperature Correction FactorTMP = Transmembrane pressure (P feed + P ret )/2 – Pperm (pressure drop across the membrane in psid)3-Way Figure 4.Concentration ModeNormalized Water Permeability (NWP) MeasurementTemperatureF TemperatureFTemperatureF*Based on Water Fluidity Relative to 25°C (77°F) Fluidity Value F= (μT°C /μ25°C) or (μT°F/μ77°F)3.5 This is now the baseline permeability of the device. Record this value in the experimental notebook or runsheet.Table 2. Normalized Water Permeability Temperature Correction Factor (F)*4.1 Set the retentate valve to fully open. Adjust the feedflow to 5 LMM and reduce the volume in the feed vessel to just above the vessel discharge. Stop the system pump.4.2 Obtain a suitable container to capture the remaining volume in the system (50 mL tube for a microcassette based system). Record the tare weight of the container. Set the system feed rate to 2-3 LMM.4.3 Set the system flowpath to the recovery mode (Figure 5). Close the permeate isolation valve. Start the pump and collect all of the remainingliquid in the system into the sample container.4.4 Weigh the gross weight of the container and record the net weight of container and convert this to volume. Add 5 mL to the amount to calculate the total hold-up volume in the system for a micro-cassette based system. Add 31 mL to the amount to calculate the total hold upvolume for a mini-cassette based system.3-Way Figure 5.Recovery Mode5.1 Arrange the system flowpath into the Single-Pass, Filtrate Open mode (Figure 2). Open the permeate isolation valve.5.2 Fill the feed vessel with the equilibration buffer volume (see recommended volumes in Table 1).5.3 Set the pump to supply 5 LMM feed flow rate. Set the retentate pressure to 5 psig by restricting retentate flow with the retentate valve.Collect ~ 3 working volumes into the receiver.5.4 Fully open retentate valve, then stop the pump and place the system into the total recycle mode. Start the pump, set retentate pressure to 5psi,and operate in total recycle for ~5 min.=20 psig,5.5 Stop the pump and reset the system in to the SPFO mode. Set the Transmembrane pressure of the system to ~15 psid (e.g., PfeedP=10 psig). Start the pump and reduce the volume in the feed vessel to just above the vessel discharge. Do not withdraw too much liquid retfrom the feed vessel and entrain air into the system. Stop the pump. Open the retentate valve to full open. The system now has just the hold-up volume of buffer in it and is ready to accept the protein feed.5.6 Add the feed to the feed vessel. The total system volume = amount of feed added + the hold-up volume. The total system volume isconsidered Vo and is used to calculate concentration factor, diafiltration number, etc.6.1 Set the system flowpath to the total recycle mode (Figure 3).6.2 Start the agitator. The agitator should spin fast enough to cause a slight depression in the surface of the liquid in the vessel. The agitator should be monitored during the process and never be allowed to vortex the liquid and entrain air or cause foaming.6.3 Set the feedflow to 5 LMM. Allow the system to operate in the total recycle mode for ~5 minutes with the retentate valve fully open. Record temperature, Feed pressure, Retentate pressure and elapsed time. 6.4 Measure the permeate flowrate by redirecting the permeate line to a receiver on a balance or by collecting in a graduate cylinder. Measure thevolume (mass) for 1 min. Record the volume and calculate flux.6.5 Manipulating the retentate valve, increase the Transmembrane pressure by 5 psid. The TMP should increase but the DP (P feed -P ret ) should remain constant (see the example in Table 3).6.6 Repeat this measurement until the membrane flux becomes insensitive with the change in TMP. Reduce the TMP to and re-measure 1-2 of the flux measurements. If they are different by greater than 10% the membrane may have become polarized or fouled. Generally, avoid operating too far into the flux insensitive region.6.6.1 If polarization has occurred a depolarization step is recommended. To achieve this, lower the flow rate to ~10% of the operating feed flow rate and let the system run in total recycle for a minimum of 5 minutes. After the time has elapse re-measure the flux and compare to the original value. If the re-measured flux continues to differ by more than 20% the membrane may be fouled. At this point it is likelythat the flux can only be restored by stopping the experiment and cleaning. (See section 9 for more on depolarization)6.7 The optimum TMP is found by selecting a pressure slightly below the “knee” of the flux vs. TMP curve. In the example the knee of the curve is23-24 psid (Figure 7). The optimum TMP at this concentration is 20 psid.6.8 The Optimum TMP