电动汽车电池管理系统BMSPPT教学课件

合集下载

电池管理系统BMS课件

电池管理系统BMS课件
巡检生产源数据 已不具备可比性 无法用于维护管理: —终端用户电池性能评估; —电池维护数据支撑。
PPT学习交流
18
8、电压ADC数据的有效性
单体电池电压ADC
电池1 R1
电池2
R2 —电池 3
电池1电压=电池1电压+IR1 还存在安全问题
PPT学习交流
19
巡检数据不能用于维护管理
性能良好
过充电
PPT学习交流
14
探索SOC应交由学生去训练想象力 不应成为解决技术瓶颈的难题。
首要任务应首先解决:
防止发生:单体电池过充电
单体电池过放电;
温度超过允许值;
电流超过允许值;
PPT学习交流
15
5、安全和可信度差
• 单纯的A/D数字采样,不能解决安全问题。 理由:采样失调不可识别
A/D
输入电阻



电动汽车蓄电池管理系统 (BMS)
PPT学习交流
1
一、对蓄电池管理系统的 理解
PPT学习交流
2
背景和目的
不均衡性是蓄电池的基本属性
PPT学习交流
3
其中:超过平均电压 : 37.3% (发生过充电的几率)
低于平均电压: 48. 0%
等于平均电压: 14.7% (即额定充电电压)
PPT学习交流
4
新电池组同样可能存在问题
过放电
性能下降
PPT学习交流
20
巡检数据不能用于质量 评估
PPT学习交流
21
培育系我国统集成商
事关大局
PPT学习交流
22
《规划》明确了: 立足于自主创新, 掌握握核心技术
当前衣顿和艾里逊的系统 不仅仅是对自主创新的巨大冲击; ——创新环境面临挑战

《电池管理系统》课件

《电池管理系统》课件
《电池管理系统》PPT课 件
电池管理系统(BMS)是一种用于监测、控制和保护电池的关键技术。本课 件将介绍BMS的作用、基本构成、功能模块、应用实例以及未来发展趋势。
一、介绍
1 什么是电池管理系统
(BMS)
2 BMS的作用
BMS能提供电池的状态监
3 BMS的应用领域
BMS广泛应用于电动汽车、
BMS是一种用于监测、控
1 智能化
未来BMS将更加智能化,能够自动识别和调 整系统参数。
3 安全
BMS的安全性将得到进一步提升,以保护电 池和设备的安全。
2 绿色化
BMS将更加注重节能和环保,提高电池的能 源效率。
4 高可靠性
BMS将变得更加可靠,能够提供更长的使用 寿命和稳定的性能。
六、总结
BMS的重要性
BMS是电池系统中至关重要 的组成部分,确保电池的安 全和性能。
电池模块
由电池单体组成,负责存块
实时监测电池的电压、 电流、容量等参数, 以了解电池的工作状 态。
温度保护模块
监测电池的温度,当 温度过高时采取措施 以保护电池安全。
电压均衡模块
平衡电池组中各个单 体的电压,确保电池 组的性能和寿命。
充电限制模块
控制充电器的输出功 率,以避免充电过程 中电池过热或过压。
四、BMS的应用实例
电动汽车
BMS在电动汽车中起到监测电池状态、控制充放电 等关键作用。
无人机
BMS确保无人机的电池安全,并监测电池的状态。
储能系统
BMS用于监测和控制储能系统中的电池,以提高能 源利用效率。
通信基站
BMS在通信基站中维护电池的性能,以确保通信设 备的稳定运行。
五、BMS的发展趋势

