人工智能课后习题
人工智能课后练习题
上海大学《人工智能》网络课课后习题答案1.1育才新工科-人工智能简介1【判断题】《人工智能》课程为理工类通选课,本课程给予学生的主要是思想而不是知识。
对1.2图灵是谁?1【单选题】图灵曾协助军方破解()的著名密码系统Enigma。
A、英国B、美国C、德国D、日本2【判断题】电影《模仿游戏》是纪念图灵诞生90周年而拍摄的电影。
X3【判断题】图灵使用博弈论的方法破解了Enigma。
对1.3为什么图灵很灵?1【单选题】1937年,图灵在发表的论文()中,首次提出图灵机的概念。
A、《左右周期性的等价》B、《论可计算数及其在判定问题中的应用》C、《可计算性与λ可定义性》D、《论高斯误差函数》2【单选题】1950年,图灵在他的论文()中,提出了关于机器思维的问题。
A、《论数字计算在决断难题中的应用》B、《论可计算数及其在判定问题中的应用》C、《可计算性与λ可定义性》D、《计算和智能》3【判断题】存在一种人类认为的可计算系统与图灵计算不等价。
X4【判断题】图灵测试是指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。
如果测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。
对1.4为什么图灵不灵?1【单选题】以下叙述不正确的是()。
A、图灵测试混淆了智能和人类的关系B、机器智能的机制必须与人类智能相同C、机器智能可以完全在特定的领域中超越人类智能D、机器智能可以有人类智能的创造力2【单选题】在政府报告中,()的报告使用“机器智能”这个词汇。
A、中国B、英国C、德国D、美国3【多选题】机器智能可以有自己的“人格”体现主要表现在()。
A、模型间的对抗—智能进化的方式B、机器智能的协作—机器智能的社会组织C、机器智能是社会的实际生产者D、机器智能可以有人类智能的创造力4【判断题】图灵测试存在的潜台词是机器智能的极限可以超越人的智能,机器智能可以不与人的智能可比拟。
人工智能课后习题答案
可采用批量梯度下降、随机梯度下降、小批量梯度下降等优化算法,以及动量 法、AdaGrad、RMSProp、Adam等自适应学习率优化方法。
课后习题解答与讨论
• 习题一解答:详细阐述感知器模型的原理及算法实现过程,包括模型结构、激 活函数选择、损失函数定义、权重和偏置项更新方法等。
• 习题二解答:分析多层前馈神经网络的结构特点,讨论隐藏层数量、神经元个 数等超参数对网络性能的影响,并给出一种合适的超参数选择方法。
发展历程
人工智能的发展大致经历了符号主义、连接主义和深度学习三个阶段。符号主义认为人工智能源于对人类思 维的研究,尤其是对语言和逻辑的研究;连接主义主张通过训练大量神经元之间的连接关系来模拟人脑的思 维;深度学习则通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
机器学习原理及分类
深度学习框架与应用领域
深度学习框架
深度学习框架是一种用于构建、训练和部署深度学习模型的开发工具。目前流行的深度学习框架包括 TensorFlow、PyTorch、Keras等。
应用领域
深度学习已广泛应用于图像识别、语音识别、自然语言处理、推荐系统等多个领域,并取得了显著的 成果。
课后习题解答与讨论
习题四解答
讨论人工智能的伦理问题,如数据隐私、算法偏见等,并 提出可能的解决方案。
02 感知器与神经网络
感知器模型及算法实现
感知器模型
感知器是一种简单的二分类线性模型 ,由输入层、权重和偏置项、激活函 数(通常为阶跃函数)以及输出层组 成。
感知器算法实现
通过训练数据集,采用梯度下降法更 新权重和偏置项,使得感知器对训练 样本的分类误差最小化。
时序差分方法
(完整版)人工智能(部分习题答案及解析)
1.什么是人类智能?它有哪些特征或特点?定义:人类所具有的智力和行为能力。
特点:主要体现为感知能力、记忆与思维能力、归纳与演绎能力、学习能力以及行为能力。
2.人工智能是何时、何地、怎样诞生的?解:人工智能于1956年夏季在美国Dartmouth大学诞生。
此时此地举办的关于用机器模拟人类智能问题的研讨会,第一次使用“人工智能”这一术语,标志着人工智能学科的诞生。
3.什么是人工智能?它的研究目标是?定义:用机器模拟人类智能。
研究目标:用计算机模仿人脑思维活动,解决复杂问题;从实用的观点来看,以知识为对象,研究知识的获取、知识的表示方法和知识的使用。
4.人工智能的发展经历了哪几个阶段?解:第一阶段:孕育期(1956年以前);第二阶段:人工智能基础技术的研究和形成(1956~1970年);第三阶段:发展和实用化阶段(1971~1980年);第四阶段:知识工程和专家系统(1980年至今)。
5.人工智能研究的基本内容有哪些?解:知识的获取、表示和使用。
6.人工智能有哪些主要研究领域?解:问题求解、专家系统、机器学习、模式识别、自动定论证明、自动程序设计、自然语言理解、机器人学、人工神经网络和智能检索等。
