原子钟频率标准
原子钟频率标准 ppt课件

原子钟频率标准
• 频率稳定度—阿伦偏差(Allan Deviation):描
述输出频率受噪声影响而产生随机起伏程度的量,在 数学上用Allan(阿伦)方差的平方根值来加以表示。
其主要的计算公式为:
y()
1 f0
m (fi1fi)2 i1 2m
原子钟频率标准
原子钟频率标准
Frequency Stability
原子钟频率标准
• 测量和测试行业
– 研究所 – 企业
• 生产行业
– 电信部门 – 航空电子设备,导航设备制造企业 – 其他电子生产企业
• 服务行业
– 广播与电信网络运营商/安装商 – 军方 – 独立的校准/维护承包商
原子钟频率标准
移动时间 同步网分
级
一级节点 二级节点
客户端
节点时间同步链路 客户端时间同步链路
选态磁铁
可控震荡器频率与铯的共振 频率相同。
外部受控振 荡器
原子束 铯束管
原子钟频率标准
2. 光抽运铯钟(法国
LPTF):
第一光学
3.
在光抽运铯束频标
作用区
中,利用激光(第一光学区)铯炉
外部受控振 荡器
对铯束照射,使得不同能量
态的原子发生跃迁达到统一 的能量态。再利用谐振腔的 受控外部震荡器对铯束管中 的铯原子加以作用,形成能 级跃迁。最后发生跃迁的原
美国Symmetricom MHM- 2010
1.5×10-13 5×10-14 1.3×10-14 3.2×10-15 3×10-15 3×10-15
1×10-15 1×10-14/高斯 Cavity frequency switching
1×10-14 3×10-14/高斯 Cavity frequency switching
铷原子频率标准

铷原子频标基于铷原子能级跃迁结合光抽运技术形成的铷原子振荡器。
由晶体振荡器(VCO)输出的信号经过倍频综合后得到铷原子谐振器相关的微波激励信号。
谐振器将该信号相关处理(铷原子跃迁判定)后产生误差信号,再经伺服电路反馈给压控晶体振荡器,使压控晶振频率锁定在铷谐振器的中心频率,从而实现以铷原子跃迁为参考的晶体振荡器。
铷原子钟溯源同步到GPS卫星铯原子钟上,输出频率几乎没有漂移,所以不需送上级计量部门进行周期校准,性能接近铯钟,但却远远低于铯钟的价格,而且不存在铯钟那样铯束管寿命短需要高成本更换的问题。
铷原子钟非常适合应用于SDH数字同步网的1,2级节点时钟,为电力、电信、广电、时统、计量校准、雷达设备等提供高精度的时间和频率基准。
主要特点1内置铷振荡器2.日平均频率准确度<2×10P-12P3.时间实时显示4.驯服、保持自动切换5.GPS失锁后依靠铷钟高精度守时6.低相噪频率信号输出7.测频精度<2×10P-12P/天8.具备TRAIM算法的GPS接收机铷频率标准不需要真空系统、致偏磁铁和原子束,因而体积小、质量小、预热时间短、价格便宜,但准确度差、频率漂移比较大,仅能用作二级标准。
铷频率标准可通过GPS进行快速驯服和外秒同步,克服铷振荡器本身的漂移,可被看作是一个基本的同步时钟单元。
通过设计和工艺的改进,产品的可靠性和批量生产也得到保证,现已具备产业化的条件。
可以预计,这种带外秒驯服的高性能小型化铷钟将应用于无人值守等苛刻环境,将大大拓展铷钟的应用领域。
铷原子频率标准常常被分为普通型、军用型、航天型。
SYN3102型铷原子频率标准产品概述SYN3102型铷原子频率标准是是西安同步电子科技有限公司研发生产的一款高性能铷原子频率标准源,选用国外进口的高精度铷原子振荡器,提供精确的频率(量值)信号,能够为计量、通信、国防等部门提供高精度频率标准信号。
产品功能1)提供一路标准的10MHz正弦信号;产品特点a)锁定快;b)低相噪;c)高可靠性;d)可长期连续稳定工作。
cpt原子钟型号

CPT原子钟,即基于相干布局囚禁(Coherent(Population(Trapping)原理实现的原子钟,是一种芯片级原子钟。
CPT原子钟的型号包括但不限于以下几种:
1.SA.45S:由美国Symmetricom公司发布,整机功耗为115mW,体积为16cm³,频
率稳定度为2×10−10τ−1/2,启动时间为120s。
2.SA.53m/SA.55m:由Microchip公司发布,该系列原子钟充分借助CSAC和前代
SA.3Xm产品的CPT技术,是微型原子振荡器的新进展。
3.SYN010H:国产芯片级原子钟,采用国产元器件和工艺研制而成,工作温度范围-
40℃~+75℃,可在该温度范围内保证PPb量级的频率精度。
其外形及安装尺寸兼容SA.45s,具有低功耗、小尺寸、快启动的优点,可广泛应用于多种便携式设备及无人值守时频设备中。
这些原子钟型号各有其特点和优势,选择时需要根据具体的应用场景和需求进行考虑。
量子测量术语-最新国标

量子测量术语1 范围本文件规定了量子测量相关的基本术语和定义。
本文件适用于量子测量相关标准制定、技术文件编制、教材和书刊编写以及文献翻译等。
2 规范性引用文件本文件没有规范性引用文件。
3 通用基础3.1量子测量quantum measurement利用量子的最小、离散、不可分割特性及量子自旋、量子相干、量子压缩、量子纠缠等特性,大幅提升经典测量性能的测量。
3.2量子计量quantum metrology基于基本物理常数定义国际单位制基本单位,利用量子系统、量子特性或量子现象复现测量单位量值或实现直接溯源到基本物理常数的测量,可用于其他高精度测量研究。
3.3量子传感quantum sensing利用量子系统、量子特性或量子现象实现的传感技术。
3.4量子态quantum state量子系统的状态。
3.5量子费希尔信息quantum Fisher information量子费希尔信息是经典费希尔信息的扩展,表征了量子系统状态对待测参数的敏感性,可用于确定参数测量的最高精度。
3.6海森堡极限Heisenberg limit根据海森堡不确定性关系,在给定的量子态下,量子系统的某个指定的可观测物理量受其非对易物理量测量不确定性的制约所能达到的测量精度极限。
3.7标准量子极限standard quantum limit由量子力学原理决定的噪声极限,即多粒子系统处于真空态时两个正交分量的量子噪声相等且满足海森堡最小不确定关系。
3.8散粒噪声shot noise散粒噪声,或称泊松噪声,是一种遵从泊松过程的噪声。
对于电子或光子,其散粒噪声来源于电子或者光子离散的粒子本质。
3.9量子真空涨落quantum vacuum fluctuation真空能量密度的随机扰动,是海森堡不确定原理导致的结果。
3.10量子噪声quantum noise测量过程中由于量子系统的海森堡不确定性引发的噪声。
3.11量子投影噪声quantum projection noise测量过程中由于量子投影测量结果的随机性所引发的噪声。
原子钟概述

第2章原子钟概述2.1原子钟的定义原子钟,是一种利用原子、分子能级差为基准信号来校准晶体振荡器或激光器频率,以使其输出标准频率信号的一种装置。
它利用原子能级跃迁产生的光信号,通过光电转化、信号处理后获得用来修正晶振或激光器频率的负反馈纠偏信号,使其输出稳恒振荡频率,这种输出频率可以用来精确计量时间。
根据采用的原子种类和技术手段的不同,原子钟可以分为很多种。
因为特定原子能级之间的能极差是很稳定的,所以原子钟的准确度很高,可以达到千万年仅差一秒或者更高的水平。
2.2原子钟的发展历程在原子钟出现以前,最准确的计时工具是以晶体振荡器为代表的电子钟表和挂钟为代表的机械力学钟表,它们几乎可以满足人们的如常生活需要,但是在对计时准确度要求较高的科研或生产领域还是不能满足要求。
原子钟的发展,最早可以追溯到1938年,美国哥伦比亚大学的拉比(Rabi)和他的学生发明了分子束磁共振技术。
他们用磁共振技术观察到了原子超精细能级间的跃迁,指出当一束原子通过一个振动的电磁场时,电磁场的振动频率越接近超精细能级间的跃迁频率,原子从电磁场吸收的能量就会越多,从而使更多原子跃迁。
