配合物的不稳定常数和稳定常数
配合物的稳定常数
4—1、配合物的稳定常数 、 1.稳定常数 ------K f 稳定常数
Ag
+
θ
NH3H2O
Ag2O (黑褐色)
Cl -
这一实验结果 说明溶液中存在游 NH3H 离的Ag . 离的2O +Ag(NH3)2+
无 A gC l
+
I-
AgI
H 2S
Ag 2 S
既存在 Ag
[CN − ] = x = 3.47 × 10 −3 (mol ⋅ dm −3 )
2.50 × 0.40 = x2
解得: 解得: 显然AgI可以很好地 溶解在 溶解在KCN溶液中。 溶液中。 显然 溶液中 6.配位平衡与氧化还原平衡 配位平衡 ——计算形成配合物 ——计算形成配合物的衍生电极电势 [例9—12] 计算 例
0. 1 = 2 x
解得: 解得:
[Cu 2+ ] = 1.29 × 10 −10 (mol ⋅ dm −3 )
同理解得
0.10mol ⋅ dm −3Cu (en) 2+ 2
[Cu 2+ ] = 8.5 × 10 −8 mol ⋅ dm −3
显然稳定性: 显然稳定性
Cu(EDTA)2-﹥ Cu(en)22+
0.0591
因此
而K =
3+ 3 )6
3+ 2+ 3 ) 6 / Co ( NH 3 ) 6
= 0.056(V )
(2)假设 )假设Co(NH3)6 中与空气中的O 发生如下反应: 中与空气中的 2发生如下反应:
3、配位平衡 与电离平衡 、 θ θ − − − K θ 与K a 或K θ 与K b之间的关系 f f
配位化学
dz2 dx2-y2
eg
3 5
Δo
=6Dq
2 5
Δo
Δo =10Dq
= 4Dq t2g
dxy dxz dyz
八面体场中d轨道能级分裂
24
25
分裂能o
电子成对能(P):两 个电子进入同一轨道 时需要消耗的能量 排布原则:①能量最低原理 ②Hund规则 ③Pauli不相容原理
配位体的电子到底按哪种形式排布决定于分裂能与电子成 对能的大小。电子成对能小些,则电子尽可能排在能量低 的轨道,属于低自旋型,磁矩小,稳定;分裂能小则电子 排在高能量轨道上,属于高自旋型,磁矩大,也不稳定。
[Ni(CN)4]2-的μ = 0,其空间构型为平面正方形
3d
4s 4p
Ni2+
[Ni(CN)4]2-
dsp2杂化 CN- CN- CN-CN-
[NiCl4]2-的μ = 2.83 B.M,空间构型为四面体。
3d
4s
4p
[NiCl4]2-
sp3杂化
Cl- Cl- Cl- Cl17
以Fe(CN)63-为例说明中心离子的杂化轨道 形成配离子 和配合物的配位键形成示意图表示如下:
21
• 形成高自旋配合物的配体有F-、H2O等,其配位原子是电负性 较大的卤素原子和氧原子,不容易给出孤对电子,对中心离子的影 响小,因而不会使中心离子的电子层结构发生改变。 • 反之,如果配位原子电负性小,则容易给出孤对电子,这些 孤对电子影响了中心离子的电子层结构,使(n-1)d轨道上的成单 电子被强行配对,腾出内层能量较低的轨道接受孤对电子,从而形 成低自旋配合物。这类配体主要是CN-(C为配位原子)、-NO2。 • (由CN-形成的配合物一般很稳定,而由F-、H2O 形成的配合物 稳定性差些就是这个原因)
配位化合物的稳定性
一、配合平衡与酸碱电离平衡 1、 酸效应
Cu2+ + 4NH3 + 4H+ 4NH4+ [Cu(NH3)4]2+
当溶液酸度增加时,配体L与H+结合生成相应的共轭酸而使
配合平衡向解离方向移动,导致配合物稳定性下降的现象,
称为配体的酸效应。
2、水解效应
Fe3+
Fe3+
+
+
6SCN
H2O H2O
ቤተ መጻሕፍቲ ባይዱ
-
[Fe(SCN)6]3Fe (OH) Fe (OH)2+
2+
+ +
H+ H+
Fe (OH)
2+
+
当溶液的酸度降低时,金属离子发生水解而使配合平衡向
解离方向移动,导致配合物稳定性下降的现象,称为金属离
子的水解效应。
二、配合平衡与沉淀-溶解平衡
AgBr + 2 NH3
[Ag(NH3)2]+ +
Br-
K=
?