7.人工智能有哪几个主要学派?各自的特点是什么?主要学派:符号主义和联结主义。
特点:符号主义认为人类智能的基本单元是符号,认识过程就是符号表示下的符号计算,从而思维就是符号计算;联结主义认为人类智能的基本单元是神经元,认识过程是由神经元构成的网络的信息传递,这种传递是并行分布进行的。
8.人工智能的近期发展趋势有哪些?解:专家系统、机器人学、人工神经网络和智能检索。
9.什么是以符号处理为核心的方法?它有什么特征?解:通过符号处理来模拟人类求解问题的心理过程。
特征:基于数学逻辑对知识进行表示和推理。
11.什么是以网络连接为主的连接机制方法?它有什么特征?解:用硬件模拟人类神经网络,实现人类智能在机器上的模拟。
特征:研究神经网络。
(完整版)人工智能课后习题
(完整版)人工智能课后习题第一章绪论1、什么是人工智能?试从学科和能力两方面加以说明。
答:学科:是计算机科学中涉及研究、设计和应用智能机器的一个分支,他的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。
能力:是智能机器所执行的通常与人类智能有关的智能行为,这些智能行为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、行为和问题求解等活动。
2、为什么能够用机器模仿人的智能?答:物理符号系统的假设:任何一个系统,如果它能够表现出智能,那么它就必定能执行输入符号、输出符号、存储符号、复制符号、建立符号结构、条件性迁移6种功能。
反之,任何系统如果具有这6种功能,那么它就能够表现出智能(人类所具有的智能)。
物理符号系统的假设伴随有3个推论。
推论一: 既然人具有智能,那么他(她)就一定是个物理符号系统。
推论二: 既然计算机是一个物理符号系统,它就一定能够表现出智能。
推论三: 既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就能够用计算机来模拟人的活动。
3、人工智能研究包括哪些内容?这些内容的重要性如何?答:1)认识建模。
认识科学是人工智能的重要理论基础,涉及非常广泛的研究课题。
2)知识表示。
知识表示、知识推理和知识应用是传统人工智髓的三大核心研究内容其中,知识表示是基础,知识推理实现问題求解,而知识应用是目的。
知识表示是把人类知识概念化、形式化或模型化。
3)知识推理。
知识推理,包括不确定性推理和非经典推理等,似乎已是人工智能的一个永恒研究课题,仍有很多尚未发現和解决的问题值得研究。
4)知识应用。
人工智能能否获得广泛应用是衡量其生命力和检验其生存力的重要标志。
5)机器感知。
机器感知是机器获吹外部信息的基本途径。
6)机器思维。
机器思维是对传感信息和机器内部的工作信息进行有目的的处理。
7)机器学习。
机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课題。
最新人工智能课后练习题
上海大学《人工智能》网络课课后习题答案1.1育才新工科-人工智能简介1【判断题】《人工智能》课程为理工类通选课,本课程给予学生的主要是思想而不是知识。
对1.2图灵是谁?1【单选题】图灵曾协助军方破解()的著名密码系统Enigma。
A、英国B、美国C、德国D、日本2【判断题】电影《模仿游戏》是纪念图灵诞生90周年而拍摄的电影。
X3【判断题】图灵使用博弈论的方法破解了Enigma。
对1.3为什么图灵很灵?1【单选题】1937年,图灵在发表的论文()中,首次提出图灵机的概念。
A、《左右周期性的等价》B、《论可计算数及其在判定问题中的应用》C、《可计算性与:可定义性》D、《论高斯误差函数》2【单选题】1950年,图灵在他的论文()中,提出了关于机器思维的问题。
A、《论数字计算在决断难题中的应用》B、《论可计算数及其在判定问题中的应用》C、《可计算性与:可定义性》D、《计算和智能》3【判断题】存在一种人类认为的可计算系统与图灵计算不等价。
X4【判断题】图灵测试是指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。
如果测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。
对1.4为什么图灵不灵?1【单选题】以下叙述不正确的是()。
A、图灵测试混淆了智能和人类的关系B、机器智能的机制必须与人类智能相同C、机器智能可以完全在特定的领域中超越人类智能D、机器智能可以有人类智能的创造力2【单选题】在政府报告中,()的报告使用“机器智能”这个词汇。
A、中国B、英国C、德国D、美国3【多选题】机器智能可以有自己的“人格”体现主要表现在()。
A、模型间的对抗一智能进化的方式B、机器智能的协作一机器智能的社会组织C、机器智能是社会的实际生产者D、机器智能可以有人类智能的创造力4【判断题】图灵测试存在的潜台词是机器智能的极限可以超越人的智能,机器智能可以不与人的智能可比拟。
【2024版】人工智能及其应用蔡自兴)课后答案