他们由此提出应用反馈回路可以调节电磁场的振动频率,直到所有原子都可以跃迁。
这就是实现原子钟的基本理论基础。
通过使电磁场振动频率与原子精细能级跃迁频率共振,用电磁场的共振频率调节晶体振荡器的频率,就能使晶振频率严格跟随电磁场振动频率,实现频率输出的准确性和稳定性。
再通过相应的控制、调节系统,就能使晶振输出准确、稳恒的振动频率,用这个频率为基准,就可以实现精确时。
1949年,在美国诞生了以氨分子为样品的世界上第一台原子钟,其输出频率为23.8GHz。
与当时最精确的石英钟相比,它已经相当精确了。
但是它由众多器件构成,体型巨大,对于大应用领域来说,实用性不强。
1955年,在英国国家物理实验室建成了第一台铯原子钟。
1960年,拉姆齐(N.Ramsey)等人成功研制出第一台氢原子钟,通常人们把它叫做氢微波激射器(H maser)。
原子钟的几种常见类型

光谱灯发出的共振光经透镜聚焦后,通过置于谐振腔内的汽室被吸收,并在光电检测器上得到一定电平的光电信号。这相当于光抽运下原子在两个基态超精细能级上建立稳态分布时的信号,当谐振腔内电磁场频率与超精细跃迁相符时,原子在两个超精细能级之间发生跃迁,打破了原有的原子在能级上的平衡分布,又会发生新的光吸收,产生跃迁的光检测信号,即原子钟信号。
冷原子喷泉钟的基本想法如图7所示,搭建一个竖立的真空装置,真空中充
有工作介质(铷或铯)的饱和蒸汽,利用激光俘获原子并将其冷却,将原子上抛。原子在上抛和下落的过程中只受到重力作用,它两次穿过微波腔,与时间上的分离振荡场作用,产生钟跃迁,然后探测不同能级的原子。最后获得与Ramsey钟跃迁相应的荧光信号。这样极大减小了传统结构中两个振荡场不同所造成的相位频飘而且两次与微波振荡场作用时的速度等值反向,消除了一阶多普勒频移。[2]图7
积分球冷却原子钟积分球冷却原子钟的基本思想是把原子钟的所有相互作用(原子冷却、原子制备、微波探测和检测)都在同一地方发生,应用时序将各个阶段的作用分开。从而该钟可以减小到几升的体积。
积分球冷却原子钟的物理部分是由激光焊接的钛材做成,真空室由2L/s的离子泵维持在9* mPa。外面罩两层磁屏蔽。
为了满足冷却过程的需要,球形紫铜腔须光学抛光到λ/14的精度以便储存激光和产生各向同性的光场以供捕获和冷却原子用。同时,这个微波腔调谐在9。192GHz 模式,用于激励“钟”跃迁。微波腔内有一Cs原子储存泡,保持真空度在 乇。含泡腔的Q=3000。
图1
一个受控的标准频率发生器产生的信号经过倍频和频率合成转换成为频率接近于原子跃迁频率的信号,激励原子产生吸收或受激发射的频率响应信号,呈共振曲线形状,称为原子谱线,其中心频率即原子跃迁频率为 ,线宽为Δν。若经过转换的受控振荡器频率与原子跃迁频率不符,原子做出的响应信号通过伺服反馈系统来矫正振荡频率,直到使其与原子频率符合为止。这样就使受控振荡器频率始终稳定在原子跃迁频率上,从而实现使其振荡频率锁定于原子跃迁频率的目的。
铷钟

主要技术指标
频率稳定度 月频率漂移率
频率重现性 频率准确度
频率稳定度是频率偏差的起伏程度,实际上是一种可以用随机过程(平稳的或不平稳的)来研究和处理的问 题。频率稳定度在时域上的数学表征是阿伦标准偏差。
原子频标连续工作时,频率随时间单方向慢变化程度,用最小二乘法估计。通过GPS锁定,可改变铷原子钟 的漂移。铷原子钟的月漂移为:1×10-11~4×10-11。
铷频率标准不需要真空系统、致偏磁铁和原子束,因而体积小、质量小、预热时间短、价格便宜,但准确度 差、频率漂移比较大,仅能用作二级标准。铷频率标准可通过GPS进行快速驯服和外秒同步,克服铷振荡器本身 的漂移,可被看作是一个基本的同步时钟单元。通过设计和工艺的改进,产品的可靠性和批量生产也得到保证, 现已具备产业化的条件。可以预计,这种带外秒驯服的高性能小型化铷钟将应用于无人值守等苛刻环境,将大大 拓展铷钟的应用领域。
●漂移率
