电液伺服阀 原理
电液伺服阀
• 这是个流量控制型伺服阀:由于功率
阀芯台肩控制棱边与阀套窗孔的相应棱边 的轴向尺寸是按零遮盖状态精密配合的, 所以输出流量的方向取决于控制电流的极 性,而输出流量的大小在负载压力恒定的 条件下与控制电流的大小成比例。
相关性能参数见上表
2、vickers喷嘴挡板阀
图5-26 SM4型阀内部结构 1-滤油器 2-喷嘴 3-衔铁 4-线圈 5-永久磁铁 6-导磁体 7-弹簧管 8-挡板
英国道蒂公司
6、DOWT型三级电液流量伺服阀
三级伺服阀通常是以通用型两级伺服 阀为前置级并以滑阀式控制阀为功率 级所构成。第三级的功率滑阀(或称 主滑阀)依靠位置反馈定位,一般为 电气反馈或力反馈。
电反馈调节方便,改变额定流量 及频率响应容易,适应性大,灵活性 好,是三级阀的主要优点。英国道蒂 公司制造的前置级采用两级双喷嘴挡 板力反馈伺服阀或射流管力反馈伺服 阀。
• 输入的控制电流越大,阀芯的位移量也越 大,节流边开度就越大,输出的流量就越 多,执行机构运动的速度就越快(流量型 控制伺服阀)。如果输入控制电流的极性 相反,则衔铁作顺时针方向偏转,使阀芯 右移,压力油P由B腔进入执行机构,使其 向相反方向运动。
3、Abex400型射流管式伺服阀
美国阿贝克斯400 型射流管式伺服阀
射流管的侧面装有弹簧板及反馈弹簧丝5,其末端插入阀芯中间的小槽内,阀芯推动 反馈弹簧丝5,构成对力矩马达的力反馈。
力矩马达借助薄壁弹簧片实现对液压部件的密封隔离。
射流管伺服阀优点: ① 射流管阀的最小通流尺寸约为0.2mm,而喷嘴挡板式伺服阀
为0.025~0.10mm。因此射流管的抗污染能力强,可靠性高、寿 命长。 • 伺服阀的抗污染能力,一般是由其结构中的最小通流尺寸所决定的。 而在多级伺服阀中,前置级油路中的最小尺寸成为决定性因素。 • ② 射流管阀的压力效率和容积效率高,可以产生较大的控制压力和 流量,这就提高了功率阀的驱动力,增大了功率阀的抗污染能力。 • ③ 从前置级磨蚀对性能的影响来看,射流管喷嘴端面和接受端面的 磨损,对性能的影响小,因此工作稳定,零漂小,寿命长。 射流管阀的缺点:是频率响应低,零位泄漏流量大,低温特性差,加工
电液伺服阀原理
电液伺服阀电液伺服阀既是电液转换元件,又是功率放大元件,它能够把微小的电气信号转换成大功率的液压能(流量和压力)输出。
它的性能的优劣对系统的影响很大。
因此,它是电液控制系统的核心和关键。
为了能够正确设计和使用电液控制系统,必须掌握不同类型和性能的电液伺服阀。
伺服阀输入信号是由电气元件来完成的。
电气元件在传输、运算和参量的转换等方面既快速又简便,而且可以把各种物理量转换成为电量。
所以在自动控制系统中广泛使用电气装置作为电信号的比较、放大、反馈检测等元件;而液压元件具有体积小,结构紧凑、功率放大倍率高,线性度好,死区小,灵敏度高,动态性能好,响应速度快等优点,可作为电液转换功率放大的元件。
因此,在一控制系统中常以电气为“神经”,以机械为“骨架”,以液压控制为“肌肉”最大限度地发挥机电、液的长处。
由于电液伺服阀的种类很多,但各种伺服阀的工作原理又基本相似,其分析研究的方法也大体相同,故今以常用的力反馈两级电液伺服阀和位置反馈的双级滑阀式伺服阀为重点,讨论它的基本方程、传递函数、方块图及其特性分析。
其它伺服阀只介绍其工作原理,同时也介绍伺服阀的性能参数及其测试方法。
电液伺服阀的组成电液伺服阀在电液控制系统中的地位如图27所示。
电液伺服阀包括电力转换器、力位移转换器、前置级放大器和功率放大器等四部分。
3.1.1 电力转换器包括力矩马达(转动)或力马达(直线运动),可把电气信号转换为力信号。
3.1.2 力位移转换器包括钮簧、弹簧管或弹簧,可把力信号变为位移信号而输出。
3.1.3 前置级放大器包括滑阀放大器、喷嘴挡板放大器、射流管放大器。
3.1.4 功率放大器——滑阀放大器由功率放大器输出的液体流量则具有一定的压力,驱动执行元件进行工作。
图27 电液控制系统方块图电液伺服阀的分类电液伺服阀的分类电液伺服阀的种类很多,根据它的结构和机能可作如下分类:1)按液压放大级数,可分为单级伺服阀、两级伺服阀和三级伺服阀,其中两级伺服阀应用较广。
电液伺服阀工作原理_电液伺服阀技术参数
电液伺服阀工作原理_电液伺服阀技术参数嘿,朋友们!今天咱们来唠唠电液伺服阀这个超酷的玩意儿。
你要是搞机械或者液压方面的工作,那肯定对它不陌生。
要是不太了解呢,也没关系,听我一一道来,保证你会觉得这东西特别有趣。
先来说说电液伺服阀的工作原理吧。
想象一下,电液伺服阀就像是一个超级智能的交通指挥官。
它有两个主要的输入信号,一个是电信号,就好比是交通指挥中心发来的指令;另一个是液压油,这就像是路上的车辆。