可编辑修改精选全文完整版人工智能及其应用(蔡自兴)课后答案第二章知识表示方法2-1 状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。
一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。
问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。
问题规约的实质:从目标出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。
谓词逻辑法:采用谓词合式公式和一阶谓词算法。
要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。
语义网络法:是一种结构化表示方法,它节点和弧线或链组成。
节点用于表示物体、概念和状态,弧线用于表示节点间的关系。
语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。
语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2 设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。
该船的负载能力为两人。
在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。
他们怎样才能用这条船安全地把所有人都渡过河去?用Si(nC, nY) 表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。
考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况: 1. nC=0 2. nC=33. nC=nY>=0 (当nC不等于0或3)用di(dC, dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。
《人工智能》--课后习题答案
《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。
人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。
1.2答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。
所谓自然智能就是人类和一些动物所具有的智力和行为能力。
智力是针对具体情况的,根据不同的情况有不同的含义。
“智力”是指学会某种技能的能力,而不是指技能本身。
1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。
即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。
1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。
状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。
与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。
一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。
(3)语义网络是一种采用网络形式表示人类知识的方法。
人工智能课后习题答案
1.1 解图如下:(1) 1->2(2) 1->3(3) 2->3(6) 3->2(5) 3->1(4) 2->11.2h(n)=∑每个W 左边B 的个数;h(n)满足A*条件;h(n)满足单调限制(大家分析)。
1.3h1(n)= c ij ,一般情况不满足A*条件,但此题满足;ACDEBA=34; h2(n)=|c ij -AVG{(c ij )|,不满足A*条件;ACBDEA=42; 1.4此题最优步数已定,具有A*特征的启发函数对搜索无引导作用。
1.5此题启发式函数见P41。
1.10规定每次一个圆盘按固定方向(如逆时针)转动45°;可用盲目搜索算法构造搜索树;也可构造启发式函数如:h(n)=8个径向数字和与12的方差。
1.11状态空间数:9!=362880;有用的启发信息:1)平方数为3位数的数字:10~31;2)平方的结果数字各位不能重复:13,14,16,17,18,19,23,24,25,27,28,29,31; 只需校验313C =286种状态。
2.1 解图:2.5后手只要拿走余下棋子-1的个数即可。
第3章 3.18以下符号中□表示⌝(1)证明:待归结的命题公式为)(P Q P →⌝∧,求取子句集为},,{P Q P ⌝,对子句集中的子句进行归结可得可得原公式成立。