频率漂移率是铷原子频标的重要指标之一,通常认为光频移是导致整机频率漂移的主要因素,一般在零光强 频移泡温点,光强频移贡献约为1×10-12/1%,灯光强日漂移一般可达千分之一至万分之几,铷原子频率标准的 月漂移率应在4×10-11-5×10-12范围内。
●价格
选购铷原子钟需要考虑产品的价格范围,铷原子钟的价格取决于许多因素,包括稳定度、漂移率、准确度等。 一般情况下,相同指标的铷原子钟,国产比进口产品价格便宜。
特点
钟具有短期稳定性高,体积小巧,便于携带,价格合适的特点,非常适合于在各个领域使用,但由于铷原子 的原子特性的原因,铷钟并不具有铯钟和氢钟那样优秀的长期稳定度,因而需要校准。为了提高铷钟的长期稳定 度,可以通过使用GPS系统来对铷钟进行控制和校准。
GPS系统通过测量时间差来实现定位测量,为了达到较高的定位精度,GPS系统内部时间测量精度极高。通过 使用GPS系统来对铷钟进行校正,可以很好的提高铷钟的长期稳定度,降低铷钟输出信号的飘移。
原子钟稳定的与误差

原子钟稳定的与误差
原子钟是一种高精度的时间计量工具,利用原子能级跳跃时辐射出来的电磁波来控制和校准石英钟,因此具有极高的稳定度。
一般来说,原子钟的稳定度通常在2E-15左右,日均误差只有2E-11秒左右或
2E-10秒左右。
由于原子钟使用的原子跃迁频率非常稳定,因此其计时精度非常高,能够达到很高的时间计量精度。
尽管如此,原子钟也不是完美的,仍然存在一些误差和不稳定因素。
例如,环境温度、电磁噪声、机械振动等都可能对原子钟的精度产生影响。
此外,原子钟的制造工艺、材料质量、老化等因素也可能导致误差。
因此,为了获得更准确的计时结果,需要对原子钟进行定期校准和维护。
同时,原子钟也需要与其他高精度时间计量工具进行比对,以确保其精度和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的原子发生跃迁达到统一的 能量态。再利用谐振腔的受 控外部震荡器对铯束管中的 铯原子加以作用,形成能级 跃迁。最后发生跃迁的原子
原子束
光束
铯束管
激光器
第二光学作 用区
在第二光学区被加以检测,
以测定原子的共振频率。
No Image
精品课件
铯钟的工作原理(喷泉钟)(美国 NIST)
1. 由铯原子组成的气体,被引入 到时钟的真空室中,用激光减 慢了原子的运动速度并将其冷 却到接近绝对零度。
波尔能量关系公式: E2E1 h0
No Image
精品课件
铯钟的工作原理(铯束管)
1. 磁选态铯钟(德国PTB):
利用磁偏转的方式将符
合工作要求的特定能量态的
铯原子选取出来,并将其输 入铯束管(微波谐振腔),
铯炉
铯束在微波谐振腔中与外部
受控震荡器相作用发生能级
跃迁。输出的铯束与高温金
属丝相作用形成铯离子电流,
精品课件
安
排
1. 钟的工作原理
2.仪器常用指标及实现
3. 公司相关产品介绍 4. 其它竞争产品比较 5. 总结
No Image
精品课件
仪器常用指标
• 频率准确度:表征信号的实际频率值与理想的或定义的频率值 (以UTC为标准的频率,实际是国际原子时ATI的频率)的偏离 或符合程度,一般用相对频率偏差来表示。
2. 两束垂直的激光轻轻地将这个 铯原子气球向上举起,穿过微 波腔,形成“喷泉”式的运动。
3. 在地心引力的作用下,铯原子 气球开始向下落并将所吸收的 能量全部释放出来。
4. 在微波腔的出口处,另一束激 光射向铯原子气,探测器将对 辐射出的荧光的强度进行测量。
No Image
精品课件
铷钟的工作原理
信号 光电检测
No Image
精品课件
GPS的工作原理
GPS系统操作原理为:每 一颗卫星不断发射包含其位 置和精确到十亿分之一秒的 时间的数字无线电信号。 GPS的接收装置接收到来自 于四颗卫星的信号,然后计 算出在地球上的位置。接收 装置将接收时间与卫星发射 的时间进行比较,通过二者 之差计算出远离卫星的距离。 通过比较这个时间与其他三 个已知位置的卫星的时间, 接收装置便能够确定经纬度 及海拔高度。
当铯离子电流输出达到最大 选态磁铁