AgBr Ag+ + 2NH3
Ag+
+
Br[Ag(NH3)2]+
Na2S
三、配合平衡与氧化还原平衡
2Fe
3+
+ 2I
-
2Fe
2+
+ I2
2Fe +
3+
+
2I
-
2Fe2+
+
I2
6F-
[FeF6]
3-
+
I-
四、配合物的取代反应
第5章 配合物在溶液中的稳定性 27ye
CH3
以上两配体与Fe2+的配合能力就因空间位阻而不同。
问:以下三种配体与金属离子形成配离子的稳定性大小?
CH3
N
OH
N OH
CH3 OH
N
4.3 Lewis电子酸碱理论及硬软酸碱理论 (HSAB) 与配合物的稳定性
Lewis 电子酸碱理论是一个广泛的理论,它完全不考虑溶 剂。在Lewis酸碱反应中,一种粒子的电子对用来与另一种粒 子形成共价键。“供给”电子对的粒子是碱,而“接受”电 子对的粒子是酸。反应可以写成: A(酸) +:B(碱) A←:B 显然,路易斯酸应该有空的价轨道,这种轨道可以是轨道 ,也可以是轨道。而路易斯碱应该有多余的电子对,这些电 子可以是电子,也可以是电子: 右图示出Lewis酸碱 的可能轨道重叠,左 边是酸的空轨道的情 形(空轨道的情形未 画出)。
4.2 配离子在溶液中稳定性的一些规律
配离子稳定性的大小首先与其内因即组成配离子 的中心离子的性质、配体的性质以及中心离子与 配体之间的相互作用有关;
其次,外部因素如温度、压力及溶液中离子强度
等对配离子的稳定性也有一定的影响。本节我们 就影响配离子稳定性的因素做些讨论。
一、中心原子的结构和性质的影响
具体地说,硬酸中接受电子的原子较小、正电荷高,其价 电子轨道不易变形 (即硬酸是受体原子对外层电子的吸引力强 的酸)。 像Al3+离子以及BF3之类的化合物都是硬酸的例子。 软酸中接受电子的原子较大、正电荷数目低或者为0, 以易 变形的价电子轨道去接受电子 (即软酸是受体原子对外层电子 的吸引力弱的酸)。 金属原子、Hg2+离子及InCl3之类化合物即是典型的软酸。 硬碱和软碱可以按照同样的原理处理:
许多路易斯酸碱反应的实质是酸碱的传递反应: 如: B:+B’:→A = B:→A+:B’ (碱的置换) A+B:→A’ = B:→A+A’ (酸的置换) B:→A+B’:→A’ = B:→A’+B’:→A (酸碱同时传递)
配位化合物稳定常数
[
Ag
(
NH 3 )2 ] [NH 3 ]2
[Cl
]
[ [
Ag Ag
] ]
[ Ag ( NH 3 )2 [ NH 3 ]2[ Ag
] ]
[
Ag
][Cl
]
K稳 K SP
带入数值K稳=1.1*107和KSP=1.7*10-10,K=1.87*10-3
∴x=2.5
欲使0.10mmol的AgI完全溶解生成Ag(NH3)2+,最少需要 1.0cm3氨水的浓度是多少? 改用1.0cm3KCN溶液时,浓度为多少?