BMS系统介绍课件

BMS系统介绍课件

BMU技术参数
编号项目最小值典型值最大值备注 13 开关量输出数量2 BMU 14 开关量驱动能力 (A) 0.5 1 额定驱动电流, 寿 命100000次 15 开关量稳定时间 (ms) 10 30 16 对外通讯接口数量1 2 1路CAN
17 CAN总线波特率 (KHZ) 125 250 500 支持标
单体电池电压检测: 分布式支持最多12串、24串、 36串、 48串、 60串电池的单 体电压检测。订制式可以支持高达300串。精度达 到±10mV以内。
温度检测: 采用NTC温度传感器, 0-8个/板可配 置, 传感器独立编号和实现自检和 故障定位功能。
电流检测: 采用全范围、等精度的分流器和高精 度集成芯片, 满足电流检测和能量累积 的需要, 使电流检测的精度达到1%。
SOC估算: 通过分流器对电流采样, 完成电流的 测量, 包括AH计量和SOC估算。
BMU技术参数
编号项目最小值典型值最大值备注 1 供电电源 (V) 8 24 36 2 工作功耗 (W) 2.5 3 BMU自身功耗, 不含驱动 外围设备 (如风机、继 电器) 电流 3 动力电池泄漏电流 (uA) 10 100 4 各电压检测模块通道数量12 60 每个电压检测模 块接入电池串联数量 5 电压巡检周期 (ms) 30 60 每个通道时间, 采 用巡检方式, 不包括上传到 BCU的时间 6 电压检测精度 (%FSR) ±0.2
BCU功能与接口
电流检测: 采用全范围、等精度的分流器和高精度 集成芯片, 满足电流检ห้องสมุดไป่ตู้和能量累积 的需要, 使电流检测的精度达到1%。
绝缘检测: 检测动力电池与车体之间的绝缘电阻, 并按照GB/T 18384.1~ 18384.

电池管理系统BMS ppt课件

电池管理系统BMS  ppt课件

ppt课件
3
项目研发目标
热管理:实时采集每个电池箱内电池测点温度,通过对散热风扇的控
制防止电池温度过高。
均衡控制:由于电池个体的差异以及使用状态的不同等原因,电池在
使用过程中不一致性会越来越严重,系统应能判断并自动进行均衡处理。
故障诊断:电动汽车电池的工作电压一般都比较高(90V-700V),系
统应监测供电短路,漏电等可能对人身和设备产生危害的状况。
ppt课件
13
显示单元
ppt课件
14
显示单元
显示单元选用7”带 触摸屏真彩显示,系统 采用SAM9263B为主芯 片的ARM9方案,重新 设计电源;CAN总线以 及与上位PC机之间通 讯用485总线系统采用 光耦隔离;主板和核心 板分开设计,以及采用 汽车级别的相关芯片, 系统稳定性高,保证该 系统能在汽车这样的恶 劣环境下工作。
屏蔽双绞线;
4)PCB板制作尽量加大线间距,以降低导向间的分布电容并使其导向垂
直,以减小磁场耦合,减小电源线走线有效面积及选用性价比高的器件等。
ppt课件
18
硬件设计特点
主控单元
与采集单元一样,硬件设计增加了多种抗干扰措施,以保证在恶 劣电磁环境下可靠运行;
ppt课件
2
项目研发目标
实时跟踪电池运行状态及参数检测:实时采集电池充放电状
态,采集数据有电池总电压,电池总电流,每个电池箱内电池测点 温度以及单体模块电池电压等。由于动力电池都是串联使用的,所 以这些参数的实时,快速,准确的测量是电池管理系统正常运行的 基础。
剩余电量估算:电池剩余能量相当于传统车的油量。荷电状态
由于电动汽车用电环境复杂,有很强的电磁干扰!从而影响信号在线检测

