【中考模拟】江西省2018年中考数学模拟试卷(一)含答案
江西省2018年中考考前模拟卷数学(1)及答案(PDF版)_202007051712382
16一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) )B.2 xlO -2)1.2 cm 2 = a n?,贝lj a=( A.2 xlO 22.下列运算中,正确的是( A. - (TH + n) =n —m C. m 3 Xm 2 = in3. 下列说法中不正确的是(C.2 X104T ) / 2 \ 36 5D .\ m n ) =m nr 、 3.3n - n = nD.2 xWA.某种彩票中奖的概率是 )点,买1 ooo 张该种彩票一定会中奖时到达,于是他改乘出租车赶往学校,他的路程与时间的关系如图 所示(假定总路程为1,出租车匀速行驶),则他到达学校所花的时 间比一直步行提前了( )A.18分钟B.20分钟C.24分钟D.28分钟2018年江西省中等学校招生考试数学模拟卷(一)说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.二、填空题(本大题共6小题,每小题3分,共18分)懲5-H(第4题)5.下列图形中,既是轴对称图形,又是中心对称图形的是(B. 了解一批电视机的使用寿命适合用抽样调查C. 若甲组数据的方差为0. 31,乙组数据的方差为0. 25 ,则乙组数据比甲组数据稳定D. 在一个装有白球和绿球的袋中摸球,摸岀黑球是不可能事件 4.如图所示的几何体,其俯视图是(一日小明步行前往学校,5分钟走了总路程的£,估计步行不能准 O7.若a与b互为相反数,则a + b = .8.计算:(旧+石)(疗-厅)= ___________ .9.某校学生到校方式情况的统计图如图所示.若该校步行到校的学生有100人,则乘公共汽10.如图,矩形纸片ABCD中,曲=4,如=6.将△仙C沿4C折叠,使点3落在点E处,隽交AD于点/,则DF的长等于.11.方程弓+宀=1的解为x -4 4 -X ------------12.在一组对边相等但不平行,另一组对边平行但不相等的四边形中,有三边长分别是5,7, 10,则这个四边形的周长为.三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)先化简,再求值:(a -2)2 + a(a+4),其中a =^3.(2)如图,AB//CD,AE平分A CAB交CQ于点芯.若Z_C=70°,求乙旭Q的度数.3化-1 <2(% + 1),%+3 1 并写出不等式组的整数解.14.解不等式组2615.如图,在LJ ABCD中,点E在BC如,AB=BE,BF平分乙ABC交曲于点F.请仅用无刻度的直尺,按要求画图(保留画图痕迹,不写画法).(1)在图1中,过点4画出时中BF边上的高;(2)在图2中,过点C画出的垂线.16.某班甲、乙两个学习小组,在一次电脑操作水平测试后,甲组的六位同学的成绩(分)依次是90,91,70,64,91,74,乙组的六位同学中有一位同学的成绩是88分,其他同学的成绩, 老师只公布了他们的得分与本组的平均分数的差,依次为-3, -8, -12,5,13.(1)求甲组的六位同学考试成绩的平均数、中位数和众数;(2)求乙组的六位同学考试成绩的平均数;(3)如果老师表扬甲组的成绩好于乙组,那么老师在平均数、众数、中位数中选用的是哪个数分别代表两组的成绩?17.你玩过“十点半”游戏吗?这种游戏的其中一种玩法是:将同一副扑克中的13张红心牌(其中红心A为1点,红心“ J, Q, K”分别为半点,其他牌面数字是几就是几点)洗匀后分开,并正面朝下放在桌面上.两个游戏者每人从这些牌中最多只有三次随机摸牌的机会 (每次只能摸1张,不放回),摸出来的牌的点数和谁多谁就获胜(点数和相等不算胜),但点数和不能多于十点半,否则以0计算.现在小张首先摸岀的是红心6,小王摸出的是红心4,第二次小张摸出的是红心K,而小王摸出的是红心J,到此小张决定不摸第三次,根据概率的知识请你分析以下问题:(1)若小王也不摸第三次,小张在游戏中获胜是什么事件?若小王摸第三次呢?(2)求小王摸第三次获胜的概率.四、(本大题共3小题,每小题8分,共24分)18.某文具店销售甲、乙两种圆规,销售5只甲种、1只乙种圆规,可获利润25元;销售6只甲种、3只乙种圆规,可获利润39元.(1)该文具店销售甲、乙两种圆规,每只的利润分别是多少元?(2)文具店共销售甲、乙两种圆规50只,其中甲种圆规。
2018年江西省中考数学模拟试卷(三)含答案.doc
2018年江西中考模拟卷时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.|-2|的值是( ) A.-2 B.2 C.-12 D.122.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )A.204×103B.20.4×104C.2.04×105D.2.04×1063.观察下列图形,其中既是轴对称又是中心对称图形的是( )4.下列计算正确的是( )A.3x 2y +5xy =8x 3y 2B.(x +y )2=x 2+y 2C.(-2x )2÷x =4xD.y x -y +xy -x=15.已知一元二次方程x 2-2x -1=0的两根分别为x 1,x 2,则1x1+1x2的值为( )A.2B.-1C.-12D.-26.如图,在△ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE ∥AC ,DF ∥AB ,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A.若AD ⊥BC ,则四边形AEDF 是矩形B.若AD 垂直平分BC ,则四边形AEDF 是矩形C.若BD =CD ,则四边形AEDF 是菱形D.若AD 平分∠BAC ,则四边形AEDF 是菱形第6题图 第8题图二、填空题(本大题共6小题,每小题3分,共18分) 7.计算:-12÷3= .8.如图,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为 .9.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=-1,那么(1+i )·(1-i )= .10.已知某几何体的三视图如图所示,根据图中数据求得该几何体的表面积为 .第10题图 第12题图11.一个样本为1,3,2,2,a ,b ,c ,已知这个样本的众数为3,平均数为2,则这组数据的中位数为 .12.如图,在平面直角坐标系中,△ABC 为等腰直角三角形,点A (0,2),B (-2,0),点D 是x 轴上一个动点,以AD 为一直角边在一侧作等腰直角三角形ADE ,∠DAE =90°.若△ABD 为等腰三角形,则点E 的坐标为 .三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:⎩⎨⎧3x -1≥x +1,x +4<4x -2.(2)如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:△ADF ≌△BCE .14.先化简,再求值:⎝⎛⎭⎫m m -2-2m m2-4÷m m +2,请在2,-2,0,3当中选一个合适的数代入求值.15.为落实“垃圾分类”,环卫部门要求垃圾要按A ,B ,C 三类分别装袋投放,其中A 类指废电池、过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.16.根据下列条件和要求,仅使用无刻度的直尺画图,并保留画图痕迹:(1)如图①,△ABC中,∠C=90°,在三角形的一边上取一点D,画一个钝角△DAB ;(2)如图②,△ABC中,AB=AC,ED是△ABC的中位线,画出△ABC的BC边上的高.17.如图所示是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80 cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠F GK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G ,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少(参考数据:sin80°≈0.98,cos80°≈0.17,2≈1.41,结果精确到0.1cm)?四、(本大题共3小题,每小题8分,共24分)18.某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是°;(2)补全条形统计图;(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.19.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20页时,每页收费0.12元;一次复印页数超过20页时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.20.如图,一次函数y=-2x+1与反比例函数y=错误!的图象有两个交点A(-1,m)和B,过点A作AE⊥x轴,垂足为点E.过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,-2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.五、(本大题共2小题,每小题9分,共18分)21.如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC,AC.(1)求证:AC平分∠DAO;(2)若∠DAO=105°,∠E=30°.①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.22.在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.六、(本大题共12分)23.综合与实践【背景阅读】早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或32,42,52的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.【实践操作】如图①,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图③,将图②中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图④,将图③中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.【问题解决】(1)请在图②中证明四边形AEFD是正方形.(2)请在图④中判断NF与ND′的数量关系,并加以证明.(3)请在图④中证明△AEN是(3,4,5)型三角形.【探索发现】(4)在不添加字母的情况下,图④中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.参考答案与解析1.B 2.C 3.D 4.C 5.D 6.D7.-4 8.60°9.2 10.(225+252)π11.212.(2,2)或(2,4)或(2,22)或(2,-22)解析:连接EC .∵∠BAC =∠DAE =90°,∴∠BAD =∠CAE .在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ,∴BD =EC ,∠ABD =∠ACE =45°.∵∠ACB =45°,∴∠ECD =90°,∴点E 在过点C 且垂直x 轴的直线上.①当DB =DA 时,点D 与O 重合,BD =OB =2,此时E (2,2).②当AB =AD 时,CE =BD =4,此时E (2,4).③当BD =AB =22时,E (2,22)或(2,-22).故点E 的坐标为(2,2)或(2,4)或(2,22)或(2,-22).13.(1)解:解不等式3x -1≥x +1,得x ≥1,解不等式x +4<4x -2,得x >2,∴不等式组的解集为x >2.(3分)(2)证明:∵AE =BF ,∴AE +EF =BF +EF ,∴AF =BE .在△ADF 与△BCE 中,⎩⎪⎨⎪⎧AD =BC ,∠A =∠B ,AF =BE ,∴△ADF ≌△BCE (SAS).(6分) 14.解:原式=⎣⎡⎦⎤m m -2-2m (m -2)(m +2)×m +2m=m m -2×m +2m -2m(m -2)(m +2)×m +2m=m +2m -2-2m -2=m m -2.(3分)∵m ≠±2,0,∴m =3.(4分)当m =3时,原式=3.(6分) 15.解:(1)∵垃圾要按A ,B ,C 三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类的概率为13.(2分)(2)如图所示.(4分)由树状图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,∴P (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)=1218=23.(6分)16.解:(1)如图①所示.(3分)(2)如图②所示,AF 即为BC 边上的高.(6分)17.解:(1)如图,过点F 作FN ⊥DK 于N ,过点E 作EM ⊥FN 于M .∵EF +FG =166cm ,F G =100cm ,∴EF =66cm.∵∠FGK =80°,∴∠GFN =10°,FN =100·sin80°≈98(cm).∵∠EFG =125°,∴∠EFM =180°-125°-10°=45°,∴FM =66·cos45°=332≈46.53(cm),∴MN =FN +FM ≈144.5cm ,∴此时小强头部E 点与地面DK 相距约为144.5cm.(3分)(2)过点E 作EP ⊥AB 于点P ,延长OB 交MN 于H .∵AB =48cm ,O 为AB 的中点,∴AO =B O =24cm.∵EM =66·sin45°≈46.53cm ,∴PH ≈46.53cm.∵GN =100·cos80°≈17cm ,CG =15cm ,∴OH =24+15+17=56cm ,OP =OH -PH =56-46.53=9.47≈9.5(cm),∴他应向前9.5cm.(6分)18.解:(1)126(2分) (2)根据题意得40÷40%=100(人),∴使用手机3小时以上的人数为100-(2+16+18+32)=32(人),补全条形统计图,如图所示.(5分)(3)根据题意得1200×32+32100=768(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有768人.(8分)19.解:(1)1 3 1.2 3.3(2分)(2)y 1=0.1x (x ≥0); y 2=⎩⎨⎧0.12x (0≤x≤20),0.09x +0.6(x >20).(5分)(3)顾客在乙复印店复印花费少.(6分)当x >70时,y 1=0.1x ,y 2=0.09x +0.6,∴y 1-y 2=0.1x -(0.09x +0.6)=0.01x -0.6.(6分)设y =0.01x -0.6,由0.01>0,则y 随x 的增大而增大.当x =70时,y =0.1,∴x >70时,y >0.1,∴y 1>y 2,∴当x >70时,顾客在乙复印店复印花费少.(8分)20.解:(1)∵一次函数y =-2x +1的图象经过点A (-1,m ),∴m =2+1=3,∴A (-1,3).(2分)∵反比例函数y =kx的图象经过A (-1,3),∴k =-1×3=-3.(4分)(2)如图,延长AE ,BD 交于点C ,则∠ACB =90°.∵BD ⊥y 轴,垂足为点D ,且点D 的坐标为(0,-2),∴令y =-2,则-2=-2x +1,∴x =32,即B ⎝⎛⎭⎫32,-2,∴C (-1,-2),∴AC =3-(-2)=5,BC =32-(-1)=52.(6分)∴S 四边形AEDB =S △ABC -S △CDE =12AC ·BC -12CE ·CD =12×5×52-12×2×1=214.(8分)21.(1)证明:∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA.∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴AC平分∠DAO.(3分)(2)解:①∵AD∥OC,∴∠EOC=∠DAO=105°.∵∠E=30°,∴∠OCE=180°-105°-30°=45°.(5分)②如图,作OG⊥CE于点G,则CG=FG.∵∠OCG=45°,∴CG=OG.∵OC=22,∠OCE=45°,∴CG=OG=2,∴FG=2.(7分)在Rt△OGE中,∠E=30°,∴GE=23,∴EF =GE-FG=23-2.(9分)22.解:(1)由函数y1的图象经过点(1,-2),得(a+1)(-a)=-2,解得a1=-2,a2=1.当a=-2或1时,函数y1化简后的结果均为y1=x2-x-2,∴函数y1的表达式为y=x2-x-2 .(3分)(2)当y=0时,(x+a)(x-a-1)=0,解得x1=-a,x2=a+1,∴y1的图象与x轴的交点是(-a,0),(a+1,0).(4分)当y2=ax+b经过(-a,0)时,-a2+b=0,即b=a2;(5分)当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=-a2-a.(6分)(3)由题意知,函数y1的图象对称轴为直线x=12.∴点Q(1,n)与点(0,n)关于直线x=12对称.(7分)∵函数y1的图象开口向上,∴当m<n时,0<x0<1.(9分)23.(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°.由折叠知AE=AD,∠AEF =∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形.∵AE=AD,∴矩形AEFD是正方形.(3分)(2)解:NF=ND′.(4分)证明如下:如图,连接HN.由折叠知∠AD′H=∠D=90°,HF=H D=HD′.由(1)知四边形AEFD是正方形,∴∠EFD=90°.∵∠AD′H=90°,∴∠HD′N=90°.在Rt△HNF和Rt△HND′中,∵HN=HN,HF=HD′,∴Rt△HNF≌Rt△HND′,∴NF=ND′. (6分)(3)证明:由(1)知四边形AEFD是正方形,∴AE=EF=AD=8cm.设NF=ND′=x cm,由折叠知AD′=AD=8cm,EN=EF-NF=(8-x)cm.在Rt△AEN中,由勾股定理得AN2=AE2+EN2,即(8+x)2=82+(8-x)2,解得x=2,∴AN=8+x=10(cm),EN=6(cm),∴EN∶AE∶AN=6∶8∶10=3∶4∶5,∴△AEN是(3,4,5)型三角形.(9分)(4)解:∵△AEN是(3,4,5)型三角形,∴与△AEN相似的三角形都是(3,4,5)型三角形,∴图④中的(3,4,5)型三角形分别为△MFN,△MD′H,△MDA.(12分)。
2018年江西省南昌市中考一模数学试卷(解析版)