电信号一过来,就像指挥中心下达了特定的命令,比如说要让哪条路的车流量增大或者减小。
这个电信号作用在电液伺服阀内部的电磁部分。
这电磁部分就像是一个魔法棒,它能把电信号转化为机械运动。
你看啊,电磁力根据电信号的大小和方向,推动一个小阀芯或者挡板之类的部件。
这就好比魔法棒一挥,小木偶就开始动起来了。
这个小阀芯或者挡板的移动可不得了,它直接影响着液压油的流向和流量。
就像交通指挥官改变了路口的信号灯和道路的通行规则,液压油就得按照新的规则流动。
液压油通过电液伺服阀内部精心设计的通道,这些通道就像城市里规划好的道路一样,有进有出。
当阀芯或者挡板改变位置的时候,液压油通往不同的出口,从而驱动外部的液压执行机构,像液压缸或者液压马达。
这就像车辆根据新的交通规则到达不同的目的地,去完成各种各样的工作,比如举起一个很重的物体或者转动一个大轮子。
再说说电液伺服阀的技术参数,这可都是它的“身份证”信息呢。
其中一个重要的参数就是额定流量。
这额定流量就像一个人的饭量一样,告诉我们这个电液伺服阀在正常工作情况下能够允许通过多少液压油。
如果超过了这个额定流量,就好比一个人吃太多撑着了,电液伺服阀可能就会出问题,工作就不正常了。
还有一个参数叫响应频率。
这个怎么理解呢?就好比一个运动员的反应速度。
如果响应频率高,那就意味着电液伺服阀能够快速地根据电信号做出反应,就像一个反应超快的运动员,能迅速改变液压油的流动状态。
相反,如果响应频率低,那就像一个反应迟钝的人,在需要快速动作的时候就跟不上节奏了。
动圈式电液伺服阀工作原理
动圈式电液伺服阀工作原理嘿,咱今天就来好好唠唠动圈式电液伺服阀的工作原理!你说这动圈式电液伺服阀啊,就像是一个特别厉害的指挥官!它能精准地控制液压油的流向和流量,就好像是一个超级交通警察,指挥着来来往往的车流。
它里面有个动圈,就跟个活力满满的小马达似的。
这个动圈可是很关键的部分哦!当电流通过的时候,它就开始活跃起来啦。
然后呢,还有阀芯,就像是一扇门,通过动圈的带动,能巧妙地开关,让液压油乖乖地按照要求流动。
这就好比你家的水龙头,你拧开它,水就流出来了,拧得大小不同,水流量也就不一样。
想象一下,在各种机械设备里,动圈式电液伺服阀就像一个默默工作的小英雄。
它要保证机器能正常运转,动作精准无误。
要是它稍微出点差错,那可不得了啊,机器可能就会闹脾气,不好好工作啦!比如说在一些大型工业设备里,它得时刻保持警惕,不能有一丝马虎。
它得快速响应各种指令,及时调整液压油的流向和流量,就像一个反应迅速的运动员,随时准备冲刺。
而且哦,动圈式电液伺服阀的工作可稳定啦!不管是遇到恶劣的工作环境,还是长时间的工作压力,它都能稳稳地坚守岗位。
这一点是不是特别让人佩服呢?你看啊,这么一个小小的东西,却有着大大的能量。
它能让那些庞大的机械设备乖乖听话,按照我们的要求来工作。
这难道不神奇吗?咱再想想,如果没有动圈式电液伺服阀,那很多工业生产不就乱套了吗?那些需要精确控制的机器可能就会变得笨手笨脚的,没法好好干活啦!所以说啊,动圈式电液伺服阀真的是太重要啦!它就像一个幕后英雄,默默地为我们的生产生活贡献着力量。
我们可得好好珍惜它,好好了解它的工作原理,让它更好地为我们服务呀!总之,动圈式电液伺服阀就是这么神奇,这么厉害,这么不可或缺!原创不易,请尊重原创,谢谢!。
第5章 电液伺服阀PPT课件
液压伺服系统
第五章 电液伺服阀
Part 5.3.3 稳定性分析
包括两个反馈回路:滑阀位移的力反馈回路
作用在挡板上的压力反馈回路
1、力反馈回路:
Kvf 2mf mf
2、压力反馈回路:
设计时:
K vf 0.25
mf
液压伺服系统
3、力反馈伺服阀的传递函数:
第五章 电液伺服阀
Kt
sXv
Kf rb
I
xvmax06.4110033 1567
不能采用全周开口,取阀芯直径 d5103m
阀杆直径 dr 3103m
按
4
d2dr2
4xvmax
验算,满足要求。
液压伺服系统
第五章 电液伺服阀
2)喷嘴挡板阀主要结构参数的确定:
①根据设计要求,并考虑留有一定的余地,取喷嘴
挡板阀的零位泄漏量 qc 0.45Lmin
第五章 电液伺服阀
力矩马达的分析计算包括: 1)永磁磁路计算 2)电路计算 3)静态特性和动态特性的分析计算
电磁力矩的计算属于永磁磁路计算的一个内容
3、传递函数和静动态分析:
液压伺服系统
第五章 电液伺服阀
Part 5.2.4 永磁动圈式力马达
根据载流导体在磁场中受力而工作的。改变控制线圈电流的大小 和方式,可以得到不同大小和方向的输出力。
根据滑阀流量方程可求出阀的最大开口面积
xvmaxcdQ 0m psax0.6 15 5 2 10 1 0 1 30 6 0 38052.4 01 0 6m 2
根据经验取阀芯行程 xvma x0.41 03m