(2)证明:待归结的命题公式为())(()())P Q R P Q P R →→∧→→→ (,合取范式为:()()P Q R P Q P R ∨∨∧∨∧∧ ,求取子句集为{,,,}S P Q R P Q P R =∨∨∨ ,对子句集中的子句进行归结可得:① P Q R ∨∨ ② P Q ∨③ P ④ R ⑤ Q②③归结⑥ P R ∨ ①④归结 ⑦ R ③⑥归结 ⑧ ④⑦归结 由上可得原公式成立。
(3)证明:待归结的命题公式为()(())Q P Q P Q →∧→→ ,合取范式为:()()Q P Q P Q ∨∧∨∧ ,求取子句集为{,,}S Q P Q P Q =∨∨ ,对子句集中的子句进行归结可得:① Q P ∨ ② Q③ Q P ∨④ P ①②归结 ⑤ P ②③归结 ⑥ ④⑤归结由上可得原公式成立。
(完整word版)人工智能课后答案
第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。
2、对量水问题给出产生式系统描述,并画出状态空间图.有两个无刻度标志的水壶,分别可装5升和2升的水.设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌.已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来.3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。
相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。
和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。
问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。
求N=2时,求解该问题的产生式系统描述,给出其状态空间图。
讨论N为任意时,状态空间的规模。
4、对猴子摘香蕉问题,给出产生式系统描述。
一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。
设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉.5、对三枚钱币问题给出产生式系统描述及状态空间图。
设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正”或”反、反、反”状态。
6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。
7、设可交换产生式系统的一条规则R可应用于综合数据库D来生成出D',试证明若R存在逆,则可应用于D’的规则集等同于可应用于D的规则集。
人工智能课后练习题
上海大学《人工智能》网络课课后习题答案1.1育才新工科-人工智能简介1【判断题】《人工智能》课程为理工类通选课,本课程给予学生的主要是思想而不是知识。
对1.2图灵是谁?1【单选题】图灵曾协助军方破解()的著名密码系统Enigma。
A、英国B、美国C、德国D、日本2【判断题】电影《模仿游戏》是纪念图灵诞生90周年而拍摄的电影。
X3【判断题】图灵使用博弈论的方法破解了Enigma。
对1.3为什么图灵很灵?1【单选题】1937年,图灵在发表的论文()中,首次提出图灵机的概念。
A、《左右周期性的等价》B、《论可计算数及其在判定问题中的应用》C、《可计算性与λ可定义性》D、《论高斯误差函数》2【单选题】1950年,图灵在他的论文()中,提出了关于机器思维的问题.A、《论数字计算在决断难题中的应用》B、《论可计算数及其在判定问题中的应用》C、《可计算性与λ可定义性》D、《计算和智能》3【判断题】存在一种人类认为的可计算系统与图灵计算不等价。
X4【判断题】图灵测试是指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问.如果测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。
对1。
4为什么图灵不灵?1【单选题】以下叙述不正确的是().A、图灵测试混淆了智能和人类的关系B、机器智能的机制必须与人类智能相同C、机器智能可以完全在特定的领域中超越人类智能D、机器智能可以有人类智能的创造力2【单选题】在政府报告中,()的报告使用“机器智能”这个词汇。
A、中国B、英国C、德国D、美国3【多选题】机器智能可以有自己的“人格”体现主要表现在()。
A、模型间的对抗—智能进化的方式B、机器智能的协作—机器智能的社会组织C、机器智能是社会的实际生产者D、机器智能可以有人类智能的创造力4【判断题】图灵测试存在的潜台词是机器智能的极限可以超越人的智能,机器智能可以不与人的智能可比拟。
《人工智能基础》课后习题及答案
1.什么是智能?智能有什么特征?答:智能可以理解为知识与智力的总和。
其中,知识是一切智能行为的基础,而智力是获取知识并运用知识求解问题的能力,即在任意给定的环境和目标的条件下,正确制订决策和实现目标的能力,它来自于人脑的思维活动。