2018年江西省南昌市中考数学一模试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列四个数:﹣2,1,﹣,π,其中最小的数是()A.﹣2B.1C.﹣D.π2.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×1014 3.(3分)下列运算结果,不正确的是()A.﹣x+12x=11x B.(x+1)2=x2+1C.(﹣2x2)3=﹣8x6D.﹣12x3÷3x=﹣4x24.(3分)不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.(3分)如图,是一个放置在水平实验台上的锥形瓶,它的左视图是()A.B.C.D.6.(3分)如图,点A、B、C都在⊙O上,且点C在弦AB所对的优弧上,如果∠AOB=64°,那么∠ACB的度数是()A.26°B.30°C.32°D.64°二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.8.(3分)若一组数据2,a,3,5,8的平均数为4,则这组数据的中位数是.9.(3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C',连接AA′,若∠1=25°,则∠BAA'的度数是.10.(3分)若一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则x12+x22﹣x1•x2的值是.11.(3分)若抛物线y=(x﹣1)2+c过点(2,﹣1),且向左平移4个单位,则所得新抛物线的解析式是.12.(3分)如图,平面直角坐标系中,已知点A(8,0)和点B(0,6),点C 是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程组(2)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=145°,求∠B的度数.14.(6分)先化简()÷,再从﹣2,0,1,2中选取一个符合要求的数代入求值.15.(6分)如图是由6个形状、大小完全相同的小矩形组成的大矩形,其中小矩形的长为2,宽为1,请用无刻度的直尺在矩形中完成以下作图(保留作图痕迹,不写作法).(1)在图1中,画出一个面积为5的正方形;(2)在图2中,画出一个面积为4的非特殊的平行四边形.16.(6分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)下列事件是不可能事件的是A.选购甲品牌的B型号;B.选购甲品牌的C型号和乙品牌的D型号;C.既选购甲品牌也选购乙品牌;D.只选购乙品牌的E型号.(2)用列表法或树状图法,写出所有的选购方案,若每种方案被选中的可能性相同,求A型号的器材被选中的概率?17.(6分)如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO 时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC =12cm.(1)当P A=45cm时,求PC的长;(2)若∠AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:≈1.414,≈1.732)四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)为创建大数据应用示范城市,某市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),如图是部分四类生活信息关注度不完整的统计图表,请根据图中提供的信息解答下列问题:(1)求本次参与调查的人数;(2)补全条形统计图,并求扇形统计图中D部分的扇形圆心角的度数;(3)写出一条从统计图中获取的信息.19.(8分)某市风景区门票价格如图所示,现有甲乙两个旅行团队,计划在“十一”黄金周期间到该景点游玩.两团队游客人数之和为120人,甲团队人数不超过50人,乙团队人数为x人,但不足100人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的关系式,并说明两队联合购票比分别购票最多可节约多少元?(2)“十一”黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,若甲、乙两个旅行团队“十一”黄金周之后去游玩,最多节约3400元,求a的值.20.(8分)已知⊙O的直径AB为2,点C是⊙O上,∠CAB=30°,点D是⊙O 上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当∠ACD=45°时,求证:DE是⊙O的切线;(2)如图2,当点F是CD的中点时.①求证:△ACD是等边三角形;②求△CDE的面积.五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)如图,在平行四边形ABCD中,AD∥x轴,AD=6,原点O是对角线AC的中点,顶点A的坐标为(﹣2,2),反比例函数y=(k≠0)在第一象限的图象过四边形ABCD的顶点D.(1)求点D的坐标和k的值;(2)将平行四边形ABCD向上平移,使点C落在反比例函数图象在第一象限的分支上,求平移过程中线段AC扫过的面积.(3)若P、Q两点分别在反比例函数图象的两支上,且四边形APCQ是菱形,求PQ的长.22.(9分)我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线.(1)①当顶点为(1,2)时,则a=;②当顶点为(m,2m),且m≠0时,则a与m之间的关系式是(2)当此抛物线的顶点在直线y=kx上,且b≠0时,用含k的代数式表示b;(3)现有一组过原点的抛物线,它们的顶点A1,A2,…,A n在直线y=2x上,其横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n∁n D n,若这组抛物线中有一条经过D n,求此时满足条件的正方形A n B n∁n D n的边长.六、填空题(本大题共1小题,共12分)23.(12分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这边上的“奇特三角形”,这条边称为“奇特边”.(1)如图1,已知△ABC是奇特三角形,AC>BC,且∠C=90°..①△ABC的奇特边是;②设BC=a,AC=b,AB=c,求a:b:c;(2)如图2,AM是△ABC的中线,若△ABC是BC边上的奇特三角形,找出BC2与AB2+AC2之间的关系.(3)如图3,在四边形ABCD中,∠B=90°(AB<BC),BC=2,对角线AC把它分成了两个奇特三角形,且△ACD是以AC为腰的等腰三角形,求等腰三角形ACD的底边长.2018年江西省南昌市中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列四个数:﹣2,1,﹣,π,其中最小的数是()A.﹣2B.1C.﹣D.π【解答】解:根据实数比较大小的方法,可得﹣2<﹣<1<π,∴四个数:﹣2,1,﹣,π,其中最小的数是﹣2.故选:A.2.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×1014【解答】解:将1000亿用科学记数法表示为:1×1011.故选:C.3.(3分)下列运算结果,不正确的是()A.﹣x+12x=11x B.(x+1)2=x2+1C.(﹣2x2)3=﹣8x6D.﹣12x3÷3x=﹣4x2【解答】解:A、﹣x+12x=11x,正确,不合题意;B、(x+1)2=x2+2x+1,错误,符合题意;C、(﹣2x2)3=﹣8x6,正确,不合题意;D、﹣12x3÷3x=﹣4x2,正确,不合题意;故选:B.4.(3分)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集是﹣3<x≤1,在数轴上表示为,故选:D.5.(3分)如图,是一个放置在水平实验台上的锥形瓶,它的左视图是()A.B.C.D.【解答】解:锥形瓶的左视图为选项A中图形.故选:A.6.(3分)如图,点A、B、C都在⊙O上,且点C在弦AB所对的优弧上,如果∠AOB=64°,那么∠ACB的度数是()A.26°B.30°C.32°D.64°【解答】解:∵∠ACB=∠AOB,而∠AOB=64°,∴∠ACB=×64°=32°.即∠ACB的度数是32°.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.8.(3分)若一组数据2,a,3,5,8的平均数为4,则这组数据的中位数是3.【解答】解:∵数据2,a,3,5,8的平均数是4,∴=4,解得:a=2,这组数据按照从小到大的顺序排列为:2,2,3,5,8,则中位数为3.故答案为:3;9.(3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C',连接AA′,若∠1=25°,则∠BAA'的度数是65°.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=20°=∠BAC∴∠BAA′=180°﹣70°﹣45°=65°,故答案为:65°.10.(3分)若一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则x12+x22﹣x1•x2的值是15.【解答】解:∵一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,∴x1+x2=3,x1•x2=﹣2,∴x12+x22﹣x1•x2=(x1+x2)2﹣3x1x2=32﹣3×(﹣2)=15,故答案为:15.11.(3分)若抛物线y=(x﹣1)2+c过点(2,﹣1),且向左平移4个单位,则所得新抛物线的解析式是y=(x+3)2﹣2.【解答】解:∵抛物线y=(x﹣1)2+c过点(2,﹣1),∴﹣1=(2﹣1)2+c,解得:c=﹣2,故抛物线y=(x﹣1)2﹣2向左平移4个单位,所得新抛物线的解析式为:y=(x+3)2﹣2.故答案为:y=(x+3)2﹣2.12.(3分)如图,平面直角坐标系中,已知点A(8,0)和点B(0,6),点C 是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是(0,3)、(4,0)、(,0).【解答】解:当PC∥OA时,△BPC∽△BOA,由点C是AB的中点,可得P为OB的中点,此时P点坐标为(0,3);当PC∥OB时,△ACP∽△ABO,由点C是AB的中点,可得P为OA的中点,此时P点坐标为(4,0);当PC⊥AB时,如图,∵∠CAP=∠OAB,∴Rt△APC∽Rt△ABO,∴=,∵点A(8,0)和点B(0,6),∴AB==10,∵点C是AB的中点,∴AC=5,∴=,∴AP=,∴OP=OA﹣AP=8﹣=,此时P点坐标为(,0),综上所述,满足条件的P点坐标为(0,3)、(4,0)、(,0).故答案为:(0,3)、(4,0)、(,0)三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程组(2)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=145°,求∠B的度数.【解答】解:(1)方程组化简,得①+②,得3x=x+2,解得x=1.把x=1代入②,得1﹣y=﹣1,解得y=2.∴原方程组的解是,(2)∵∠1=145°,∴∠EDC=180°﹣∠1=35°.∵DE∥BC,∴∠C=∠EDC=35°.在△ABC中,∠A=90°,∴∠B=90°﹣∠C=90°﹣35°=55°.14.(6分)先化简()÷,再从﹣2,0,1,2中选取一个符合要求的数代入求值.【解答】解:()÷===,当m=1时,原式==﹣1.15.(6分)如图是由6个形状、大小完全相同的小矩形组成的大矩形,其中小矩形的长为2,宽为1,请用无刻度的直尺在矩形中完成以下作图(保留作图痕迹,不写作法).(1)在图1中,画出一个面积为5的正方形;(2)在图2中,画出一个面积为4的非特殊的平行四边形.【解答】解:(1)如图正方形ABCD;(2)如图平行四边形EFGH.16.(6分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)下列事件是不可能事件的是DA.选购甲品牌的B型号;B.选购甲品牌的C型号和乙品牌的D型号;C.既选购甲品牌也选购乙品牌;D.只选购乙品牌的E型号.(2)用列表法或树状图法,写出所有的选购方案,若每种方案被选中的可能性相同,求A型号的器材被选中的概率?【解答】解:(1)A、选购甲品牌的B型号是随机事件;B、选购甲品牌的C型号和乙品牌的D型号是随机事件;C、既选购甲品牌也选购乙品牌是必然事件;D、只选购乙品牌的E型号是不可能事件;故选:D;(2)用树状图法表示是:由树状图可知,共有6种等可能的结果,其中A选中有2种结果,即AD、AE,∴选中A型号的概率=.17.(6分)如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO 时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC =12cm.(1)当P A=45cm时,求PC的长;(2)若∠AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:≈1.414,≈1.732)【解答】解:(1)当P A=45cm时,连结PO.∵D为AO的中点,PD⊥AO,∴PO=P A=45cm.∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36cm,PC==27cm;(2)当∠AOC=120°,过D作DE⊥OC交BO延长线于E,过D作DF⊥PC 于F,则四边形DECF是矩形.在Rt△DOE中,∵∠DOE=60°,DO=AO=12,∴DE=DO•sin60°=6,EO=DO=6,∴FC=DE=6,DF=EC=EO+OB+BC=6+24+12=42.在Rt△PDF中,∵∠PDF=30°,∴PF=DF•tan30°=42×=14,∴PC=PF+FC=14+6=20≈34.6>27,∴点P在直线PC上的位置上升了,此时PC的长约是34.6cm.四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)为创建大数据应用示范城市,某市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),如图是部分四类生活信息关注度不完整的统计图表,请根据图中提供的信息解答下列问题:(1)求本次参与调查的人数;(2)补全条形统计图,并求扇形统计图中D部分的扇形圆心角的度数;(3)写出一条从统计图中获取的信息.【解答】解:(1)本次参与调查的人数为200÷20%=1000人;(2)B类别人数为1000﹣(250+200+400)=150人,补全图形如下:(3)由条形图知,大家关心交通信息较多,关心城市医疗信息人数最少.19.(8分)某市风景区门票价格如图所示,现有甲乙两个旅行团队,计划在“十一”黄金周期间到该景点游玩.两团队游客人数之和为120人,甲团队人数不超过50人,乙团队人数为x人,但不足100人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的关系式,并说明两队联合购票比分别购票最多可节约多少元?(2)“十一”黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,若甲、乙两个旅行团队“十一”黄金周之后去游玩,最多节约3400元,求a的值.【解答】解:(1)由题意,甲团队不超过50人,则乙团队x人满足70≤x<100.∴W=80(120﹣x)+70x=﹣10x+9600,∵﹣10<0,∴W随x的增大而减小,∴当x=70时,W有最大值,即为8900(元),∵两队联合购票费用为60×120=7200(元),∴两队联合购票比分别购票最多可节约8900﹣7200=1700(元).(2)由题意,得W=80(120﹣x)+(70﹣a)x=﹣(10+a)x+9600.当x=70时,W有最大值﹣(10+a)×70+9600=﹣70a+8900.两队联合购票费用是(60﹣2a)×120=﹣240a+7200,根据题意,列方程(﹣70a+8900)﹣(﹣240a+7200)=3400.解得a=10.20.(8分)已知⊙O的直径AB为2,点C是⊙O上,∠CAB=30°,点D是⊙O 上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当∠ACD=45°时,求证:DE是⊙O的切线;(2)如图2,当点F是CD的中点时.①求证:△ACD是等边三角形;②求△CDE的面积.【解答】(1)证明:如图1,连接OD,∵∠ACD=45°,∴∠AOD=90°,∵DE∥AB,∴∠AOD+∠EDO=180°.∴∠EDO=90°.∴OD⊥DE,∴ED是⊙O的切线.(2)①证:∵F为CD的中点,∴CF=DF.∵AB为⊙O的直径,∴AB⊥CD.∴∠AFC=90°.∴AF为CD的垂直平分线,∴AC=AD.∵∠CAB=30°,∴∠C=60°.∴△ACD是等边三角形.②解:如图2,连接BC,∵AB是⊙O的直径,∴∠ACB=90°.∵∠CAB=30°,且AB=2,∴AC=AB cos30°=,∴CD=AC=∵DE∥AB,∴∠E=∠CAB=30°,∠CDE=∠CF A=90°,∴ED==3,∴S=ED×CD=△CDE五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)如图,在平行四边形ABCD中,AD∥x轴,AD=6,原点O是对角线AC的中点,顶点A的坐标为(﹣2,2),反比例函数y=(k≠0)在第一象限的图象过四边形ABCD的顶点D.(1)求点D的坐标和k的值;(2)将平行四边形ABCD向上平移,使点C落在反比例函数图象在第一象限的分支上,求平移过程中线段AC扫过的面积.(3)若P、Q两点分别在反比例函数图象的两支上,且四边形APCQ是菱形,求PQ的长.【解答】解:(1)设AD与y轴交于点E,∵AD∥x轴,∴A、D的纵坐标相同.∵A(﹣2,2),∴AE=2,∴ED=AD﹣AE=4,∴D(4,2).∵D在反比例函数y=的图象上,∴k=4×2=8;(2)∵在平行四边形ABCD中,原点O是对角线AC的中点,∴C与A关于原点对称,∴C(2,﹣2).设点C向上平移a个单位,则C′(2,﹣2+a)在y=的图象上,∴2(﹣2+a)=8,解得a=6.设CC′与AD相交于F,则AF=4.∴平移过程中线段AC扫过的面积是6×4=24;(3)∵四边形APCQ是菱形,∴PQ⊥AC.∵直线AC的解析式为y=﹣x,∴直线PQ的解析式为:y=x,设P点的坐标为(a,a)且a>0,则点Q的坐标为(﹣a,﹣a),∵P、Q两点分别在反比例函数图象的两支上,∴a=,解得:a=2,故P的坐标为:(2,2),Q的坐标为(﹣2,﹣2),∴PQ==8.22.(9分)我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线.(1)①当顶点为(1,2)时,则a=﹣2;②当顶点为(m,2m),且m≠0时,则a与m之间的关系式是a=﹣(2)当此抛物线的顶点在直线y=kx上,且b≠0时,用含k的代数式表示b;(3)现有一组过原点的抛物线,它们的顶点A1,A2,…,A n在直线y=2x上,其横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n∁n D n,若这组抛物线中有一条经过D n,求此时满足条件的正方形A n B n∁n D n的边长.【解答】解:(1)①∵顶点为(1,2)∴﹣=1,﹣=2,解得a=﹣2;②∵顶点为(m,2m),∴﹣=m,﹣=2m,解得a=﹣,故答案为﹣2,a=﹣;(2)由顶点(﹣,﹣)在直线y=kx上,得﹣=k(﹣),∵b≠0,∴b=2k.(3)顶点A1,A2,…,A n在直线y=2x上,∴可设A n(m,2m),点D n所在的抛物线顶点坐标为(n,2n).∴a=﹣,b=4,由(1)(2)结果知,顶点A n(m,2m)所在直的抛物线解析式是y=﹣x2+4x,设正方形A n B n∁n D n的顶点A n(m,2m)在抛物线y=﹣x2+4x上,且边长为2m,此时顶点D n(3m,2m)在另一条抛物线y=﹣x2+4x上,由﹣(3m)2+4×3m=2m,解得m=n,∵m≤n≤12,且m,n为正整数,∴当n=9时,m=5,∴2m=10,∴满足条件的正方形A5B5C5D5的边长为10.六、填空题(本大题共1小题,共12分)23.(12分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这边上的“奇特三角形”,这条边称为“奇特边”.(1)如图1,已知△ABC是奇特三角形,AC>BC,且∠C=90°..①△ABC的奇特边是较长直角边;②设BC=a,AC=b,AB=c,求a:b:c;(2)如图2,AM是△ABC的中线,若△ABC是BC边上的奇特三角形,找出BC2与AB2+AC2之间的关系.(3)如图3,在四边形ABCD中,∠B=90°(AB<BC),BC=2,对角线AC把它分成了两个奇特三角形,且△ACD是以AC为腰的等腰三角形,求等腰三角形ACD的底边长.【解答】解:(1)①∵直角三角形斜边上的中线是斜边的一半,∴斜边不是“奇特边”,∵较短直角边上的中线大于较长直角边,∴较短直角边不是“奇特边”,∴较长直角边为奇特边,故答案为:较长直角边;②设AC=BH=2x,则AH=HC=x,由勾股定理得,BC=x,AB=x,则a:b:c=:2:;(2)作BD⊥AM于D,CE⊥AM于E,设BD=x,DM=y,BM=z,在△BDM和△CEM中,∴△BDM≌△CEM,∴CE=BD=x,DM=EM=y,在Rt△ABD中,AB2=BD2+AD2=x2+(y+2z)2=x2+y2+4yz+4z2,在Rt△ACE中,AC2=AE2+EC2=x2+(2z﹣y)2=x2+y2﹣4yz+4z2,则AB2+AC2=2x2+2y2+8z2=2(x2+y2)+8z2=10z2,BC2=(2z)2=4z2,∴AB2+AC2=BC2;(3)作BC边上的中线AE,由(1)得,BC是“奇特边”,∵BC=2,则AE=2,BE=EC=,由勾股定理得,AB==,AC==7,△ACD是“奇特三角形”,当AC为“奇特边”时,72+AD2=×72,解得,AD=,当AD为“奇特边”时,(AD)2+AD2=72,解得,AD=.。
最新-江西省2018年中考数学模拟试卷(一)精品
1 1 ”中的“ -1 ”
不是底数,所以“
1
1 ”应理解为 1 的 -1 次方的相反数,另还应注意负指数幂转化为正指
幂的方法,即: “底倒指反” .
【易错提示】 1 1 易化简为 1
2.下列各等式成立的是( C )
A.
2
a
5
a
7
a B.
(
a2 )3
a6 C. a2 1 (a 1)(a 1) D. ( a b) 2
7分
19.小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分, 请你帮助她设计一个合理的等分方案. 要求用尺规作出图形, 保留作图痕迹, 并简要写出作
法.
的形式, 再注意把数字后面的文字 “万” 转化成 10 的指数次幂 , 同时只对 a 取保留四个有效 数字的近似值 .
【归纳总结】 用科学记数法表示的数 a 10n 中 , 有效数字的个数只针对 a 的数字 , 与 10 n 无关 ;
原带“文字单位”的大数用科学记数法表示时要注意单位的转化
.
4. 已知四边形 ABCD是平行四边形,下列结论中不 .正确的是( D )
A. 当 AB=BC时,它是菱形
B.
当 AC⊥ BD时,它是菱形
C.当∠ ABC=900 时,它是矩形
D.
当 AC=BD时,它是正方形
【解析】考查点: 本题考查了平行四边形的性质 , 以及菱形、矩形、正方形的判定 .
解题思路: 在平行四边形基础上,紧扣菱形、矩形、正方形的判定,分析各选项中所添加的
条件是否符合相应的判定条件 .