experiment may be repeated at an intermediate concentration and at the final concentration or just the final concentrationto find an over-all process TMP optimum.V o l u m e t r i c F l u x (L M H )Transmembrane Pressure (Psid)302520151050Figure 6.Flux and TMP Excursion Example at 5 LMMTable 3.Flux Excursion Data7.1 Determine the required permeate volume needed to be collected to achieve the target concentration.Equation 3 Vp = Vsi - (Vs i x Conc i / Conc T )Where:= Initial System Volume (Feed Volume + Hold-up Volume)VsiConc= Initial Concentrationi= Target ConcentrationConcTVp = Target Permeate Volume7.2 Zero the balance and set the system flowpath to concentration mode and start the pump and the timer.7.3 Set the TMP to the previously determined optimum TMP. Record time, temperature, the pressures and the permeate weight.7.4 As the concentration step progresses, the feed pressure (and TMP) may rise due to viscosity increase as a function of concentration. Adjust theretentate valve to hold TMP constant. The retentate valve may be fully open before the concentration step is finished. Adjust the pump to hold TMP constant. At higher concentrations the viscosity may become so high, it is not possible to control TMP with the pump. This is aconcentration end point for the fluid & membrane pair. If a higher concentration is still desired, it may be necessary to select a more open screen type.7.5 Once the concentration target is reached, open the retentate valve to full open. Stop the pump and close off the permeate isolation valve.8.1 Arrange the system flowpath to the Vacuum Diafiltration mode (Figure 8).8.1.1 If creating a vacuum is not possible with the equipment being used a second pump can be used to draw the DF buffer into the retentate vessel. The flowrate on the DF buffer pump must be set to match the flowrate of the permeate line. Adjustments to the flowrate of the DF buffer pump might be necessary throughout the process. This will ensure that the concentration within the system remains constantthroughout the diafiltration step.8.2 The amount of diavolumes used for purification of a target impurity is usually selected as the minimum amount of diavolumes required to achieve the purity target, plus a 2 diavolume safety factor. For example, if 6 diavolumes are required to achieve the purity target, then 8 diavolumes are used in the DF step. 1 diavolume is equivalent to the amount of fluid in the system (Vf+Vh-Vp). The number of diavolumes, N required for purification can be calculated by the following equation. Alternatively the figure in Appendix 1 can be used.Equation 4Cf = Ci e-S*NWhere: Cf = Final concentration of solute being diafiltered out Ci = Initial concentration of solute being diafiltered out S = sieving/passage coefficient = C permeate/C retentate)N = Number of diavolumesThe target permeate volume required to achieve the number of calculated diavolumes can be determined using equation 5.Equation 5N*Vs = VpWhere: N = Number of diavolumesVs = Volume in the system post concentrationVp = Target permeate volumeFigure 7.Vacuum Diafiltration ModeDiafiltration8.3 Mark the level in the vessel with a marker or piece of lab tape to be sure that the volume remains constant during diafiltration. Obtaina container with the required amount of DF buffer. Attach the DF line to the feed vessel. Cap off the vessel and pull a vacuum on thevessel headspace with a syringe to prime the diafiltration line.8.4 Start the pump. Adjust the TMP to match the TMP at the end of the concentration step. Record temperature, Feed pressure,Retentate pressure temperature, elapsed time and permeate weight (volume).8.5 When the diafiltration target volume has been reached, open the retentate valve, stop the pump, stop the agitator and close thepermeate isolation valve.9.1 The first step in the recovery operation is depolarization of the membrane. Polarization is a concentration gradient that occurs due to convective transport of protein towards the membrane wall. The depolarization step is recirculation under low feedflow and TMP conditions with the permeate isolation valve shut. Running with the permeate isolation valve closed can give rise to reverse pressure within the device. Limit the ΔP to </=20 psid for Pellicon® 3 devices and </=10 psid for Pellicon® 2 devices.9.2 Arrange the system flowpath to the Depolarization mode (Figure 8) by closing the permeate isolation valve, setting the retentate valve fullyopen and starting the pump. Operate the pump at low feedflow rates – low enough to avoid the ΔP limits outline in step 9.1.9.3 Recirculate the system in the depolarization mode for 5-10 min. Stop the pump after the recirculation time limit.9.4 Set the system flowpath to the blowdown/recovery