CRH380B型动车组牵引系统资料

合集下载

CRH380B型动车组牵引系统

CRH380B型动车组牵引系统
• 主变压器设计为适用于地板下装配的单相牵引变压器,采用强迫导向油 循环风冷方式,变压器油箱为钢结构。
• 为防止矿物油的热胀冷缩,需要安装一个储油柜,储油柜独立于油箱固 定在列车的上部。储油柜和油箱是通过管道及连接器连在一起的。
主变压器箱体
储油柜
2.2.1 主变压器具体技术参数
额定功率 :
约5848KVA
标称电压,初级 :
25 kV
标称频率 :
50 Hz
次级绕组数目 :
4
额定电压,次级(牵引绕组) : 约4 x 1850 V
额定功率,次级(牵引绕组) : 约4 x 1462 kVA
产品标准 :
EN 60310
2.2.2 牵引变压器主要保护功能
主变压器采用强迫导向油循环风冷方式,设有冷却油温、油 循环流动状态等监控保护装置。
通风量:
约0.67 m³/s
额定功率:
586kW
额定电压:
约2700 V
额定电流:
约155 A
额定功率下的效率:
约94.7 %
额定转速:
4100 1/min
额定功率下的功率因数cosφ:
约0.89
温度等级:
200
最高电压:
约2800V
最大电流:
约220A
最高转速:
约5900 /min
牵引电机冷却风机
2.1.6 电压互感器
电压互感器与一个受电弓连接,用于测量和监视电网接触线的电压,它 有两个次级绕组,把电压信号送到各个牵引变流器中,互感器位于受电弓与主 断路器之间。
2.1.7 电流互感器
每个牵引单元有三个电流互感器,一个电流互感器被接到主断路器下方, 用于测量动车组的电流;另外两个互感器用于监测主变压器。这两个互感器用 来测量牵引单元的线电流和回流电流。通过差动电流判断变压器是否有接地故 障。

动车_牵引辅助系统资料

动车_牵引辅助系统资料


输入电压:DC2700-3600V 输出电压:3AC440V 60Hz 额定功率:1x160kVA(单辅) 2x160kVA(双辅) 控制电压:DC110V
中压供电输出
440V 60Hz 3 AC以下由此电源供电: • 客室空调 • 驾驶室空调 • 主空气压缩机 • 主变压器的辅助系统 • 牵引辅助系统 • 前风挡加热 • 辅助变流器冷却 • 电池充电机 由440V AC 变压的230V 60Hz 1 AC以下由此电源供电: • 厨房一些的负载 • 水系统加热 • 撒沙管加热 经110V DC 逆变器产生的 230V 50Hz 1AC以下由此电源供电: • 清洁的插座(每车13A 熔断,输出电压适于连接标准设备) • 一些厨房负载
标称容量:2x160Ah
直流供电系统示意框图
主界面
根据行车需要,由网压、网流、受电弓、主断、牵引电制动力、牵引 变流器、辅助变流器、充电机状态集成主界面。
CRH380BL型新一代高速动车组
牵引、辅助系统
中国北车长春轨道客车股份有限公司
1.CRH380BL牵引系统
CRH380BL型动车组由16节车组成,高压供电 与两列CRH3型动车组重联模式相同,前后半列车 (8辆)由不同受电弓从接触网受流,高压、中压和 低压供电部分不贯通。全列由四个牵引单元组成。
充电机的功能是把三相交流电转换为DC110V电源,对
蓄电池组进行充电,同时向与充电机并联的负载供电。
外尺寸
1.3.2 蓄电池充电机
蓄电池充电器模块和高频变压器将 3AC输入电压(440V / 60Hz)转换 成可隔离的110V直流输出电压。在 正常的工作状态下,装置给蓄电池 充电,同时向直流负载供电。
1.1牵引变流器

CRH380B型动车组牵引系统故障分析与研究

CRH380B型动车组牵引系统故障分析与研究

CRH380B型动车组牵引系统故障分析与研究摘要:高速列车在实际运行过程中,其牵引系统出现故障的频率相对较高,牵引系统故障会对列车正点以及运行安全性产生较为严重的影响。

基于此,本文主要针对CRH380B型动车组在运行过程中牵引系统有可能发生的故障问题进行分析和探讨。

关键词:CRH380B型动车组;牵引系统;故障分析引言:列车在运行过程中牵引系统所出现的故障通常为牵引丢失以及主断不能闭合,和高速列车运行中的其它故障相比,牵引系统发生故障频率相对较高,此类故障不利于保障列车正点以及列车运行的安全性。

因此,针对此类故障进行深入分析和探究意义重大。

一、功能简介通过受电弓实现接触网AC25KV 单相工频交流电的传输,使其能够转移到牵引变压器,在变压器对交流电完成降压处理的基础上,接下来将其转移给脉冲整流器,接下来交流电会在脉冲整流器的处理下转化成直流电,直流电会继续进行输出,作用于牵引逆变器,其会对三相异步电动机进行可控电压、电流的三相交流电供给,在齿轮转动的支持下,牵引电机所输出的转矩以及转速便可以有效传递给轮对,通过此种方式实现转矩与转速的转化,使其成为轮缘的牵引力以及线速度。

实际的高压电气设备在接触网到牵引变压器接通和断开的这一过程中,主要涉及到了受电弓、避雷器以及高压电缆等。

二、故障问题发生原因分析(一)主断不能闭合造成动车组牵引系统出现主断路器无法有效闭合的主要原因包括网压处于不合理范围、过分相后闭合、牵引变压器或者牵引变流器发生故障、网络通讯流畅度不高、主断出现相应故障以及高压接触器出现相应问题等。