(Cu2 / Cu) 0.0592V lg{c(Cu2 )} 2
(Cu2 / Cu) 0.0592Vlg
2
Kf
1 (Cu(NH3)24 )
0.3394V
0.0592V 2
lg
1 2.30×1012
0.0265V
Cu(NH3)24 (aq) 2e Cu(s) 4NH3(aq)
当 c (NH3) c(Cu(NH3)24 ) 1.0mol L1 时 ,
K稳值意义
比较同类型配离子的稳定常数,可以判 断这些配离子的相对稳定程度。
P386,表12-1
例如 [Ag(CN)2] -
[Ag(S2O3)2]3[Ag(NH3)2]+
稳定性顺序为:
K稳为1021.1, K稳为1013.46 K稳为107.05,
[Ag(CN)2] - > [Ag(S2O3)2]3- > [Ag(NH3)2]+
第十二章 配位化合物 §12. 1 配位化合物的稳定常数
12.1.1 稳定常数与不稳定常数
[Cu(NH3)4]2+
配合物的稳定常数的测定
配合物的组成和不稳定常数的测定(物理化学 李俊)一、目的要求1. 掌握用分光光度法测定配合物组成及稳定常数的基本原理和方法。
2. 通过实验,掌握测量原理和分光光度计的使用方法, 二、实验原理1,用等摩尔连续递变法测定配合物的组成“递变法” 实际上是一种物理化学分析方法。
可用来研究当两个组分混合时, 是否发生化 合,配合,缔合等作用,以及测定两者之间的化学比。
其原理是 :在保持总浓度不变的前提 下,依次逐渐改变体系中两个组分的比值,并测定不同摩尔分数时的某一物理化学参量。
在本实验中就是测定不同摩尔分数时溶液的光密度值 D ,作光密度对摩尔分数的曲线 图,如图 3- 1,所示。
从曲线上光密度的极大值 D 极大所对应的摩尔分数值,即可求出配位数n 值。
为了配制溶浓时方便,通常取相同摩尔浓度的金属离子 M 溶液和配位体 L 溶液。
在维持总体积不变的条件下, 按不同的体积比配成一系列混合溶液。
这样体积比亦就是摩尔 分数之比。
若溶液中只有配合物 MLn 具有颜色,则溶液的 D 与 MLn 的含量成正比。
从 D-X 图上曲线 的极大位置即可直接求出 n ,但当配制成的溶液中除配合物外, 尚有金属离子 M 及配位体 L 与配合物在同一波长 λ最大 下也存在一定程度的吸收时,所观察到的光密度 D 并不完全由配 合物 MLn 的吸收所引起, 必须加以校正。
所以选择适当的波长范围, 仅使配合物设X L 为D极大时L 溶液的体积分数M 溶液的体积分数为 则配合物的配MLn 有吸收,M 和L 都不吸收或极少吸收。
2.配合物平衡常数的测定假定配合物中心离子浓度不变,而渐增加配位体浓度,随着配位体浓度的改变,中心离子被配成MLn ,溶液的光密度值 D 不断升高。
当中心离子被完全配合后,如继续增加配位体的浓度,则溶液的光密度值 D 趋于恒定,如图3-2。
设配合物在稀溶液中有如下解离平衡存在:最初浓度平衡浓度式中,n-配位数,已由实验确定;a-解离度:C-配合物未解离时的浓度(在本实验中亦为M 完全配合时的配合物浓度)。
实验6配合物的组成和不稳定常数的测定dyl
配合物的组成和不稳定常数的测定一、目的要求1.掌握用分光光度法测定配合物组成及稳定常数的基本原理和方法。
2.通过实验,掌握测量原理和分光光度计的使用方法,二、实验原理a,用等摩尔连续递变法测定配合物的组成“递变法”实际上是一种物理化学分析方法。
可用来研究当两个组分混合时,是否发生化合,配合,缔合等作用,以及测定两者之间的化学比。
其原理是:在保持总浓度不变的前提下,依次逐渐改变体系中两个组分的比值,并测定不同摩尔分数时的某一物理化学参量。
在本实验中就是测定不同摩尔分数时溶液的光密度值D,作光密度对摩尔分数的曲线图,如图3-1,所示。
从曲线上光密度的极大值D极大所对应的摩尔分数值,即可求出配位数n值。
为了配制溶浓时方便,通常取相同摩尔浓度的金属离子M溶液和配位体L溶液。
在维持总体积不变的条件下,按不同的体积比配成一系列混合溶液。
这样体积比亦就是摩尔分数之比。