则滑阀节流窗口面积梯度 02..44 1100 63 6103m
液压伺服系统
伺服阀工作原理
(1)电液伺服阀的组成伺服阀由力矩马达、液压放大器、反馈机构三部分组成(2)力矩马达的工作原理力矩马达的作用是把输入的电气控制信号转换为力矩。
它由永久磁铁、上导磁体、下导磁体、衔铁、控制线圈、弹簧管等组成。
衔铁固定在弹簧管上端,由弹簧管支承在上、下导磁体的中间位置,可绕弹簧管的转动中心作微小的转动。
永久磁铁将上、下导磁体磁化,一个为N级,另一个为S级。
无信号电流时,衔铁在上、下导磁体的中间位置,由于力矩马达结构是对称的,使磁铁两端所受的电磁力相同,力矩马达无力矩输出。
当有信号电流通过线圈时,控制线圈产生控制磁通,其大小和方向取决于信号电流的大小和方向电磁力矩的大小与信号电流的大小成比例,衔铁的转角也与信号电流成比例。
力矩马达磁路原理图对于上图的磁路分析:对分支点A 和B 应用磁路基尔霍夫第一定律可得衔铁磁通12a φφφ=-整理后得到 g 2g2()2l 1()l g c a x x φφφ+=- 由于2g (x/l )1 《,上式化简a g 2l c g gx N i R φφ=+∆,考虑到x a θ≈,上式写成 a g 2l c gg a N i R φφθ=+∆由控制磁通和极化磁通的相互作用在衔铁上产生电磁力矩d 14=2a(F -F )T ,考虑到衔铁转角θ很小,故有,,x tg x a aθθθ=≈≈则上式可写成: 22222g 22g(1)(1)l (1)l c t m g d x K i K T x φθφ+∆++=-, 式中t K 为力矩马达的中位电磁力矩系数,g2l t c g a K N φ= m K 为力矩马达的中位磁弹簧刚度,22g4()l m g g a K R φ= 由上式可以看出,力矩马达的输出力矩具有非线性。
为了改善线性度和防止衔铁被永久磁铁吸附,力矩马达一般都设计成g x/l <1/3,即2g (x/l )1《和2(/) 1c g φφ《。
则接着化简成:t d m T K i K θ=∆+上式中,t i K ∆是衔铁在中位时,由控制电流i ∆产生的电磁力矩,称为中位电磁力矩。
CSDY系列射流管型电液伺服阀介绍
九江中船仪表有限责任公司(四四一厂)JI U J I A N GZ H O N G C H U A N I N S T R U M E N T C O .,L T D 网址: 邮箱:tinawu@CSDY 系列射流管型电液伺服阀介绍一、工作原理CSDY 系列射流管型电液伺服阀是力反馈两极电液伺服阀,力矩马达采用永磁结构,弹簧管支承着衔铁射流管组件,并使力矩马达与液压油隔离,所以力矩马达是干式的,其结构原理图如下:由上图可见,射流管型电液伺服阀主要由线圈、衔铁、射流管、喷嘴、反馈杆、阀芯、油滤等部分组成。
当力矩马达线圈输入控制电流时,由于控制磁通和永磁磁通的相互作用,在衔铁上产生一个力矩,促使衔铁、弹簧管、喷嘴组件偏转一个正比于力矩的小角度,经过喷嘴高速喷射出的高压液流也发生偏转,使得接受器一腔压力升高,另一腔压力降低,使连接这两腔的阀芯两端产生压差,阀芯运动,直到反馈组件产生的力矩与力矩马达力矩平衡,使喷嘴又回到接受器两孔中间位置为止。
这样阀芯的位移与控制电流的大小成正比,阀的输出流量就正比于控制电流了。
二、射流管型电液伺服阀的特点1、前置级射流放大器的独特结构,可以通过300μm 的污染颗粒,不会发生故障,抗污染能力特别强。
2、分辨率及高,可以在较低的压力下工作。
3、阀芯驱动力大,不容易发生卡滞现象。
九江中船仪表任公司(四四一厂)JI U J I A N GZ H O N G C H U A N I N S T R U M E N T C O .,L T D 网址: 邮箱:tinawu@三、额定电流规格和对应的线圈电阻序号项目1234567891011额定电流(mA )810151620253040506480线圈电阻(Ω)10006503502501601057540251610.5注:1、其他特殊规格可单独定制;2、最大过载电流可以是额定电流的两倍。
四、线圈的连接方式1、插座接线图2、线圈的连接方式单线圈串联并联差动连接九江中船仪表有限责任公司(四四一厂)JI U J I A N GZ H O N G C H U A N I N S T R U M E N T C O .,L T D 网址: 邮箱:tinawu@3、接线方法线圈连接方式单线圈串联并联差动连接插销头标号2、1;4、32(1、4)32(4)、1(3)2(4、1)3外引出线颜色绿红;黄兰绿兰绿红绿红兰控制电流极性2+1-或4+3-2+3-1与4相连2+1—1与32与4相连当1+时,1到2<1到3当1-时,2到1>3到1输入正极性电流时,液流从控制口“A ”流出,由控制口“B ”流回。