试题特征 新信息 地方特色
强预测
易错题 较难题
题号 20 3
13
中考模拟】江西省2018年中考数学模拟试卷(一)含答案
中考模拟】江西省2018年中考数学模拟试卷(一)含答案2018年江西中考模拟卷(一)一、选择题1.|-2|的值是()A。
22.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次,4640万用科学记数法表示为() C。
4.64×1073.观察下列图形,其中既是轴对称又是中心对称图形的是()D。
4.下列计算正确的是()A。
3x2y+5xy=8x3y25.已知一元二次方程x2-2x-1=的两根分别为x1,x2,则(x1+1/x1)+(x2+1/x2)的值为()D。
-26.如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC 于E,F两点,下列说法正确的是()B。
若AD垂直平分BC,则四边形AEDF是矩形二、填空题7.计算:-12÷3=-4.8.如图,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为60°.9.引入新数i,新数i满足分配律,结合律,交换律,已知i2=-1,那么(1+i)·(1-i)=2.10.已知某几何体的三视图如图所示,根据图中数据求得该几何体的表面积为72.11.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为2.12.如图,在平面直角坐标系中,△ABC为等腰直角三角形,点A(0,2),B(-2,0),点D是x轴上一个动点,以AD为一直角边在一侧作等腰直角三角形ADE,∠DAE=90°.若△ABD为等腰三角形,则点E的坐标为(2,-2).13.1) 将不等式组化简为2x ≥ 2,即x ≥ 1,x < (4/3),解得不等式组为x ≥ 1,x < (4/3)。
2) 因为 AD = BC,∠A = ∠B,AE = BF,所以△ADF ≌△BCE,根据 SSS 判定可知。
2018年江西省中考数学试卷(含答案解析版)
2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。
每小题只有一个正确选项)1.(3.00分)(2018•江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3.00分)(2018•江西)计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.3.(3.00分)(2018•江西)如图所示的几何体的左视图为()A.B.C.D.4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=(k ≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC 相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD 的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。
2018年江西省中考数学模拟试卷
2018年江西省中考数学模拟试卷(A卷)一、选择题(每小题3分,共18分)1.下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是()A.∠A=30°,∠B=40°B.∠A=30°,∠B=110°C.∠A=30°,∠B=70°D.∠A=30°,∠B=90°2.下列各数中是有理数的是()A.B.4πC.sin45°D.3.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>04.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A.B.C.D.5.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同二、填空题(本大题共有6小题,每小题3分,共18分)7.把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是.8.已知y是x的一次函数,下表给出了部分对应值,则m的值是.9.关于x的一元二次方程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是.10.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.则△ABC的内切圆半径r=.11.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,那么折痕AB的长为cm.12.已知,点P是反比例函数y=图象在第一象限上的一个动点,⊙P的半径为1,当⊙P与坐标轴相交时,点P的横坐标x的取值范围是.三、解答题(本大题共有6小题,共30分)13.先化简:(1+)÷,再选择一个恰当的x的值代入求值.14.解不等式组:.15.已知:线段m、n,(1)用尺规作出一个等腰三角形,使它的底等于m,腰等于n(保留作图痕迹,不写作法、不证明);(2)用至少4块所作三角形,拼成一个轴对称多边形(画出示意图即可).16.甲、乙、丙、丁四人参加某校招聘教师考试,考试后甲、乙两人去询问成绩.请你根据下面回答对甲、乙两人回答的内容进行分析.(1)列举出这四人的名次排列所有可能出现的不同情况.(2)求甲排在第一名的概率?17.某工厂用A、B、C三台机器加工生产一种产品.对2015年第一季度的生产情况进行统计,图1是三台机器的产量统计图.图2是三台机器产量的比例分布图.(图中有部分信息未给出)(1)利用图1信息,写出B机器的产量,并估计A机器的产量;(2)综合图1和图2信息,求C机器的产量.四、解答题(本大题共有4小题,共32分)18.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD 的最小值,并求取得最小值时P点的坐标.19.如图,一种某小区的两幢10层住宅楼间的距离为AC=30m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.(1)用含α的式子表示h(不必指出α的取值范围);(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?20.如图1,O为圆柱形木块底面的圆心,过底面的一条弦AD,沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm.若的长为底面周长的,如图2所示.(1)求⊙O的半径;(2)求这个圆柱形木块的表面积.(结果可保留π和根号)21.已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AB•AD.(1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)五、解答题(本大题共有1小题,共10分)22.根据如图所示的程序计算.(1)计算x=1时,y值是多少?(2)是否存在输出值y恰好等于输入值x的2倍?如果存在,请求出x的值;如果不存在,请说明理由.(3)是否存在这样的x的值,输入计算后始终在内循环计算而输不出y的值?如果存在,请求出x的值;如果不存在,请说明理由.六、解答题(本大题共有1小题,共12分)23.已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为,对称轴公式为x=﹣.2018年江西省中考数学模拟试卷(A卷)参考答案与试题解析一、选择题(每小题3分,共18分)1.下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是()A.∠A=30°,∠B=40°B.∠A=30°,∠B=110°C.∠A=30°,∠B=70°D.∠A=30°,∠B=90°【考点】命题与定理.【分析】判断“两个锐角的和是锐角”什么情况下不成立,即找出两个锐角的和>90°即可.【解答】解:例如:若∠A=30°,∠B=70°,则∠A+∠B>90°.故选C2.下列各数中是有理数的是()A.B.4πC.sin45°D.【考点】特殊角的三角函数值.【分析】要想解决此题,首先明确有理数的分类,其次牢记特殊角的三角函数值.【解答】解:A、==3,是无理数;B、4π是无理数;C、sin45°=是无理数;D、==2,是有理数;故选D.3.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【考点】正比例函数的性质.【分析】根据正比例函数的性质对各小题进行逐一判断即可.【解答】解:A、函数图象经过点(2,4),错误;B、函数图象经过第一、三象限,错误;C、y随x的增大而增大,正确;D、当x>0时,才有y>0,错误;故选C.4.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A.B.C.D.【考点】生活中的旋转现象.【分析】根据△ABC绕着点O逆时针旋转90°,得出各对应点的位置判断即可;【解答】解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A.5.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【考点】平移的性质;简单组合体的三视图.【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【解答】解:A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选:B.二、填空题(本大题共有6小题,每小题3分,共18分)7.把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是x >1.【考点】在数轴上表示不等式的解集.【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】解:由图示可看出,从﹣2出发向右画出的线且﹣2处是实心圆,表示x≥﹣2;从1出发向右画出的线且1处是空心圆,表示x>1,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是x>1.故答案是:x>1.8.已知y是x的一次函数,下表给出了部分对应值,则m的值是﹣7.【考点】待定系数法求一次函数解析式.【分析】一次函数的一般形式为y=kx+b,根据待定系数法即可求解.【解答】解:设该一次函数的解析式为y=kx+b.由题意得,解得,故m的值是﹣7.9.关于x的一元二次方程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是k≥.【考点】根的判别式.【分析】由于已知方程有实数根,则△≥0,由此可以建立关于k的不等式,解不等式就可以求出k的取值范围.【解答】解:由题意知△=(2k+1)2+4(2﹣k2)=4k+9≥0,∴k≥.10.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.则△ABC的内切圆半径r=2.【考点】三角形的内切圆与内心.【分析】设AB、BC、AC与⊙O的切点分别为D、E、F;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC﹣AB),由此可求出r的长.【解答】解:如图,在Rt△ABC,∠C=90°,AC=6,BC=8;根据勾股定理AB==10;四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;∴四边形OECF是正方形;由切线长定理,得:AD=AF,BD=BE,CE=CF;∴CE=CF=(AC+BC﹣AB);即:r=(6+8﹣10)=2.11.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,那么折痕AB的长为2cm.【考点】翻折变换(折叠问题).【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【解答】解:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD=cm,根据垂径定理得:AB=2cm.故答案为:2.12.已知,点P是反比例函数y=图象在第一象限上的一个动点,⊙P的半径为1,当⊙P与坐标轴相交时,点P的横坐标x的取值范围是x>4或0<x<1.【考点】反比例函数图象上点的坐标特征;直线与圆的位置关系.【分析】首先画出比例函数y=图象,观察点P在第一象限变化的情况,因为⊙P的半径为1,所以当0<x<1时,⊙P与y轴相交,当x>2时,⊙P与x轴相交,据此求出答案.【解答】解:如图,当⊙P与坐标轴相交时,若与y轴相交时,根据函数图象得:0<x<1;若与x轴相交时,根据函数图象得:x>4.故答案为:0<x<1或x>4.三、解答题(本大题共有6小题,共30分)13.先化简:(1+)÷,再选择一个恰当的x的值代入求值.【考点】分式的化简求值.【分析】先通分计算括号里面的,再将(x2﹣1)因式分解,然后将除法转化为乘法进行计算.【解答】解:原式=×=×=x+1,当x=6时,原式=6+1=7.14.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+2>0,得:x>﹣2,解不等式+1≥x,得:x≤1,∴不等式组的解集为:﹣2<x≤1.15.已知:线段m、n,(1)用尺规作出一个等腰三角形,使它的底等于m,腰等于n(保留作图痕迹,不写作法、不证明);(2)用至少4块所作三角形,拼成一个轴对称多边形(画出示意图即可).【考点】作图-轴对称变换;作图—复杂作图.【分析】(1)画一直线长为m,作三角形的底,再用圆规,以线段m的两端点为圆心,n长为半径画弧,交于点A,连接三点即是三角形.(2)本题答案不唯一,只要是根据轴对称图形的性质画的轴对称图形就可.【解答】解:16.甲、乙、丙、丁四人参加某校招聘教师考试,考试后甲、乙两人去询问成绩.请你根据下面回答对甲、乙两人回答的内容进行分析.(1)列举出这四人的名次排列所有可能出现的不同情况.(2)求甲排在第一名的概率?【考点】列表法与树状图法.【分析】(1)根据对话显然丙排在第四,乙是第二或第三,则对应的甲的名次可能有两种情况.所以共有4种情况.(2)根据概率公式,利用甲排在第一名的情况数:所有可能出现的不同情况即可.【解答】解:(1)列举:①甲、乙、丁、丙;②丁、乙、甲、丙;③甲、丁、乙、丙;④丁、甲、乙、丙;(2)甲排在第一名的概率为=.17.某工厂用A、B、C三台机器加工生产一种产品.对2015年第一季度的生产情况进行统计,图1是三台机器的产量统计图.图2是三台机器产量的比例分布图.(图中有部分信息未给出)(1)利用图1信息,写出B机器的产量,并估计A机器的产量;(2)综合图1和图2信息,求C机器的产量.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图得到B机器的产量,并估计A机器的产量;(2)根据扇形统计图得到C机器的产量的百分比,计算即可.【解答】解:(1)由条形统计图可知,B机器的产量是150件,估计A机器的产量是210件;(2)设C机器的产量为x件,由题意得,=,解得,x=240,答:C机器的产量为240件.四、解答题(本大题共有4小题,共32分)18.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD 的最小值,并求取得最小值时P点的坐标.【考点】一次函数综合题.【分析】(1)将点A、B的坐标代入y=kx+b并计算得k=﹣2,b=4.求出解析式为:y=﹣2x+4;(2)设点C关于点O的对称点为C′,连接C′D交OB于P,则PC=PC′,PC+PD=PC′+PD=C′D,即PC+PD的最小值是C′D.连接CD,在Rt△DCC′中,由勾股定理求得C′D的值,由OP是△C′CD的中位线而求得点P的坐标.【解答】解:(1)将点A、B的坐标代入y=kx+b得:0=2k+b,4=b,∴k=﹣2,b=4,∴解析式为:y=﹣2x+4;(2)设点C关于点O的对称点为C′,连接C′D交OB于P′,连接P′C,则PC=PC′,∴PC+PD=PC′+PD=C′D,即PC+PD的最小值是C′D.连接CD,在Rt△DCC′中,C′D==2,即PC′+PD的最小值为2,∵OA、AB的中点分别为C、D,∴CD是△OBA的中位线,∴OP∥CD,CD=OB=2,∵C′O=OC,∴OP是△C′CD的中位线,∴OP=CD=1,∴点P的坐标为(0,1).19.如图,一种某小区的两幢10层住宅楼间的距离为AC=30m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.(1)用含α的式子表示h(不必指出α的取值范围);(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?【考点】解直角三角形的应用;平行投影.【分析】(1)过点E作EH⊥AB于H,由题意四边形ACEH是矩形,在Rt△BEH 中,根据tan∠BEH=列出方程即可解决问题.(2)①求出h的值即可解决问题,②求出∠ACB的大小即可解决问题.【解答】解:(1)过点E作EH⊥AB于H,由题意四边形ACEH是矩形,∴EH=AC=30,AH=CE=h,∠BEH=α,∴BH=30﹣h,在Rt△BEH中,tan∠BEH=,∴30﹣h=30tanα,∴h=30﹣30tanα.(2)当α=30°时,h=30﹣30×≈12.7,∵12.7÷3=4.2,∴B点的影子落在乙楼的第五层,当B点的影子落在乙楼C处时,甲楼的影子刚好不影响乙楼采光,此时AB=AC=30,△ABC是等腰直角三角形,∴∠ACB=45°,∴=1(小时),∴从此时起1小时后甲楼的影子刚好不影响乙楼采光.20.如图1,O为圆柱形木块底面的圆心,过底面的一条弦AD,沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm.若的长为底面周长的,如图2所示.(1)求⊙O的半径;(2)求这个圆柱形木块的表面积.(结果可保留π和根号)【考点】圆柱的计算;解直角三角形.【分析】(1)根据的长为底面周长的,可将扇形的圆心角求出,再根据弦AD的长可将⊙O的半径求出;(2)圆柱形木块的表面积S=2S圆+S侧,将上下两个圆的面积和侧面的面积求出,相加即可.【解答】解:(1)如图:连接OA,OD,过O作OE⊥AD,垂足为E,∵由已知的长=圆周长,∴扇形OAmD的圆心角为360°×=240°.∠AOD=360°﹣240°=120°.∵OE⊥AD,∴∠AOE=120°=60°,AE=AD.∵AD=24cm,∴AE=12cm.在Rt△AOE中,sin∠AOE=,∴AO==(cm).即⊙O的半径为cm.(2)设圆柱的表面积为S,则S=2S圆+S侧,2S圆=2π×(8)2=384π(cm2),S侧=2π×8×25=400π(cm2),∴S=πcm2答:木块的表面积为πcm2.21.已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AB•AD.(1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)【考点】等腰梯形的性质;等腰三角形的判定与性质.【分析】(1)根据等腰三角形的判断(等角对等边),通过证明△ABC∽△CAD 得出对应角相等得出△ADC和△BDC都是等腰三角形;(2)由(1)知BD=BC=AC,及AC2=AB•AD,可以求AC的值;(3)利用36°,72°,108°角的特殊关系,设计等腰梯形,满足题意.【解答】(1)证明:∵∠A=36°,AC=BC,∴∠B=∠A=36°,∴∠ACB=180°﹣∠A﹣∠B=108°,∵AC2=AB•AD,∴AC:AB=AD:AC,∵∠A是公共角,∴△ACD∽△ABC,∴∠ACD=∠B=36°,∴AD=CD,∴∠BCD=∠ACB﹣∠ACD=72°,∴∠BDC=180°﹣∠B﹣∠BCD=72°,∴∠BCD=∠BDC,∴BC=BD,即:△ADC和△BDC都是等腰三角形;(2)解:∵△ABC∽△ACD,∴∠ACD=∠B=36°,∴∠BCD=∠A+∠ACD=72°,∠BCD=∠ACB﹣∠ACD=108°﹣36°=72°,∴∠BCD=∠BDC,∴BD=BC,∵AC=BC,∴AC=BC=BD,设AC=x,则BC=BD=x,AD=1﹣x,∵AC2=AB•AD,∴x2=1﹣x,解得:x=或x=(舍去),∴AC的值为.(3)如图.五、解答题(本大题共有1小题,共10分)22.根据如图所示的程序计算.(1)计算x=1时,y值是多少?(2)是否存在输出值y恰好等于输入值x的2倍?如果存在,请求出x的值;如果不存在,请说明理由.(3)是否存在这样的x的值,输入计算后始终在内循环计算而输不出y的值?