设X L为D极大时L溶液的体积分数:M溶液的体积分数为:则配合物的配位数为:若溶液中只有配合物MLn具有颜色,则溶液的D与MLn的含量成正比。
从D-X图上曲线的极大位置即可直接求出n,但当配制成的溶液中除配合物外,尚有金属离子M及配位体L 与配合物在同一波长λ最大下也存在一定程度的吸收时,所观察到的光密度D并不完全由配合物MLn的吸收所引起,必须加以校正。
所以选择适当的波长范围,仅使配合物MLn有吸收,M和L都不吸收或极少吸收。
2.配合物平衡常数的测定假定配合物中心离子浓度不变,而渐增加配位体浓度,随着配位体浓度的改变,中心离子被配成MLn,溶液的光密度值D不断升高。
当中心离子被完全配合后,如继续增加配位体的浓度,则溶液的光密度值D趋于恒定,如图3-2。
设配合物在稀溶液中有如下解离平衡存在:最初浓度平衡浓度式中,n-配位数,已由实验确定;a-解离度:C-配合物未解离时的浓度(在本实验中亦为M完全配合时的配合物浓度)。
式中Dm是M完全被配合时溶液的光密度值,Dn是L与M摩尔比为n时溶液的光密度,此时虽达平衡,但M未被完全配合。
化学五大平衡常数
化学五大平衡常数化学五大平衡常数是指酸解离常数、碱解离常数、水解常数、金属离子配合物稳定常数、氧化还原电极电位常数。
这些常数经常出现在化学反应的研究中,相应的数值反映了不同平衡反应的强度和趋势。
下面将就这些平衡常数逐一展开阐述。
1. 酸解离常数(Ka)酸解离常数是指为了溶解H+离子而发生的酸溶解反应,其平衡常数表达式为 Ka=[H+][A-]/ [HA]。
在一定温度和溶剂中,Ka越大,酸性就越强,说明酸越容易给出H+离子,溶液的pH值会降低。
而Ka值越小,则说明酸性越弱,酸解离反应越难发生。
2. 碱解离常数(Kb)碱解离常数是指为了溶解OH-离子而发生的碱溶解反应,其平衡常数表达式为Kb=[OH-][BH+]/ [B]。
同样地,在一定温度和溶剂中,Kb越大,碱性就越强,说明碱越容易给出OH-离子,溶液的pH值会升高。
而Kb值越小,则说明碱性越弱,碱解离反应越难发生。
3. 水解常数(Kw)水解常数是指水在溶液中自身发生水解反应,平衡常数表达式为Kw=[H+][OH-]。
其中,Kw在25℃下大约为1.0×10^-14,是温度不变的常数。
当溶液中酸性强时,[H+]大,[OH-]小,反之亦然。
这方面比较特殊的情况是在中性溶液下,[H+]=[OH-]=1.0×10^-7,pH=7。
4. 金属离子配合物稳定常数(Kf)金属离子与配位体反应生成配合物时,稳定常数Kf反映了这种反应的强度和趋势。
金属离子配合物稳定程度越高,Kf值就越大,反之亦然。
配合物对某些应用如化学分析和工业化学等方面也比较重要。
5. 氧化还原电极电位常数(E)氧化还原电极的电位可以用氧化还原电极电位来描述,其表达式为:E=E°- (RT/nF)lnQ。
其中,E°是氧化还原反应在标准状态下的电极电位,R为气体常数,T为温度(K),n为电子数,F为法拉第常数,Q为反应物浓度的乘积。
通常来说,当E>0,则反应趋势为氧化,是氧化反应;当E<0,则反应趋势为还原,是还原反应。
2-知识点2:配位平衡及平衡常数.
Kf为配合物的稳定常数,Kf值越大,配离子越稳定 。
2. 不稳定常数 [Cu(NH ) ]2+ 3 4
K d
Cu2+ +4NH3
c(Cu 2 ) c 4 (NH3 ) c[Cu(NH3 ) 4 2 ]
Kd为配合物的不稳定常数或解离常数。Kd 值越大表示配离
子越容易解离,即越不稳定。
职业教育应用化工技术专业教学资源库《化工产品检验》课程
承担院校
宁波职业技术学院
配位平衡
[Cu(NH3)4]SO4· H2O = [Cu(NH3)4]2++SO42-+H2O NaOH Cu(OH)2
Na2S 有黑色CuS生成
无Cu2+ ???
有Cu2+
1 配位平衡常数
1. 稳定常数
K f c[Cu(NH3 ) 4 ] c(Cu 2 ) c 4 ( NH3 )
Kn
c (MLn) n c (M) c (L)
最后一级累积稳定常数就是配合物的总的 稳定常数
.