mode as shown in Figure 9. Pump the protein product out at low ΔP into an appropriate sized container. When air bubbles appear stop the pump. Do not allow the protein product to foam.9.5 Add to the feed vessel 1 minimum working volume of buffer. Start the pump and recover this pool separately in container. As before, when air bubbles appear stop the pump. Do not allow the protein product to foam. Add this buffer chase pool to the recovery pool to increase recovery if the pool can tolerate dilution.9.6 Set the system into the total recycle mode (Figure 3). Add to the feed vessel 1-2 diavolumes of buffer to the system. Set the retentate valve to fully open. Set the feed flowrate to 2-3 LMM and recirculate for 5-10 min.9.7 Set the system flowpath to the blowdown/recovery mode as shown in Figure 9 (next page). Pump the recirculated buffer out at low ΔP intoan appropriate sized container. When air bubbles appear stop the pump.3-Way Figure 8.Depolarization ModeRecovery Operations3-WayFigure 9.Recovery Mode10.1 Add 200-300 mL of recommended CIP / Sanitization (Table 1) solution to the feed vessel. Set the system flowpath to the total recyclemode (Figure 3).10.2 Recirculate at 5 LMM feed flowrate for 30-60 min. Set TMP to approximately 15psid.10.3 Stop the pump after the CIP time interval. Return the system flowpath to the SPFO mode (Figure 2). Start the pump again and pump the feedvessel out to the receiver vessel.10.4 Add purified water to the feed vessel and start the pump. Flush the system to drain back to neutral pH. A microcassette based systemwill require approximately 1 L of purified water. Monitor pH with a meter or pH paper that sensitive in the neutral range. Check both retentate and permeate lines separately to ensure the system is truly back to neutral pH. Stop the pump.11.1 Add additional purified water to the feed vessel if necessary to ensure that the NWP measurement can be made without entraining airinto the system.11.2 Set the system flowpath to the total recycle mode. Start the pump and manipulating the feedflow, set the system feed pressure to read 10 psigand the retentate pressure to read 5 psig.11.3 Allow the system to recirculate for a minute or two. Measure the temperature of the feed vessel contents. Set the system flowpath to theUF concentration mode (Figure 4) and measure the change in mass over an elapsed time of 1 min, to find the permeate flowrate.11.4 Calculate the post CIP Normalized Water Permeability as we did in Section 3 using equations 1 and 2.11.5 Compare the Base-line NWP to the post CIP NWP. The Post CIP NWP should be >/= 80% of the Base-line NWP. (Post Post NWP/Base-lineNWP * 100%). If the comparison is less than 80%, then the membrane can be re-cleaned. CIP at an elevated temperature may be more effective at restoring NWP. NWP is a single indicator of membrane cleaning success. Data such as batch to batch process time, product quality and carryover studies should be used to determine criteria for successful membrane CIP processes.12.1 Arrange the system flowpath into the Single-Pass, Filtrate Open mode (Figure 2). Open the permeate isolation valve.12.2 Fill the feed vessel with 4 diavolumes of 0.1N NaOH solution.12.3 Set the pump to supply 5 LMM feed flow rate. Set the retentate pressure to 5 psig by restricting retentate flow with the retentate valve.Collect ~ 2 diavolumes into the receiver.12.4 Fully open retentate valve, then stop the pump and place the system into the total recycle mode (Figure 3).12.5 Start the pump, recirculate the remaining 2 diavolumes at 5 LMM for 5-10 min. Set TMP to approximately 15 psid.12.6 Remove membrane and store in 0.1N NaOH in a 2-8º C refrigerator.% S o l u t e R e m a i n i n g# of Diafiltration VolumesSolute Remaining vs. # of Diafiltration Volumes% Solute Passed = 100 - % Solute1001010.1Figure 10.Solute remaining versus number of diafiltration volumes To Place an Order or Receive Technical AssistanceIn Europe, please call Customer Service: France: 0825 045 645Germany: 01805 045 645Italy: 848 845 645Spain: 901 516 645 Option 1 Switzerland: 0848 645 645United Kingdom:***********For other countries across Europe, please call: +44 (0) 115 943 0840Or visit: /offices For Technical Service visit:/techserviceMerck Millipore, the M logo, Ultracel, Biomax, Labscale and Pellicon are registered trademarks of Merck KGaA, Darmstadt, Germany.Masterflex and StableTemp are registered trademarks of Cole-Palmer Instrument Company. Luer-Lok is a trademark of Becton Dickinson.MICROMETER is a registered trademark of RMFPT, Inc.Nalgene is a registered trademark of Nalge Nunc International Corporation.Lit No. RF1159EN00 Ver. 3.0 4/2016© 2016 EMD Millipore Corporation, Billerica, MA USA. All rights reserved.。