智能具有下述特征:(1)具有感知能力(系统输入)。
(2)具有记忆与思维的能力。
(3)具有学习及自适应能力。
(4)具有行为能力(系统输出)。
2.人工智能有哪些学派?他们各自核心的观点有哪些?答:根据研究的理论、方法及侧重点的不同,目前人工智能主要有符号主义、联结主义和行为主义三个学派。
符号主义认为知识可用逻辑符号表达,认知过程是符号运算过程。
人和计算机都是物理符号系统,且可以用计算机的符号来模拟人的认知过程。
他们认为人工智能的核心问题是知识表示和知识推理,都可用符号来实现,所有认知活动都基于一个统一的体系结构。
联结主义原理主要是神经网络及神经网络间的连接机制与学习算法。
他们认为人的思维基元是神经元,而不是符号运算。
认为人脑不同于电脑,不能用符号运算来模拟大脑的工作模式。
行为主义原理为控制论及“感知—动作”型控制系统。
该学派认为智能取决于感知和行动,提出智能行为的“感知—动作”模式,他们认为知识不需要表示,不需要推理。
智能研究采用一种可增长的方式,它依赖于通过感知和行动来与外部世界联系和作用。
3.人工智能研究的近期目标和远期目标是什么?它们之间有什么样的关系?答:人工智能的近期目标是实现机器智能,即主要研究如何使现有的计算机更聪明,使它能够运用知识去处理问题,能够模拟人类的智能行为。
人工智能的远期目标是要制造智能机器。
即揭示人类智能的根本机理,用智能机器去模拟、延伸和扩展人类的智能。
人工智能的近期目标与远期目标之间并无严格的界限,二者相辅相成。
远期目标为近期目标指明了方向,近期目标则为远期目标奠定了理论和技术基础。
4.人工智能的研究途径有哪些?答:人工智能的研究途径主要有:(1)心理模拟,符号推演;(2)生理模拟,神经计算;(3)行为模拟,控制进化论。
人工智能课后答案
第一章课后习题1、对N = 5、k<3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。
2、对量水问题给出产生式系统描述,并画出状态空间图。
有两个无刻度标志的水壶,分别可装5升和2升的水。
设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌。
已知5 升壶为满壶,2 升壶为空壶,问如何通过倒水或灌水操作,使能在2 升的壶中量出一升的水来。
3、对梵塔问题给出产生式系统描述,并讨论N 为任意时状态空间的规模。
相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N 个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。
和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。
问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。
求N = 2时,求解该问题的产生式系统描述,给出其状态空间图。
讨论N为任意时,状态空间的规模。
4、对猴子摘香蕉问题,给出产生式系统描述。
一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。
设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉。
5、对三枚钱币问题给出产生式系统描述及状态空间图。
设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正"或"反、反、反" 状态。
6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。
人工智能课后练习题
上海大学《人工智能》网络课课后习题答案1.1育才新工科-人工智能简介1【判断题】《人工智能》课程为理工类通选课,本课程给予学生的主要是思想而不是知识。
对1.2图灵是谁?1【单选题】图灵曾协助军方破解()的著名密码系统Enigma。
A、英国B、美国C、德国D、日本2【判断题】电影《模仿游戏》是纪念图灵诞生90周年而拍摄的电影。
X3【判断题】图灵使用博弈论的方法破解了Enigma。
对1.3为什么图灵很灵?1【单选题】1937年,图灵在发表的论文()中,首次提出图灵机的概念。
A、《左右周期性的等价》B、《论可计算数及其在判定问题中的应用》C、《可计算性与λ可定义性》D、《论高斯误差函数》2【单选题】1950年,图灵在他的论文()中,提出了关于机器思维的问题。
A、《论数字计算在决断难题中的应用》B、《论可计算数及其在判定问题中的应用》C、《可计算性与λ可定义性》D、《计算和智能》3【判断题】存在一种人类认为的可计算系统与图灵计算不等价。
X4【判断题】图灵测试是指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。
如果测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。