例:比较0.10mol· L-1[Ag(NH3)2]+溶液和含有0.2mol· L-1NH3的 0.10mol· L-1[Ag(NH3)2]+溶液中Ag+的浓度。 解:设0.10mol· L-1[Ag(NH3)2]+溶液中Ag+的浓度为x mol· L-1。根 据配位平衡,有如下关系 Ag+ + 2NH3 [Ag(NH3)2]2+ 起始浓度/mol· L-! 0 0 0.1 平衡浓度/mo1· L-1 x 2x 0.1-x 由于c(Ag+)较小,所以(0.1-x)mol· L-!≈0.1mol·L-!,将平衡浓度 代入稳定常数表达式得:
2013-第五章--配合物的稳定性
与反应对应的形成常数叫逐级稳定常数,分别用
k1、k2、k3和 k4表示。
K稳=k1·k2·k3·k4
lg
K稳=Klgfθ1k1+lgk2+lgk3+lgk4
2. 稳定常数的应用
① 判断配位反应进行的方向
Ag(NH3)2+ +2CN -
Ag(CN)2- + 2NH3
查表求
Kf Ag(NH3)2+ = 1.7×107 Kf Ag(CN)2- = 1.0×1021
5-1. 配合物的稳定常数 1.配合物的稳定常数和不稳定常数
稳定常数:
Cu2++4NH3
Cu(NH3)42+
K稳=
[Cu(NH3)42+] [Cu2+][NH3]4
不稳定常数: Cu(NH3)42+ Cu2++4NH3
1 K不稳 = ——
K稳
K不稳= [Cu2+][NH3]4 [Cu(NH3)42+]
K = 5.8×1013平衡常数很大,说明上述反应很完全。
② 计算溶液中有关离子的浓度
③ 讨论难溶盐生成或溶解的可能性
④ 计算电极电势
① 判断配位反应进行的方向
Ag(NH3)2+ +2CN -
Ag(CN)2- + 2NH3
可以看作是 下列两个反 应的总和:
Ag(NH3)2+ Ag++2CN-
Ag++2NH3 Kd Ag(NH3)2+ Ag(CN)2- Kf Ag(CN)2-
[Cu(H2O)3NH3]2+ + H2O
[Cu(H2O)3NH3]2+ + NH3
[Cu(H2O)2(NH3)2]2+ + H2O
2.2.3.2 认识配合物的稳定性
[H6Y 2 ] [H5Y ] [Y 4 ] [NY ] [Y 4 ] [Y 4 ]
[Y 4 ]
[Y 4 ]
[Y 4 ]
Y Y(H) Y(N) 1
(2)金属离子的副反应和副反应系数
M的副反应:辅助配位效应
羟基配位效应 配位效应
学习情境三:铅铋合金中 铅铋的分析
二、 配合物稳定常数
1. 稳定常数(形成常数)
Cu2 4NH3
[Cu(NH3 )4 ]2
K稳
[Cu(NH3)24 ] [Cu2 ][NH3]4
K 稳 :配合物的稳定常数
。
K稳值越大,配离子越稳定。
2. 不稳定常数(离解常数)
[Cu(NH3 )4 ]2
1.66 Ca2+ 10.69 Zn2+ 16.50 Th4+ 23.2
Li+
2.79 Mn2+ 14.04 Pb2+ 18.04 Cr3+ 23.4
Ag+
7.32 Fe2+ 14.33 Ni2+ 18.67 Fe3+ 25.1
Ba2+
7.76 Ce3+ 15.98 Cu2+ 18.80 V3+
25.90
107.31 103.00 109.46 104.00 3.1105
pH
11 lg Zn(0H )
5.4
, Zn(OH )
2.5 105
Zn Zn(NH3 ) Zn(OH ) 1 5.6 105
(3)条件稳定常数(表观稳定常数,有效稳定
Sr2+
8.63 Co2+ 16.3 Hg2+ 21.8 Bi3+ 27.94
(整理)配合物稳定常数
配合物稳定常数
Stability Constants of Coordination Compounds
络合反应的平衡常数用配合物稳定常数表示,又称配合物形成常数。
此常数值越大,说明形成的配合物越稳定。
其倒数用来表示配合物的解离程度,称为配合物的不稳定常数。
以下表格中,表(1)中除特别说明外是在25℃下,离子强度I =0;表(2)中离子强度都是在有限的范围内,I≈0。
表中βn表示累积稳定常数。
金属-无机配位体配合物的稳定常数