电液伺服阀的原理分类和应用简介
电液伺服阀的原理分类和应用简介一.电液伺服阀的工作原理电液伺服阀由力矩马达和液压放大器组成。
力矩马达工作原理磁铁把导磁体磁化成N、S极,形成磁场。
衔铁和挡板固连由弹簧支撑位于导磁体的中间。
挡板下端球头嵌放在滑阀中间凹槽内;线圈无电流时,力矩马达无力矩输出,挡板处于两喷嘴中间;当输入电流通过线圈使衔铁3左端被磁化为N极,右端为S极,衔铁逆时针偏转。
弹簧管弯曲产生反力矩,使衔铁转过θ角。
电流越大θ角就越大,力矩马达把输入电信号转换为力矩信号输出。
前置放大级工作原理压力油经滤油器和节流孔流到滑阀左、右两端油腔和两喷嘴腔,由喷嘴喷出,经阀9中部流回油箱力矩马达无输出信号时,挡板不动,滑阀两端压力相等。
当力矩马达有信号输出时,挡板偏转,两喷嘴与挡板之间的间隙不等,致使滑阀两端压力不等,推动阀芯移动。
功率放大级工作原理当前置放大级有压差信号使滑阀阀芯移动时,主油路被接通。
滑阀位移后的开度正比于力矩马达的输入电流,即阀的输出流量和输入电流成正比;当输入电流反向时,输出流量也反向。
滑阀移动的同时,挡板下端的小球亦随同移动,使挡板弹簧片产生弹性反力,阻止滑阀继续移动;挡板变形又使它在两喷嘴间的位移量减小,实现了反馈。
当滑阀上的液压作用力和挡板弹性反力平衡时,滑阀便保持在这一开度上不再移动。
二.电液伺服阀的分类1 按液压放大级数可分为单级电液伺服阀,两级电液伺服阀,三级电液伺服阀。
2 按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射流管式和偏转板射流式。
3 按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式等。
4 按电机械转换装置可分为动铁式和动圈式。
5 按输出量形式可分为流量伺服阀和压力控制伺服阀。
三.电液伺服阀的发展趋势1/新型结构的设计在20 世纪90 年代,国外研制直动型电液伺服阀获得了较大的成就.现形成系列产品的有Moog 公司的D633,D634 系列的直动阀,伊顿威格士(EatonVickers)公司的LFDC5V 型,德国Bosch 公司的NC10 型,日本三菱及KYB 株式会社合作开发的MK 型阀及Moog 公司与俄罗期沃斯霍得工厂合作研制的直动阀等.该类型的伺服阀去掉了一般伺服阀的前置级, 利用一个较大功率的力矩马达直接拖动阀芯, 并由一个高精度的阀芯位移传感器作为反馈.该阀的最大特点是无前置级,提高了伺服阀的抗污染能力.同时由于去掉了许多难加工零件,降低了加工成本,可广泛使用于工业伺服控制的场合.国内有些单位如中国运载火箭技术研究院第十八研究所, 北京机床研究所, 浙江工业大学等单位也研制出了相关产品的样机. 特别是北京航空航天大学研制出转阀式直动型电液伺服阀. 该伺服阀通过将普通伺服阀的滑阀滑动结构转变为滑阀的转动, 并在阀芯与阀套上相应开了几个与轴向有一定倾角的斜槽.阀芯阀套相互转动时,斜槽相互开通或相互封闭,从而控制输出压力或流量.由于在工作时阀芯阀套是相互转动的,降低了阀工作时的摩擦阻力,同时污染物不容易在转动的滑阀内堆积,提高了抗污染性能.此外,Park 公司开发了"音圈驱动(Voice Coil Drive)"技术(VCD),以及以此技术为基础开发的DFplus 控制阀.所谓音圈驱动技术, 顾名思义, 即是类似于扬声器的一种驱动装置, 其基本结构就是套在固定的圆柱形永久磁铁上的移动线圈,当信号电流输入线圈时,在电磁效应的作用下,线圈中产生与信号电流相对应的轴向作用力,并驱动与线圈直接相连的阀芯运动,驱动力很大.线圈上内置了位移反馈传感器,因此,采用VCD 驱动的DFplus 阀本质上是以闭环方式进行控制的,线性度相当好.此外,由于VCD 驱动器的运动零件只是移动线圈,惯量极小,相对运动的零件之间也没有任何支承,DFplus 阀的全部支承就是阀芯和阀体间的配合面,大大减小了摩擦这一非线性因素对控制品质的影响.综合上述的技术特点,配合内置的数字控制模块,使DFplus 阀的控制性能佳,尤其在频率响应方面更是优越,可达400Hz.从发展趋势来看,新型直动型电液伺服阀在某些行业有替代传统伺服阀特别是喷嘴挡板式伺服阀的趋向, 但它的最大问题在于体积大, 重量重, 只适用于对场地要求较低的工业伺服控制场合. 如能减轻其重量, 减小其体积,在航空,航天等军工行业亦具有极大的发展潜力.另外,近年来伺服阀新型的驱动方式除了力矩马达直接驱动外,还出现了采用步进电机,伺服电机,新型电磁铁等驱动结构以及光-液直接转换结构的伺服阀.这些新技术的应用不仅提高了伺服阀的性能, 而且为伺服阀发展开拓了思路, 为电液伺服阀技术注入了新的活力.2/新型材料的采用当前在电液伺服阀研制领域的新型材料运用,主要是以压电元件,超磁致伸缩材料及形状记忆合金等为基础的转换器研制开发.