UF超滤膜组件使用详细说明

UF超滤膜组件使用详细说明

UF超滤膜组件使用详细说明因为人们的破坏,我们生存的环境不断被各种物质污染,污染分为轻度污染和重度污染,轻度污染目前国内处理主要采用的是臭氧与活性炭吸附工艺,但是经过长期的实验表明,对于那些有机物含量较少的污水,使用臭氧工艺处理的话,效果不但不理想并且还不经济,UF超滤膜组件技术是目前一种有效的消毒工艺,超滤可以出去水中含义的病原微生物,既可以保证出水的水质,又可以保留水中有益的矿物元素。

超滤膜技术出现随着原水污染严重和人们对于水质标准要求越来越高,针对传统的常规处理工艺的不足之处,各种前卫、方便的水处理技术应运而生,其中就包括uf1超滤膜处理技术,并且在各大水厂得到了一定的应用。

超滤膜技术原理水处理超滤膜的特征让我们知道一个道理,膜孔的大小不是处理截留的唯一有效因素,当原水中分子含量一定时,球状的分子流出率大于线状的分子,可见,筛分不是超滤膜技术原理的唯一机制。

水处理超滤膜的选择其实也是至关重要的,在能保证溶质截留中污染物的前提下,我们应该尽量选择膜孔大的超滤膜,但是有些时候,膜孔越大,产生阻塞越多,也就产生更多的污染,引起出水量下降,所以,膜的选择应根据原水中含有物质分子量分布在决定。

中空纤维超滤膜使用说明1、该超滤膜可以截留细菌,但是不能杀灭细菌,所以必须对过滤设备和过滤膜进行定期消毒处理。

再好的超滤膜不进行定期清洗和更换,都会导致细菌的滋生,从而影响产水的质量。

2、该膜生产出来之后,厂家为了避免去受到污染和损坏,会在超滤组件中加入保护液,所以在使用膜元件前必须对其进行彻底冲洗,并在使用前确认铲平中不含有任何化学药剂。

3、该膜元件是一种精密器材,必须对其轻拿轻放,注意保护。

所以,在使用安装时要小心,不能用蛮力。

寒冷的季节必须对组件进行防冻处理。

超滤运行操作手册

超滤运行操作手册

1安全注意事项1.1 机械设备1.1.1 组件泄漏如果维护方法正确,且操作压力低于0.6MPa的最大操作压力,HFUF组件不会发生泄漏。

一旦发生泄漏事故,必须立即关闭装置。

关机后,检查漏水装置,并予以排除,尔后装置再次加压试水。

1.1.2 离心泵1.泵运转时,切勿对其进行维护等操作;2.要维护停运的泵,必须加以醒目标识;3.泵的维护结束后,把所有的防护件复原;4.确保泵的电机风扇的通风顺畅;5.泵维护和维修结束后,应按新泵首次运行规定进行检查作业。