如果存在,请求出x的值;如果不存在,请说明理由.【考点】有理数的混合运算;解一元二次方程-公式法.【分析】(1)把x=1代入程序中计算即可确定出y的值;(2)根据题意得到y=2x,由程序判断即可;(3)存在,根据程序确定出x的值,计算即可.【解答】解:(1)把x=1代入程序中得:12×2﹣4=2﹣4=﹣2<0,把x=﹣2代入程序中得:(﹣2)2×2﹣4=8﹣4=4>0,则y=4;(2)当y=2x且y>0时,有2x2﹣4=2x,解得:x=2或x=﹣1(舍去),则x=2;(3)存在,当y=x且y<0时,输入x计算后始终输不出y的值,此时x=2x2﹣4,解得:x=,由y<0,得到x=,则当x=时,输不出y的值.六、解答题(本大题共有1小题,共12分)23.已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为,对称轴公式为x=﹣.【考点】二次函数综合题.【分析】(1)可在直角三角形BOA中,根据AB的长和∠AOB的度数,求出OA 的长.根据折叠的性质可知:OC=OA,∠COA=60°,过C作x轴的垂线,即可用三角形函数求出C点的坐标;(2)根据(1)求出的A,C点的坐标,用待定系数法即可求出抛物线的解析式;(3)根据等腰梯形的性质,如果过M,P两点分别作底的垂线ME和PQ,那么CE=PQ,可先设出此时P点的坐标,然后表示出M点的坐标,CE就是C点纵坐标与M点纵坐标的差,QD就是P点纵坐标和D点纵坐标的差.由此可得出关于P点横坐标的方程,可求出P点的横坐标,进而可求出P点的坐标.【解答】解:(1)过点C作CH⊥x轴,垂足为H∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2∴OB=4,OA=由折叠知,∠COB=30°,OC=OA=∴∠COH=60°,OH=,CH=3∴C点坐标为(,3);(2)∵抛物线y=ax2+bx(a≠0)经过C(,3)、A(,0)两点,∴,解得:,∴此抛物线的解析式为:y=﹣x2+2x.解法一:(3)存在.因为的顶点坐标为(,3)所以顶点坐标为点C作MP⊥x轴,垂足为N,设PN=t,因为∠BOA=30°,所以ON=t∴P(t,t)作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E把t代入得:y=﹣3t2+6t∴M(t,﹣3t2+6t),E(,﹣3t2+6t)同理:Q(,t),D(,1)要使四边形CDPM为等腰梯形,只需CE=QD(这时△PQD≌△MEC)即3﹣(﹣3t2+6t)=t﹣1,解得:,t2=1(不合题意,舍去)∴P点坐标为(,)∴存在满足条件的点P,使得四边形CDPM为等腰梯形,此时P点的坐为(,);解法二:(3)存在.由(2)可得:=得顶点坐标为(,3),即点C恰好为顶点;设MP交x轴于点N,∵MP∥y轴,CH为抛物线的对称轴∴MP∥CD且CM与DP不平行∴四边形CDPM为梯形若要使四边形CDPM为等腰梯形,只需∠MCD=∠PDC由∠PDC=∠ODH=90°﹣∠DOA=60°,则∠MCD=60°又∵∠BCD=90°﹣∠OCH=60°,∴∠MCD=∠BCD,∴此时点M为抛物线与线段CB所在直线的交点设BC的解析式为y=mx+n由(2)得C(,3)、B(,2)∴解得:∴直线BC的解析式为由得,∴ON=在Rt△OPN中,tan∠PON=得∴P点坐标为(,)∴存在满足条件的点P,使得四边形CDPM为等腰梯形,此时P点的坐标为(,).。
2018年江西省中考数学试卷含答案
数学试卷第1页(共28页)数学试卷第2页(共28页)绝密★启用前江西省2018年中等学校招生考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共18分)一、选择题(本大题共6小题,每小题3分,共18分.每小题给出的四个选项中,只有一项是符合题目要求的)1.2-的绝对值是()A .2-B .2C .12-D .122.计算22()ba a- 的结果为()A .bB .b-C .abD .b a3.如图所示的几何体的左视图为()ABCD4.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A .最喜欢篮球的人数最多B .最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C .全班共有50名学生D .最喜欢田径的人数占总人数的10%5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A .3个B .4个C .5个D .无数个6.在平面直角坐标系中,分别过点(),,02,0()A m B m +作x 轴的垂线和1l 和2l ,探究直线1l ,直线2l 与双曲线3y x=的关系,下列结论中错误的是()A .两直线中总有一条与双曲线相交B .当1m =时,两直线与双曲线的交点到原点的距离相等C .当20m -<<时,两直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上)7.若分式11x -有意义,则x 的取值范围为.8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为.9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共28页)数学试卷第4页(共28页)头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y两,依题意,可列出方程组为.10.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE EF =,则AB 的长为.11.一元二次方程2420x x +=-的两根为1x ,2x ,则2111242x x x x -+的值为.12.在正方形ABCD 中,6AB =,连接AC ,BD ,P 是正方形边上或对角线上一点,若2PD AP =,则AP 的长为.三、解答题(本大题共11小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)13.(本小题满分6分,每题3分)(1)计算:2(1)(1)(2)a a a +---;(2)解不等式:2132x x --+≥.14.(本小题满分6分)如图,在ABC △中,8AB =,4BC =,6CA =,CD AB ∥,BD 是ABC ∠的平分线,BD 交AC 于点E .求AE 的长.15.(本小题满分6分)如图,在四边形ABCD 中,AB CD ∥,2AB CD =,E 为AB 的中点.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).(1)在图1中,画出ABD △的BD 边上的中线;(2)在图2中,若BA BD =,画出ABD △的AD 边上的高.16.(本小题满分6分)2018年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.数学试卷第5页(共28页)数学试卷第6页(共28页)17.(本小题满分6分)如图,反比例函数 ()0ky k x=≠的图象与正比例函数 2y x =的图象相交于()1,A a ,B两点,点C 在第四象限,CA y ∥轴,o90ABC ∠=.(1)求k 的值及点B 的坐标(2)求tan C的值.18.(本小题满分8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间.过程如下.收集数据从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min ):30608150401101301469010060811201407081102010081整理数据按如下分段整理样本数据并补全表格:课外阅读时间(min)x 040x ≤<4080x ≤<80120x ≤<120160x ≤<等级D CB A人数38分析数据补全下列表格中的统计量:平均数中位数众数80得出结论(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B ”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(本小题满分8分)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视图简化示意图,已知轨道120AB cm =,两扇活页门的宽60cm OC OB ==,点B 固定,当点C 在AB 上左右运动时,OC 与OB 的长度不变(所有结果保留小数点后一位).(1)若o 50OBC∠=,求AC 的长;(2)当点C 从点A 向右运动60cm 时,求点O 在此过程中运动的路径长.参考数据:o sin 500.77≈,o cos500.64≈,o tan 50 1.19≈,π取3.14.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________图1图2数学试卷第7页(共28页)数学试卷第8页(共28页)20.(本小题满分8分)如图,在ABC △中,O 为AC 上一点,以点O 为圆心,OC 的半径作圆,与BC 相切于点C ,过点A 作AD BO ⊥交BO 的延长线于点D ,且AOD BAD ∠=∠.(1)求证:AB 为O 的切线;(2)若6BC =,4tan 3ABC ∠=,求AD 的长.21.(本小题满分9分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(本小题满分9分)在菱形ABCD 中,60ABC ∠=︒,点P 是射线BD 上一动点,以AP 为边向右侧作等边APE △,点E 的位置随点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接CE ,BP 与CE 的数量关系是,CE 与AD 的位置关系是;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2图3中的一种情况予以证明或说理).(3)如图4,当点P 在线段BD 的延长线上时,连接BE ,若23AB =,219BE =,求四边形ADPE 的面积.23.(本小题满分12分)小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验(1)已知抛物线23y x bx =-+-经过点()1,0-,则b =,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是;抽象感悟我们定义:对于抛物线()20y ax bx c a =++≠,以y 轴上的点()0,M m 为中心,作该抛物线关于点M 对称的抛物线y ',则我们又称抛物线y '为抛物线y 的“衍生抛物线”,点M 为“衍生中心”.(2)已知抛物线225y x x =--+关于点(0,)m 的衍生抛物线为y ',若这两条抛物线有交点,求m 的取值范围;问题解决(3)已知抛物线22(0)y ax ax b a =+-≠.①若抛物线y 的衍生抛物线为222(0)y bx bx a b '=-+≠,两抛物线有两个交点,且恰好是它们的顶点,求a ,b 的值及衍生中心的坐标;②若抛物线y 关于点2(01)k +,的衍生抛物线为1y ,其顶点为1A ;关于点2(0,2)k +的衍生抛物线为2y ,其顶点为2A ;…;关于点2(0,)k n +的衍生抛物线为n y ,其顶点数学试卷第9页(共28页)数学试卷第10页(共28页)为n A ;…(n 为正整数).求()1n n A A +的长(用含n 的式子表示).江西省2018年中等学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】2-的绝对值是2,故选B .【考点】绝对值的概念2.【答案】A 【解析】2222()b b a a b a a -==,故选A .【考点】分式的运算3.【答案】D【解析】从左面看该几何图,看到的是一个矩形,且看不到的棱用虚线表示,故选D .【考点】几何体的左视图4.【答案】C【解析】A 中,最喜欢足球的人数最多,故错误;B 中,最喜欢羽毛球的人数是最喜欢乒乓球人数的43,故错误;C 中,全班学生总人数为122084650++++=(名),故正确;D 中,最喜欢田径的人数占总数的4100%8%50⨯=,故错误,故选C .【考点】频数分布直方图5.【答案】C【解析】如图所示,正方形ABCD 可以向上、向下、向右以及沿AC 所在直线、沿BD 所在直线平移,且平移前后的两个正方形可组成轴对称图形,故选C .【考点】利用轴对称设计图案,平移的性质6.【答案】D【解析】A 中,因为双曲线3y x=的图象位于第一、三象限,且m 与2m +不全为0,所以直线1l 和2l 中总有一条与双曲线相交,故正确;B 中,当1m =时,直线1l 与双曲线交点为(1,3),直线2l 与双曲线交点为(3,1),到原点的距离,故当1m =时两直线与双曲线的交点到原点的距离相等,故正确;C 中,当20m -<<时,直线2l 与双曲线的交点位于第三象限,在y 轴的左侧,直线2l 与双曲线的交点位于第一象限,在y 轴的右侧,故正确;D 中,反比例函数3y x=的图象是曲线,根据直角三角形中斜边长大于直角边长,故当两直线与双曲线都有交点时,这两交点的最短距离必大于2,故错误,故选D .【考点】反比例函数的图象与性质第Ⅱ卷二.填空题7.【答案】1x ≠【解析】依题意,10x -≠,解得1x ≠.【考点】分式有意义的条件8.【答案】4610⨯【解析】460000610=⨯.【考点】科学记数法9.【答案】5210258x y x y +=⎧⎨+=⎩【解析】由5头牛、2只羊、值金10量可得5210x y +=,由2头牛、5只羊、值金8量可得258x y +=,可列出方程组5210258x y x y +=⎧⎨+=⎩,.数学试卷第11页(共28页)数学试卷第12页(共28页)【考点】二元一次方程组的应用10.【答案】【解析】∵四边形ABCD 为矩形,∴AD BC =,o90D ∠=由旋转的性质可知AB AE =,BC EF =∴3EF AD ==.∵DE EF =∵3DE =.在Rt ADE △中,AE ===∴AB =.【考点】矩形的性质,旋转的性质,勾股定理11.【答案】2【解析】把1x x =代入一元二次方程2420x x -+=中,得211420x x -+=,∴21142x x -=-根据根与系数的关系,得122x x = ,∴2222=-+⨯=原式.【考点】一元二次方程根与系数的关系,代数式求值12.【答案】2,【解析】(1)当点P 在正方形的边上时,①当点P 在AD 边上时,如图1,11233AP AD AB ===;②当点P 在AB 边上时,如图2,设AP x =,则2PD x =,∴2226(2)x x +=解得x =③点P 不可能在BC ,CD上.(2)当点P 在对角线上时,①当点P 在对角线BD 上时(不与点B 重合),如图3,∵2PD OA <,AP OA ≥,∴点P 在BD 上不存在2PD AP =;②当点P 在对角线AC 上时,如图4,设AP x =,则2PD x =,32OP x =-,32OD =在Rt OPD △中,222(32)2)(2)x x +=,解得114262x =<,2142x =-(舍去).综上所述,2AP =,23142-.【考点】正方形的性质、勾股定理、分类讨论思想三、解答题13.【答案】(1)45a -(2)6x ≥【解析】(1)221(44)45a a a a =---+=-原式.(2)去分母,得2226x x --+≥解得6x ≥.【考点】整式的混合运算,一元一次不等式的解法14.【答案】4AE =【解析】∵BD 平分ABC ∠.数学试卷第13页(共28页)数学试卷第14页(共28页)∴ABD CBD ∠=∠∵AB CD ∥,∴ABD D ∠=∠,ABE CDE ~△△.∴CBD D ∠=∠,AB AECD EC =∴BC CD=∵8AB =,6CA =,4CD BC ==,∴846AE AE =-.∴4AE =.【考点】平分线的定义、平分线的性质、相似三角形的判定与性质15.【答案】画法如图所示.(1)AF即为所求(2)BF即为所求【解析】画法如图所示.(1)AF即为所求(2)BF即为所求【考点】考查作图、全等三角形的判定与性质、三角形的重心.16.【答案】(1)不可能,随机,14.(2)解法一:根据题意,可以画出如下的树状图:小悦小悦小惠小悦小悦小艳小倩小艳小艳小艳小悦小悦小惠小惠小惠小倩小倩由树状图可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中.解法二:根据题意,可以列出表格如下:小悦小惠小艳小倩小悦小悦、小惠小悦、小艳小悦、小倩小惠小惠、小悦小惠、小艳小惠、小倩数学试卷第15页(共28页)数学试卷第16页(共28页)小艳小艳、小悦小艳、小惠小艳、小倩小倩小倩、小悦小倩、小惠小倩、小艳由上表可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中.【解析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)用列表法或树状图法得到所有等可能的结果,再找出符合条件的结果,根据概率公式求解即可。
最新-2018年九年级数学中考全真模拟试题及答案【江西省】 精品
2018年江西省中考数学仿真模拟试题说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一个正确答案,请将正确答案的序号填在题后的括号内)1.32-的相反数是( ) A.23- B.23 C.32D.32-2.下列运算正确的是( )A. 236x x x ⋅= B. 22232x x x -+= C. 236()x x -= D. 221(2)4x x --=-3.下列A 、B 、C 、D 四幅“福牛乐乐”图案中,能通过顺时针旋转180°图案(1)得到的是( )B4.某运动场的面积为3002m ,则它的万分之一的面积大约相当于( )A .课本封面的面积B .课桌桌面的面积C .黑板表面的面积D .教室地面的面积 5.已知一次函数y=kx+b(k 、b 为常数,且k ≠0),x 与y 的部分对应值如下表所示,那么不等式kx+b<0的解集是( )6. 如图是由相同小正方体组成的立体图形,它的主视图为( )7.教室地面的瓷砖如图所示,一把钥匙被藏在某种颜色的一块瓷砖下面,则下列判断正确的是( )A.被藏在白色瓷砖下的概率大 B.被藏在黑色瓷砖下的概率大C.被藏在两种瓷砖下的概率一样大 D.无法确定A .B .C .D .8.若⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-81my nx ny mx 的解,则m,n 的值分别为( )A.m=2,n=1B.m=2,n=3C.m=1,n=8D.m=-2,n=39.将一副三角板按如图所示的位置叠放,则△AOB 与△DOC 的面积之比等于( )A. B. 12 C. 13 D. 1410. 如图,一量角器放置在∠AOB 上,角的一边OA 与量角器交于点C 、D ,且点C 处的度数是20°,点D 处的度数为110°,则∠AOB 的度数是( )A.20°B. 25°C.45°D. 55°二、填空题(本大题共6小题,每小题3分,共18分)11.新华网济南2月24日电 ,据山东省经贸委提供的数据,截至22日,山东省累计销售并已登录信息系统的家电下乡试点产品140.46万台,实现销售收入超过20.53亿元,居全国第一。
2018年江西中考数学模拟试卷1
2 91 BC= ;如图(3),当△ABC的中线AF= 7
13时,设BC=2x,则CF=x,AC=2 3x,在
Rt△ACF中,由勾股定理可得x2+(2 3x)2=( 13)2,解得x1=1,x2=-1(舍去),所以 BC=2.
与花式窗缦的弧长之比为2∶
面积一样,∴ 名师点拨
������π������ 2 2,∴ =30π× ,化简得nr=2 180 2
700 2.又两种窗缦的
������π������ 2 2 700 2π������ =450π,即 =450π,解得r=30 360 360
2.
பைடு நூலகம்
������π������ 2 (1)已知半径r和圆心角的度数n°,求扇形的面积时,S扇形= . 360 1 (2)已知半径r和弧长l,求扇形的面积时,S扇形= lr. 2
由 3������−2有意义可得m≥ ,所以在一次函数y=mx-m中,一次项系数 确定二次根式中字母取值范围的常见错误 ”的特征和被开方数为非负数的
大于0,常数项小于0,所以一次函数y=mx-m的图象不经过第二象限.
二次根式有一个特征和一个条件,就是带根号“
条件.在求二次根式中字母取值范围时,常出现如下三种错误: (1)被开方数大于或等于0,只考虑大于0而致错; (2)受分式中分母取值范围的影响,认为被开方数的取值条件是不等于0而致错; (3)对符号“≥”和“≤”区分不开而致错.