BMS电池管理系统综述资料优质PPT课件

BMS电池管理系统综述资料优质PPT课件

BMS综述
2.蓄电池荷电状态(SOC)估计
SOC估算方法
模型法
智能算法
其他方法
安 时 模 型
等 效 电 路 模 型
电 化 学 模 型
卡 尔 曼 滤 波 类
数 据 驱 动 类 算 法
递 推 最 小 二 乘
实 验 测 试 法
阻 抗 谱 分 析 法
动 力 学 解 析 法
BMS综述
3.蓄电池健康状态(SOH)估计
常见的 指标参数: 额定电压 ...V 容量 ...Ah, ...mAh 充放电倍率 0.1C, 1C.. 尺寸 18650, 2770120
课题研究背景
除圆柱电芯、棱柱电芯外,还有软包(聚合物)电芯
课题研究背景
BMS发展现状
国外在BMS方面的研究成果相对显著,主要是以集 成化芯片化为特点。典型产品有美国Linear Technology公司产的LTC/LTM系列电池管理芯片, 美国TI公司推出的bq系列电池管理芯片以及美国O2 Micro公司开发的OZ890电池管理芯片等,其主要特 点为体积小,集成度高,具有较强的针对性。
BMS专用芯片主要优势在于多单体高精度信号采集, 以及单体均衡、故障报警等功能的集成,但通用性 差,一般只能应用于特定类型的电池组。
课题研究背景
BMS发展现状
课题研究背景
国内BMS发展
科研方面主要是清华大学、同济大学、北京交通 大学及北京理工大学等几所高校取得成果较多。
产品开发方面,天津的中国汽车技术研究中心以 及力神电池也在合作开发BMS。惠州亿能(专做 BMS)、哈尔滨光宇、BYD、中航锂电,中科院, 德国BOSCH公司,日本TDK集团也正在着手组建 BMS研究中心。

电池管理系统BMSppt课件

电池管理系统BMSppt课件
电动汽车蓄电池管理系统 (BMS)
一、对蓄电池管理系统的理解
背景和目的
不均衡性是蓄电池的基本属性
其中:超过平均电压 : 37.3% (发生过充电的几率) 低于平均电压: 48. 0% 等于平均电压: 14.7% (即额定充电电压)
新电池组同样可能存在问题
锂离子蓄电池充放电效率 可高达98%以上;
巡检数据不能用于质量评估
培育系我国统集成商
事关大局
《规划》明确了: 立足于自主创新, 掌握握核心技术 当前衣顿和艾里逊的系统 不仅仅是对自主创新的巨大冲击; ——创新环境面临挑战 更重要的是对新能源战略的战略目标的挑战 —能否取得主导权 —自主的技术路线。
后面内容直接删除就行 资料可以编辑修改使用 资料可以编辑修改使用
影响允许充放电电流和功率的, 主要是电池内阻和回路阻抗;
而蓄电池内阻,与SOC
并没有具有一般和普遍性的函数关系;
数据模型仅具有特殊性和时域性;
依据SOC对锂电池进行能量管理 只是一种对其缺乏基本了解的意想。
探索SOC应交由学生去训练想象力 不应成为解决技术瓶颈的难题。
首要任务应首先解决:
防止发生:单体电池过充电 单体电池过放电; 温度超过允许值; 电流超过允许值;
高效率同时产生了极差的 抗不均衡性特性;
管理系统的基本目的: 在最优化蓄电池组效能的同时; 防止发生单体电池的 过充电 过放电 超温 过流 必要时,提供相关信息。
定义—四个系统的集成
充 电 系 统
蓄电池管理系统
充电 控制 模块 充电 控制 模块 放电 控制 模块 放电 控制 模块
控制系统数据支撑 维护系统数据支撑
5、安全和可信度差

单纯的A/D数字采样,不能解决安全问题。 理由:采样失调不可识别

电池管理系统PPT课件

电池管理系统PPT课件

报文显示
显示当前日期,接收原报 文时间和代码,观察报文 接收实时性。
数据存储
系统信息、 状态
BMU 电池信息
新建文件用于保存CAN接 收的信息数据。完成后才 能激活启动CAN功能。
实时显示BMS数据(总电 压、电流、SOC,绝缘电 阻、最高最低电压、最高 最低温度,允许的最大电 流和功率)
电池状态:充放、继电 器、自检、风扇及系统故 障等系统状态
价格便宜,不需要供 电。只能检测直流, 精度随温度变化大。
14
第14页/共38页
功能介绍
3.电压、电流、温度采集
温度采集: 热敏电阻:PTC/NTC 温度传感器:DS18B20
15
第15页/共38页
功能介绍
4.SOC估算
SOC: State of charge.荷电状态。 剩余电量的一个衡量指标 。
SOC = Ce ×100% Ca
其中:Ce为剩余容量,Ca为可用容量。 计算方法一:安时积分法
t1
C0 +∫i(t)dt
SOC = t0 Ca
×100%
0.5C Discharge and Different Current
Voltage(V)
00000000001111111111222222222233333333334.........................................66660123457890123457890123457890123457890
技术 特点
1.具有选择性的存储 CAN信息。 2.CAN报文选择性存 储。
31
第31页/共38页
项目介绍—数据记录仪
原理框图
实物图
32