Stability Constants of Metal Ion-Inorganic Coordination Compounds
金属-有机配位体配合物的稳定常数
(表中离子强度都是在有限的范围内,I≈0。
)
Stability Constants of Metal Ion-Organic Coordination Compounds
EDTA的lgαY(H)值
lgαY(H) Values of EDTA
精品文档
精品文档。
配位化学:配合物在溶液中的稳定性
硬酸是指外层电子结合得紧的金属离子或原子。
特征:体积小,电荷高,不易极化。
如: H+ 、Mg2+ 、Al3+
软酸是指外层电子结合得松的金属离子或原子。
特征:体积大,电荷低,易于极化。
如:Cu+ 、 Ag+ 、 Au+
交界酸:介于两者之间的金属离子。
31
32
硬碱是指对外层电子结合得紧的一类路易斯碱。 特征:变形性小,电负性大,不易失去电子。 如: F- 、 OH-
[Cu(NH3)4]2+
反应平衡常数为
Cu2+ + 4NH3
K
[Cu 2 ][NH3 ]4 [Cu(NH 3 )42 ]
K称为[Cu(NH3)4]2+的不稳定常数,用K不稳表示。 K不稳越大, [Cu(NH3)4]2+越容易离解,配离子越不稳定。
1 K稳 K不稳
铜氨配离子的形成过程
10
2. 逐级稳定常数
lgk1 13.62 8.54 7.17 6.40 6.10
稳定性顺序为: Li > Na > K > Rb > Cs
Be > Mg > Ca > Sr > Ba
19
电子构型不同,离子半径相近的中心离子,其配 合物稳定性相差很大;
例:[Mg(EDTA)] [Cu(EDTA)]
lgK稳=8.64 lgK稳=18.70
1
配合物在溶液中的稳定性
一、 稳定常数的表示方法
1.稳定常数K稳
2. 逐级稳定常数 3 .累积稳定常数
二、影响配合物在溶液中稳定性的因素
1.中心离子的性质对配离子稳定性的影响 2. 配体性质对配合物稳定性的影响 3. 软硬酸原则与配合物稳定性的关系
配位化合物稳定常数
借助Kf (Cu(NH3)24 ),Ksp(CuCl)及 (Cu2/Cu), 如何求得 (Cu(NH3)24 /CuCl)?
AgCl是固
AgCl的浓度体为!0.10mmol / 1.0cm3 = 0.10 mol·dm-3
解(1) 始:
AgCl + 2NH3 = Ag(NH3)2+ + Cl-
0.10mol xmol/L 0
0
平衡时
x-0.2 0.10 0.10
(0.1×0.1)/( x-0.2) 2 = K
这里K=?
K
[Ag(NH3)2 ]
/
Ag
[Ag ]/
Ag
0.059lg n
1 [Ag ]
K稳=[[AAgg(]N[NH3H)23]]2
[Ag
]
[Ag(NH3)2] K稳[NH3]2
0.799 0.059lg [Ag]
[Ag(NH3)2 ] / Ag
1
1
0.7990.059lg1/ K稳
-0.43
-0.31
-0.58
这里也类似于我们学习过的衍生电对已知 øAgI/Ag和 øAg+/Ag,这里也可理解为由于形成配合物,离子浓
度下降,不再是标准的1mol/L,所以必须用Nernst方 程修正。
已知 , K , ,求
A /g Ag稳 [A, g 3 )2 ] (NH [Ag 3 )2 ] ( /N Ag H
2
Kf
1 (Cu(NH3)24 )
Байду номын сангаас
配合物的稳定常数
+
2 CN
-
Ag(CN)2-
+
2 NH3
K
K f , Ag (CN )
2
因此正向进行的趋势很大
3 )2
K f , Ag ( NH
1.30 1021 13 7 . 65 10 》107 7 1.70 10
即Ag(NH3)2+ 加入过量的CN-会完全转化为Ag(CN) 2
而 Cu(en)22+ 与 Cu(EDTA)2-
K f ,Cu ( en) 2 4.0 10
2
19
18 K 6 . 0 10 > f ,Cu ( EDTA ) 2
K f ,Co ( NH
但稳定性 Cu(EDTA)2- ﹥Cu(en)22+ , 为 什 么? 如何从理论上给予解释呢? 35
+
4 H3O+
Cu2+
+
4 H2O +
4 NH4+