对1.4为什么图灵不灵?1【单选题】以下叙述不正确的是()。
A、图灵测试混淆了智能和人类的关系B、机器智能的机制必须与人类智能相同C、机器智能可以完全在特定的领域中超越人类智能D、机器智能可以有人类智能的创造力2【单选题】在政府报告中,()的报告使用“机器智能”这个词汇。
A、中国B、英国C、德国D、美国3【多选题】机器智能可以有自己的“人格”体现主要表现在()。
A、模型间的对抗—智能进化的方式B、机器智能的协作—机器智能的社会组织C、机器智能是社会的实际生产者D、机器智能可以有人类智能的创造力4【判断题】图灵测试存在的潜台词是机器智能的极限可以超越人的智能,机器智能可以不与人的智能可比拟。
人工智能教程习题及答案
人工智能教程习题及答案第一章绪论1.1 练习题1.1什么是人类智能?它有哪些特征或特点?1.2人工智能是何时、何地、怎样诞生的?1.3什么是人工智能?它的研究目标是什么?1.4人工智能有哪些主要研究领域?1.5人工智能有哪几个主要学派?各自的特点是什么?1.6什么是以符号处理为核心的方法?1.7 什么是以网络连接为主的连接机制方法?1.2 习题参考解答(略)第二章知识表示习题参考解答2.3 练习题2.1 什么是知识?它有哪些特性?有哪几种分类方法?2.2 何谓知识表示? 陈述性知识表示法与过程性知识表示法的区别是什么?2.3 在选择知识的表示方法时,应该考虑哪些主要因素?2.4 一阶谓词逻辑表示法适合于表示哪种类型的知识?它有哪些特点?2.5 请写出用一阶谓词逻辑表示法表示知识的步骤。
2.6 设有下列语句,请用相应的谓词公式把它们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
(2)他每天下午都去玩足球。
(3)太原市的夏天既干燥又炎热。
(4)所有人都有饭吃。
(5)喜欢玩篮球的人必喜欢玩排球。
(6)要想出国留学,必须通过外语考试。
2.7 房内有一只猴子、一个箱子,天花板上挂了一串香蕉,其位置关系如图2. 11所示,猴子为了拿到香蕉,它必须把箱子推到香蕉下面,然后再爬到箱子上。
请定义必要的谓词,写出问题的初始状态(即图2.16所示的状态)、目标状态(猴子拿到了香蕉,站在箱子上,箱子位于位置b)。
图2.11 猴子摘香蕉问题2.8 对习题2.7中的猴子摘香蕉问题,利用一阶谓词逻辑表述一个行动规划,使问题从初始状态变化到目标状态。
2.9 产生式的基本形式是什么?它与谓词逻辑中的蕴含式有什么共同处及不同处?2.10 何谓产生式系统?它由哪几部分组成?2.11 产生式系统中,推理机的推理方式有哪几种?在产生式推理过程中,如果发生策略冲突,如何解决?2.12 设有下列八数码难题:在一个3×3的方框内放有8个编号的小方块,紧邻空位的小方块可以移入到空位上,通过平移小方块可将某一布局变换为另一布局(如图2.12所示)。
人工智能__课后复习题答案
3
yBIT(猎犬,Y),即可以得到结果:猎犬是咬人的。
2.7 解答:题中的三条规则侧重点不同:R1 规则的重点在于我师的任务;R2 规则的重点在 于敌团的配置;R3 规则的重点在于我师的任务和敌团的配置同时满足。它们之间的关系为 R1 R2 R3。
所以根据冲突解决规则中的规模排序,可知首先应该选择规则 R3,系统执行才最有效。
ARE
MORTAL
ISA
ISA
动作 M 主体 A
动作 对象
ISA H
(2)
GS
ISA
F
g
CLOUD
HAS
LINING SILVER
ISA
动作 C 主体
ISA
动作 H 对象
ISA color
W
(3)
MANAGER
DEC
S ISA
belong
BRANCH
GS
MANAGERS
PARTICIPATE
ISA F
图书馆框架
A B …T
Z 工业技术
TB 一般工业技术 TD 矿业工程 …
自动化技术、 TP 计算机技术 TV
水利工程
书名 作者 ISBN 出版时间
出版社
2.11 解答: 在产生式系统中,随着产生式规则的数量的增加,系统设计者难以理解规则间的相互作
用,究其原因,在于每条规则的自含性使得知识表示的力度过于细微。因此要提高产生式系 统的可理解性,就应当按照软件工程的思想,通过对规则的适当划分,将规则组织诚易于管 理的功能模块。由于框架系统具有组织成块知识的良好特性,因此将两者进行有机结合,可 以为产生式系统的开发、调试和管理提供有益的帮助。
《人工智能》课后习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1、什么就是人工智能?试从学科与能力两方面加以说明。
答:学科:就是计算机科学中涉及研究、设计与应用智能机器的一个分支,她的近期主要目标在于研究用机器来模仿与执行人脑的某些智力功能,并开发相关理论与技术。
能力:就是智能机器所执行的通常与人类智能有关的智能行为,这些智能行为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、行为与问题求解等活动。