它们各具有其自己的优良特性.2.1 压电元件压电元件的特点是"压电效应":在一定的电场作用下会产生外形尺寸的变化,在一定范围内,形变与电场强度成正比.压电元件的主要材料为压电陶瓷(PZT),电致伸缩材料(PMN)等.比较典型的压电陶瓷材料有日本TOKIN 公司的叠堆型压电伸缩陶瓷等.PZT 直动式伺服阀的原理是: 在阀芯两端通过钢球分别与两块多层压电元件相连. 通过压电效应, 使压电材料产生伸缩驱动阀芯移动.实现电-机械转换.PMN 喷嘴挡板式伺服阀则在喷嘴处设置一与压电叠堆固定连接的挡板,由压电叠堆的伸,缩实现挡板与喷嘴间的间隙增减,使阀芯两端产生压差推动阀芯移动.目前压电式电-机械转换器的研制比较成熟并已得到较广泛的应用.它具有频率响应快的特点,伺服阀频宽甚至能达到上千赫兹,但亦有滞环大,易漂移等缺点,制约了压电元件在电液伺服阀上的进一步应用.2.2 超磁致伸缩材料液压与电气论坛超磁致伸缩材料(GMM)与传统的磁致伸缩材料相比,在磁场的作用下能产生大得多的长度或体积变化. 利用GMM 转换器研制的直动型伺服阀是把GMM 转换器与阀芯相连,通过控制驱动线圈的电流,驱动GMM 的伸缩,带动阀芯产生位移从而控制伺服阀输出流量.该阀与传统伺服阀相比不仅有频率响应高的特点,而且具有精度高,结构紧凑的优点.目前,在GMM 的研制及应用方面,美国,瑞典和日本等国处于领先水平.国内浙江大学利用GMM 技术对气动喷嘴挡板阀和内燃机燃料喷射系统的高速强力电磁阀, 进行了结构设计和特性研究.从目前情况来看GMM 材料与压电材料和传统磁致伸缩材料相比,具有应变大,能量密度高,响应速度快,输出力大等特点.世界各国对GMM 电-机械转换器及相关的技术研究相当重视,GMM 技术水平快速发展,已由实验室研制阶段逐步进入市场开发阶段.今后还需解决GMM 的热变形,磁晶各向异性,材料腐蚀性及制造工艺, 参数匹配等方面的问题,以利于在高科技领域得到广泛运用.2.3 形状记忆合金形状记忆合金(SMA)的特点是具有形状记忆效应.将其在高温下定型后,冷却到低温状态,对其施加外力.一般金属在超过其弹性变形后会发生永久变形,而SMA 却在将其加热到某一温度之上后, 会恢复其原来高温下的形状. 利用其特性研制的伺服阀是在阀芯两端加一组由形状记忆合金绕制的SMA 执行器, 通过加热和冷却的方法来驱动SMA 执行器, 使阀芯两端的形状记忆合金伸长或收缩, 驱动阀芯作用移动, 同时加入位置反馈来提高伺服阀的控制性能.从该阀的情况来看,SMA 虽变形量大,但其响应速度较慢,且变形不连续, 也限制了其应用范围.与传统伺服阀相比,采用新型材料的电-机械转换器研制的伺服阀,普遍具有高频响, 高精度,结构紧凑的优点.虽然目前还各自呈在某些关键技术需要解决,但新型功能材料的应用和发展,给电液伺服阀的技术发展发展提供了新的途径.3/电子化,数字化技术的运用液压与电气论坛目前电子化, 数字化技术在电液伺服阀技术上的运用主要有两种方式: 其一,在电液伺服阀模拟控制元器件上加入D/A 转换装置来实现其数字控制.随着微电子技术的发展,可把控制元器件安装在阀体内部,通过计算机程序来控制阀的性能,实现数字化补偿等功能.但存在模拟电路容易产生零漂,温漂,需加D/A 转换接口等问题.其二, 为直动式数字控制阀. 通过用步进电机驱动阀芯, 将输入信号转化成电机的步进信号来控制伺服阀的流量输出.该阀具有结构紧凑,速度及位置开环可控及可直接数字控制等优点,被广泛使用.但在实时性控制要求较高的场合,如按常规的步进方法,无法兼顾量化精度及响应速度的要求.浙江工业大学采用了连续跟踪控制的办法,消除了两者之间的矛盾,获得了良好的动态特性. 此外还有通过直流力矩电机直接驱动阀芯来实现数字控制等多种控制方式或伺服阀结构改变等方法来形成众多的数字化伺服阀产品.随着各项技术水平的发展,通过采用新型的传感器和计算机技术研制出机械,电子, 传感器及计算机自我管理(故障诊断,故障排除)为一体的智能化新型伺服阀.该类伺服阀可按照系统的需要来确定控制目标:速度,位置,加速度,力或压力.同一台伺服阀可以根据控制要求设置成流量控制伺服阀, 压力控制伺服阀或流量/ 压力复合控制伺服阀. 并且伺服阀的控制参数,如流量增益,流量增益特性,零点等都可以根据控制性能最优化原则进行设置.伺服阀自身的诊断信息,关键控制参数(包括工作环境参数和伺服阀内部参数)可以及时反馈给主控制器;可以远距离对伺服阀进行监控,诊断和遥控.在主机调试期间,可以通过总线端口下载或直接由上位机设置伺服阀的控制参数, 使伺服阀与控制系统达到最佳匹配,优化控制性能.而伺服阀控制参数的下载和更新,甚至在主机运转时也能进行.而在伺服阀与控制系统相匹配的技术应用发展中, 嵌入式技术对于伺服阀已经成为现实. 