电池管理系统BMSppt课件

电池管理系统BMSppt课件
17
巡检生产源数据 已不具备可比性 无法用于维护管理: —终端用户电池性能评估; —电池维护数据支撑。
18
单体电池电压ADC
电池1
R1
电池2
R2
—电池 3
电池1电压=电池1电压+IR1 还存在安全问题
19
过放电
过充电 性能良好 性能下降
20
21
事关大局
22
《规划》明确了: 立足于自主创新, 掌握握核心技术 当前衣顿和艾里逊的系统 不仅仅是对自主创新的巨大冲击; ——创新环境面临挑战 更重要的是对新能源战略的战略目标的挑战 —能否取得主导权 —自主的技术路线。
电动汽车蓄电池管理系统 (BMS)
1
2
背景和目的
不均衡性是蓄电池的基本属性
3
其中:超过平均电压 : 37.3% (发生过充电的几率) 低于平均电压: 48. 0% 等于平均电压: 14.7% (即额定充电电压)
4
5
锂离子蓄电池充放电效率 可高达98%以上;
高效率同时产生了极差的 抗不均衡性特性;
13
影响允许充放电电流和功率的, 主要是电池内阻和回路阻抗;
而蓄电池内阻,与SOC
并没有具有一般和普遍性的函数关系;
数据模型仅具有特殊性和时域性;
依据SOC对锂电池进行能量管理 只是一种对其缺乏基本了解的意想。
14
首要任务应首先解决:
防止发生:单体电池过充电 单体电池过放电; 温度超过允许值; 电流超过允许值;
6
管理系统的基本目的: 在最优化蓄电池组效能的同时;
防止发生单体电池的
过充电 过放电 超温 过流 必要时,提供相关信息。
7
定义—四个系统的集成

电池管理系统BMS课件PPT

电池管理系统BMS课件PPT

显示单元
62进行开发,主要实现:标定程序,SOC估算程序,故障分析子程序,信号监控与报警子程序,实时数据保存,数据和曲线显示,各 开关状态显示等功能;
此为CAN2通讯接口电路,采用瞬变电压抑制二极管和自恢复保险丝组成保护电路,并加入共模电感提高抗干扰能力。 D:显示单元 温度取样部分采用总线方式设计,简化了温度传感器的接入。
主控单元:主控单元完成对电池组总电压、总电流的检测,并通过CAN总线与采集单元、均衡模块、显示单元或车载仪表系统及充电 机等通信。
供电电源:DC24V±30% 总电流采样采样二档设计,以保证在小电流和大电流情况下,测量精度≤0.
三、软、硬件设计 为了减小电磁干扰采取如下措施:
显示选用7”真彩触摸屏,操作简单、明了。 电池均衡控制模块:当电池箱内电池电压不一致超过规定值时,在充电电流小于一定值后,可自动对电池进行均衡。
充放电控制:根据电池的荷电状态控制对电池的充放电,当某个
参数超标如单体电池电压过高或过低时,为保证电池组的正常使用 及性能的发挥,系统将切断继电器,停止电池的能量供给和释放。
项目研发目标
热管理:实时采集每个电池箱内电池测点温度,通过对散热风扇的控
制防止电池温度过高。
均衡控制:由于电池个体的差异以及使用状态的不同等原因,电池在
温度检测路数及精度:6路,≤±1℃ 多种软件抗干扰设计,如数字滤波算法,冗余,软件陷阱,看门狗等技术,防止程序失效,保证系统正常运行。
为了减小电磁干扰采取如下措施:
2)单片机工作电源与车辆电源地线隔离,消除地线窜扰的可能; 与采集单元一样,硬件设计增加了多种抗干扰措施,以保证在恶劣电磁环境下可靠运行;
为了满足车辆的恶劣运行环境的需求,BMS外壳采用铸铝浇铸一次成型,具有防尘、防溅水功能; BMS主机、采集单元面板设置了电源、运行、过压、过热等指示灯,可以直观方便的了解电池的工作状态; 运行温度:-25℃ - +70℃ 电池电压采样采用差分输入、光耦继电器切换,光耦隔离,电路简单,