1.1.3 管线与阀门HFUF装置的输水系统包括不同管径的管道以及连接件。

装置的不正确操作能导致其损坏,并可能因高压下的泄漏引起人身伤害。

1.确认所有管线的支撑、安装牢固;2.为避免系统承受过高的压力,在打开进水阀之前,须先打开出水阀。

1.2 停机为了确保操作人员或检修人员的安全,对所有设备的停机,都应遵守规定的停机程序。

停机程序不仅针对转动或电气设备,也针对容器、输水管线等。

1.3 通道在HFUF设备周围应该有畅通的通道。

地面应做防滑处理并保持干燥、整洁。

尽量不要在运行装置的附近存放设备、零件等。

注意确保所有场地的照明,以方便操作和维护。

1.4 安全防护设施当使用化学药品进行清洗和进行带电作业时,务必穿戴安全防护用品。

如果不遵照下面的要求,可能导致无法挽回的人身伤害。

1. 当工作人员暴露在酸、碱、氧化剂环境下,必须穿戴橡胶手套、橡胶套服、头盔以及护目镜。

2. 当操作人员在带电作业时,应该戴绝缘手套、使用绝缘橡胶垫,并有人在旁边提供必要的帮助和救护。

3. 紧急喷淋装置必须保证处于良好工作状态。

4. 接触有害药品的人员必须全面了解一旦事故发生时,应采取哪些措施。

5. 发生溢出事故时,应按贵公司的安全操作规范进行处理。

1.5 安全检查项目在进行HFUF装置操作之前,双方应共同检查是否落实了以下的安全措施:1.在明显处张贴处理紧急事故有关单位、人员的联系电话。

UF-A-超滤说明书

UF-A-超滤说明书

0.55KW
0.55KW
0.75KW
1.5KW
悬浮物,微粒 (>0.2µm)
≥99% 25℃
≥99% 25℃
≥99% 25℃
≥99% 25℃
额定出水量
≥500L/h 25℃
≥1000L/h 25℃
≥2000L/h 25℃
≥3000L/h 25℃
外形尺寸长× 宽×高
650×650 1680mm
1560×700 ×1600mm
活性碳吸附滤芯饱和,不能有效吸附 水中的异味和余氯
6
四、结构简图(工艺流程)
玻 璃 钢
自来水进水
2
1
增压泵
1.增压泵 2.石英沙罐 3.活性碳罐
4.精滤器
5
4
10
CM-230
PP

4
精 滤
RO膜
9
11


RO膜

15 纯水流量
3
4
6
多 级
12 8
14

13
7
浓水流量
5.进水压力表 6.多级泵泵口压力接口 7.多级泵 8.RO膜压力控制阀
9.RO膜 10.水质监测仪 11.纯水流量计 12.RO膜压力调节阀
向与泵上标注的方向一致,否则会损坏水泵; b、每次启动机器设备,必须对多级泵进行排水和放气操作(多级泵泵
体部分上下各有一放气排水阀),即做到启动放气,停止放水;在与 多级泵出水口连接的管路中,有一个减压阀,此阀需做到在多级 泵启动后缓慢打开,在多级泵停止后关闭(但不可完全关闭,需保 留一定流通量); c、随着机器工作时间的增加和天气温度的降低,超滤膜的纯净水 流量相应减少; d、机上电导率仪显示的数值仅供参考,具体的应按经计量校正标准

超滤设备使用说明书

超滤设备使用说明书

超滤(ULTRAFILTRATION,简称UF)是一种固液分离制程中,以中空纤维过滤膜滤除非溶解性固体的装置。

本超滤系统,其分子量滤除点(Molecular Weight Cut-off)在100,000左右,专设计用于去除原水中的微粒、细菌或悬浮物等,降低原水的浊度值。

由于超滤膜具有低压下的较大产水量的特征,在低压条件下,膜表面的浓水压差极化现象得到了缓解,被截留物不会被压实,所以膜组件会更容易清洗,可以用相对较小的流量和较少的水量将膜冲洗干净,可以大大延长膜化学清洗的周期。