而主断锁闭通常是因为软件保护(针对指定牵引设备所处在的牵引单元开展复位工作,若通过此种方式主断无法解锁,针对牵引单元主断开展复位工作,在主断不能够进行闭合过程中,针对风管压力进行检查,如果实际的风管压力不超过7bar,那么每次进行升弓时间应该小于10min,否则便很容易触发软件保护造成锁闭情况)。

(二)牵引丢失导致牵引丢失问题发生的原因主要包括以下几个方面:第一,接地故障监控发挥了作用,主要是由于牵引变流器中间电压不处在合理范围内时,检测保护发挥了作用,进而会使得主断断开;第二,牵引电机风扇出现了相应的故障,主要是由于针对TCU发出牵引机冷却风扇启动指令以及高低速指令,若经过了10秒钟时间并没有收到相关运转信号,那么TCU接下来会封锁牵引同时产生相应故障报告;第三,导致MVB通讯故障问题发生的原因主要由于基于CRH3C型动车组,在各个相关牵引单元中MVB主设备为CCU,其对所有相关设备发挥着控制效果,若实际中的CCU和其中的一个MVB发生通讯终端并且时间大于60秒,那么便会在HMI报警其和相关设备所发生的故障。

CRH380B型动车组牵引系统故障分析研究

CRH380B型动车组牵引系统故障分析研究

CRH380B型动车组牵引系统故障分析研究摘要:目前,高速铁路快速建设发展,动车组已成为一种新型的高效铁路交通运输专用工具,在高速动车组的牵引车辆正常运行中,牵引传动系统供电发挥着重要主导作用,本文以CRH380B型系列动车组为研究对象,对牵引系统中包含的重要部件进行了分析找出导致系统失效原因,来延长部件的寿命,减少故障发生率。

关键词:CRH380B型动车组、牵引系统故障、整治措施随着当前我国现代铁路运输事业的快速健康发展,动车组也不断呈现出蓬勃展,电力传动牵引系统是一种新型铁路有轨电车运输电力牵引综合动力系统形式,动车组电力牵引传动系统管理仍然是一项较为复杂且系统的复杂工作,其在有效确保铁路动车安全正常运营运行方面的主导地位和重要作用。

一、绪论1.1.动车组牵引系统故障现状牵引传动系统技术主要由包括牵引电动变压器、牵引传动变流器、牵引整流电机、冷却装置等组成,负责为动车组运行提供动力、协同制动系统实施调速,起着承上启下的作用。

动车组的高速运行与牵引系统密不可分,自身工作状态的优劣对稳定运行起到决定性作用,同时长距离、高温、严寒、复杂气候的运行特点对牵引系统更是提出更高的要求。

然而,如何确保动车组列车安全、平稳、正点、高效运行是铁路运输部门面临的重要问题,牵引部件运行中发生故障轻则会造成动车组降速,重则会导致动车组停车、停运,严重的影响铁路运输秩序。

所以,对牵引系统故障进行诊断、分析、处理、预防等工作具有重要意义。

1.2.CRH380B型动车组牵引系统组成结构及工作原理1.2.1组成结构CRH380B型动车组是基于250kV/50Hz交流供电条件设计的,是持续运行速度为300km/h的动力分散型动车组。

动车组内部牵引系统的零部件一般安装在每个牵引动车上,它主要部件包括一台牵引电动变压器、牵引传动变流器、牵引总发电机、冷却装置等。

每个高频牵引器和变流器分别包括两个高频四象形有限斩波器、一个中间直流控制环节、一个高频制动斩波器和一个高频脉宽调制器和逆变器。

动车组牵引传动系统CRH380B(L)

动车组牵引传动系统CRH380B(L)

CRH380B动车组牵引传动系统本章主要介绍动车组牵引传动系统工作原理及主要组成部件牵引变压器、变流器、牵引电机及限压电阻等电气设备结构、性能特点。

第一节动车组牵引传动方式CRH380B动车组整列为一个高压单元,由两个对称的牵引单元组成(每四辆车为一个牵引单元),牵引单元间由车顶高压线缆连接。

CRH380BL动车组由两个独立的高压单元组成(前、后八辆分别为一个高压单元),每个高压单元由两个对称的牵引单元组成(每四辆车为一个牵引单元),牵引单元间由车顶高压线缆连接。

如图4-1所示图4-1 CRH380BL动车组高压单元CRH380B和CRH380BL动车组高压供电系统组成、工作原理基本相同:接触网高压电经受电弓进入动车组,经主断路器(MCB)等高压部件,一路直接进入本牵引单元、另一路经隔离开关(RLDS)、车顶高压电缆进入另一牵引单元。

CRH380B动车组牵引传动系统采用4动4拖的动力配置,01、03、06、08车为动车,02、04、05、07车为拖车,全列由2个牵引单元组成,每个牵引单元由1台变压器、两台变流器和2个动车的8台牵引电机组成,全车共计16台牵引电动机;CRH380BL动车组牵引传动系统采用8动8拖的动力配置,01、03、06、08、09、11、14、16车为动车,02、04、05、07、10、12、13、15车为拖车,全列由四个牵引单元组成,每个牵引单元由一台变压器、两台变流器和2个动车的8台牵引电机组成,全车共计32台牵引电动机。

第二节牵引系统构成及工作原理一、原理及基本组成CRH380B动车组整列为一个高压单元,由两个对称的牵引单元组成(每四辆车为一个牵引单元,如图4-2),牵引单元间由车顶高压线缆连接。

CRH380BL动车组由两个独立的高压单元组成(前、后八辆分别为一个高压单元),每个高压单元由两个对称的牵引单元组成(每四辆车为一个牵引单元),牵引单元间由车顶高压线缆连接。