电池管理系统BMS基础ppt课件

电池管理系统BMS基础ppt课件

BMS系统架构
主要分为包括数据监测模块、控制模块(包括继电器、均衡 和热管理)、状态估计模块、故障诊断模块,以及通信模块等。 通常分为集中式和分布式两种系统。分布式系统最为常见, 由一个主控制器(BCU)和多个从控制器(BMU)组成。
BCU
BMU
BCU:Battery control unit BMU: Battery monitor unit
4
状态估计: 估计电池组的剩余电量 (SOC) 、最大充放电功率
(SOP)、健康状态(SOH)或剩余寿命等
必要性:
实时估计SOC,一方面是为了告诉驾驶员车辆的剩余里程。另 一方面作为其他决策的输入变量。 SOP体现了电池组实时的功率能力,整车控制器会根据这一参 数来限制电机的功率。如果不进行限制,电池会被过充或过 放,影响其寿命。 SOH体现了电池组剩余寿命,对于纯电动车,一般认为当电池 的实际容量下降到额定容量的80%之后,SOH就下降为0,此时 的电池组已不适合作为车载动力电池。对于混合动力汽车, 还会考虑内阻上升的影响。
5
故障诊断与预警:主要包括欠压、过压、高温、低温、过 必要性:
较低等级的故障预警能够提示驾驶员及时采取应对措施,如 SOC低,应及时充电。 当出现较高等级的故障时,如严重绝缘漏电 (<100Ω/V)时, 能够及时切断继电器,保证驾驶员或乘客处于安全状态。 故障码的保存,能够为后期车辆维护提供参考。
流,SOC低,绝缘漏电,继电器故障,BMS硬件故障,通信故障等。
6
电池选型:
电池类型: 磷酸铁锂,电压平台略低,电池安全性高,不会爆炸; 三元电池,电压平台高,能量密度更大,但安全性相对差 一点,会爆炸。 电池外形: 圆柱形,单个容量较小,需要很多个电池来构成电池组, 成组较麻烦; 塑壳方形,容量大,便于成组,但散热性不好; 软包,容量略低,散热性好,重量轻,需要通过焊接或夹 具来进行成组。

电动汽车电池管理系统BMSppt

电动汽车电池管理系统BMSppt
电池能量管理算法还应考虑充电效率、充电时 间、电池安全性等因素,以实现最优的电池使 用效果。
05
电池管理系统优化与改进 建议
提通过智能充电和放电策略,避免电池过度 充电和过度放电,从而延长电池使用寿命 。
电池安全防护
采用先进的电池安全技术,如热管理、过 载保护和短路保护等,确保电池在使用过 程中不受损害。
电池热管理技术通过使用散热器、冷却系统等设备,控制电池的温度和散热效果。这有助于保证电池 的安全性和稳定性,避免电池因过热而发生燃烧或爆炸等危险。
03
电池管理系统硬件设计
硬件架构设计
01
分布式电池管理系 统
采用分布式架构,由主控制器和 多个子控制器组成,实现数据共 享和协同控制。
02
中央集中式电池管 理系统
电池能量管理技术
总结词
电池能量管理技术是优化电池使用效率和使用寿命的关键技术。
详细描述
电池能量管理技术通过控制电池的充电和放电过程,优化电池的使用效率和使用寿命。这包括避免电池过充和 过放,以及合理分配和管理电池的能量。
电池热管理技术
总结词
电池热管理技术是控制电池温度和保证电池安全的关键技术。
详细描述
采用中央控制器,对电池组进行 集中管理和控制,实现高效管理 和维护。
03
混合式电池管理系 统
结合分布式和中央集中式架构, 实现数据共享、协同控制和高效 管理。
传感器选型与设计
温度传感器
监测电池温度,确保电池在适宜的温度范 围内工作。
电流传感器
监测电池电流,计算电池的能量消耗和充 电状态。
电压传感器
BMS的主要功能包括监测电池状态、控制电池充电、管理电池放电、保护电池安 全等。