2018江西中考猜题卷
数学· 第一模拟
• 一、选择题(本大题共6小题,每小题3分,共18分.每小题只有
数学 · 第一模拟 数学 · 第一模拟 一个正确选项)
江西省2018年中考数学模拟样卷
江西省2018年中考数学模拟样卷(一)(解析版)一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列各数中是无理数的是()A.B.3.1415 C.D.2.下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列计算中正确的是()A.()﹣1=3 B.(﹣2)3=8 C.(a﹣b)2=a2﹣b2D.(a2)3÷a3=a24.甲、乙、丙三位选手各10次射击成绩的平均数和方差统计如表:已知乙是成绩最稳定的选手,且乙的10次射击成绩不都一样,则a的值可能是()A.0 B.0.020 C.0.030 D.0.0355.如图,某数学小组在课外实践活动中,用电钻将四个质地均匀、质量相等的木质小正方体,分别从不同方向钻一个直径一样的直圆孔,再用天平分别称得下列小正方体的质量,下列说法中正确的是()A.①和④更重B.③最轻C.质量仍然一样 D.②和③更重6.要使二次函数y=a(x+m)2+n(a≠0)的图象与x轴有两个交点,下列条件中正确的是()A.a>0,m>0 B.a>0,n<0 C.m>0,n<0 D.m<0,n<0二、填空题:本大题共6小题,每小题3分,共18分7.因式分解:2m2﹣8n2=.8.在庆元旦文体活动中,小东参加了飞镖比赛,共投飞镖五次,投中的环数分别为:5,10,6,x,9.若这组数据的平均数为8,则这组数据的中位数是.9.若关于x的一元二次方程x2﹣(2m+1)x+m2+2m=0有实数根,则m的取值范围是.10.如图,在△ABC中,AB=4,将△ABC沿射线AB方向平移得到△A′B′C′,连接CC′,若A′C′恰好经过BC边的中点D,则AB′的长度为.11.如图,这是一组由围棋子摆放而成的有规律的图案,则摆第(n)个图案需要围棋子的枚数是.12.在平面直角坐标系中,已知点A(0,2),B(3,0),点C在x轴上,且在点B的左侧,若△ABC是等腰三角形,则点C的坐标为.三、本大题共6小题,每小题3分,共30分13.化简:﹣.14.如图,AB是圆的直径,弦CD∥AB,AD,BC相交于点E,若AB=6,CD=2,∠AEC=α,求cosα的值.15.(6分)计算: +(﹣)﹣1+(2016﹣π)0+|﹣2|16.(6分)解不等式组,并将它的解集在数轴上表示出来.17.(6分)一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球.(1)“其中有1个球是黑球”是事件;(2)求2个球颜色相同的概率.18.(6分)如图,在菱形ABCD中,点E为AB的中点,请只用无刻度的直尺作图(1)如图1,在CD上找点F,使点F是CD的中点;(2)如图2,在AD上找点G,使点G是AD的中点.四、本大题共4小题,每小题8分,共32分19.(8分)某校开展阳光体育活动,要求每名学生从以下球类活动中选择一项参加体育锻炼:A﹣乒乓球;B﹣足球;C﹣篮球;D﹣羽毛球.学校王老师对八年级某班同学的活动选择情况进行调查统计,绘制了两幅不完整的统计图,如图所示.(1)请你求出该班学生的人数并补全条形统计图;(2)已知该校八年级学生共有500人,学校根据统计调查结果进行预估,按参加项目人数每10人购买一个训练用球的标准,为B,C两个项目统一购买训练用球.经了解,某商场销售的足球比篮球的单价少30元,此时学校共需花费2700元购买足球和篮球.求该商场销售的足球和篮球的单价.20.(8分)小华在“科技创新大赛”中制作了一个创意台灯作品,现忽略支管的粗细,得到它的侧面简化结构图如图所示.已知台灯底部支架CD平行于水平面,FE⊥OE,GF⊥EF,台灯上部可绕点O旋转,OE=20cm,EF=20cm.(1)如图1,若将台灯上部绕点O逆时针转动,当点G落在直线CD上时,测量得∠EOG=65°,求FG的长度(结果精确到0.1cm);(2)将台灯由图1位置旋转到图2的位置,若此时F,O两点所在的直线恰好与CD垂直,求点F在旋转过程中所形成的弧的长度.(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,≈1.73,可使用科学计算器)21.(8分)如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当∠ACD=45°时,求证:DE是⊙O的切线;(2)如图2,当点F是CD的中点时,求△CDE的面积.22.(8分)一次函数y=kx+b的图象与反比例函数y=的图象相交于A,B两点,且交y 轴于点C.已知点A(1,4),点B在第三象限,且点B的横坐标为t(t<﹣1).(1)求反比例函数的解析式;(2)用含t的式子表示k,b;(3)若△AOB的面积为3,求点B的坐标.五、本大题共10分23.(10分)如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C(0,﹣3).(1)求此二次函数的解析式.(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由.(3)若点M在x轴上,点P在抛物线上,是否存在以A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请直接写出所有满足要求的点P的坐标;若不存在,请说明理由.六、本大题共12分24.(12分)如图,在矩形ABCD中,BC=1,∠CBD=60°,点E是AB边上一动点(不与点A,B重合),连接DE,过点D作DF⊥DE交BC的延长线于点F,连接EF交CD于点G.(1)求证:△ADE∽△CDF;(2)求∠DEF的度数;(3)设BE的长为x,△BEF的面积为y.①求y关于x的函数关系式,并求出当x为何值时,y有最大值;②当y为最大值时,连接BG,请判断此时四边形BGDE的形状,并说明理由.2018年江西省中考数学模拟样卷(一)参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列各数中是无理数的是()A.B.3.1415 C.D.【考点】无理数.【分析】无理数就是无限不循环小数,依据定义即可作出判断.【解答】解:A、是分数,是有理数,选项错误;B、3.1415是有限小数,数有理数,选项错误;C、=2是整数,是有理数,选项错误;D、是无理数,选项正确.故选D.【点评】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(2016•江西模拟)下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,也是中心对称图形,A错误;B、是轴对称图形,是中心对称图形,B错误;C、是轴对称图形,不是中心对称图形,C正确;D、是轴对称图形,不是中心对称图形,D错误.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列计算中正确的是()A.()﹣1=3 B.(﹣2)3=8 C.(a﹣b)2=a2﹣b2D.(a2)3÷a3=a2【考点】负整数指数幂;幂的乘方与积的乘方;同底数幂的除法;完全平方公式.【分析】根据负整数指数幂与正整数指数幂互为倒数;负数的奇数次方是负数;差的平方等余平方和减积的二倍;幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、负整数指数幂与正整数指数幂互为倒数,故A正确;B、负数的奇数次方是负数,故B错误;C、差的平方等余平方和减积的二倍,故C搓去;D、幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,故D错误;故选:A.【点评】本题考查了负整数指数幂,熟记法则并根据法则计算是解题关键.4.甲、乙、丙三位选手各10次射击成绩的平均数和方差统计如表:已知乙是成绩最稳定的选手,且乙的10次射击成绩不都一样,则a的值可能是()A.0 B.0.020 C.0.030 D.0.035【考点】方差;算术平均数.【分析】根据方差的定义,方差越小数据越稳定进行判断即可.【解答】解:∵乙的10次射击成绩不都一样,∴a≠0,∵乙是成绩最稳定的选手,∴乙的方差最小,∴a的值可能是0.020,故选:B.【点评】本题考查的是方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.如图,某数学小组在课外实践活动中,用电钻将四个质地均匀、质量相等的木质小正方体,分别从不同方向钻一个直径一样的直圆孔,再用天平分别称得下列小正方体的质量,下列说法中正确的是()A.①和④更重B.③最轻C.质量仍然一样 D.②和③更重【考点】认识立体图形.【分析】根据4个直圆柱的底面积和高可判断其质量的关系.【解答】解:由题意可知四个圆柱为直径相同的直圆柱,且它们都在正方体内,所以它们的底面积相等,高相等.所以质量一样.故选C.【点评】本题考查认识立体图形,解题的关键是明确题意,利用数形结合的思想解答问题.6.要使二次函数y=a(x+m)2+n(a≠0)的图象与x轴有两个交点,下列条件中正确的是()A.a>0,m>0 B.a>0,n<0 C.m>0,n<0 D.m<0,n<0【考点】抛物线与x轴的交点.【分析】根据二次函数图象与x轴有两个交点,则方程a(x+m)2+n=0有两个不相等的实数根,得﹣>0,说明a、n异号,即当a>0时n<0;或当a<0时n>0.【解答】解:当y=0时,a(x+m)2+n=0,a(x+m)2=﹣n,(x+m)2=﹣,要使二次函数y=a(x+m)2+n(a≠0)的图象与x轴有两个交点,则﹣>0,<0,则a、n异号.故选:B.【点评】本题考查了抛物线与x轴的交点,求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标;若判断抛物线与x轴的交点的个数,计算△=b2﹣4ac决定抛物线与x轴的交点个数;如果不是一般式,对于二次函数y=a(x﹣h)2+k,利用a与k的符号来判断抛物线与x轴的交点个数.二、填空题:本大题共6小题,每小题3分,共18分7.因式分解:2m2﹣8n2=2(m+2n)(m﹣2n).【考点】提公因式法与公式法的综合运用.【分析】根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解.【解答】解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).【点评】本题考查了提公因式法,公式法分解因式,因式分解一定要进行到每个因式不能再分解为止.8.在庆元旦文体活动中,小东参加了飞镖比赛,共投飞镖五次,投中的环数分别为:5,10,6,x,9.若这组数据的平均数为8,则这组数据的中位数是9.【考点】中位数;算术平均数.【分析】先根据平均数的概念求出x的值,然后根据中位数的概念求解.【解答】解:由题意得,=8,解得:x=10,这组数据按照从小到大的顺序排列为:5,6,9,10,10,则中位数为:9.故答案为9.【点评】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.也考查了平均数.9.若关于x的一元二次方程x2﹣(2m+1)x+m2+2m=0有实数根,则m的取值范围是m ≤.【考点】根的判别式.【分析】由方程有实数根可得知b2﹣4ac≥0,代入数据即可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:由已知得:b2﹣4ac=[﹣(2m+1)]2﹣4(m2+2m)≥0,即1﹣4m≥0,解得:m≤.故答案为:m≤.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,由根的个数结合根的判别式得出不等式(方程或不等式组)是关键.10.如图,在△ABC中,AB=4,将△ABC沿射线AB方向平移得到△A′B′C′,连接CC′,若A′C′恰好经过BC边的中点D,则AB′的长度为6.【考点】平移的性质.【分析】根据线段中点的定义求出AA′,再根据平移的性质可得A′B′=AB,然后根据AB′=AA′+A′B′计算即可得解.【解答】解:∵A′C′恰好经过BC边的中点D,∴AA′=AB=×4=2,∵△ABC沿射线AB方向平移得到△A′B′C′,∴A′B′=AB,∴AB′=AA′+A′B′=2+4=6.故答案为:6.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.如图,这是一组由围棋子摆放而成的有规律的图案,则摆第(n)个图案需要围棋子的枚数是4n+1.【考点】规律型:图形的变化类.【分析】观察图形可知:第1个图形需要棋子数为5;第2个图形需要的棋子数为1+4×2;第3个图形需要的棋子数为1+4×3;第4个图形需要的棋子数为:1+4×4,…,则第n个图形需要的棋子数为:4n+1.【解答】解:∵第(1)个图案需要棋子数为:1+4×1=5个;第(2)个图案需要棋子数为:1+4×2=9个;第(3)个图案需要棋子数为:1+4×3=13个;第(4)个图案需要棋子数为:1+4×4=17个;…∴第(n)个图案需要棋子数为:1+4×n=4n+1个;故答案为:4n+1.【点评】本题主要考查图形的变化规律,根据已给图形中棋子的数量发现规律是关键.12.在平面直角坐标系中,已知点A(0,2),B(3,0),点C在x轴上,且在点B的左侧,若△ABC是等腰三角形,则点C的坐标为(﹣3,0),(,0),(,0.【考点】等腰三角形的性质;坐标与图形性质.【分析】分为三种情况:①AB=AC,②AC=BC,③AB=BC,即可得出答案.【解答】解:∵A(0,2),B(3,0),∴OA=2,OB=3,AB=,①以A为圆心,以AB为半径作弧,交x轴于C1、,此时C点坐标为(﹣3,0);②当AC=BC,此时C点坐标为(,0);③以B为圆心,以AB为半径作弧,交x轴于C3,此时点C坐标为(,0);故答案为:(﹣3,0),(,0),(,0);【点评】本题考查了等腰三角形的判定,关键是用了分类讨论思想解答.三、本大题共6小题,每小题3分,共30分13.化简:﹣.【考点】分式的加减法.【分析】原式变形后,利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+==a﹣1.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.如图,AB是圆的直径,弦CD∥AB,AD,BC相交于点E,若AB=6,CD=2,∠AEC=α,求cosα的值.【考点】相似三角形的判定与性质;圆周角定理;解直角三角形.【分析】如图,连接AC.在Rt△AEC中,求出的值即可,根据==可以得出结论.【解答】解:如图,连接AC.∵AB∥CD,∴△ABE∽△DCE,=,∴=,∠BCD=∠ADC,∴EC=ED,AB=6,CD=2,∴====,∵AB是直径,∴∠ACE=90°,∴cosα==.【点评】本题考查相似三角形的判定和性质、圆的有关知识、平行线的性质、锐角三角函数等知识,解题的关键是重合添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.计算: +(﹣)﹣1+(2016﹣π)0+|﹣2|【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用立方根定义,负整数指数幂、零指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣2﹣3+1+2﹣=﹣2﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解不等式组,并将它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,将两个不等式解集表示在数轴上找到其公共部分即可.【解答】解:解不等式①得:x<3,解不等式②得:x≥0,将不等式解集表示在数轴上如图:故不等式组的解集为:0≤x<3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集并将解集表示在数轴上找到解集的公共部分是解答此题的关键.17.一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球.(1)“其中有1个球是黑球”是随机事件;(2)求2个球颜色相同的概率.【考点】列表法与树状图法.【分析】(1)直接利用随机事件的定义分析得出答案;(2)利用树状图法画出图象,进而利用概率公式求出答案.【解答】解:(1)“其中有1个球是黑球”是随机事件;故答案为:随机;(2)如图所示:,一共有20种可能,2个球颜色相同的有8种,故2个球颜色相同的概率为:=.【点评】此题主要考查了随机事件的定义以及树状图法求概率,正确列举出所有的可能是解题关键.18.如图,在菱形ABCD中,点E为AB的中点,请只用无刻度的直尺作图(1)如图1,在CD上找点F,使点F是CD的中点;(2)如图2,在AD上找点G,使点G是AD的中点.【考点】菱形的性质;作图—复杂作图.【分析】(1)过点E,作EF∥AD交CD于点F,则点F是CD的中点;(2)连接BD,过点E作EG∥BD交AD于点G,则点G是AD的中点.【解答】解:(1)如图所示:(2)如图所示:【点评】本题考查的是作图的应用,掌握菱形的性质和三角形中位线定理、正确作出图形是解题的关键.四、本大题共4小题,每小题8分,共32分19.某校开展阳光体育活动,要求每名学生从以下球类活动中选择一项参加体育锻炼:A﹣乒乓球;B﹣足球;C﹣篮球;D﹣羽毛球.学校王老师对八年级某班同学的活动选择情况进行调查统计,绘制了两幅不完整的统计图,如图所示.(1)请你求出该班学生的人数并补全条形统计图;(2)已知该校八年级学生共有500人,学校根据统计调查结果进行预估,按参加项目人数每10人购买一个训练用球的标准,为B,C两个项目统一购买训练用球.经了解,某商场销售的足球比篮球的单价少30元,此时学校共需花费2700元购买足球和篮球.求该商场销售的足球和篮球的单价.【考点】条形统计图;扇形统计图.【分析】(1)根据C的人数和所占的百分比求出总人数,用总人数乘以D类人数所占的百分比求出D类的人数,再用总人数减去其它类的让人数,求出A类的人数,从而补全统计图;(2)设该商场销售的足球单价是x元,则篮球的单价是(x+30)元,根据学校的总人数和参加项目人数每10人购买一个训练用球的标准,列出方程,求出x的值,即可得出答案.【解答】解:(1)该班学生的总人数是=50(人),D类的人数是:50×20%=10(人),D类的人数是:50﹣8﹣12﹣10=20(人),补图如下:(2)设该商场销售的足球单价是x元,则篮球的单价是(x+30)元,根据题意得:(500×÷10)x+(500×÷10)(x+30)=2700,解得:x=117,则篮球的单价是117+30=147(元).答:该商场销售的足球单价是117元,篮球的单价是147元.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.小华在“科技创新大赛”中制作了一个创意台灯作品,现忽略支管的粗细,得到它的侧面简化结构图如图所示.已知台灯底部支架CD平行于水平面,FE⊥OE,GF⊥EF,台灯上部可绕点O旋转,OE=20cm,EF=20cm.(1)如图1,若将台灯上部绕点O逆时针转动,当点G落在直线CD上时,测量得∠EOG=65°,求FG的长度(结果精确到0.1cm);(2)将台灯由图1位置旋转到图2的位置,若此时F,O两点所在的直线恰好与CD垂直,求点F在旋转过程中所形成的弧的长度.(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,≈1.73,可使用科学计算器)【考点】解直角三角形的应用.【分析】(1)作GM⊥OE可得矩形EFGM,设FG=xcm,可知EF=GM=20cm,OM=(20﹣x)cm,根据tan∠EOG=列方程可求得x的值;(2)RT△EFO中求出OF的长及∠EOF的度数,由∠EOG度数可得旋转角∠FOF′度数,根据弧长公式计算可得.【解答】解:(1)如图,作GM⊥OE于点M,∵FE⊥OE,GF⊥EF,∴四边形EFGM为矩形,设FG=xcm,∴EF=GM=20cm,FG=EM=xcm,∵OE=20cm,∴OM=(20﹣x)cm,在RT△OGM中,∵∠EOG=65°,∴tan∠EOG=,即=tan65°,解得:x≈3.8cm;故FG的长度约为3.8cm.(2)连接OF,在RT△EFO中,∵EF=20,EO=20,∴FO==40,tan∠EOF===,∴∠EOF=60°,∴∠FOG=∠EOG﹣∠EOF=5°,又∵∠GOF′=90°,∴∠FOF′=85°,∴点F在旋转过程中所形成的弧的长度为:=cm.【点评】此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,解题的关键是表示出线段的长后,理清线段之间的关系.21.如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当∠ACD=45°时,求证:DE是⊙O的切线;(2)如图2,当点F是CD的中点时,求△CDE的面积.【考点】切线的判定.【分析】(1)如图1中,连接OD,欲证明ED是切线,只要证明∠EDO=90°即可.(2)如图2中,连接BC,利用勾股定理.以及直角三角形30度性质求出CD、DE即可.【解答】(1)证明:如图1中,连接OD.∵∠C=45°,∴∠AOD=2∠C=90°,∵ED∥AB,∴∠AOD+∠EDO=180°,∴∠EDO=90°,∴ED⊥OD,∴ED是⊙O切线.