图4-2 牵引单元CRH380B(L)动车组高压供电系统组成、工作原理基本相同。

CRH380B型动车组-总体技术

CRH380B型动车组-总体技术

1、车型车种定义
体现新一代高速动车组自主创新和速度 特征
CRH 380 B 6401 L
编组数量代码,L表示长编组, 8辆编组不标号。 制造序列代码,新一代统一 以6字开头,64为唐山生产。
型号:B型表示唐山/长客 新一代高速动车组
时速特征代码,体现最高 运营时速380公里
中国高速铁路动车组简称。
车种代码是汉语拼音缩写,分别为:
➢ ZY 一等座车 ➢ ZE 二等座车 ➢ SW 商务车 ➢ CA 餐车 ➢ ZEC 二等座车/餐车 ➢ ZYG 一等座车/观光车 ➢ ZEG 二等座车/观光车
2、主要技术特点
➢ 系统成熟
世界顶级的技术平台 经过各种运用条件的考验 与中国国情的完美结合
CRH3主要技术特点
轮周牵引功率与供电电压的关系
电压范围 25 kV-29 kV AC 25 kV-22.5 kV AC 22.5 kV-17.5 kV AC 29 kV-31 kV AC
牵引功率 额定功率 降至额定功率的90% 下降到零 下降到零
备注 保证所有部件的工作
tractive effort at wheel rim
占的比例约为25%。 南京
无锡
上海
气候及地理环境特点
考虑京沪高速运行条件,同时兼顾我国华北、 华中、华南地区的气候环境,设计环境温度:冬 季最低温度-25度,夏季最高温度+40度;同时考 虑春秋季节沙尘、扬絮、雾霭;夏季雷电以及冬 季冰雪对动车组正常运用带来的影响。
线路条件
京沪高铁采用按时速350公里的速度标准建设。
声明:
本文件为培训资料,内容仅供 参考,当与动车组实际结构不符时, 应以实际结构为准。
一、概述 二、动车组总体特性 三、动车组车型车种介绍 四、主要系统概述 五、检修维护

CRH380B高寒动车组简介

CRH380B高寒动车组简介

过渡车钩
10型钩头 过渡装置 AAR型钩头
过渡车钩结构及作用原理
过渡车钩是一个由三部分构成的车钩, 第1部分是:夏芬伯格10型车钩 同动车组连接的密接式车钩;第2部分是高度过渡部分,保证1000毫 米同880毫米之间的过渡;第3部分是中国车钩(AAR型号)钩头,保证 同中国机车车钩连接。
风挡
连挂车厢间保持大约一米的距离。 对准车钩。 使车辆缓慢靠近。 车钩连挂无需手动辅助。 机械车钩连挂,同时车辆气动及电气也进行连挂。
半永久车钩 半永久性车钩的设计基本与CRH5A型式相同,不同之 处在于连接方式不同(总风管和制动管在此处通过风管 接头自动连接,不设车端折解塞门)
半永久车钩结构及作用原理 每辆头车的二位端和每辆中间车的车端都配有半永久性
该动车组源于西门子公司ICE、Velaro E动车组平台, 借鉴CRH5型动车组在高寒地区的运用经验,结合高寒地 区的气候特征,完全自主创新的产品。
CRH380B高寒动车组为8辆编组,4动4拖,采用交-直交传动方式,由2个牵引单元组成。动车组具有良好的气 动外形,两端为司机室,列车正常运行时由前端司机室 操控。
一等头车(1号车)
定员:一等座席52人
1号车 一等头车 定员52人
头车观光区
司机室电控雾化玻璃图例
二等座车(2、7号车)
定员:二等座席80人
2、7号二等座车 带受电弓的拖车 定员80人
二等座车(3、6号车)
定员:二等座席80人
3、6号二等座车 动车 定员80人
餐座合造车5号车)
动车组各车的名称
车辆号 03/06 02/07
04
01/08 05
中文描述 二等动车 带变压器的二等拖车
二等拖车

CRH380B型动车组牵引控制研究和优化

CRH380B型动车组牵引控制研究和优化

CRH380B 型动车组牵引控制研究和优化摘要:CRH3809型动车使用范围广,载客量多。

因此本文从两个方面就CRH3809型动车组牵引控制的研究以及优化作出了简要分析。

首先对CRH380B 型动车组的牵引系统组成部分进行了分析,分别包括牵引变压器、牵引变流器、牵引电机、冷却装置等等,接着对CRH380B 型动车组牵引系统的优化策略进行了分析,分别包括动车组电机绝缘磨蚀、加强牵引电机运行环境监测、加强温控系统传感器装置检修维护、落实电机转子、绕组磨损件的维护更换、落实动力轴承部分的润滑维护、智化检修这几个方面。

关键字:CRH380B型动车组,牵引系统,牵引变流器现如今,我国的铁路交通网络四通八达,不仅运行速度快,动车内部环境也十分舒适。

早在2007年,中国铁路就实施了第六次大规模提速,将动车组列车作为运输旅客的重要力量,在此之后,我国列车经过了多次技术引进、技术消化、技术吸收等过程。

通过引进的CRH1A、CRH2A、CRH3C、CRH5A 型动车组,这几组动车的引进为我国自主研发动车提供了非常多的技术参考,对这些动车的学习,掌握他们的制作技术,再结合我国现实情况,最终在原有的基础上进行了创新,研发出了符合中国国情的系列动车组[1]。

但随着京沪高速铁路投入运行,原有的载客动车已不能满足人们的需求,为此,使用载客量更多的动车就成了必要之举,因此,就将载客量更多的CRH3809型动车投入了运行。

CRH3809型动车组又分为CRH380A、CRH380B 和 CRH80D 三个系列,其中的CRH380B型动车组是由长客股份和唐山公司生产。

CRH380B型动车组又分为CRH380B、BL、BL(统)三种类型,这些不同类型的CRH380B型动车组能够满足我国不同地区的铁路运输要求,同时因为其特殊的性质,这一系列的动车也成为了高寒地区唯一的高速动车组[2]。