电池管理系统BMSppt课件

电池管理系统BMSppt课件
23
15Βιβλιοθήκη 单纯的A/D数字采样,不能解决安全问题。 理由:采样失调不可识别
A/D
基 准 漂 不可识别 移 寄 生 电 阻
输入电阻
污染
16
(电源行业协会集体起草) 参见行业基础标准: 安全冗余: —双采样系统(ADC+WDT) —双通讯接口(通讯接口+电路接口) —双接口协议(通讯协议+电路接口协议) —三充电控制源(本地+BMS+远程)
6
管理系统的基本目的: 在最优化蓄电池组效能的同时;
防止发生单体电池的
过充电 过放电 超温 过流 必要时,提供相关信息。
7
定义—四个系统的集成
充 电 系 统
蓄电池管理系统
充电 控制 模块 充电 控制 模块 放电 控制 模块 放电 控制 模块
控制系统数据支撑 维护系统数据支撑
放 电 系 统
充电系统
17
巡检生产源数据 已不具备可比性 无法用于维护管理: —终端用户电池性能评估; —电池维护数据支撑。
18
单体电池电压ADC
电池1
R1
电池2
R2
—电池 3
电池1电压=电池1电压+IR1 还存在安全问题
19
过放电
过充电 性能良好 性能下降
20
21
事关大局
22
《规划》明确了: 立足于自主创新, 掌握握核心技术 当前衣顿和艾里逊的系统 不仅仅是对自主创新的巨大冲击; ——创新环境面临挑战 更重要的是对新能源战略的战略目标的挑战 —能否取得主导权 —自主的技术路线。
13
影响允许充放电电流和功率的, 主要是电池内阻和回路阻抗;
而蓄电池内阻,与SOC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13
电池温度采集方法
(2)热电偶采集法
原理:采集双金属体在不同温度下产生不同的热电动 势,通过查表得到温度的值。 特点:由于热电动势的值仅和材料有关,所以热电偶 的准确度很高。但是由于热电动势都是毫伏等级的信 号,所以需要放大,外部电路比较复杂。
14
电池温度采集方法
(3)集成温度传感器采集法
4
第7章 电动汽车电源管理系统
7.1动力电池管理系统功能及参数采集方法 7.2 动力电池电量管理系统
7.3 动力电池的均衡管理
7.4 动力电池的热管理 7.5 动力电池的电安全管理及数据通讯
5
7.1 动力电池管理系统功能及参数采集方法
1
2
掌握电池管理系统的功能 掌握单体电压采集方法
3
4 5
6
掌握电池温度采集方法
基于线性光耦合元件TIL300的电池单体电压采集电路原理图
12
电池温度采集方法
(1)热敏电阻采集法
原理:利用热敏电阻的阻值随温度的变化而变化的特 性,用一个定值电阻和热敏电阻串联起来构成一个分 压器,从而把温度的高低转化为电压信号,再通过模 数转换得到温度的数字信息。 特点:热敏电阻成本低,但线性度不好,而且制造误 差一般也比较大。
18
电池SOC估算精度的影响因素
(1)充放电电流
大电流可充放电容量低于额定容量,反之亦然。
(2)温度
不同温度下电池组的容量存在着一定的变化。
(3)电池容量衰减
电池的容量在循环过程中会逐渐减少。
(4)自放电
自放电大小主要与环境温度有关,具有不确定性。
(5)一致性
电池组的一致性差别对电量的估算有重要的影响。
新能源汽车专业规划教材
“十二五”职业教育国家规划教材
引入
电池管理系统( Battery Management System, BMS)是用来对蓄电池组进行安全监 控及有效管理,提高蓄电池使用效率的装置。对 于电动车辆而言,通过该系统对电池组充放电的 有效控制,可以达到增加续驶里程,延长使用寿 命,降低运行成本的目的,并保证动力电池组应 用的安全性和可靠性。动力电池管理系统已经成 为电动汽车不可缺少的核心部件之一。本章将重 点介绍动力电池管理系统的构成、功能和工作原 理。
10
单体电压采集方法
(4)压/频转换 电路采集法
组成:压/频转换 器、选择电路和 运算放大电路 应用特点:压控 振荡器中含有电 容器,而电容器 的相对误差一般 都比较大,而且 电容越大相对误 差也越大
11
单体电压采集方法
(5)线性光耦合放大电路采集法
应用特点:线性光耦合放大电路不仅具有很强的隔离 能力和抗干扰能力,还使模拟信号在传输过程中保持 较好线性度,电路相对较复杂,精度影响因素较多
8
单体电压采集方法
(2)恒流源法
组成:运放和场效应管组合构成减法运算恒流源电路 应用特点:结构较简单,共模抑制能力强,采集精度 高,具有很好的实用性。
9
单体电压采集方法
(3)隔离运放采 集法
组成:隔离运算 放大器、多路选 择器等 应用特点:系统 采集精度高,可 靠性强,但成本 较高
19
精确估计SOC的作用
1)保护蓄电池。
准确控制电池SOC范围,可避免电池过充电和过放电
2)提高整车性能。
SOC不准确,电池性能不能充分发挥,整车性能降低
3)降低对动力电池的要求。
准确估算SOC,电池性能可充分使用,降低对动力电 池性能的要求
4)提高经济性。
选择较低容量的动力蓄电池组可以降低整车制造成本 由于提高了系统的可靠性,后期维护成本降低
16
7.2 动力电池电量管理系统
1
掌握电池SOC估算精度的影响因素
2
掌握精确估计SOC的作用
3
掌握电池SOC估计常用的算法
17
引入
电池电量管理是电池管理的核心内容之一,对于 整个电池状态的控制,电动车辆续驶里程的预测 和估计具有重要的意义 由于动力电池荷电状态(SOC)的非线性,并且受 到多种因素的影响,导致电池电量估计和预测方 法复杂,准确估计SOC比较困难。
2
目录
第1章 电动汽车与动力电池发展历程 第2章 电动汽车动力电池基本知识 第3章 铅酸动力电池及其应用 第4章 碱性动力电池及其应用 第5章 锂离子动力电池及其应用 第6章 用于电动汽车的其他动力源
第7章 电动汽车电源管理系统
3
本章学习目标
1.掌握动力电池管理系统的功能 2.掌握动力电池管理系统电压、电流、温度等参 数采集方法 3.掌握动力电池电量管理、电安全管理、均衡管 理、热管理等的实现方法
20