(2)解:如图2中,连接BC,∵CF=DF,∴AF⊥CD,∴AC=AD,∴∠ACD=∠ADC,∵AB∥ED,∴ED⊥DC,∴∠EDC=90°,在RT△ACB中,∵∠ACB=90°,∠CAB=30°,AB=2,∴BC=1,AC=,∴CF=AC=,CD=2CF=,在RT△ECD中,∵∠EDC=90°,CD=,∠E=∠CAB=30°,∴EC=2CD=2,ED==3,=•ED•CD=.∴S△ECD【点评】本题考查切线的性质和判定、圆的有关知识、勾股定理等知识,解题的关键是灵活运用这些知识,属于基础题,中考常考题型.22.一次函数y=kx+b的图象与反比例函数y=的图象相交于A,B两点,且交y轴于点C.已知点A(1,4),点B在第三象限,且点B的横坐标为t(t<﹣1).(1)求反比例函数的解析式;(2)用含t的式子表示k,b;(3)若△AOB的面积为3,求点B的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A(1,4)代入y=即可得到结论;(2)由点B的横坐标为t,得到B(t,),把A,B的坐标代入y=kx+b,解方程组即可得到结果;(3)根据三角形的面积列方程即可得到结论.【解答】解:(1)把点A(1,4)代入y=得:m=4,∴反比例函数的解析式为y=;(2)∵点B的横坐标为t,∴B(t,),∴,∴;(3)∵OC=,∴S△AOB =S△ACO+S△BCO=•×(﹣t+1)=3,∴t=﹣2,∴点B的坐标(﹣2,﹣2).【点评】本题考查了反比例函数与一次函数的交点,待定系数法求函数的解析式,三角形的面积的计算,正确的理解题意是解题的关键.五、本大题共10分23.(10分)(2016•江西模拟)如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C(0,﹣3).(1)求此二次函数的解析式.(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由.(3)若点M在x轴上,点P在抛物线上,是否存在以A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请直接写出所有满足要求的点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用待定系数法即可解决问题.(2)结论四边形EFCD是正方形.如图1中,连接CE与DF交于点K.求出E、F、D、C 四点坐标,只要证明DF⊥CE,DF=CE,KC=KE,KF=KD即可证明.(3)如图2中,存在以A,E,M,P为顶点且以AE为一边的平行四边形.根据点P的纵坐标为2或﹣2,即可解决问题.【解答】解:(1)把A(﹣1,0),B(3,0),C(0,﹣3)代入y=ax2+bx+c得,解得,∴抛物线的解析式为y=x2﹣2x﹣3.(2)结论四边形EFCD是正方形.理由:如图1中,连接CE与DF交于点K.∵y=(x﹣1)2﹣4,∴顶点D(1,4),∵C、E关于对称轴对称,C(0,﹣3),∴E(2,﹣3),∵A(﹣1,0),设直线AE的解析式为y=kx+b,∴,解得,∴直线AE的解析式为y=﹣x﹣1.∴F(1,﹣2),∴CK=EK=1,FK=DK=1,∴四边形EFCD是平行四边形,又∵CE⊥DF,CE=DF,∴四边形EFCD是正方形.(3)如图2中,存在以A,E,M,P为顶点且以AE为一边的平行四边形.由题意点P的纵坐标为2或﹣2,当y=2时,x2﹣2x﹣3=2,解得x=1±,可得P1(1+,2),P2(1﹣,2),当y=﹣2时,x=0,可得P3(0,﹣2),综上所述当P点坐标为(1+,2)或(1﹣,2)或(0,﹣2)时,存在以A,E,M,P为顶点且以AE为一边的平行四边形.【点评】本题考查二次函数综合题、待定系数法、一次函数的应用、正方形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用待定系数法确定函数解析式,学会用分类讨论的思想思考问题,属于中考压轴题.六、本大题共12分24.(12分)(2016•泰兴市二模)如图,在矩形ABCD中,BC=1,∠CBD=60°,点E是AB边上一动点(不与点A,B重合),连接DE,过点D作DF⊥DE交BC的延长线于点F,连接EF交CD于点G.(1)求证:△ADE∽△CDF;(2)求∠DEF的度数;(3)设BE的长为x,△BEF的面积为y.①求y关于x的函数关系式,并求出当x为何值时,y有最大值;②当y为最大值时,连接BG,请判断此时四边形BGDE的形状,并说明理由.【考点】相似形综合题.【分析】(1)根据平行四边形的性质得到∠A=∠ADC=∠DCB=90°,根据余角的性质得到∠ADE=∠CDF,由相似三角形的判定定理即可得到结论;(2)解直角三角形得到CD=,根据矩形的性质得到AD=BC=1.AB=CD=,根据相似三角形的性质得到=,根据三角函数的定义即可得到结论;(3)①根据相似三角形的性质得到CF=3﹣x,根据三角形的面积公式得到函数的解析式,根据二次函数的顶点坐标即可得到结论;②根据当x为时,y有最大值,得到BE=,CF=1,BF=2,根据相似三角形的想得到CG=,于是得到BE=DG,由于BE∥DG,即可得到结论.【解答】解:(1)在矩形ABCD中,∵∠A=∠ADC=∠DCB=90°,∴∠A=∠DCF=90°,∵DF⊥DE,∴∠A=∠EDF=90°,∴∠ADE=∠CDF,∴△ADE∽△CDF;(2)∵BC=1,∠DBC=60°,∴CD=,在矩形ABCD中,∵AD=BC=1.AB=CD=,∵△ADE∽△CDF,∴=,∵tan∠DEF=,∴=,∴∠DEF=60°;(3)①∵BE=x,∴AE=﹣x,∵△ADE∽△CDF,∴=,∴CF=3﹣x,∴BF=BC+CF=4﹣x,∴y=BE•BF=x(4﹣x)=﹣x2+2x,∵y=﹣x2+2x=﹣(x﹣)2+,∴当x为时,y有最大值;②y为最大值时,此时四边形BGDE是平行四边形,∵当x为时,y有最大值,∴BE=,CF=1,BF=2,∵CG∥BE,∴△CFG∽△BFE,∴,∴CG=,∴DG=,∴BE=DG,∵BE∥DG,∴四边形BGDE是平行四边形.【点评】本题考查了相似三角形的判定和性质,求函数的解析式,二次函数的最大值,平行四边形的判定,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.。
2018年江西省中考数学模拟样卷
2018年江西省中考数学模拟样卷(六)一、选择题(共6小题,每小题3分,满分18分)1.如果a<2,那么化简可得()A.2﹣a B.a﹣2 C.﹣a D.a2.尽管受到国际金融危机的影响,但义乌市经济依然保持了平稳增长.据统计,截止到今年4月底,我市金融机构存款余额约为1 193亿元,用科学记数法应记为()A.1.193×1010元B.1.193×1011元C.1.193×1012元D.1.193×1013元3.下面几何体的主视图是()A.B.C.D.4.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A.B.C.D.5.小明用一个半径为5cm,面积为15πcm2的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为()A.3cm B.4cm C.5cm D.15cm6.已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值范围在数轴上表示正确的是()A. B. C.D.二、填空题(本大题共6小题,每小题3分,共18分)7.﹣6的绝对值是.8.因式分解:2a3﹣8a=.9.如图,在平面直角坐标系中,B,C两点的坐标分别为(﹣3,0)和(7,0),AB=AC=13,则点A的坐标为.10.已知周长为20的矩形的长和宽是一元二次方程x2﹣mx+9=0的两个实数根,则m的值为.11.如图,AB是⊙O的弦,AB=6,OB=5,将线段AB向右侧平移,使之与圆相切,点B 移至切点位置,则平移的距离为.12.如图,在菱形ABCD中,sin∠D=,E,F分别是AB和CD上的点,BC=5,AE=CF=2,点P是线段EF上一点,则当△BPC是直角三角形时,CP的长为.三、解答题(本大题共6小题,每小题3分,共30分)13.如图,直线a∥b,BC平分∠ABD,DE⊥BC,若∠1=70°,求∠2的度数.14.求不等式组的解集.15.(6分)计算:[(2x﹣y)(2x+y)+y(y﹣6x)]÷2x.16.(6分)已知正方形ABCD如图所示,M、N在直线BC上,MB=NC,试分别在图1、图2中仅用无刻度的直尺画出一个不同的等腰三角形OMN.17.(6分)同学A有2张卡片,同学B有3张卡片,卡片上的图案如图所示,且卡片背面完全一样.(1)若将这五张卡片倒扣在桌面上,随机抽取一张卡片,求卡片上的图案是羊的概率.(2)同学A和同学B分别从自己的卡片中随机抽取一张,请用画树状图(或列表)的方法求抽取的两张卡片上的图案均为猴的概率.18.(6分)已知关于x的一元二次方程x2﹣3x+m﹣3=0.(1)若此方程有两个不相等的实数根,求m的取值范围;(2)若此方程的两根互为倒数,求m的值.四、(本大题共4小题,每小题8分,共32分)19.(8分)如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.(1)设一本书的厚度为acm,则EF=cm;(2)若书的长度AB=20cm,求一本书的厚度(结果精确到0.1cm)(参考数据:=1.414,=1.732,可使用科学计算器)20.(8分)某地休闲广场落成,吸引了很多人前往锻炼游玩,某校数学小组统计了双休日某一段时间内在广场休闲的人员分布情况,统计图如下:(1)求统计的这段时间内到广场休闲的总人数及老人人数.(2)求休闲人员中“其他”人员所占百分比,并将条形统计图补充完整.(3)根据以上数据,可否推断这一天广场休闲的大致人数?能否了解一年中到该广场休闲的人数?为什么?21.(8分)如图,在Rt△ABC中,∠C=90°,AC=2,BC=4,AC∥x轴,A、B两点在反比例函数y=(x>0)的图象上,延长CA交y轴于点D,AD=1.(1)求该反比例函数的解析式;(2)将△ABC绕点B顺时针旋转得到△EBF,使点C落在x轴上的点F处,点A的对应点为E,求旋转角的度数和点E的坐标.22.(8分)如图,AB是⊙O的直径,点P在AB上,C,D是圆上的两点,OE⊥PD,垂足为E,若∠DPA=∠CPB,AB=12,DE=4.(1)求OE的长;(2)求证:PD+PC=2DE;(3)若PC=3,求DP的长和sin∠CPB的值.五、解答题(本大题共10分)23.(10分)如图,直线y=kx+2k﹣1与抛物线y=kx2﹣2kx﹣4(k>0)相交于A、B两点,抛物线的顶点为P.(1)抛物线的对称轴为,顶点坐标为(用含k的代数式表示).(2)无论k取何值,抛物线总经过定点,这样的定点有几个?试写出所有定点的坐标,是否存在这样一个定点C,使直线PC与直线y=kx+2k﹣1平行?如果不存在,请说明理由;如果存在,求当直线y=kx+2k﹣1与抛物线的对称轴的交点Q与点P关于x轴对称时,直线PC的解析式.六、(本大题共12分)24.(12分)如图,在矩形ABCD中,AB=16,AD=12,E是AB上一点,连接CE,现将∠B向右上方翻折,折痕为CE,使点B落在点P处.(1)当点P在CD上时,BE=;当点P在矩形内部时,BE的取值范围是.(2)当点E与点A重合时,求证:PD∥AC;(3)是否存在这样的情况,∠B向右上方翻折后,△APD为等腰三角形?如果不存在,请说明理由,如果存在,求此时BE的长.2018年江西省中考数学模拟样卷(六)参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.如果a<2,那么化简可得()A.2﹣a B.a﹣2 C.﹣a D.a【考点】二次根式的性质与化简.【分析】根据二次根式化简的方法,得出a﹣2<0,再开方即可.【解答】解:∵a<2,∴=2﹣a.故选A.2.尽管受到国际金融危机的影响,但义乌市经济依然保持了平稳增长.据统计,截止到今年4月底,我市金融机构存款余额约为1 193亿元,用科学记数法应记为()A.1.193×1010元B.1.193×1011元C.1.193×1012元D.1.193×1013元【考点】科学记数法—表示较大的数.【分析】科学记数法就是将一个数字表示成(a×10n的形式),其中1≤a<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:∵1亿=108,∴1 193亿=1.193×1011.故选B.3.下面几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图就是从物体的正面进行观察,得出主视图有3列,小正方形数目分别为2,1,1.【解答】解:如图所示:.故选:C.4.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A.B.C.D.【考点】列表法与树状图法.【分析】先用列举法求出两张纸片的所有组合情况,再根据概率公式解答.【解答】解:任取两张纸片,能拼成“小房子”(如图2)的概率等于,即.故选D.5.小明用一个半径为5cm,面积为15πcm2的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为()A.3cm B.4cm C.5cm D.15cm【考点】圆锥的计算.【分析】利用扇形的面积公式易得扇形的圆心角,那么可利用弧长公式求得扇形的弧长,进而利用圆锥侧面展开图的弧长=底面周长得到圆锥底面半径.【解答】解:由扇形面积S=得,扇形的圆心角n=216度,则底面周长=6π,底面半径=6π÷2π=3cm.故选A.6.已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值范围在数轴上表示正确的是()A. B. C.D.【考点】圆与圆的位置关系;在数轴上表示不等式的解集.【分析】根据两圆的位置关系是相交,则这两个圆的圆心距d大于两半径之差小于两半径之和,从而解决问题.【解答】解:∵4﹣1=3,4+1=5,∴3<p<5,∴数轴上表示为A.故选A.二、填空题(本大题共6小题,每小题3分,共18分)7.﹣6的绝对值是6.【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.【点评】规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.因式分解:2a3﹣8a=2a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】观察原式,找到公因式2a,提出公因式后发现a2﹣4符合平方差公式的形式,利用平方差公式继续分解即可得求得答案.【解答】解:2a3﹣8a,=2a(a2﹣4),=2a(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.如图,在平面直角坐标系中,B,C两点的坐标分别为(﹣3,0)和(7,0),AB=AC=13,则点A的坐标为(2,12).【考点】点的坐标.【分析】过点A作AD⊥BC于D,根据等腰三角形三线合一的性质可得BD=CD,再求出点D的横坐标,然后利用勾股定理列式求出AD的长度,再写出点A的坐标即可.【解答】解:如图,过点A作AD⊥BC于D,∵B,C两点的坐标分别为(﹣3,0)和(7,0),∴BC=7﹣(﹣3)=10,∵AB=AC,∴BD=CD=5,∴点D的横坐为7﹣5=2,在Rt△ABD中,AD===12,所以,点A的坐标为(2,12).故答案为:(2,12).【点评】本题考查了点的坐标,主要利用了等腰三角形三线合一的性质,勾股定理,作辅助线构造出直角三角形是解题的关键.10.已知周长为20的矩形的长和宽是一元二次方程x2﹣mx+9=0的两个实数根,则m的值为10.【考点】根与系数的关系.【分析】先求出矩形的长和宽的和为10,再由一元二次方程的根与系数的关系即可得出m 的值.【解答】解:周长为20的矩形的长和宽的和为10,∵矩形的长和宽是一元二次方程x2﹣mx+9=0的两个实数根,∴m=10;故答案为:10.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系、矩形的性质;熟练掌握一元二次方程的根与系数的关系是解决问题的关键.11.如图,AB是⊙O的弦,AB=6,OB=5,将线段AB向右侧平移,使之与圆相切,点B 移至切点位置,则平移的距离为9.【考点】切线的性质.【分析】连接OB′,延长B′O交AB于点C,在RT△ACO中求出OC,求出线段CB′即可解决问题.【解答】解:连接OB′,延长B′O交AB于点C,∵AB∥A′B′,OB′∥A′B′,∴B′C⊥AC,∴AC=BC=AB=3,在RT△AOC中,∵∠ACO=90°AC=3,OA=5,∴OC===4,∴CB′=CO+OB′=9,∴将线段AB向右侧平移,使之与圆相切,点B移至切点位置,则平移的距离为9.故答案为9.【点评】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是理解题意画出图形,利用垂径定理构造RT△解决问题,属于中考常考题型.12.如图,在菱形ABCD中,sin∠D=,E,F分别是AB和CD上的点,BC=5,AE=CF=2,点P是线段EF上一点,则当△BPC是直角三角形时,CP的长为或4或.【考点】菱形的性质.【分析】根据∠D的正弦求出以AD为斜边的直角三角形的两直角边分别为3、4,然后以DC所在的直线为x轴,点F为坐标原点建立平面直角坐标系,根据菱形的对角线互相垂直平方可知点P为菱形的对角线的交点时∠BPC=90°,点P与点E重合时∠BPC=90°;∠BCP=90°时写出点B、C的坐标,利用待定系数法求一次函数解析式求出直线OE、BC的解析式,再求出CP的解析式,然后联立直线OE、CP的解析式求出点P的坐标,再利用勾股定理列式计算即可求出CP.【解答】解:∵sin∠D=,菱形边AD=BC=5,∴以AD为斜边的直角三角形的两直角边分别为3、4如图,以DC所在的直线为x轴,点F为坐标原点建立平面直角坐标系,∵菱形ABCD的对角线AC⊥BD,∴点P为菱形的对角线的交点时∠BPC=90°,此时,CP=AC=×=,点P与点E重合时∠BPC=90°,此时,CP=4;∠BCP=90°时,由图可知,点B(5,4)、C(2,0),易求直线OE的解析式为y=2x,设直线BC的解析式为y=kx+b,则,解得,所以,直线BC的解析式为y=x﹣,∵CP⊥BC,∴设直线CP的解析式为y=﹣x+c,将点C(2,0)代入得,﹣×2+c=0,解得c=,所以,直线CP的解析式为y=﹣x+,联立,解得,所以,点P的坐标为(,),此时,CP==,综上所述,当△BPC是直角三角形时,CP的长为或4或.故答案为:或4或.【点评】本题考查了菱形的性质,解直角三角形,待定系数法求一次函数解析式,联立两函数解析式求交点坐标的方法,难点与解题的关键在于考虑利用平面直角坐标系求解,注意要分情况讨论.三、解答题(本大题共6小题,每小题3分,共30分)13.如图,直线a∥b,BC平分∠ABD,DE⊥BC,若∠1=70°,求∠2的度数.【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠ABD=70°,由角平分线的定义得到∠EBD=ABD=35°,根据三角形的内角和即可得到结论.【解答】解:∵直线a∥b,∴∠1=∠ABD=70°,∵BC平分∠ABD,∴∠EBD=ABD=35°,∵DE⊥BC,∴∠2=90°﹣∠EBD=55°.【点评】本题考查了平行线的性质,角平分线的定义,三角形的内角和,熟练掌握平行线的性质是解题的关键.14.求不等式组的解集.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+2>0,得:x>﹣1,解不等式﹣x+1≥0,得:x≤1,故不等式组的解集为﹣1<x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.计算:[(2x﹣y)(2x+y)+y(y﹣6x)]÷2x.【考点】整式的混合运算.【分析】本题应先去小括号,再去大括号,最后计算相除.【解答】解:[(2x﹣y)(2x+y)+y(y﹣6x)]÷2x=(4x2﹣y2+y2﹣6xy)÷2x=(4x2﹣6xy)÷2x=2x﹣3y【点评】本题考查了多项式与多项式的乘法法则,多项式与单项式的除法法则.16.已知正方形ABCD如图所示,M、N在直线BC上,MB=NC,试分别在图1、图2中仅用无刻度的直尺画出一个不同的等腰三角形OMN.【考点】作图—复杂作图.【分析】连结AC和BD,它们相交于点O,连结OM、ON,则△OMN为等腰三角形,如图1;连结AN和BM,它们相交于点O,则△OMN为等腰三角形,如图2.【解答】解:如图1、2,△OMN为所作.【点评】本题考查了作与﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解决本题的关键是掌握正方形的性质和等腰三角形的判定.17.同学A有2张卡片,同学B有3张卡片,卡片上的图案如图所示,且卡片背面完全一样.(1)若将这五张卡片倒扣在桌面上,随机抽取一张卡片,求卡片上的图案是羊的概率.(2)同学A和同学B分别从自己的卡片中随机抽取一张,请用画树状图(或列表)的方法求抽取的两张卡片上的图案均为猴的概率.【考点】列表法与树状图法;概率公式.【分析】(1)直接利用概率公式求出随机抽取一张卡片,卡片上的图案是羊的概率;(2)利用树状图列举出所有的可能,进而利用概率公式求出答案.