显然:酸性条件下Cu(NH3)42+ 难以稳定存在,
或酸性条件下难以形成配合物。
FeF63K
+
3OH
1
-
K sp K . Fe(OH )3 f , FeF3
6
1 21 7 2 . 5 10 》 10 4 1038 1.0 1016
0 .1 2 x
解得:
[Cu 2 ] 1.291010 (mol dm3 )
同理解得
0.10mol dm3Cu(en)2 2
[Cu 2 ] 8.5 108 mol dm3
显然稳定性:
Cu(EDTA)2-﹥ Cu(en)22+
配合物的不稳定常数和稳定常数
多齿配体──与中心离子结合(配位)的配 位原子不止一个的配位体称多齿配体。如: 乙 二 胺 ( * NH2─CH2─CH2─H2N* ) ( 双 齿 配 体)、氨基三乙酸( * N(CH3COO*H)3 ) ( 四齿 酸体 ) 、 EDTA (四乙酸乙二胺)(六齿配体) 二、配位数 4与中心原子结合的配位原子的数 O 目称为中心原子的配位数。如: O 配位数= 配位原子数 2+:Cu2+的配位数是4 [Cu(NH ) ] 3 4 C—CH2—N—CH2—CH2—N—CH2—C 单齿配体: [Fe(H2O)6]3+:Fe3+的配位数是6。 O =配体数 O 配位数 3-:Co3+的配位数是 [Co(en) ] 2 6。 3 2 双齿配体: 一般说来,金属离子的半径越大, 配位数=配体数× 2(Y4-)的结构简式 EDTA 电荷越高,配位数越大。
§1 §2 §3 §4
配体的 分类
单齿配体──指只有一个配位原子的配体。 如NH3、H2O、卤离子等
三、配合物的 中心原子 配合物依 据中心原 子的分类
提供空价电子轨道与配位体形成配位 键的金属离子可原子称为配合物的形 成体(又称中心离子或中心原子)。
单核配合物──只有一个中心原子的配合物 称单核配合物。如 [Cu(NH3)4]SO4 多核配合物──含有不止一个中心原子的 配合物称多核配合物。
解得: x=1.28×10-9 (mol·L-1) 答:溶液中Ag+离子的平衡浓度是1.28×10-9 mol·L-1
§1 §2 §3 §4
三、讨论难溶 盐生成或溶解 的可能性 例2 解: <1> AgBr <2> Ag++2NH3 <1>+<2>得: AgBr+2NH3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铜氨配 离复盐在溶液中电 固态都具有固定的 离出的离子全部 组成和晶体结构。 是简单离子
复盐 KCl·MgCl2·6H2O
K+, Cl-, Mg2+ 配合物在溶 液中存在复 杂基团 [Cu(NH3)42+, SO42-
配合物 [Cu(NH3)4]SO4
一些习惯叫法
配离子与异号离子形成中性物质时,配离子要 用中括号括起来,表示它是配合物的内界,只是 表示配离子时,中括号可以省略。
§1 §2 §3 §4
练习
命名下列配合物:
1、[Co(NH3)6]Cl3; 2、K2[Co(NCS)4]; 3、[Co(NH3)5Cl]Cl2 ;
§1 §2 §3 §4
多齿配体──与中心离子结合(配位)的配 位原子不止一个的配位体称多齿配体。如: 乙 二 胺 ( * NH2─CH2─CH2─H2N* ) ( 双 齿 配 体)、氨基三乙酸( * N(CH3COO*H)3 ) ( 四齿 酸体 ) 、 EDTA (四乙酸乙二胺)(六齿配体) 二、配位数 4与中心原子结合的配位原子的数 O 目称为中心原子的配位数。如: O 配位数= 配位原子数 2+:Cu2+的配位数是4 [Cu(NH ) ] 3 4 C—CH2—N—CH2—CH2—N—CH2—C 单齿配体: [Fe(H2O)6]3+:Fe3+的配位数是6。 O =配体数 O 配位数 3-:Co3+的配位数是 [Co(en) ] 2 6。 3 2 双齿配体: 一般说来,金属离子的半径越大, 配位数=配体数× 2(Y4-)的结构简式 EDTA 电荷越高,配位数越大。
中心原子:Cu2+
配位体:NH3 配位原子:N
H3N
NH3
Cu2+
H3N NH3
SO42-