现如今,CRH380B型动车组已成为了我国高速铁路的主力军,在我国时速300km/h及以上速度的所有动车组车型当中,CRH380B型动车组占据的比例高达36%,为此这类动车组已经在我国北京、上海等多个集团公司运行多年,给我国的高速铁路运输带来了极大的影响。

浅谈CRH380B动车组牵引系统运行稳定性

浅谈CRH380B动车组牵引系统运行稳定性

浅谈CRH380B动车组牵引系统运行稳定性作者:李雪峰来源:《企业文化》2017年第32期摘要:随着中国铁路的高速发展,中国铁路客运进入了动车组时代,自2006年开始从国外引进、消化、吸收到现在形成了量产高速动车组的能力。

目前CRH380B型动车组作为新的铁路客车主要车型,承担了大部分的客运任务,在我国铁路运输中具有不可替代的地位。

牵引系统作为动车组最主要的系统之一,一旦发生故障会直接导致车组降速运行甚至影响运行安全,可以说动车组牵引系统的稳定性可以决定其运行品质。

关键词:高速动车组;牵引系统;牵引变流器;运用;总结一、牵引系统简介(一)CRH380B型动车组牵引系统的是基于25kVAC供电条件下运行设计的。

每列动车组都由两组互相对称的牵引单元组成(01车到04车为一组,05车到08车为另一组)它们之间用车顶电缆连接起来。

两列CRH3动车组可以重联形成一列车组。

主要组成部分有:主变压器、牵引变流器、牵引控制单元、牵引电动机。

(二)主变压器概述。

变压器(TF)位于动车组的两节TC02/TC07拖车的地板下,变压器冷却装置(CLF)在每个变压器的旁边,变压器为单系统变压器,设计在25kV50HzAC电源电压下使用。

该电源电压用于生成牵引电压。

(三)牵引变流器概述。

牵引变流器(TC)位于EC01/EC08和IC03/IC06车底架下的牵引箱中,牵引变流器冷却装置(CLT)在每个牵引箱的旁边,牵引变流器(TC)的主要功能在于为牵引电动机(TM)的操作提供3相异步电压。

(四)牵引控制单元(TCU)概述。

牵引控制单元(TCU)用于监控牵引变流器的操作。

它们是位于EC01/EC08和IC03/IC06车底架下的牵引变流器的一部分。

(五)牵引电动机概述。

动车组配有16个牵引电动机。

这些电动机位于EC01/EC08和IC03/IC06车,这些车配有动力转向架,从动力转向架的每个轮对都由牵引电动机驱动。

牵引电动机安装在车辆的横向转向架中。

CRHB型动车组牵引系统

CRHB型动车组牵引系统
• 硅胶吸湿器可除去空气中的大部分湿气。 • 硅胶吸湿器安装在膨胀室中。 • 吸湿器主要由夹在顶部和低板之间的玻璃杯组成。
空气被吸入干燥剂中将湿气吸掉。当变压器中绝缘 液的温度上升时,空气将通过硅胶吸湿器排出。 • 橙色=完全干燥 • 绿色=湿度完全饱和
3 动力单元
• 在动车组中装有4个完全相同且互相独立的动力单元。每一个动力单 元有一个带牵引控制单元的牵引变流器,以及4个并联的牵引电动机。
3.1.2 四象限斩波器
整流器包含两个并联的四象限变流器。每个四象限斩波器都包含两个整体 半桥臂的相位模块。
3.1.3 DC 链路电容器
DC 链路电容器作为一个平滑并缓冲DC 链路线电压的储能电路。
每个变流器的DC 链路电容电池由4 x 0.75 mF 电容器构成,总共3 mF。
3.1.4 谐波吸收器
每个牵引电机冷却风扇同时给同一转向架的2个牵引电机提供规定 数量的冷却空气。牵引电机的冷却风扇被安装在动车组车下(靠近转 向架)。
牵引电机的参数
牵引电机的牌号以及每列车的数量:
16 x 1TB 2019
牵引电机的型号以及安装位置 : 相对于列车方向横向安装在转向架上。
通风方式:强迫空气冷却 (用弹性波纹管联结的开路循环通风系统)
车顶电缆隔离开关位于变压器车上,在正常情况下处在闭合状态,。如果 一个牵引单元主系统发生故障,可以将车顶电缆断开,保证另一个牵引单元可 以继续工作。
2.1.5 避雷器
动车组在高压侧应安装具有自动恢复功能的避雷器,每个受电弓右后方 的避雷器用于保护列车以及后段的电气系统防止过压通过接触线进入列车(如, 闪电过压)。位于变压器原边前段的避雷器用于防止主变压器中不能承受的开 关产生的电压。
标称电压,初级 :