【解答】解:(1)由题意可得:随机抽取一张卡片,卡片上的图案是羊的概率为:;(2)如图所示:,可得,一共有6种可能,抽取的两张卡片上的图案均为猴的两种情况,故抽取的两张卡片上的图案均为猴的概率为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18.已知关于x的一元二次方程x2﹣3x+m﹣3=0.(1)若此方程有两个不相等的实数根,求m的取值范围;(2)若此方程的两根互为倒数,求m的值.【考点】根与系数的关系;根的判别式.【分析】(1)由此方程有两个不相等的实数根,根据根的判别式,即可求得答案;(2)由此方程的两根互为倒数,可得αβ=m﹣3=1,继而求得答案.【解答】解:(1)∵方程x2﹣3x+m﹣3=0有两个不相等的实数根,∴△=(﹣3)2﹣4(m﹣3)>0,解得:m<;∴m的取值范围为:m<;(2)设此方程的两个根分别为:α,β,∴α+β=3,αβ=m﹣3,∵此方程的两根互为倒数,∴αβ=m﹣3=1,∴m=4.【点评】此题考查了根的判别式以及根与系数的关系.注意二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.四、(本大题共4小题,每小题8分,共32分)19.如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.(1)设一本书的厚度为acm,则EF=a cm;(2)若书的长度AB=20cm,求一本书的厚度(结果精确到0.1cm)(参考数据:=1.414,=1.732,可使用科学计算器)【考点】解直角三角形的应用.【分析】(1)根据三角形的内角和得到∠CED=60°,根据三角函数的定义即可得到结论;(2)设一本书的厚度为acm,根据BF=40cm,列方程即可得到结论.【解答】解:(1)如图,∵∠DCE=30°,∴∠CED=60°,∴∠GEH=30°,∴EH==,∴HF=acos30°=a;∴EF=EH+HF= a故答案为:a;(2)设一本书的厚度为acm,则BD=2a,∴DE=CE=10cm,∵BF=40cm,∴2a+10+a=40,解得:a≈7.4.答:一本书的厚度7.4cm.【点评】本题考查了解直角三角形的应用,正确的理解题意,认真识别图形是解题的关键.20.某地休闲广场落成,吸引了很多人前往锻炼游玩,某校数学小组统计了双休日某一段时间内在广场休闲的人员分布情况,统计图如下:(1)求统计的这段时间内到广场休闲的总人数及老人人数.(2)求休闲人员中“其他”人员所占百分比,并将条形统计图补充完整.(3)根据以上数据,可否推断这一天广场休闲的大致人数?能否了解一年中到该广场休闲的人数?为什么?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用这段时间内到广场休闲的青年学生人数除以所占的百分比即可求出总人数,用总人数乘以老人人数所占的百分比即可求出老人人数;(2)用“其他”人员除以总人数,求出所占的百分比,再求出其他人数,即可将条形统计图补充完整;(3)根据以上数据,在结合实际分析即可.【解答】解:(1)这段时间内到广场休闲的总人数是:=160(人);老人人数是:160×15%=24(人);(2)休闲人员中“其他”人员所占百分比=×100%=20%,将条形统计图补充如下:(3)∵不知道这段时间的具体长短,∴根据以上数据,不能推断这一天广场休闲的大致人数,∵双休日在广场休闲的人数不能代表一年中每天的人数,∴不能了解一年中到该广场休闲的人数.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,在Rt△ABC中,∠C=90°,AC=2,BC=4,AC∥x轴,A、B两点在反比例函数y=(x>0)的图象上,延长CA交y轴于点D,AD=1.(1)求该反比例函数的解析式;(2)将△ABC绕点B顺时针旋转得到△EBF,使点C落在x轴上的点F处,点A的对应点为E,求旋转角的度数和点E的坐标.【考点】待定系数法求反比例函数解析式;坐标与图形变化-旋转.【分析】(1)设A(1,k),再表示出B(3,k﹣4),则利用反比例函数图象上点的坐标特征得到3(k﹣4)=k,解方程求出k即可得到该反比例函数的解析式;(2)作BM⊥x轴于M,EN⊥x轴于N,如图,根据旋转的性质得BF=BC=4,EF=AC=2,∠BFE=∠BCA=90°,∠CBF等于旋转角,再计算出BM=CM﹣BC=2,则在Rt△BMF中,利用三角函数可求出∠MBF=60°,MF=BM=2,于是得到旋转角为120°,然后证明Rt △BMF∽Rt△FNE,利用相似比求出FN和EN,从而可得到E点坐标.【解答】解:(1)∵AC∥x轴,AD=1,∴A(1,k),∵∠C=90°,AC=2,BC=4,∴B(3,k﹣4),∵点B在y=的图象上,∴3(k﹣4)=k,解得k=6,∴该反比例函数的解析式为y=;(2)作BM⊥x轴于M,EN⊥x轴于N,如图,∵△ABC绕点B顺时针旋转得到△EBF,∴BF=BC=4,EF=AC=2,∠BFE=∠BCA=90°,∠CBF等于旋转角,∵BC⊥x轴,A(1,6),∴BM=CM﹣BC=6﹣4=2,在Rt△BMF中,∵cos∠MBF===,∴∠MBF=60°,MF=BM=2,∴∠CBF=180°﹣∠MBF=120°,∴旋转角为120°;∵∠BFM+∠MBF=90°,∠BFM+∠EFN=90°,∴∠MBF=∠EFN,∴Rt△BMF∽Rt△FNE,∴==,即==,∴FN=1,EN=,∴ON=OM+MF+FN=3+2+1=4+2,∴E点坐标为(4+2,).【点评】本题考查了用待定系数法求反比例函数的解析式:先设出含有待定系数的反比例函数解析式y=xk(k为常数,k≠0);再把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;接着解方程,求出待定系数;然后写出解析式.也考查了旋转的性质.解决本题的关键是作BM⊥x轴于M,EN⊥x轴于N,构建Rt△BMF∽Rt△FNE.22.如图,AB是⊙O的直径,点P在AB上,C,D是圆上的两点,OE⊥PD,垂足为E,若∠DPA=∠CPB,AB=12,DE=4.(1)求OE的长;(2)求证:PD+PC=2DE;(3)若PC=3,求DP的长和sin∠CPB的值.【考点】圆的综合题.【分析】(1)首先连接OD,由OE⊥PD,AB=12,DE=4,直接利用垂径定理求解即可求得答案;(2)首先延长CP交⊙O于点F,过点O作OG⊥PF于点G,连接OF,易证得Rt△OEP≌Rt△OGP,Rt△OED≌Rt△OGD,即可得PE=PG,DE=FG,继而证得结论;(3)由PD+PC=2DE,可求得PD的长,然后由勾股定理求得OP的长,继而求得答案.【解答】(1)解:连接OD,∵AB=12,∴OD=6,∵OE⊥PD,DE=4,∴OE==2;(2)证明:延长CP交⊙O于点F,过点O作OG⊥PF于点G,连接OF,∴FG=CG,∵∠DPA=∠CPB=∠FPA,∴OE=OG,在Rt△OEP和Rt△OGP中,,∴Rt△OEP≌Rt△OGP(HL),同理:Rt△OED≌Rt△OGD,∴PE=PG,DE=FG,∴PD=PF,∴PD+PC=PF+PC=FC=2FG=2DE;(3)∵PC=3,PD+PC=3DE,∴PD+3=8,∴PD=5,∴PE=PD﹣DE=5﹣4=,∴OP==,∴sin∠CPB=sin∠EPD===.【点评】此题属于圆的综合题.考查了垂径定理、全等三角形的判定与性质、勾股定理以及锐角三角函数的知识.注意准确作出辅助线是解此题的关键.五、解答题(本大题共10分)23.(10分)(2016•江西模拟)如图,直线y=kx+2k﹣1与抛物线y=kx2﹣2kx﹣4(k>0)相交于A、B两点,抛物线的顶点为P.(1)抛物线的对称轴为直线x=1,顶点坐标为(1,﹣k﹣4)(用含k的代数式表示).(2)无论k取何值,抛物线总经过定点,这样的定点有几个?试写出所有定点的坐标,是否存在这样一个定点C,使直线PC与直线y=kx+2k﹣1平行?如果不存在,请说明理由;如果存在,求当直线y=kx+2k﹣1与抛物线的对称轴的交点Q与点P关于x轴对称时,直线PC的解析式.【考点】二次函数的性质;一次函数的性质.【分析】(1)根据对称轴公式即可求得对称轴为x=1,然后把x=1代入代入即可求得顶点坐标;(2)把解析式变形为y=kx2﹣2kx﹣4=k(x﹣2)x﹣4,即可求得抛物线总经过的定点;根据顶点P求得Q的坐标,代入直线解析式求得k的值,得出P(1,﹣),根据平行的性质设成PC的解析式,然后根据待定系数法即可求得.【解答】解:(1)∵抛物线y=kx2﹣2kx﹣4(k>0),∴对称轴为直线x=﹣=1,当x=1时,y=k﹣2k﹣4=﹣k﹣4,∴顶点P为(1,﹣k﹣4),故答案为直线x=1,(1,﹣k﹣4);(2)由y=kx2﹣2kx﹣4=k(x﹣2)x﹣4可知,无论k取何值,抛物线总经过定点(0,﹣4)和(2,﹣4)两个点,∵交点Q与点P关于x轴对称,∴Q(1,k+4),∵直线y=kx+2k﹣1与抛物线的对称轴的交点为Q,∴k+4=k+2k﹣1,解得k=,∴P(1,﹣),∵线PC与直线y=kx+2k﹣1平行,∴设直线PC的解析式为y=x+b,代入P(1,﹣)得﹣=+b,解得b=﹣9,∴直线PC的解析式为y=x﹣9.故存在定点C,使直线PC与直线y=kx+2k﹣1平行,直线PC的解析式为y=x﹣9.【点评】本题主要考查了二次函数的性质和一次函数的性质,解题的关键是利用平行的性质和轴对称的性质得出P的坐标.六、(本大题共12分)24.(12分)(2016•江西模拟)如图,在矩形ABCD中,AB=16,AD=12,E是AB上一点,连接CE,现将∠B向右上方翻折,折痕为CE,使点B落在点P处.(1)当点P在CD上时,BE=12;当点P在矩形内部时,BE的取值范围是0<BE<12.(2)当点E与点A重合时,求证:PD∥AC;(3)是否存在这样的情况,∠B向右上方翻折后,△APD为等腰三角形?如果不存在,请说明理由,如果存在,求此时BE的长.【考点】四边形综合题.【分析】解:(1)由折叠的性质得到推出△BCE是等腰直角三角形,即可得到结论;(2)根据全等三角形的性质得到∠PAC=∠DCA,设AP与CD相交于O,于是得到OA=OC,求得∠OAC=∠OPD,根据平行线的判定定理得到结论;(3)①如图3,PA=PD,过P作MN∥AB交AD于M,交BC于N根据矩形的性质得到PM⊥AD,PN⊥BC,AM=MD=NC=6解直角三角形得到PN=6,过P作PF⊥AB于F,根据直角三角形的性质得到BF=NP=6于是得到结论;②如图4,过P作FM∥AD交AB 于F,交CD于M,由勾股定理得到PM==4,得到PF=12﹣4;根据勾股定理得到方程求得BE=18﹣6,;③如图5,连接AC,过P作PN⊥AC交AC于M.交AB于N,过E作EF⊥PN于F根据勾股定理得到AC==20根据相似三角形的性质得到AN=,得到BN=AB﹣AN=16﹣=,设BE=EP=x,解直角三角形即可得到结论.【解答】解:(1)当点P在CD上时,如图1,∵将∠B向右上方翻折,折痕为CE,使点B落在点P处,∴∠BCE=∠ECP=45°,∴△BCE是等腰直角三角形,∴BE=BC=AD=12,当点P在矩形内部时,BE的取值范围是0<BE<12;故答案为:12,0<BE<12;(2)当点E与点A重合时,在△ADC与△CPA中,,∴△ADC≌△CPA,∴∠PAC=∠DCA,设AP与CD相交于O,则OA=OC,∴OD=OP,∠ODP=∠OPD,∵∠AOC=∠DOP,∴∠OAC=∠OPD,∴PD∥AC,(3)存在,①如图3,PA=PD,过P作MN∥AB交AD于M,交BC于N,∵四边形ABCD是矩形,AB=16,AD=12,∴PM⊥AD,PN⊥BC,AM=MD=NC=6,∵PC=BC=12,∠B=∠EPC=90°,∴∠NPC=30°,∠EPN=60°,∴PN=6,过P作PF⊥AB于F,则∠FPE=30°,PF=6,BF=NP=6,∴EF=2,∴BE=BF﹣EF=4;②如图4,过P作FM∥AD交AB于F,交CD于M,∴PF⊥AB,PM⊥CD,∵AD=PD=PC=12,CD=16,∴DM=CM=BF=8,∴PM==4,∴PF=12﹣4;设BE=EP=x,则(8﹣x)2+(12﹣4)2=x2,∴x=18﹣6,即BE=18﹣6;③如图5,AP=AD,连接AC,过P作PN⊥AC交AC于M.交AB于N,过E作EF⊥PN 于F,∵AB=16,BC=AP=AD=12,∴AC==20,∴AM=MC=10,∠PCM+∠CPM=90°,由∠EPC=90°得∠EPF+∠CPM=90°,∴∠EPF=∠PCM,sin∠EPF=sin∠PCM==,∵MN⊥AC,∴△ANM∽△ACB,∴,∴AN=,∴BN=AB﹣AN=16﹣=,设BE=EP=x,则EN=x﹣,EF=EP•sin∠EPF=,∵EF⊥PF,AM⊥PF,∴∠NEF=∠BAC,∴cos∠NEF==cos∠BAC=,即=,∴x=,∴BE=.。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
2023年中考数学模拟试卷(1)(含详解)
2023年中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.在﹣3,2,﹣1,0这四个数中,比﹣2小的数是()A.﹣3 B.2 C.﹣1 D.02.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.3.2022年10月12日,“天宫课堂”第三课在中国空间站开讲,3名航天员演示了在微重力环境下毛细效应实验、水球变“懒”实验等,相应视频在某短视频平台的点赞量达到150万次,数据150万用科学记数法表示为()A.1.5×105B.0.15×105C.1.5×106D.1.5×1074.下列运算正确的是()A.2a3﹣a2=a B.(a3)2=a5C.2a3•3a2=6a5D.﹣8a2÷4a=25.某校对部分参加研学活动的中学生的年龄(单位:岁)进行统计,结果如下表:年龄13 14 15 16人数 1 3 4 2则这些学生年龄的众数和中位数分别是()A.15,15 B.15,13 C.15,14 D.14,156.如图为一节楼梯的示意图,BC⊥AC,∠BAC=a,AC=6米.现要在楼梯上铺一块地毯,楼梯宽度为1米,则地毯的面积至少需要()平方米.A.6tanα+6B.+6 C.D.7.如图,在△ABC中,DE∥AB,且,则的值为()A.B.C.D.8.已知一次函数y=(4﹣m)x﹣3,y随x的增大而减小,则m的值可能是()A.1 B.2 C.3 D.59.如图,AB为⊙O的直径,C、D为⊙O上两点,若∠BCD=25°,则∠ABD的大小为()A.50°B.55°C.60°D.65°10.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①HF=2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.分解因式:3x2﹣3=.12.在平面直角坐标系中,点(﹣2,3)关于原点对称的点的坐标是.13.不等式组的解为.14.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.15.如图,已知A为反比例函数y=(x<0)图象上的一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为1,则k的值为.16.如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为.三.解答题(共8小题,满分66分)17.(6分)计算:()﹣1+3tan30°+|1﹣|﹣(3.4﹣π)0.18.(6分)先化简÷(﹣x﹣1),再从﹣2,﹣1,0,1,2中选一个合适的数作为x的值代入求值,19.(6分)为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,但这次每盒的进价是第一次进价的倍,购进数量比第一次少了30盒,求第一次每盒乒乓球的进价是多少元?20.(8分)某居民小区为宣传生活垃圾分类,开展了相关知识测试,并随机抽取50户的成绩分成A、B、C、D、E 五个等级,制成如下统计图表,部分信息如下:等级分数频数A90≤x≤10011B80≤x<90 mC70≤x<80 10D60≤x<70 nE x<60 3(1)频数统计表中有两个数字模糊不清,分别记为m,n,直接写出m=,n=.(2)求这50户的成绩的中位数所在的等级以及扇形统计图中D等级所对应的扇形的圆心角度数.(3)已知这个居民小区共有1200户,这次测试成绩在A和B两个等级者为优秀,请你估计该小区测试成绩为优秀的有多少户.21.(9分)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.22.(9分)如图,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,联结PC,交AD于点E.(1)求证:AD是圆O的切线.(2)若PC是圆O的切线,BC=4,求PE的长.23.(10分)如图,在矩形ABCD中,AB=4,AD=6,E是AD边上的一个动点,将四边形BCDE沿直线BE折叠,得到四边形BC′D′E,连接AC′,AD′.(1)若直线DA交BC′于点F,求证:EF=BF;(2)当AE=时,求证:△AC′D′是等腰三角形;(3)在点E的运动过程中,求△AC′D′面积的最小值.24.(12分)如图,已知抛物线y=﹣x2+bx+c与y轴交于点C,与x轴交于A(﹣1,0),B(3,0)两点.(1)求抛物线的解析式.(2)连接AC,在抛物线的对称轴上是否存在点P,使得△ACP的周长最小?若存在,求出点P的坐标和△ACP 的周长的最小值,若不存在,请说明理由.(3)点M为抛物线上一动点,点N为x轴上一动点,当以A,C,M,N为顶点的四边形为平行四边形时,直接写出点M的横坐标.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵﹣3<﹣2<﹣1<0<2,∴比﹣2小的数是﹣3.故选:A.2.【解答】解:四棱锥的主视图与俯视图不相同.故选:C.3.【解答】解:150万=1500000=1.5×106.故选:C.4.【解答】解:A、2a3与a2不是同类项,故不能合并,故A不符合题意.B、原式=a6,故B不符合题意.C、原式=6a5,故C符合题意.D、原式=﹣2a,故D不符合题意.故选:C.5.【解答】解:15出现的次数最多,15是众数.一共10个学生,按照顺序排列第5、6个学生年龄分别是15、15,所以中位数为=15.故选:A.6.【解答】解:在Rt△ABC中,∴tanα=,∴BC=AC•tanα=6tanα(米),∴AC+BC=(6+6tanα)(米),∴地毯的面积至少需要1×(6+6tanα)=(6+6tanα)(米2),故选:A.7.【解答】解:∵=,∴=,∵DE∥AB,∴==,故选:A.8.【解答】解:∵y随x的增大而减小,∴4﹣m<0,∴m>4,故选:D.9.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵圆周角∠BCD和∠A都对着,∴∠BCD=∠A,∵∠BCD=25°,∴∠A=25°,∴∠ABD=90°﹣∠A=65°,故选:D.10.【解答】解:∵DF=BD,∴∠DFB=∠DBF∵四边形ABCD是正方形,∵AD∥BC,AD=BC=CD,∠ADB=∠DBC=45°,∴DE∥BC,∠DFB=∠GBC,∵DE=AD,∴DE=BC,∴四边形DBCE是平行四边形,∴∠DEC=∠DBC=45°,∴∠DEC=∠ADB=∠DFB+∠DBF=2∠EFB=45°,∴∠GBC=∠EFB=22.5°,∠CGB=∠EGF=22.5°=∠GBC,∴CG=BC=DE,∵BC=CD,∴DE=CD=CG,∴∠DEG=∠DCE=45°,EC=CD,∠CDG=∠CGD=(180°﹣45°)=67.5°,∴∠DGE=180°﹣67.5°=112.5°,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD(AAS),∴∠EDG=∠CGB=∠CBF,∴∠GDH=90°﹣∠EDG,∠GHD=∠BHC=90°﹣∠CGB,∴∠GDH=∠GHD,∴∠GDH=∠GHD,故②符合题意;∵∠EFB=22.5°,∴∠DHG=∠GDH=67.5°,∴∠GDF=90°﹣∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF,∴HF=2HG,即EC≠HF=2HG,故①符合题意;∵△CHG≌△EGD,∴S△CHG=S△EGD,∴S△CHG+S△DHG=S△EGD+S△DHG,即S△CDG=S四边形DHGE≠S△DHF,故④不符合题意;结合前面条件易知等腰三角形有:△ABD、△CDB、△BDF、△CDE、△BCG、△DGH、△EGF、△CDG、△DGF 共9个,故③不符合题意;则正确的个数有2个.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:3x2﹣3,=3(x2﹣1),=3(x+1)(x﹣1).12.【解答】解:点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案是:(2,﹣3).13.【解答】解:,解得,0<x≤4.故答案为:0<x≤4.14.【解答】解:根据题意得k﹣1≠0且Δ=(﹣2)2﹣4×(k﹣1)>0,解得k<2且k≠1,所以k的取值范围是k<2且k≠1.故答案为:k<2且k≠1.15.【解答】解:∵AB⊥y轴,∴S△OAB=|k|=1,而k<0,∴k=﹣2.故答案为﹣2.16.