2、为什么能够用机器模仿人的智能?答:物理符号系统的假设:任何一个系统,如果它能够表现出智能,那么它就必定能执行输入符号、输出符号、存储符号、复制符号、建立符号结构、条件性迁移6种功能。
反之,任何系统如果具有这6种功能,那么它就能够表现出智能(人类所具有的智能)。
物理符号系统的假设伴随有3个推论。
推论一: 既然人具有智能,那么她(她)就一定就是个物理符号系统。
推论二: 既然计算机就是一个物理符号系统,它就一定能够表现出智能。
推论三: 既然人就是一个物理符号系统,计算机也就是一个物理符号系统,那么我们就能够用计算机来模拟人的活动。
3、人工智能研究包括哪些内容?这些内容的重要性如何?答:1)认识建模。
认识科学就是人工智能的重要理论基础,涉及非常广泛的研究课题。
2)知识表示。
知识表示、知识推理与知识应用就是传统人工智髓的三大核心研究内容其中,知识表示就是基础,知识推理实现问題求解,而知识应用就是目的。
知识表示就是把人类知识概念化、形式化或模型化。
3)知识推理。
知识推理,包括不确定性推理与非经典推理等,似乎已就是人工智能的一个永恒研究课题,仍有很多尚未发現与解决的问题值得研究。
4)知识应用。
人工智能能否获得广泛应用就是衡量其生命力与检验其生存力的重要标志。
5)机器感知。
机器感知就是机器获吹外部信息的基本途径。
6)机器思维。
机器思维就是对传感信息与机器内部的工作信息进行有目的的处理。
7)机器学习。
机器学习就是继专家系统之后人工智能应用的又一重要研究领域,也就是人工智能与神经计算的核心研究课題。
8)机器行为。
机器行为与机器思维密切相关,机器思维就是机器行为的基础。
9)智能系统构建。
实现智能研究,离不开智能计算机系统或智能系统,离不开对新理论、新技术与新方法以及系统的硬俥与软陴支持.第二章知识表示方法1、状态空间法、问题归约法、谓词逻辑法与语义网络法的要点就是什么?它们有何本质上的联系及异同点?答:状态空间法:基于解答空间的问题表示与求解方法,它就是以状态与算符为基础来表示与求解问题的。
一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。
问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。
问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。
谓词逻辑法:采用谓词合式公式与一阶谓词算法。
要解决的问题变为一个有待证明的问题,然后采用消解定理与消解反演莱证明一个新语句就是从已知的正确语句导出的,从而证明这个新语句也就是正确的。
语义网络法:就是一种结构化表示方法,它由节点与弧线或链组成。
节点用于表示物体、概念与状态,弧线用于表示节点间的关系。
语义网络的解答就是一个经过推理与匹配而得到的具有明确结果的新的语义网络。
语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2、把下列语句表示成语义网络描述:(1) All man are mortal、(2) Every cloud has a silver lining、(3) All branch managers of DEC participate in a profit-sharing plan、解:(1)(2)(3)3、试构造一个描述您的寝室或办公室的框架系统。
解:第三章确定性推理1、什么就是图搜索过程?其中,重排OPEN表意味着什么,重排的原则就是什么? 答:图搜索的一般过程如下:(1)建立一个搜索图G(初始只含有起始节点S),把S放到未扩展节点表中(OPEN表)中。
(2)建立一个已扩展节点表(CLOSED表),其初始为空表。
(3)LOOP:若OPEN表就是空表,则失败退出。
(4)选择OPEN表上的第一个节点,把它从OPEN表移出并放进CLOSED表中。
称此节点为节点n,它就是CLOSED表中节点的编号。
(5)若n为一目标节点,则有解并成功退出。
此解就是追踪图G中沿着指针从n到S这条路径而得到的(指针将在第7步中设置)。
(6)扩展节点n,生成不就是n的祖先的那些后继节点的集合M。
将M添入图G中。
(7)对那些未曾在G中出现过的(既未曾在OPEN表上或CLOSED表上出现过的)M成员设置一个通向n的指针,并将它们加进OPEN表。
对已经在OPEN或CLOSED 表上的每个M成员,确定就是否需要更改通到n的指针方向。
对已在CLOSED表上的每个M成员,确定就是否需要更改图G中通向它的每个后裔节点的指针方向。
(8)按某一任意方式或按某个探试值,重排OPEN表。
(9)GO LOOP。
重排OPEN表意味着,在第(6)步中,将优先扩展哪个节点,不同的排序标准对应着不同的搜索策略。
重排的原则当视具体需求而定,不同的原则对应着不同的搜索策略,如果想尽快地找到一个解,则应当将最有可能达到目标节点的那些节点排在OPEN表的前面部分,如果想找到代价最小的解,则应当按代价从小到大的顺序重排OPEN 表。