1、设计规范(1)、控制方式:全自动PLC或手动(2)、pH值范围:3~9(3)、工作温度:5~35°C(4)、工作压力:〈0.3 MPa(5)、最大压差:〈0.18 MPa2、设计规格3.使用前注意事项(1)、选择装设地点应可防止日晒、雨淋及通风的地方;(2)、连接管材必须是PVC或SUS#316以防止铁锈污染;(3)、检查各固定锁夹及螺丝是否松脱;(4)、送电前应将电器箱上所有开关置于关闭位置;(5)、电机运转方向测试,确认电机运转方向正确。

4. 控制原理UF系统有两种操作模式:(1)自动(2)手动(1)、自动:在自动操作模式下,系统运行受PLC程式控制,当系统发生超出预定值时,系统提供关闭功能,让操作人员及时采取措施,以免造成系统损坏。

(2)、手动:在手动操作模式下,系统依操作者设定执行运转,当系统发生超出预定值时,系统无法提供自动停机保护功能,因此正常运转时不建议使用此模式。

UF装置运行步骤为了使UF装置持续产出满足需要的过滤水,必须满足三个条件。

它们包括:合格的进水水质,合适的反洗时间间隔,及时的化学清洗。

上面的任一条件不满足,装置将难以稳定产出满足需要的过滤水。

在膜过滤过程中,膜污染是一个经常遇到的问题。

所谓污染是指被处理液体中的微粒、胶体粒子、有机物和微生物等大分子溶质与膜产生物理化学作用或机械作用而引起在膜表面或膜孔内吸附、沉淀使膜孔变小或堵塞,导致膜的透水量或分离能力下降的现象。

超滤操作说明书

超滤操作说明书

安全使用注意事项出于本装置的性能及使用安全性考虑,操作人员必须遵守以下使用原则:1.操作人员必须具备机械、电气以及化学的基本知识和常识。

2.操作人员必须熟悉本装置的性能、原理及使用方法等。

未经教育的其他人员禁止操作。

3.定期进行点检。

4.点检时发现设备有破损、漏水等不良现象,必须及时进行修复。

5.在进行点检或修理时,必须注意防止误动作。

6.药品的添加及储存时应注意安全,部分药品具有腐蚀性。

第一章:概要1.1 简介本使用说明书详细阐述了为贵公司提供的超滤设备的全部操作方法及控制原理。

装置中所属的设备、仪表,如:泵类、减压阀、压力表、流量计、液位计等都附有各自设备、仪表的使用维护说明书及产品简介等资料,请参考阅读,并熟悉操作方法。

操作人员在操作本装置前务必要对本操作说明书及各设备、仪表的技术资料给予详细阅读并充分理解;要严格按照本操作说明书规范的内容执行系统的操作与维护,任何违反本操作说明书要求的操作都可能会造成系统的运行故障、设备损坏等问题,甚至会引发人身伤害事故。

1.2 处理工艺概要本处理装置包括滤芯过滤和膜分离等处理工艺。

1.2.1滤芯过滤处理工艺在原水进入超滤系统前,设置了保安过滤器,将可能造成膜损坏的、较大的机械性杂质过滤掉。

1.2.2膜分离处理工艺经保安过滤器处理后的水进入超滤膜,能有效的降低原水的浊度及细菌。

1.3 处理设备概要①预处理设备┅┅保安过滤器。

②超滤设备┅┅超滤膜单元。

③清洗系统┅┅清洗设备。

④加药系统┅┅次氯酸钠加药设备。

第二章:处理系统原理2.1预处理2.1.1 保安过滤器为防治原水中有异物进入微滤膜系统,对膜造成损坏,在原水进入膜系统之前,设置了过滤精度为10μ的保安过滤器,将可能造成膜损坏的、较大的机械性质过杂滤掉,保证了微滤的进水要求。

2.2超滤处理利用超滤膜能有效地去除水中的微粒、胶体、有机物和病菌等,能够去除少量的置换入水中的离子等,以保证出水的水质符合要求。

超滤设备使用说明书

超滤设备使用说明书

超滤(ULTRAFILTRATION,简称UF)是一种固液分离制程中,以中空纤维过滤膜滤除非溶解性固体的装置。

本超滤系统,其分子量滤除点(Molecular Weight Cut-off)在100,000左右,专设计用于去除原水中的微粒、细菌或悬浮物等,降低原水的浊度值。