按照嵌入式系统应定义为:"嵌入到对像体系中的专用计算机系统"."嵌入性","专用性"与"计算机系统"是嵌入式系统的三个基本要素.它是在传统的伺服阀中嵌入专用的微处理芯片和相应的控制系统, 针对客户的具体应用要求而构建成具有最优控制参数的伺服阀并由阀自身的控制系统完成相应的控制任务(如各控制轴同步控制),再嵌入到整个的大控制系统中去.从目前的技术发展和控制系统对伺服阀的要求看, 伺服阀的自诊断和自检测功能应该有更大的发展. 结束语当前的液压伺服控制技术已经能将自动控制技术, 液压技术与微电子有机的结合起来, 形成新一代的伺服阀产品.而随着电子设备,控制策略,软件及材料等方面的发展与进步, 电液控制技术及伺服阀产品将在机,电,液一体化获得长足的进步.四 .电液伺服阀的发展历程液压控制技术的历史最早可追溯到公元前240 年,当时一位古埃及人发明了人类历史上第一个液压伺服系统――水钟. 然而在随后漫长的历史阶段, 液压控制技术一直裹足不前, 直到18 世纪末19 世纪初,才有一些重大进展.在二战前夕,随着工业发展的需要,液压控制技术出现了突飞猛进地发展,许多早期的控制阀原理及专利均是这一时代的产物.如: Askania 调节器公司及Askania-Werke 发明及申请了射流管阀原理的专利.同样, Foxboro 发明了喷嘴挡板阀原理的专利.而德国Siemens 公司发明了一种具有永磁马达及接收机械及电信号两种输入的双输入阀,并开创性地使用在航空领域.在二战末期,伺服阀是用螺线管直接驱动阀芯运动的单级开环控制阀.然随着控制理论的成熟及军事应用的需要, 伺服阀的研制和发展取得了巨大成就. 1946 年, 英国Tinsiey 获得了两级阀的专利;Raytheon 和Bell 航空发明了带反馈的两级阀;MIT 用力矩马达替代了螺线管使马达消耗的功率更小而线性度更好.1950 年,W.C.Moog 第一个发明了单喷嘴两级伺服阀.1953 年至1955 年间,T.H.Carson发明了机械反馈式两级伺服阀; W.C.Moog 发明了双喷嘴两级伺服阀; Wolpin 发明了干式力矩马达, 消除了原来浸在油液内的力矩马达由油液污染带来的可靠性问题.1957 年R.Atchley 利用Askania 射流管原理研制了两级射流管伺服阀.并于1959 年研制了三级电反馈伺服阀.1959 年 2 月国外某液压与气动杂志对当时的伺服阀情况作了12 页的报道, 显示了当时伺服阀蓬勃发展的状况.那时生产各种类型的伺服阀的制造商有20 多家.各生产厂家为了争夺伺服阀生产的霸权地位展开了激烈地竞争. 回顾历史, 可以看到最终取胜的几个厂家, 大多数生产具有反馈及力矩马达的两级伺服阀.我们可以看到, 1960 年的伺服阀已具有现代伺服阀的许多特点.如:第二级对第一级反馈形成闭环控制;采用干式力矩马达;前置级对功率级的压力恢复通常可达到50%;第一级的机械对称结构减小了温度,压力变化对零位的影响. 同时, 由早期的直动型开环控制阀发展变化而来的直动型两级闭环控制伺服阀也已出现.当时的伺服阀主要用于军事领域,随着太空时代的到来,伺服阀又被广泛用于航天领域,并研制出高可靠性的多余度伺服阀等尖端产品.与此同时,随着伺服阀工业运用场合的不断扩大,某些生产厂家研制出了专门使用于工业场合的工业伺服阀. Moog 公司就在1963 年推出了第一款专为工业场合使用的73 如系列伺服阀产品.随后,越来越多的专为工业用途研制的伺服阀出现了.它们具有如下的特征:较大的体积以方便制造;阀体采用铝材(需要时亦可采用钢材);独立的第一级以方便调整及维修;主要使用在14MPa 以下的低压场合;尽量形成系列化,标准化产品.然而Moog 公司在德国的分公司却将其伺服阀的应用场合主要集中在高压场合, 一般工作压力在21MPa,有的甚至到35MPa,这就使阀的设计专重于高压下的使用可靠性.而随着伺服阀在工业场合的广泛运用, 各公司均推出了各自的适合工业场合用的比例阀. 其特点为低成本, 控制精度虽比不上伺服阀, 但通过先进的控制技术和先进的电子装置以弥补其不足, 使其性能和功效逼近伺服阀.1973 年,Moog 公司按工业使用的需要,把某些伺服阀转换成工业场合的比例阀标准接口.Bosch 研制出了其标志性的射流管先导级及电反馈的平板型伺服阀.1974 年,Moog 公司推出了低成本,大流量的三级电反馈伺服阀.Vickers 公司研制了压力补偿的KG 型比例阀.Rexroth,Bosch 及其他公司研制了用两个线圈分别控制阀芯两方向运动的比例阀等等五. 电液伺服阀运转不良引起的故障1 油动机拒动在机组启动前做阀门传动试验时,有时出现个别油动机不动的现象,在排除控制信号故障的前提下,造成上述现象的主要原因是电液伺服阀卡涩。
第5章电液伺服阀
五 力反馈两级电液伺服阀
xv r