配位原子——可以给出孤电子 对的原子称为配位原子;配 内界[Cu(NH ) ]2+ 外界SO423 4 位体——含有配位原子或者π 电子对的离子或者分子称为 配位体。简称配体。 配合物 [Cu(NH3)4]SO4 配位原子一般是如下原子:卤素原子(X)、O、S、N、P、C。 常见配体::NH3、H2O:、:Cl-、:I-、:CN:-、 :CNS:-、 :NH2—CH2—CH2—H2N: CH2=CH2、
§1 §2 §3 §4
配体的 分类
单齿配体──指只有一个配位原子的配体。 如NH3、H2O、卤离子等
三、配合物的 中心原子 配合物依 据中心原 子的分类
提供空价电子轨道与配位体形成配位 键的金属离子可原子称为配合物的形 成体(又称中心离子或中心原子)。
单核配合物──只有一个中心原子的配合物 称单核配合物。如 [Cu(NH3)4]SO4 多核配合物──含有不止一个中心原子的 配合物称多核配合物。
溶于水
配 合 物
电中性配合物——如Fe(CO)5 、Co(NH3)3Cl3 配离子——Cu(NH3)42+、Ag(CN)2配酸 H2[PtCl6]、配碱 [Cu(NH3)4](OH)2 、配盐 [Cu(NH3)4]SO4 (这些都可电离出配离子)
§1 §2 §3 §4
1-3 配合物的组成
一、配位体 和配位原子
(1)用pH试纸测定酸碱度:pH=7 说 明没有明显NH3 , (2)加入稀NaOH时无沉淀生成,说 明无简单Cu2+离子 (3)加入BaCl2+HNO3溶液有沉淀生 成,示有SO42-离子
§1 §2 §3 §4
铜氨溶液 的组成 配合物 的定义
由以上实验事实可以推知,在铜氨溶液 中,无简单Cu2+离子,有简单SO42-离子, 无大量NH3,根据进一步的实验(元素 含量分析)可以得出铜氨晶体的组成为 [Cu(NH3)4]SO4
NH3
NH3
Cu2+ NH3 NH3
NH2—H2N
金属族状配合物──多核配合物中,两个 中 心原子直接成键结合的配合物称金属族状 配合物。
Ni
NH2—H2N
Ni
§1
金属族状配合 物[Co2(CO)8]的 结构
§2 §3 §4
1-4
配合物的命名
配离子 的命名 的顺序
把配离子看作是一个特殊原子团, 那么配合物的命名与普通无机物的 金属离子(用罗马数 命名方法是相同的。主要是要掌握 配体的数目和名 字表示金属离子的 好配合物内界的命名方法。 称(无机配体(阴 氧化数或用阿拉伯 离子·阳离子·中 合 数字表示配离子的 性分子)·有机配 电荷) 体
§1 §2 §3 §4
注意
化学式相同但 配位原子不同 的配体,名称 不同
:NO2 硝基 :ONO 亚硝酸根 :SCN 硫氰酸根 :NCS 异硫氰酸根 [Cu(NH3)4] 2+ 铜氨配离子 [Ag(NH3)2]+ 银氨配离子 K2[PtCl6] 氯铂酸钾等。 K3[Fe(CN)6] 铁氰化钾(俗名赤血盐) K4[Fe(CN)6] 亚铁氰化钾(俗名黄血盐)
同类配体不止一个时,按配位原子的英文字母顺序排列。 [Cu(NH3)4]2+ 四氨合铜(Ⅱ)配离子 [Cu(NH3)4]SO4 硫酸四氨合铜(Ⅱ) [Fe(CN)6]3六氰合铁(Ⅲ)配离子 K3[Fe(CN)6] 六氰合铁(Ⅲ)酸钾(阳离子和配阴离子之间加个“酸”字 H2[SiF6] 六氟合硅(Ⅳ)酸(阳离子只有氢离子时,不写阳离子名称) [Co(NH3)5(H2O)]Cl3 三氯化五氨· 一水合钴(Ⅲ)
配合物是由可以给出孤对电子或多个不 定域电子的一定数目的离子或分子(称为配 体)和具有接受孤对电子或多个不定域电子 NH3 NH3 的空位(空轨道)的原子或离子(统称中心 原子)按一定的组成和空间构型所形成的化 Cu2+ 合物。
NH3
NH3
Cu2+ + 4NH3 ==Cu(NH3)42+
简单地说,配合物是由中心原子和配位 体组成的,中心原子和配位体具有一定 的比例和一定的空间构型。
本章讲解内容
第一节 配合物的基本概念
第二节 螯合物 第三节 配合物的稳定性
第四节 配合物形成时的性质变化
§1 §2 §3 §4
第一节 配合物的基本概念
1-1 配合物的定义
+
加入酒 精过滤
配合物的形成
CuSO4+4NH3=[Cu(NH3)4]SO4
把纯净的深蓝色 的硫酸四氨合铜 晶体溶于水,分 成三分,进行如 理实验: 深蓝色 晶体