由于超滤膜具有低压下的较大产水量的特征,在低压条件下,膜表面的浓水压差极化现象得到了缓解,被截留物不会被压实,所以膜组件会更容易清洗,可以用相对较小的流量和较少的水量将膜冲洗干净,可以大大延长膜化学清洗的周期。

1、设计规范(1)、控制方式:全自动PLC或手动(2)、pH值范围:3~9(3)、工作温度:5~35°C(4)、工作压力:〈 0.3 MPa(5)、最大压差:〈 0.18 MPa2、设计规格3.使用前注意事项(1)、选择装设地点应可防止日晒、雨淋及通风的地方;(2)、连接管材必须是PVC或SUS#316以防止铁锈污染;(3)、检查各固定锁夹及螺丝是否松脱;(4)、送电前应将电器箱上所有开关置于关闭位置;(5)、电机运转方向测试,确认电机运转方向正确。

4. 控制原理UF系统有两种操作模式:(1)自动(2)手动(1)、自动:在自动操作模式下,系统运行受PLC程式控制,当系统发生超出预定值时,系统提供关闭功能,让操作人员及时采取措施,以免造成系统损坏。

(2)、手动:在手动操作模式下,系统依操作者设定执行运转,当系统发生超出预定值时,系统无法提供自动停机保护功能,因此正常运转时不建议使用此模式。

UF装置运行步骤为了使UF装置持续产出满足需要的过滤水,必须满足三个条件。

它们包括:合格的进水水质,合适的反洗时间间隔,及时的化学清洗。

上面的任一条件不满足,装置将难以稳定产出满足需要的过滤水。

在膜过滤过程中,膜污染是一个经常遇到的问题。

所谓污染是指被处理液体中的微粒、胶体粒子、有机物和微生物等大分子溶质与膜产生物理化学作用或机械作用而引起在膜表面或膜孔内吸附、沉淀使膜孔变小或堵塞,导致膜的透水量或分离能力下降的现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超滤装置
使用说明书山东招金膜天有限责任公司
一.超滤工作原理
中空纤维超滤膜是以高分子材料采用特殊工艺制成的不对称膜。

它呈中空毛细管状,管壁密布微孔,在压力的作用下,原液在膜内流动,其中的溶剂或小分子物质可以透过膜,经收集而成为超滤液,而其中的高分子物质(蛋白质、核酸、多糖等)以及胶体粒子则被阻止在膜表面,被循环流动的原液带走而成为浓缩液,从而达到了物质的分离,浓缩和提纯的目的。

二.超滤的特点
1、超滤过程无相转化,不需加热,常温操作,节约能源,对热敏性物质的分离尤为适宜。

超滤过程简单,配套装置少,操作运转简便,维修费用低。

2、超滤膜耐化学药品侵蚀,PH适应范围广。

超滤装置单位体积中膜面积最大,投资费用最低,请洗简单。

三.主要技术指标
1、材质:聚砜
2、工作压力:≤0.2MPa
3、工作温度:≤45℃
4、PH值:2~13
5、入口水质:混浊度≤2mg/L
油≤2mg/L
四.设备安装
设备应安装在平整度、水平较好的平面上。

五.设备工艺流程图(见附页)
六.设备安装完毕后,手动操作如下:
1.超滤装置开启之前,必须检查经过预处理的来水是否达到超滤装置进水指标要求,否则设备不得投入使用。

2.检查各管路是否按工艺要求接妥,电器线路是否完整,接线是否可靠。

3.系统工作前,预处理必须调试合格,手动调整进水压力为0.07 - 0.1MPa,手动状态使超滤设备全部充满水,把系统气体排净,然后将系统转入自动状态。

七.设备自动操作如下:
1.按超滤程控启动按钮,启动系统,处在自动状态下的超滤运行,运行包括两步:依次打开上排阀、产水排放阀(手动),再开进水阀,稍后打开产品水阀,关闭产水排放阀(手动)、上排阀,手动调节进水手动阀,使流量达到系统要求,设备进入运行状态。