CRH380B型动车组牵引控制研究和优化

CRH380B型动车组牵引控制研究和优化

CRH380B型动车组牵引控制研究和优化摘要:随着社会的发展,高速铁路在客运中的作用越来越重要。

动车组作为动车组运输系统的重要手段,为保证动车组安全高效运行,本文对动车组牵引电机系统进行了探讨,并结合实际情况提出了优化措施。

关键词:绝缘;磨蚀;动车组;牵引电机引言:动车组的应用和发展,加速了我国铁路建设走向现代化的道路,牵引电机在其中起着不可或缺的作用。

由于工作环境的限制,牵引电机往往伴随着多变的温度条件和承载条件,故障发生的频率非常高。

牵引电机是动车组的安全运行重要因素。

一旦发生故障,不仅会影响动车组的运行,还会给人们带来安全隐患。

牵引电机故障诊断和及时排除故障是整个动车组必须关注的关键环节。

1、系统简介我国动车组牵引系统的设计包括很多方面:电力电子,控制系统,电器和高端微电子技术。

牵引电源系统只是可以驱动机车前进的系统,而牵引电源系统只是该系统的一部分。

一个牵引变流器驱动四个牵引电动机。

并联使用四个牵引电机,并将特性差异控制在正负5%之内,从而使电流负载均匀分布。

动车组有两个相对独立的主牵引动力单元。

在正常情况下,两个牵引单元都在工作。

当设备出现故障时,两个主牵引单元可以分开使用。

CRH 380B动车组的牵引系统采用25kV交流电源设计。

动车组的牵引驱动系统由两个相对独立的基本动力单元组成,其中一个主要由变压器,牵引变流器和牵引电动机组成。

当设备发生故障时,可以完全或部分切单元,而不会影响动力装置的使用。

2、动车的优化策略分析2.1动车组电机绝缘磨蚀高速动车组电机绝缘磨损是喷砂冲击磨损的一种。

磨损程度与砂的硬度、砂速和保温结构的性能密切相关。

绝缘损坏只发生在绕组端部的拐角处。

造成这种现象的原因是转子端部的环形导杆外露。

当列车速度达到345km/h时,转子的转速将达到5100r/min,高速运行的转子可获得该位置沙尘的有效高速动能,从而冲击绕组绝缘,冲击该部位绝缘直至失效。

侵蚀发生在大多数项目中。

CRH380B型动车组-总体技术

CRH380B型动车组-总体技术

3. 主要优化升级的项目
(1) 整车的空气动力学性能,包括前端流线型头形的优化、 车辆连接处加装外风挡、车顶受电弓的优化及车下裙板和各 种车顶导流罩的优化。 (2) 转向架两系悬挂参数和机械传动装置的优化,结构疲劳 强度和轴承疲劳寿命的提高。 (3) 为提升牵引功率(牵引动力单元功率由4400kW提升至 4600kW)和电制动功率进行的牵引系统优化升级。 (4) 为适应16辆长编组和牵引功率提升,进行网络系统优化 。 (5) 为提高列车制动性能进行的空气制动系统的优化。 (6) 适应长编组大运量需求对旅客界面进行优化
一二等区域
车内及车下功能设施分区域分模块配置
车内布置图所示的颜色用于
车下布置图所示的颜色用于
识别下列设施:
识别下列主要系统/设施/设备:
EC01
TC02
VC03 FC04
车内布置分为: 客室区域, 电气设备区域 生活设施区域 餐饮服务区
FC05
BC09
TC02
VC03 车下布置分为: 高压设备区域,
2、主要技术特点
➢ 系统成熟
世界顶级的技术平台 经过各种运用条件的考验 与中国国情的完美结合
CRH3主要技术特点
➢ 技术先进 运营速度高
最高运行速度为时速350公里,目前 为动车组世界之最。
牵引功率大 单位阻力小
动车组动力强劲 总功率为8800kW,
单轴功率为550kW。
智能水平高
CRH2-300、CRH3 型动车组单位惰行阻力比较
二、动车组总体特性 1、运用环境 2、主要技术参数 3、牵引制动特性
1、运用条件 满足京沪线运营需求
➢ 全程1318公里。全线穿越东
部21个大中型城市,覆盖北了京

CRH-380B型动车组列车设备使用()资料

CRH-380B型动车组列车设备使用()资料

空调系统
主送风道
设计原理:夏季冷风从顶部吹出,冬季暖风主要从底部吹出,是因为暖风密度 风道中间腔风量75% 风道中间腔风量 20% 小,用很小的初速度,就可以使客室内形成热对流。满足微风速的设计要求。 不同季节、不同 车辆断面相同, 断电后,应急供电维持约半小时. 工况,冷暖风按 但不同季节的送 不同比例分流的 从顶部送入 风气流组织形式 客室20% 送风方式 不同,是充分利 从顶部送入 用了热对流的设 从侧窗送入 冬季送暖 客室风量 75% 客室 风12% 24% 计原理:冬季暖 使车内送风位置 风主要从底部吹 的布局符合人体 出,是因为暖风 舒适度要求 密度小,用很小 的初速度,就可 以使客室内形成 从侧窗送入 夏季送冷 热对流。满足微 车厢断面 客室 风7.5% 风速的设计要求。 温度场更均匀
Ⅰ型车载电话 安装在通过台 区域的端墙上 使用时需使用 四角钥匙打开柜门
车外信息显示器
车外信息显示可以在站台上告知旅客列车的终点站和车厢号,这些 信息使用3行文字显示的: 第一行:显示列车的车次信息和时间 第二行:显示车厢号码 第三行:中英文滚动显示列车的起始车站和终到车站 列车离开站点以后,车外信息显示器停止显示,在到达另一车站之 前马上恢复显示。
内部门操作
内端门和自动风挡门为红外探测控制开门,物体进入探测区域门自动打开。 此时,乘务人员可通过四角钥匙将门隔离锁闭在开门位,如无此操作门停留10s 后自动关闭。关闭过程中如果遇到障碍物防挤压启动,门自动打开,如障碍物长 时间存在,防挤压启动5次后门在开门位将停留60s,时间过后门初始化关闭。风 挡门可通过门扇上锁闭装置将门隔离锁闭在关门位。
风挡门 防火性能:在发生火灾情况下,可保证隔离 火势15分钟不漫延至邻车。
站台补偿器