SOC估计常用的算法
(1)开路电压法 随着放电电池容量的增加,电池的开路电压降低 。可以根据一定的充放电倍率时电池组的开路电 压和SOC的对应曲线,通过测量电池组开路电压 的大小,插值估算出电池SOC的值
21
SOC估计常用的算法
(2)容量积分法 容量积分法是通过对单位时间内,流入流出电池 组的电池进行累积. 从而获得电池组每一轮放电 能够放出的电量,确定电池SOC的变化。
原理及特点:集成温度传感器虽然很多都是基于热敏 电阻式的,但都在生产的过程中进行校正,所以精度 可以媲美热电偶,而且直接输出数字量,很适合在数 字系统中使用。
AD590 18B20
15
电池工作电流采集方法
项目 插入损耗 布置形式 测量对象 电气隔离 使用方便性 使用场合 价格 普及程度 分流器 有 需插入主电路 直流、交流、 脉冲 无隔离 小信号放大、 需控制处理 小电流、控制 测量 较低 普及 互感器 无 开孔、导线传 入 交流 隔离 使用较简单 交流测量、电 网监控 低 普及 霍尔元件电流 传感器 无 开孔、导线传 入 直流、交流、 脉冲 隔离 使用简单 控制测量 较高 较普及 光纤传感器 无 直流、交流 隔离 高压测量,店 里系统常用 高 未普及
掌握电池电流采集方法 能够正确分析各种参数采集法优缺点
电池管理系统的功能

数据采集、电池状态计算、能量管理、安全管理 、热管理、均衡控制、通信功能和人机接口
7
单体电压采集方法
(1)继电器阵列法
组成:端电压传感器、继电器阵列、A/D转换芯片、光 耦、多路模拟开关 应用特点:所需要测量的电池单体电压较高而且对精 度要求也高的场合使用
相关文档
最新文档