2.设定运行至反洗间隔时间为30分钟(时间可调:由多种因素决定。

如产水量下降10-20%,压力升高10-20%,进水水质变化,或者反洗后通量未恢复等因素决定该时间的增减),设定时间到后超滤系统将退出运行,进入反洗过程,反洗后立即投入运行。

3.冲洗过程明细:
退出运行:关闭进水阀,出水阀。

逆冲:打开下排阀,再打开逆向进水阀,冲洗5S。

反冲洗:关闭逆向进水阀,打开反洗进水阀,启动反洗水泵,单开下排冲洗30S。

打开上排阀,关闭下排阀,单开上排冲洗30S。

正冲:关闭反洗水泵,关闭反洗进水阀,打开进水阀,冲洗30S后,打开出水阀,关闭上排阀,投入运行。

系统全部同时投入运行时,1号设备运行30分钟即退出进入冲洗程序。

(每台设备依次类推)
几台超滤并行运行时,冲洗过程不能同时进行,一台结束后另一台才能进行冲洗。

设备自动停止时,如设备正在冲洗过程,会自动等待其过程结束,然后停止。

八. 阀门开关说明:
单组UF工作状态:1-打开 0-关闭
九.设备的化学清洗
设备使用一段时间后,如通量下降,从流量计上可以看出(一定压力下)一般通量下降10-20%左右(指反冲洗后不能使通量恢复),即可停车清洗设备,也可根据实际情况决定清洗周期(如入口水质差,则应缩短清洗周期)。

用适用于本行业清洗的化学药品放在清洗水箱中。

开启浓水清洗回水箱阀、淡水清洗回水箱阀,其他阀门关闭,然后启动清洗水泵,缓慢开启清洗进水阀,待压力升高至0.05-0.15MPa,循环清洗1-3小时,再用清水把设备冲洗干净,即可投入使用。

超滤系统在线清洗示意图
☆MotianUF超滤膜专用阻垢/分散剂
☆MotianUF超滤膜专用清洗剂系列
☆超滤膜的运行、保护、清洗和性能恢复
3、产品说明
2、水中有特别需要处理的问题,可根据其情况选择特殊药剂。

3、由我公司的技术人员根据您的工艺流程、水质及运行要求
进行推荐。

1)、应用第二药剂时要先将第一种药剂冲洗干净
2)、清洗过程中温度及流速是需要关注的内容
3)、可由我公司的技术人员根据您的系统运行状态、原水水质及系统
工艺流程推荐恰当的清洗方案。

一般推荐清洗药品配方:
注:化学清洗时选择药品的原则:
1、不能与膜及组件的其他材质发生任何化学反应。

2、选用的药品避免二次污染。

十.有关反洗加药:
1、反洗加药药剂及加药频率:
根据水质情况,建议反洗时加入NaClO 10-50ppm(以余氯计),频率为每天2-3次。

加药量根据季节变化进行调整,由计量泵来控制。

2、反洗加药程序(以一套超滤膜装置为例):
1)、在配药箱里配好要加入的药剂。

2)、启动超滤反洗程序的同时,开启要加入药剂的加药
泵。

3)、停止反洗程序时,停止加入药剂的加药泵
3、注意问题:
1)、随时保证加药箱内加药量充足
2)、定期检查加药泵工作情况
十一.设备的停用贮存
1.如设备短期贮存1~3天(根据环境温度决定),可不加任何药品,在设备中注满超滤水存放即可。

具体操作步骤为将设备自动控制切换至手动,手动打开反洗进水阀,启动反冲洗水泵,将超滤设备注满超滤水。

2.设备长期存放
把设备清洗干净,膜组件中的残液放干净,然后根据不同行业选用适当的防腐剂。

3.如在冬季存放,可适当增加甘油。

一般:0~-5℃为10%
-6℃~-10℃为20%
-11℃~-15℃为30%
-16℃以下为50%
注意:设备存放时,绝对不允许干态存放。

相关文档
最新文档