2、用宽度优先搜索求图3、29(图略)所示迷宫的出路。
解:第一步:S→A→B第二步:B→HB→C第三步:H→GC→F最终路径为:S→A→B→C→F3、在什么情况下需要采用不确定推理或非单调推理?答:不完全的信息、不断变化的情况、以及求解复杂问题过程中生成的假设第四章非经典推理1、什么就是不确定性推理?为什么需要采用不确定性推理?答:不确定性推理实际上就是一种从不确定的初始证据出发。
通过运用不确定性知识,最终推出具有一定程度的不确定性但却又就是合理或基本合理的结论的思维过程。
原因:1)所需知识不完备、不精确2)所需知识描述模糊3)多种原因导致同一结论4)解决方案不唯一。
2、不确定性推理可分为哪几种类型?答:不确定性推理中存在三种不确定性,即关于知识的不确定性、关于证据的不确定性与关于结论的不确定性。
不确定推理方法可以分为两大类:一类称为模型方法,另一类称为控制方法。
第五章计算智能1、试述计算智能(CI)、人工智能(AI)与生物智能(BI)的关系。
答:计算智能就是智力的低层认知,主要取决于数值数据而不依赖于知识。
人工智能就是在计算智能的基础上引入知识而产生的智力中层认知。
生物智能,尤其就是人类智能,则就是最高层的智能。
即CI包含AI包含BI2、什么就是模糊推理?答:模糊推理就是建立在模糊逻辑基础上的一种不确定性推理方法,就是在二值逻辑三段论基础上发展起来的。
它以模糊判断为前提,动用模糊语言规则,推导出一个近似的模糊判断结论。
第六章专家系统1、专家系统由哪些部分构成?各部分的作用为何?答:(1)知识库(knowledge base)知识库用于存储某领域专家系统的专门知识,包括事实、可行操作与规则等。
(2)综合数据库(global database)综合数据库又称全局数据库或总数据库,它用于存储领域或问题的初始数据与推理过程中得到的中间数据(信息),即被处理对象的一些当前事实。
(3)推理机(reasoning machine)推理机用于记忆所采用的规则与控制策略的程序,使整个专家系统能够以逻辑方式协调地工作。
推理机能够根据知识进行推理与导出结论,而不就是简单地搜索现成的答案。
(4)解释器(explanator)解释器能够向用户解释专家系统的行为,包括解释推理结论的正确性以及系统输出其它候选解的原因。
(5)接口(interface)接口又称界面,它能够使系统与用户进行对话,使用户能够输入必要的数据、提出问题与了解推理过程及推理结果等。
系统则通过接口,要求用户回答提问,并回答用户提出的问题,进行必要的解释。
2、新型专家系统有何特征?什么就是分布式专家系统与协同式专家系统?答:特征:(1)并行与分布处理(2)多专家系统协同工作(3)高级语言与知识语言描述(4)具有自学习功能(5)引入新的推理机制(6)具有自纠错与自完善能力(7)先进的智能人机接口分布式专家系统:具有分布处理的特征,能把一个专家系统的功能经分解以后分布到多个处理器上去并行地工作,从而有总体上提高系统的处理效率。
它可以工作在紧耦合的多处理器系统环境中,也可工作在松耦合的计算机网络环境中,其总体结构在很大程度上依赖于其所在的硬件环境。
协同式专家系统:又称为“群专家系统”,就是一个能综合若干个相近领域或一个领域的多个方面的子专家系统互相协作,共同解决一个更广领域问题的专家系统。
就是克服一般专家系统的局限性的重要途径。
它不着重于处理的分布与知识的分布,而就是更强调子系统间的协同合作。
它并不一定要求有多个处理机的硬件环境,而且一般都就是在同一个处理机上实现各子专家系统的。
第七章机器学习1、什么就是类比学习?其推理与学习过程为何?答:类比就是一种很有用与很有效的推理方法,它能清晰,简洁地描述对象间的相似性,就是人类认识世界的一种重要方法。
类比学习就就是通过类比,即通过对相似事物加以比较所进行的一种学习。
类比推理过程如下:(1)回忆与联想通过回忆与联想在源域S中找出与目标域T相似的情况。
(2)选择从找出的相似情况中,选出与目标域T最相似的情况及其有关知识。
(3)建立对应关系在源域S与目标域T之间建立相似元素的对应关系,并建立起相应的映射。
(4)转换把S中的有关知识引到T中来,从而建立起求解当前问题的方法或者学习到关于T的新知识。
类比学习过程主要包括:(1)输入一组已经条件(已解决问题)与一组未完全确定的条件(新问题)。
(2)按照某种相似性的定义,寻找两者可类比的对应关系。
(3)根据相似变换的方法,建立从已解决问题到新问题的映射,以获得待求解问题所需的新知识。
(4)对通过类比推理得到的关于新问题的知识进行校验。
验证正确的知识存入知识库中,暂时无法验证的知识作为参考性知识,置于数据库中。
2、什么就是知识发现?知识发现与数据挖掘有何关系?答:根据费亚德的定义,数据库中的知识发现就是从大量数据中辨识出有效的,新颖的,潜在有用的,并可被理解的模式的高级处理过程。
数据挖掘就是知识发现中的一个步骤,它主要就是利用某些特定的知识发现算法,在一定的运算效率内,从数据中发现出有关的知识。