动铁式单级电液伺服阀原理图 1-永久磁铁 2-衔铁 3-扭轴 4-导磁体
按反馈形式分类:
可分为滑阀位置反馈、负载流量反馈和负载压力反馈三种。
按力矩马达是否浸泡在油中分类:
湿式:可使力矩马达受到油液的冷却,但油液中存在的铁污物使力 短马达持性变坏; 干式:则可使力矩马达不受油液污染的影响,目前的伺服阀都采用 干式的。
5.2 电气-机械转换器
电气—机械转换器:利用电磁原理工作的。它由永久磁铁或激磁
第三项是线圈内电流变化所引起的感应 电动势;(包括线圈的自感和互感),由于 串联线圈,互感等于自感,所以每个线 圈的总电感为2Lc
5.3 力反馈两级电液伺服阀
基本电压方程:
2 K uU g Rc rp i 2 K b s 2 Lc sI K b 每个线圈的反电动势力 常数 Lc 每个线圈的自感系数
组成:永久磁铁、上导磁体、下 导磁体、衔铁、控制线圈、弹簧管 等组成。 原理:衔铁固定在弹簧管上端, 由弹簧管支承在上、下导磁体的中 间位置,可绕弹簧管(扭轴)的转 动中心作微小的转动。衔铁两端与 上、下导磁体(磁极)形成四个工作 气隙①、②、③、④。两个控制线 圈套在衔铁之上。上、下导磁体除 作为磁极外,还为永久磁铁产生的 极化磁通和控制线圈产生的控制磁 通提供磁路。
二、永磁力矩马达
2、力矩马达的电磁力矩
通过力矩马达的磁路分析可以求出电磁 力矩的计算公式。从磁路分析知电磁力 矩是非线性的,因此为保证输出曲线的 线性,往往设计成可动位移和气隙长度 比小于三分之一,控制磁通远远小于极 化磁通。 应用 :动铁式力矩马达输出力矩较小,适 合控制喷嘴挡板之类的先导级阀。
电液伺服阀及电液伺服系统(1)
pS 0
2° pL
2 3
pS
pS pL
1 p
3S
34
§ 3 电液伺服阀的主要性能指标
3、空载流量特性(No-load flow c流h与ara输c出ter流ist量ic)的:关p系L=。0,输入电 1°名义流量曲线流量曲线中点 连线 2°名义流量增益线 flow gain °从零流量点向两个方向各作与 名义流量曲线误差最小之直线 °其斜率(均值)即为名义流量 增益 °额定流量与额定电流之比即为 额定流量增益。
电液伺服阀广泛地应用于电液位置、速度、加速
度、力伺服系统,以及伺服振动发生器中。它具有体
积小、结构紧凑、功率放大系数高、控制精度高、直
线性好、死区小、灵敏度高、动态性能好以及响应速
度快等优点。
3
(1)电液伺服阀按用途、性能和结构特征可分为 通用型和专用型;
防 爆 型 伺 服 阀
4
(2)按输出量可分为流量控制伺服阀和压力控制 伺服阀;
液压伺服系统
电液伺服阀及电液伺服系统
1
六、电液伺服阀及电液伺服系统
液压与气压用伺服阀是电液或电气 联合控制的多级伺服元件,它能将微弱 的电气输入信号放大成大功率的液压或 气压能量输出,以实现对流量和压力的 控制。它接受一种模拟量电控信号,输 出液压模拟量随电控信号的大小及极性 变化。电液或电气伺服阀具有控制精度 高和放大倍数大等优点,在液压与气压 控制系统中得到了广泛的应用。
这种伺服阀结构 紧凑,外形尺寸小,响应 快.但喷嘴挡板的工作 间隙较小,对油液的 清洁度要求较高.
13
14
15
(3)射流管式伺服阀
该阀采用衔铁式力矩 马达带动射流管,两个接 收孔直接和主阀两端面连 接,控制主阀运动。主阀 靠一个板簧定位,其位移 与主阀两端压力差成比例. 这种阀的最小通流尺寸 (射流管口尺寸)比喷嘴 挡板的工作间隙大4~10倍, 故对油液的清洁度要求较 低。缺点是零位泄漏量大; 受油液粘度变化影响显著, 低温特性差;力矩马达带 动射流管,负载惯量大, 响应速度低于喷嘴挡板阀。
电液伺服阀
三级电液伺服阀通常 是在一个通用型两级伺服 阀(称前量阀)下接一个滑 阀式液压放大器(第三级) 构成;
1.永久磁铁;2.导磁体;3. 衔铁转轴;4.档板;5.阀芯; 6.阀体;
14
7.固定节流口;8.控制线圈;9.喷嘴;10、11.内部通道
电液控制技术-电液伺服阀
常见电液伺服阀的典型结构和 工作原理
二、两级电液伺服阀
1、滑阀位置反馈两级伺服阀 4)机械反馈两级伺服阀
1.永久磁铁;2.导磁体;3.十字弹簧;4.控制杆;5.输出级阀芯; 6.输出级阀体;
常见电液伺服阀的典型结构和 工作原理
二、两级电液伺服阀
3、其它形式的两级电液伺服阀 1)射流管式力反馈两级伺服阀
1.力矩马达;2.柔性供油管; 3.射流管;4.射流接收器; 5.反馈弹簧;6. 阀芯;7.过滤器
18
电液控制技术-电液伺服阀
常见电液伺服阀的典型结构和 工作原理
二、两级电液伺服阀
3、其它形式的两级电液伺服阀 2)压力-流量伺服阀
1.永久磁铁;2.导磁体;3. 衔铁 转轴;4.档板;5.阀芯; 6.阀体; 7.固定节流口;8.控制线圈;9.