CRH380B高寒动车组简介

CRH380B高寒动车组简介
乘务员室)组成。
一等头车(1号车)
定员:一等座席52人
1号车 一等头车 定员52人
头车观光区
司机室电控雾化玻璃图例
二等座车(2、7号车)
定员:二等座席80人
2、7号二等座车 带受电弓的拖车 定员80人
二等座车(3、6号车)
定员:二等座席80人
3、6号二等座车 动车 定员80人
餐座合造车(5号车)
气密性好
优良的车头形状
车钩纵向150t压缩载荷 车钩纵向100t拉伸载荷 气动载荷6000Pa
垂向载荷 1.3xgx(整备重量+载重)来自2、车端连接车钩
自动车钩(安装于头车端部)
CRH380B高寒动车组前端车钩用于重联、回送及救援要求,因此 CRH380B高寒动车组采用自动车钩。(机械车钩部分可与CRH5A机械车钩 部分连挂,高度同为1000mm)
3、 高压
车顶设备布置
受电弓(图片非380B用)
真空断路器
接地开关
电压互感器
车顶隔离开关
避雷器
电流互感器
受电弓 CRH380高寒动车组采用法维莱公司的CX型主动 控制的单臂受电弓。该产品符合EN50206-1标准, 弓头为单滑板受电。气动控制阀板及受电弓控制 器(PCU),安装在车内。受电弓控制器的电气 接口为DC110V,通过RS485总线与本车终端单元 进行通信。
接地开关
主断路器旁安装有接地开关,其主要作用是在检修维护时 可以保证车辆的安全接地。接地开关型号 BTE25040L1A1B12,特别与BVAC系列主断路器配合使用。 接地开关带有接地联锁钥匙,只有按高压接地规程操作才 能操作接地开关接地。(接地换钥匙在牵引系统里介绍)
电流互感器

CRH380动车组总体课件

CRH380动车组总体课件

特点
布局结构对称。全列 8辆编组,两个2动2 拖牵引动力单元,5 种车型。
二、车底架设备
头车底架 变压器车底架 中间动车底架 拖车底架 拖车餐车底架
二、车底架设备
01
主 要 ·牵引电机 车 ·牵引变流器和冷却单元 下 ·制动控制单元 设 ·车载电源电气箱 备
02
·辅助变流器箱 ·变压器和冷却单元 ·制动控制单元 ·车载电源电气箱 ·辅助空气压缩机
60 Hz 2
60 Hz 2
60 Hz 2
辅助供电系统中还设置 230 V 60 Hz
230 V 60 Hz
230 V 60 Hz
DC 110 V
双辅23助0 V 变流2器30 V
50 Hz
50 Hz
230 V 50 Hz
BC
Bat
D蓄C 电池230 V
110 V
50 Hz
了外接电源插座,该插座集
BC
备用制动控制
基础制动装置
空气悬挂装置
风缸模块 头车
BCU箱
BCU内部面板
BCU箱内模块
制动系统的基本功能
常用制动 紧急制动 停放制动 备用制动 旅客紧急制动
紧动动能的制缸停车时进控开123急管作,位动管空动全放(...旅弹牵按安组列行制转制将用如置的被制。环包首动拖在用在转如备在客在簧引下全可车,器动迅。果,产快动紧路向括先,车动空车向果用3拉紧0储/司装启制但可回信速旅司司生速和急断架电在如轴力气辆架制直制‰动急能机置动动需通路号排客机机。彻备制开空动果上轴摩速上上动通动的客制室(式备需要过,被风紧认可底用动)常力动施的擦度采设手电系坡室动的A用要限塞产)迅,急为以的空可:用转力加动制小用有柄空统道内T时紧制操制门生速列制列发排气通可制向制空力动于空处P足制在上的,)急动纵速手紧传车动车出空制过5动架动气制代气保于动 紧。够紧k牵启制继备度动急递产装处指,动以m和上力摩动替制证紧发急数急/引动动续用。激制到生置在令电冗下动施不擦不。动h急生制动量制时被或按运制备活动司空具不取制余情力加足制能(制故动车的动,切列钮行动用。功机气有适消动产形制动,动使根动障位组停拉所断车;,手制能室紧延宜该、生产动力再。用据位,时安放手有,断这柄动。,急时停紧直紧生。制在动置动断全制,列开制制功车急通急(,;动地车;电制安 备力用制制动动特手性柄)处。于紧急制动位; 列车运行时停放制动被施加或总风缸

CRH380动车组牵引系统技术概论

CRH380动车组牵引系统技术概论

1.2主变压器
主变压器设计成单制式的变压器,额定电压为 单相AC25kV/ 50Hz的线路上运行。它的次级绕组 为牵引变流器提供电能。它使用一个电气差动保 护、冷却液流量计和电子温度计对主变压器进行 监控和保护。
主变压器箱体是由钢板焊接的,主变压器箱 安装在车下,主变压器采用强迫导向油循环风冷 方式。
最小漏电距离 绝缘等级II
额定脉冲电压 过压等级 污染等级 最小电气间隙
IEC60077-1 (Ref. 11) 25 kV AC
29 kV AC PD4 688 mm
825 mm
125 kV OV3 PD4 230 mm
备注
室外绝缘体,车顶设备外壳
超出了IEC60077-1(Ref.11) (20mm/kV)要求。 超出了IEC 60077-1 (Ref. 11)
1.3牵引变流器
牵引变流器采用结构紧凑,易于运用和检修 的模块化结构。在运用现场通过更换模块可方便 更换和维修。牵引变流器由多重四象限变流器、 直流电压中间环节和电机逆变器组成,牵引变流 器的模块具有互换性。
1.4驱动单元
列车总共由16个牵引电机驱动,位于动力转 向架上。牵引电机按高速列车的特殊要求来设计 的。它们具有坚固的结构,优化重量,低噪音排 放,高效率和紧凑设计的特征。四极三相异步牵 引电机按绝缘等级200制造。该电机是强迫风冷 式。
牵引电机应适用于由电压源逆变器供电,变 频变压(VVVF)调速运行方式。
பைடு நூலகம்
1.5其他部件
动车组其他牵引系统部件还包括牵引电机通风机、 过压限制电阻等。
2高压设备
2.1概述
高压设备主要包括受电弓、高压断路器、避雷器、 网压检测装置、高压电缆、车顶绝缘子、接地装置、 高压隔离开关。高压设备按照AC 25KV 50Hz设计。 CHR3车上高压设备安装在变压器车车顶上,两个变压 器车上安装2台受电弓,并经车顶导线相互连接,正 常运行中将下一个受电弓。车顶导线在各真空断路器 后面分路,故障时有真空断路器保护。