的时候,谐振腔的可控震荡
器频率与铯的共振频率相同。
外部受控振 荡器
原子束 铯束管
No Image
精品课件
铯钟的工作原理(铯束管)
2. 光抽运铯钟(法国
LPTF):
第一光学
在光抽运铯束频标中, 作用区 利用激光(第一光学区)对 铯炉
外部受控振 荡器
铯束照射,使得不同能量态
1 N
N
ti
i1
为N次测量的测量时序平均值
No Image
精品课件
仪器的常用指标
• 频率稳定度—阿伦偏差(Allan Deviation):
描述输出频率受噪声影响而产生随机起伏程度的量, 在数学上用Allan(阿伦)方差的平方根值来加以表示。
其主要的计算公式为:
y()
1 f0
m (fi1fi)2 i1 2m
No Image
精品课件
GPS的工作原理
• 铯钟或者铷钟
• 原子钟通过 NIST 和 USNO加以校准
• 每一个卫星传输时间和 位置编码信 (1575.42MHz的L1载波 和频率为1227.60HMz 的L2载波)
• 所传送的GPS时间& 频 率基准对于NIST 和 UTC 是可追踪的。No
Image
铷钟的工作原理:
光源灯泡中的铷87在无 光源灯泡
微波腔
极放电的工作状态下产生特
定波长的电磁波,通过超精
细滤光泡对某些波长的光进
行滤除后照射进入谐振泡。
利用光抽运技术使得谐振泡
中的铷87发生能级跃迁。调
整微波腔的频率,当光电转 换电路的输出电流达到最大
超精细滤光 谐振泡 灯泡
的时候可得到铷的共振频率。
• 频率稳定度:频率稳定度表示时钟输出频率因受噪声影响产生的 随机起伏特性。可以从时域和频域来分析频率稳定度。频率稳定 度用阿伦方差的平方根来表征。
• 频率漂移率(老化率):频率漂移率是指时钟输出频率随运行时 间单调变化的线性率。随时间单位的不同,有日漂移率?p月漂移 率和年漂移率。对于高稳石英晶体振荡器,由于频率漂移通常是 由石英晶体的老化造成的,因此它的频率漂移率称为频率老化率。 原子钟的漂移主要由内部器件造成,包括由量子结构的频率漂移、 相检及运放的漂移引起。
No Image
精品课件
仪器常用指标
• 老化率:
频率值随时间呈单方向的变化,称为频率漂移或老化。近
似描述频率老化特性的直线用最小二乘法计算。其主要的
计算公式为:
N
( fi f )(ti t )
k i1 N
f 0 (ti t ) 2
i 1
f
1 N
N i 1
fi 为N次测量的平均频率
t
高性能的时间频率标准
Ideal for telecommunications, metrology and electronics industry.
精品课件
安
排
1.钟的工作原理
2. 仪器常用指标及实现 3. 相关产品介绍 4. 其它竞争产品比较 5. 总结
No Image
精品课件
钟的工作原理
根据量子物理学的基本原理,原子是按 照围绕在原子核周围不同电子层的能量差,来 吸收或释放电磁能量的。这里电磁能量是不连 续的。当原子从一个高“能量态”跃迁至低的 “能量态”时,它便会释放电磁波。这共 振频率。同一种原子的共振频率是一定的—例 如铯133的共振频率为每秒9192631770周。 因此铯原子便用作一种节拍器来保持高度精确 的时间。
No Image
精品课件
频率标准的准确度
No Image
精品课件
频率标准的选择
Frequency Stability
(number of digits)Cesium Oscillator
13
12
GPS-controlled Rubidium Oscillator
11 10
Rubidium Oscillator
精品课件
已有的时间频率标准
• 独立工作源 – 首选标准 • 铯,氢钟 – 第二选择 • 铷, OCXO(高稳晶振)
• 发送系统 – 卫星无线电系统 • GPS, GLONASS, 伽利略 – 地面无线电系统 • Loran-C, DCF-77 – 光纤同步系统 • E1, T1 (SSU)
No Image