【解答】解:由翻折变换的性质得:AE=EF,∵∠ACB=90°,AC=12,BC=5,∴AB==13,设AE=EF=x,则BF=13﹣2x;分三种情况讨论:①当BF=BC时,13﹣2x=5,解得:x=4,∴AE=4;②当BF=CF时,F在BC的垂直平分线上,∴F为AB的中点,∴AF=BF,∴x+x=13﹣2x,解得:x=,∴AE=;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FG=BF,根据射影定理得:BC2=BG•AB,∴BG===,即(13﹣2x)=,解得:x=,∴AE=;综上所述:当△BCF为等腰三角形时,AE的长为:4或或;故答案为:4或或.三.解答题(共8小题,满分66分)17.【解答】解:原式=4+3×+﹣1﹣1=4++﹣1﹣1=2+2.18.【解答】解:原式=÷=•=﹣,∵x≠0且x≠1,x=2,∴x只能取﹣2或﹣1,当x=﹣1时,原式=﹣=﹣.19.【解答】解:设第一次每盒乒乓球的进价是x元,则第二次每盒乒乓球的进价是x元,由题意得:=+30,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,答:第一次每盒乒乓球的进价是4元.20.【解答】解:(1)m=50×40%=20,n=50﹣11﹣20﹣10﹣3=6,故答案为:20,6;(2)∵中位数是数据从大到小排列的第25和第26个的平均数,∴这50户的成绩的中位数在的B等级,D等级所对应的扇形的圆心角度数是360°×=43.2°;(3)1200×=744(户),答:估计该小区测试成绩为优秀的有744户.21.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.∴S△ABC=×8m×=8.22.【解答】解:(1)∵AB=AC,D是BC的中点,∴AD⊥BC,BD=DC,∵OD是⊙O的半径,∴AD是圆O的切线;(2)连接OP,∵BC=4,∴BD=DC=2,∵BD为直径,∴BO=OD=1,∵EP为⊙O切线,∴OP=1,∵OC=3,∴在Rt△OPC中,OP2+OC2=PC2,∴,∵∠EDC=∠PCO,∠EDC=∠OPC=90°,∴△EOC∽△POC,∴,∴,∴,∴PE=PC﹣EC==.23.【解答】(1)证明:由折叠得:∠FBE=∠CBE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴EF=BF;(2)解:在Rt△ABE中,∵AB=4,AE=,∴BE==,∴∠ABE=30°,∴∠AEB=60°,由(1)知:EF=BF,∴△BEF是等边三角形,∵AB⊥EF,∴AE=AF,如图1,过A作AH⊥C'D',∵FC'⊥C'D',ED'⊥C'D',∴FC'∥AH∥ED',∴C'H=D'H,∵AH⊥C'D',∴AC'=AD',∴△AC′D′是等腰三角形;(3)如图1,S△C'D'A=AH•C'D',∵C'D'=CD=4为定值,∴当AH最小时,△AC′D′面积最小,如图2,当C'、A、B三点共线时,此时H与C'重合,△AC′D′面积最小,由折叠得:BC=BC'=6,∠C=∠C'=90°,∵AB=4,∴AC'=6﹣4=2,△AC′D′面积的最小值===4.24.【解答】解:(1)将A(﹣1,0),B(3,0)代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3;(2)抛物线的对称轴上存在点P,使得△ACP的周长最小,理由如下:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,∵A、B点关于直线x=1对称,∴P A=PB,∴△ACP的周长=AC+AP+CP=AC+PB+CP≥AC+BC,∴当B、C、P三点共线时,△ACP的周长有最小值,当x=0时,y=3,∴C(0,3),设直线BC的解析式为y=kx+m,∴,解得,∴y=﹣x+3,∴P(1,2),∵AC=,BC=3,∴△ACP的周长的最小值为+3;(3)设M(x,﹣x2+2x+3),N(n,0),当AC为平行四边形的对角线时,∴,解得(舍)或,∴M(2,3);当AM为平行四边形的对角线时,∴,解得(舍)或,∴M(2,3);当AN为平行四边形的对角线时,∴,解得或,∴M(1+,﹣3)或(1﹣,﹣3);综上所述:M点横坐标为2或1+或1﹣.。
江西省2018年中考考前模拟卷数学(3)及答案(PDF版)_202007051712383
2018年江西省中等学校招生考试数学模拟卷(三)说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.5. 如图,有下列条件:①乙眼 Mg ②乙枷=履成,③卷二器,④如2 =AD - AB,其中能 单独判定左ABB MC 。
的条件个数为( )A. 1B.2C.36. 已知二次函数〉=ax +版+ c (a ,。
)与%轴相交于点(叫,。
)与(%,。
),其中义i <为2,方程 ax +bx + c - a =0的两根为m,n (m <n ),则下列判断中正确的是()B. m < %( <x 2 < n D.先]+ %2 <TTI + nnA洲一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.计算(-2 018) +2 017的结果是( ) C. 1 D.4 0351-H2. 下列运算中正确的是() A. a * a - a C. (3a 2)2=6a 4B. 2a(3a - 1) =6a 2一 1(第3题)4.如图,直线a//b,将直角三角形8徴按如图所示放置,3CB=90。
.若乙1 +厶8 =70。
,则 3的度数为( A.200G.30°D.25°D.4A., m < n<x { <x 2C. %)+ x > m +B.40二、填空题(本大题共6小题,每小题3分,共18分)7. 如图,要在一条公路的两侧铺设平行管道.已知一侧铺设的角度 为120。
,为使管道对接,另一侧铺设的角度大小应为 .8. 2017年,中国铁路总公司持续加大铁路建设力度,全国铁路行业固定资产投资完成8 010亿元.8 010亿可用科学记数法表示为3% — 1+ 1,的解集为% + 4 < 4% - 210. 由同样大小的黑棋子按一定规律摆出的图案如图所示,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,•••.依此规律,第n 个图案有 个黑棋子.(用含"的代数式表示)11. 如图,正方形伯訪 的边长为2疗,A ABE 为等边三角形,点E 在正方形ABCD 内.若点P 是对角线AC 上的一动点,则PD+PE 的最小值是.12. 如图,有一张长为8 cm 、宽为7 cm 的矩形纸片4BCZZ 现要剪下一个腰长为6 cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边 上),则剪下的等腰三角形的面积为cm 2.三、(本大题共5小题,每小题6分,共30分) 13. (本题共2小题,每小题3分)(1)计算:(-y ) _2-|2-Al -3tan 30°.(2)如图,在Rt △應C 中,履=90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年江西中考模拟卷(一)时间:120分钟满分:120分题号一二三四五六总分得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.|-2|的值是()A.-2B.2C.-1212D.2.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次,4640万用科学记数法表示为()5B.4.64×106A.4.64×107D.4.64×108C.4.64×103.观察下列图形,其中既是轴对称又是中心对称图形的是()4.下列计算正确的是()A.3x2y+5xy=8x3y2B.(x+y)2=x2+y22C.(-2x)÷x=4xD.yx+=1x-yy-x2-2x-1=0的两根分别为x1,x2,则1 +5.已知一元二次方程xx11的值为() x2A.2B.-1C.-12D.-26.如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形第6题图第8题图二、填空题(本大题共6小题,每小题3分,共18分)7.计算:-12÷3=________.8.如图,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为________.2=-1,那么(19.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i第1页共9页+i)·(1-i)=________.1.已知某几何体的三视图如图所示,根据图中数据求得该几何为____________. 第10题图第12题图 11.一个样本为1,3,2,2,a ,b ,c ,已知这个样数为3,平均数为这组数据的中位数为________. 12.如图,在平面直角坐标系中,△ABC 为等腰直角三角形,点A(0,2),B(-2,0), 点D 是x 轴上一个动AD 为一直角边在一侧作等腰直角三角形ADE ,∠DAE =90°. 若△A B D 为等腰三角点E 的坐标为__________. 三、(本大题共5小题,每小题6分,共30分) 13.(1)解不等式组: 3x -1≥x +1, x +4<4x -2. (2)如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF.求证:△ADF ≌△BCE. 14.先化简,再求值:m2m m - ,请在2,-2,0,3当中选一个合适的数2-4÷m -2mm +2 代入求值.15.为落实“垃圾分类”,环卫部门要求垃圾要按A ,B ,C 三类分别装袋,投放,其 中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等共9页可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.16.根据下列条件和要求,仅使用无刻度的直尺画图,并保存(1)如图①,△ABC 中,∠C =90°,在三角形的一边上取一点D ,画一个钝角△DAB ; (2)如图②,△ABC 中,AB =AC ,ED 是△ABC 的中位线,画出△ABC 的BC 边上的高. 17.某市需要新建一批公交车候车厅产品(如图①),产品示意图的 侧面如图②所示,其中支柱DC 长为2.1m ,且支柱DC 垂直于地面DG ,顶棚横梁AE 长为 1.5m ,BC 为镶接柱,镶接柱与支柱的夹角∠BCD =150°,与顶棚横梁的夹角∠ABC =135°, 要求使得横梁一端点E在支柱D C 的延长线上,此量得镶接点B 与点E 的距离为 0.35m(参考数据:2≈1.41,sin15≈°0.26,cos15°≈0.97,tan15≈°0.27,结果精确到0.1m). (1)求EC 的长;(2)求点A 到地面DG 的距离. 第3页共9页四、(本大题共3小题,每小题8分,共24分)18.某中学开展了“手机伴我健康行”主,他们随机抽取部分学生进行“使用手 机目的”和“每周使用手机的时间查,并绘制成如图①,②所示的统计图,已知 “查资料”的40人. 请你根据以上信息解答题: (1)在扇形统计图中,“玩游戏”对________°;(2)补全条形统计图; (3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数. 19.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印 店复印同样的文件,一次复印页数不超过20页时,每页收费0.12元;一次复印页数超过20 页时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x 为非负整数).(1)根据题意,填写下表:一次复印页数(页)5102030⋯ 甲复印店收费(元)0.52⋯ 乙复印店收费(元)0.62.4⋯(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的 函数关系式;(3)当x >70时,顾客在哪家复印店复印花费少第4页共9页k的图象有两个交点A(-1,m)和B,20.如图,一次函数y=-2x+1与反比例函数y=x过点A作AE⊥x轴,垂足为点E.过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,-2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.五、(本大题共2小题,每小题9分,共18分)21.如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC,AC.(1)求证:AC平分∠DAO;(2)若∠DAO=105°,∠E=30°:①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.22.二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.第5页共9页六、(本大题共12分)23.综合与实践【背景阅读】早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我为3∶4∶5国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为9,12,15或32,42,52的三的三角形称为(3,4,5)型三角形.例如:三边长分别角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.【实践操作】如图①,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图③,将图②中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去A F.第三步:如图④,将图③中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.【问题解决】(1)请在图②中证明四边形AEFD是正方形;(2)请在图④中判断NF与ND′的数量关系,并加以证明;(3)请在图④中证明△AEN是(3,4,5)型三角形.【探索发现】(4)在不添加字母的情况下,图④中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.共9页第6页参考答案与解析1.B2.C3.D4.C5.D6.D7.-48.60°9.210.(225+252)π11.212.(2,2)或(2,4)或(2,22)或(2,-22)解析:连接E C.∵∠BAC=∠DAE=90°,AB=AC,∴∠BAD=∠CAE.在△ABD和△ACE中,∠BAD=∠CAE,∴△ABD≌△ACE,∴BD=AD=AE,EC,∠ABD=∠ACE=45°.∵∠ACB=45°,∴∠ECD=90°,∴点E在过点C且垂直x轴的直线上,且EC=DB.①当DB=DA时,点D与O重合,则B D=OB=2,此时E点的坐标为(2,2).②当AB=AD时,BD=CE=4,此时E点的坐标为(2,4).③当BD=AB=22时,E点的坐标为(2,22)或(2,-22).故答案为(2,2)或(2,4)或(2,22)或(2,-22).13.(1)解:解不等式3x-1≥x+1,得x≥1.解不等式x+4<4x-2,得x>2,∴不等式组的解集为x>2.(3分)(2)证明:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE.(4分)在△ADF与△BCE中,AD=BC,∠A=∠B,∴△ADF≌△BCE(SAS).(6分)AF=BE,14.解:原式=m2m-(m-2)(m+2)·m-2m+2m=mm-2·m+2m-2mm+2m+2=-(m-2)(m+2)·mm-22=m-2m.(4分)∵m≠±2,0,∴m只能选取3.当m=3m-2时,原式=3.(6分)15.解:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类的概率为1.(2分)3(2)如图所示:(4分)由树状图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)=122=3.(6分) 1816.解:(1)如图①所示.(3分)(2)如图②所示,AF即为B C边上的高.(6分)共9页第7页17.解:(1EC.∵∠ABC =135°,∠BCD =150°,∴∠EBC =45°,∠ECB =30°.过 点E 作EP ⊥BC ,则EP =BE ×sin45°≈0.25m ,CE =2EP ≈0.5m.(2分) (2)过点A 作AF ⊥DG ,过点E 作EM ⊥AF ,∴四边形EDFM 是矩形,∴MG =ED ,∠DEM =90°,∴∠AEM =180°-∠ECB -∠EBC -90°=15°.在Rt △AEM 中,AM = AE ×sin15≈°0.39m ,(4分)∴AF =AM +CE +DC ≈0.39+0.5+2.1≈3.0(m),∴点A 到地面 的距离约是3.0m.(6分)18.解:(1)126(2分)(2)根据题意得抽取学生的总人数为40÷40%=100(人),∴3小时以上的人数为100-(2 +16+18+32)=32(人),补全条形统计图如图所示.(5分)(3)根据题意得1200×32+32 =768(人),则每周使用手机时间在2小时以上(不含2小时)100 的人数约有768人.(8分)19.解:(1)131.23.3(2分)(2)y 1=0.1x(x ≥0);y 2=0.12x (0≤x ≤20), 0.09x +0.6(x >20). (5分)(3)顾客在乙复印店复印花费少.(6分)理由如下:当x >70时,y 1=0.1x ,y 2=0.09x +0.6,∴y 1-y 2=0.1x -(0.09x +0.6)=0.01x -0.6.(6分)∵x >70,∴0.01x -0.6>0.1,∴y 1>y 2,∴ 当x >70时,顾客在乙复印店复印花费少.(8分)20.解:(1)∵一次函数y =-2x +1的图象经过点A(-1,m),∴m =2+1=3,∴A(-1, k 的图象经过A(-1,3),∴k =-1×3=-3.(4分) 3).(2分)∵反比例函数y =x(2)延长A E ,BD 交于点C ,则∠ACB =90°.∵BD ⊥y 轴,垂足为点D ,且点D 的坐标为(0,-2),∴令y =-2,则-2=-2x +1,∴x = 3 2,即B 3 2 ,-2,∴C(-1,-2),∴AC=3-(-2)=5,BC =3 2 -(-1)= 5 2 ,(6分)∴S四边形AEDB =S △ABC -S △CDE = 1 2 AC ·BC - 1 2 CE ·CD = 1 2×5×5121 -4.(8分) ×2×1= 22 21.(1)证明:∵CD 是⊙O 的切线,∴OC ⊥CD.∵AD ⊥CD ,∴AD ∥OC ,∴∠DAC = ∠OCA.∵OC =OA ,∴∠OCA =∠OAC ,∴∠OAC =∠DAC ,∴AC 平分∠DAO.(3分) (2)解:①∵AD ∥OC ,∴∠EOC =∠DAO =105°.∵∠E =30°,∴∠OCE =180°-105° -30°=45°.(5分)②过点O 作OG ⊥CE 于点G ,则CG =FG.∵OC =2,∠OCE =45°,∴CG =OG =2, ∴FG =2.(7分)在Rt △OGE 中,∵∠E =30°,∴GE =OG=6,∴EF =GE -FG =6-tan30°2.(9分)过点(1,-2),得(a+1)(-a)=-2,解得a1=-2,a2 22.解:(1)由函数y1的图象经共9页第8页=1.当a=-2或1时,函数y1化简后y1=x 2-x-2,∴函数y1的表y=x2-x-2.(3分)(2)当y=0时,(x+a)(x-a-1)=0,解得x1=-a,x2=a+1,∴y1的图象与x轴的交点是(-a,),(a+1,).(4分)当y2=ax(-a,0)时,-a 2+b=0,即b=a2;(5分)当y2=ax(a+1,0)时,a 2+a+b=0,即b=-a2-a.(6分)( 3 )由题意知函数y 1的图象的n)关于直线x=12对称.∵函数y1的图象开口向上,所以当m<n时,0<x0<1.(9分23.(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°.由折叠知AE=AD,∠AEF =∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形.∵AE=AD,∴矩形AEFD是正方形.(3分)(2)解:NF=ND′.(4分)证明如下:如图,连接HN.由折叠知∠AD′H=∠D=90°,HF=HD=HD′∴.∠HD′N=90°.∵四边形AEFD是正方形,∴∠EFD=90°.在Rt△HNF和Rt△HND′中,H N=HN,HF=HD′,∴Rt△HNF≌Rt△HND′,∴NF=ND′.(6分)(3)证明:∵四边形AEFD是正方形,∴AE=EF=AD=8cm.设N F=ND′=xcm,由折叠知AD′=AD=8cm,EN=EF-NF=(8-x)cm.在Rt△AEN中,由勾股定理得AN2=AE2+EN2,即(8+x)2=82+(8-x)2,解得x=2,∴AN=10cm,EN=6cm,∴EN∶AE∶AN=6∶8∶10=3∶4∶5,∴△AEN是(3,4,5)型三角形.(9分)(4)解:∵△AEN是(3,4,5)型三角形,∴与△AEN相似的三角形都是(3,4,5)型三角形,故△MFN,△MD′H,△MDA也是(3,4,5)型三角形.(12分)共9页第9页。