CRH380BL司机培训(高压供电系统和牵引传动系统,1209版)讲解

CRH380BL司机培训(高压供电系统和牵引传动系统,1209版)讲解
况。如果温度正常,正常运行。如果温度 不正常,限速运行。
Online Test
2、牵引丢失(冷却循环过热、牵引电机定子温度传 感器故障)
➢ 故障现象
牵引丢失
➢ 故障原因
冷却循环过热、牵引电机定子温度传感器故 障
2687:冷却循环: 低温冷却水 2688:冷却循环: 最大允许的运行温度超限 2689:冷却循环: 达到过热限制
2.运行中换弓操作时,速度应在( ) 以下
200km/h
➢ 应急处理过程
如果主断锁闭,首先确认主断路器断开 ,并在占用端司机室HMI屏上开启维护模式 ,进行小复位操作。
如果复位不成功, 则使用Monitor软件 连接主控司机室或者锁闭的主断路器所在 牵引单元司机室或CCU柜的主控CCU,进行 软件解锁。
2692: 冷却循环: 偏离供给线路 / 内部冷却剂温度太高 269B: 冷却循环:达到过热温度限2 24D6: 牵引电机冷却风扇接触器接通异常 2691: 冷却循环: 冷却剂压力 > 最大压力 2 268E: 冷却循环: 冷却剂压力 > 最大压力 1 26C0: 冷却循环: 冷却剂差压 > 最小压力 26C1: 冷却循环: 冷却剂差压 > 最大压力 2695: 冷却循环: 压力感应供给线路故障 26FB: 从动轴: 未发现旋转速度信号 2937: 叠片牵引电机温度感应永久故障 2938: 叠片牵引电机温度感应故障
1、牵引丢失(电机或齿轮箱轴承温度过高) ➢ 故障现象
牵引丢失
➢ 故障原因
牵引电机或齿轮箱轴承温度过高
267B:牵引电机轴承: 达到过热限制1 2685:齿轮轴承: 达到过热限制1 2684:齿轮轴承: 达到过热限制2 2679:牵引电机轴承: 达到过热限制2

CRH380B型动车组牵引系统

CRH380B型动车组牵引系统

3.1.5 DC中带接地故障探测的连续放电电阻
• 接地故障检测由分压器、带准势绝缘和评估电路的差动放大器构成。 连续放电电阻分成102K Ω: 34kΩ 比的两个部分。电阻器的中央抽 头接地;一个滤波电容器并联到下部部件中。监控此电容的电压。在 出现接地故障时,测量电压改变,从而相关的TCU 指出接地故障。 • 在额定运行期间,互感器的值显示为整体DC 链路电压的¼ 。考虑± 30 %的公差(指的是由于部件公差导致的DC 链路电压的¼ )。在接地 故障的情况下,由于电容值的充电反向,测量电压改变。值为 % UE/Ud 或100 %。通过此方法可以检测到接地故障。
3.1 带冷却装置的牵引变流器
牵引变流器安装在动车组动力车车下的牵引设备箱中。 每一个牵引变流器基本上由2个4象限斩波器 ( 4QC),带谐振电 路的中间电压电路,1个制动斩波器BC以及1个脉冲宽度调制逆变 (PWMI )牵引变流器的输入线路接触器,由列车控制单元TCU 控制 。
25kV / 50Hz
2.2.2 牵引变压器主要保护功能
主变压器采用强迫导向油循环风冷方式,设有冷却油温、油 循环流动状态等监控保护装置。
2.2.2 牵引变压器主要保护功能
主变压器采用设置气体保护装置,双浮筒瓦斯继电器,用于监控带存 油器的油浸电气设备,继电器中的触点机构对下列情况做出响应: 低能局部放电、漏电或局部过热而产生气体。 由漏泄造成的油损失 剧烈电弧时大量气体快速演变造成的压力波动。
3.1.6 牵引变流器放电并接地
• 在牵引变流器上进行任何工作以前,必须绝对保证中间直流环节已经 被彻底放电。
牵引变流器接地点的位置
牵引变流器整体图片
牵引变流器电气接口图片(A面)
3.2 驱动单元(电机以及传动装置)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 硅胶吸湿器可除去空气中的大部分湿气。 • 硅胶吸湿器安装在膨胀室中。 • 吸湿器主要由夹在顶部和低板之间的玻璃杯组成。 空气被吸入干燥剂中将湿气吸掉。当变压器中绝缘 液的温度上升时,空气将通过硅胶吸湿器排出。 • 橙色=完全干燥 • 绿色=湿度完全饱和
3 动力单元
• 在动车组中装有4个完全相同且互相独立的动力单元。每一个动力单 元有一个带牵引控制单元的牵引变流器,以及4个并联的牵引电动机。 • 牵引零部件辅助设备所需的电源由3 AC 440 V / 60 Hz 母线提供, 母线电源由动车组的辅助变流器单元提供。 • 牵引设备箱中控制电源通过总线排从蓄电池中获得。
2.2.2 牵引变压器主要保护功能
主变压器具有过流监控和保护功能,变压器的流入和流出侧均设置的 电流互感器,当发生变压器过流或差流故障时,通过断开主断路器对 主变压器进行保护。
TCL 原边电流互感器 ECT 接地回路互感器
2.2.3 变压器油的用途
• • • • 提供导线同绕组间的绝缘及与接地部件的绝缘。 提高油浸纸的电介质强度 消除飞弧。 接收、积累和传输变压器内产生的热量(即损耗)
2.1.2 主断路器
每列动车组配置了两个主断路器,安装在每节变压器车车顶端部位置。 主断路器不但用来开关动力单元的运行电流,也可以用来切断故障情况下 的过流以及短路电流。
2.1.3 接地开关
每个主断路器旁边,一个单独底座上安装了接地开关,接地隔离开关 具有防止短路和全列车接地的功能。
2.1.4 车顶电缆隔离开关
2.1.6 电压互感器
电压互感器与一个受电弓连接,用于测量和监视电网接触线的电压,它 有两个次级绕组,把电压信号送到各个牵引变流器中,互感器位于受电弓与主 断路器之间。
2.1.7 电流互感器
每个牵引单元有三个电流互感器,一个电流互感器被接到主断路器下方, 用于测量动车组的电流;另外两个互感器用于监测主变压器。这两个互感器用 来测量牵引单元的线电流和回流电流。通过差动电流判断变压器是否有接地故 障。
CRH380B动车组 牵引系统
中国北车长春轨道客车股份有限公司


1. 概述 2. 高压设备 3. 动力单元
4.列车接地系统
5. 钥匙锁闭环路
1、概述
CRH3-380B动车组牵引系统是基于25 kV AC供电条件下运行设计 的。动车组牵引传动系统由两个相对独立的基本动力单元组成, 一个基本动力单元主要由变压器、牵引变流器和牵引电机等组 成。在基本动力单元中的电气设备发生故障时,可全部或部分 切除该动力单元,但不应影响到其它动力单元的使用。
车顶电缆隔离开关位于变压器车上,在正常情况下处在闭合状态,。如果 一个牵引单元主系统发生故障,可以将车顶电缆断开,保证另一个牵引单元可 以继续工作。
2.1.5 避雷器
动车组在高压侧应安装具有自动恢复功能的避雷器,每个受电弓右后方 的避雷器用于保护列车以及后段的电气系统防止过压通过接触线进入列车(如, 闪电过压)。位于变压器原边前段的避雷器用于防止主变压器中不能承受的开 关产生的电压。
2.2.2 牵引变压器主要保护功能
主变压器采用强迫导向油循环风冷方式,设有冷却油温、油 循环流动状态等监控保护装置。
2.2.2 牵引变压器主要保护功能
主变压器采用设置气体保护装置,双浮筒瓦斯继电器,用于监控带存 油器的油浸电气设备,继电器中的触点机构对下列情况做出响应: 低能局部放电、漏电或局部过热而产生气体。 由漏泄造成的油损失 剧烈电弧时大量气体快速演变造成的压力波动。
2.2 主变压器
• 主变压器安装在2、7车车下。 • 额定电压为单相AC25kV/ 50Hz,在网压变化范围内,主变压器输出 电压、电流及功率满足列车牵引和再生制动的要求。
• 主变压器设计成单制式的变压器,主变压器将 25 Kv/50HZ 的一次电压 降至供 4 个牵引绕组使用的 1850V/50HZ 的二次电压,它的次级绕组 为牵引变流器提供电能。 • 主变压器设计为适用于地板下装配的单相牵引变压器,采用强迫导向油 循环风冷方式,变压器油箱为钢结构。 • 为防止矿物油的热胀冷缩,需要安装一个储油柜,储油柜独立于油箱固 定在列车的上部。储油柜和油箱是通过管道及连接器连在一起的。
3.1 带冷却装置的牵引变流器
牵引变流器安装在动车组动力车车下的牵引设备箱中。 每一个牵引变流器基本上由2个4象限斩波器 ( 4QC),带谐振电 路的中间电压电路,1个制动斩波器BC以及1个脉冲宽度调制逆变 (PWMI )牵引变流器的输入线路接触器,由列车控制单元TCU 控制 。
25kV / 50Hz
2.2.4 油流传感器
• 油流传感器用于监测最小油流量。当油流动时带动浆片运动并触 发一个微动开关。
2.2.5 油位计
变压器油位计安装在列车车顶的膨胀室中。必须能通过膨胀室的 观察窗一直观察到变压器的油位。观察窗具有三个温度标记。变压器油 的油位必须与指示的油温相符。
油位计
2.2.6 硅胶脱水吸湿器
主变压器箱体
储油柜
2.2.1 主变压器具体技术参数
额定功率 : 约5848KVA 标称电压,初级 : 25 kV 标称频率 : 50 Hz 次级绕组数目 : 4 额定电压,次级(牵引绕组) : 约4 x 1850 V 额定功率,次级(牵引绕组) : 约4 x 1462 kVA 产品标准 : EN 60310
牵引系统组成

行驶方向
车顶高压系统
牵引变压器
牵引变流器
牵引电机
2 高压设备 2.1 车顶高压设备
受电弓 真空断路器 接地开关 车顶隔离开关 避雷器 电压互感器 电流互感器
2.1.1 受电弓
列车在变压器车顶二位端安装了两个相同的受电弓从接触网采集单相 交流电。每个受电弓配备了一个压缩空气驱动的自动升降装置,当接触带 破裂时驱动装置将降低受电弓。
牵 引 变 流 器 框 图
Eath Fault Detection
DC Link Capacitors
Braking Controller
~
Line Switch Pre-Charger
=
4QC
Transformer
PWM
相关文档
最新文档