喷嘴;10、11.内部通道
13
电液控制技术-电液伺服阀
常见电液伺服阀的典型结构和 工作原理
二、两级电液伺服阀
1、滑阀位置反馈两级伺服阀 3)弹簧对中两级伺服阀
弹簧设计制作困难; 属于开环控制; 受外界条件影响大。
2
电液控制技术-电液伺服阀 电液伺服阀的基本组成和分类
一、电液伺服阀的基本组成
反馈机构有机械反馈、液压反馈和电反馈等多种方式, 反馈物理量包括位置反馈、压力反馈和流量反馈。
3
(a) 滑阀位置反馈 (b) 负载压力反馈 (c) 负载流量反馈
电液伺服阀的工作原理
电液伺服阀的工作原理
嘿,朋友们!今天咱来唠唠电液伺服阀的工作原理。
你看啊,这电液伺服阀就好比是一个特别厉害的指挥官!它能精准地控制液压系统中的液体流动。
想象一下,液压系统就像是一条繁忙的马路,液体就是来来往往的车辆。
而电液伺服阀呢,就是那个站在路口的交警,指挥着这些“车辆”该往哪儿走,走多快。
它是怎么做到的呢?电液伺服阀里面有很多精巧的部件呢!比如说阀芯,它就像是个灵活的开关,可以根据输入的信号来调整开口大小,从而控制液体的流量。
这就好像交警根据路况来调整红绿灯的时间一样。
还有啊,电液伺服阀对信号的响应那叫一个迅速!就跟短跑运动员听到发令枪响后立马起跑一样快。
一旦有了控制信号,它能马上行动起来,精确地调节液压系统。
你说这神奇不神奇?而且啊,它的精度还特别高。
就好比是射箭,能一箭射中靶心,分毫不差。
这样就能保证液压系统稳定、高效地工作啦。
电液伺服阀在很多领域都大显身手呢!比如在工业生产中,它能让那些大型机器设备乖乖听话,按照我们的要求精确运作。
在航空航天领域,它更是至关重要,保障着飞行器的安全和性能。
你说要是没有电液伺服阀,那这些领域得变成啥样啊?那肯定会乱套了呀!所以说,它可真是个了不起的小家伙!虽然它个头不大,但是作用巨大呀!
总之,电液伺服阀就是这样一个神奇又重要的存在,它就像是液压系统的灵魂,让一切都变得有序、高效。
咱可得好好了解了解它,说不定哪天你就会和它打上交道呢!你说是不是这个理儿?。
伺服阀工作原理
伺服阀工作原理
伺服阀是一种用于控制液压系统中液压流量和压力的装置。
它由一个电动机、阀芯和弹簧组成。
伺服阀的工作原理是通过电动机的驱动,控制阀芯的位置,从而改变阀口的开启程度,调节液压流量。
当电动机工作时,它会转动一个螺杆,该螺杆与阀芯相连。
当螺杆转动时,阀芯也会随之移动。
阀芯的移动距离决定了阀口的开度。
阀芯内部通常有几个小孔,当阀芯移动时,这些小孔会与阀体上的相应通道对齐或闭合。
当小孔与通道对齐时,液压流体可以通过阀体进入或释放,从而改变液压系统中的流量和压力。
当小孔与通道闭合时,液压流体无法流动,从而保持所需的压力。
伺服阀还包括一个弹簧。
弹簧的作用是提供一个恢复力,当电动机停止工作时,阀芯会受到弹簧的作用,返回到原位,从而关闭阀口。
通过调节电动机的转速和方向,可以控制阀芯的位置和移动速度,从而实现对液压流量和压力的精确控制。
这使得伺服阀在自动控制系统中广泛应用,如工业机械、冶金设备和航空航天等领域。
喷嘴挡板式电液伺服阀工作原理
喷嘴挡板式电液伺服阀工作原理1. 引言哎呀,今天我们来聊聊一种神奇的机械小玩意儿——喷嘴挡板式电液伺服阀。
别看这名字一听就让人有点头大,其实它的工作原理简单得很,听完你绝对会恍然大悟,恍若一盏明灯照亮了你的心灵。
就像你在厨房里炒菜,锅里滋滋作响,你可得知道是什么让这一切变得美味可口,对吧?这小家伙在工业界就扮演着类似的角色,默默无闻却又至关重要。
2. 喷嘴挡板式电液伺服阀的基本概念2.1 什么是喷嘴挡板式电液伺服阀?首先,喷嘴挡板式电液伺服阀是一个通过电信号控制液压系统中流体流动的装置。
简单来说,它就像是个水龙头,开开关关间接控制着液体的流动。
但这个水龙头可不简单,背后可是有一套复杂的电液控制系统在运作,真是让人叹为观止。
2.2 它的工作原理是怎样的?那么,喷嘴挡板式电液伺服阀是怎么工作的呢?想象一下,液压油像小河一样流淌,而阀门则是小桥。
电信号就像是一只小手,轻轻推动这座桥,桥的开启程度就决定了水流的大小。
通俗点说,就是通过电信号来调节液体的流量和压力,达到控制机器运动的效果。
就像我们调节水龙头的大小,水流大了,压力强了,工作效率自然就提高了。
3. 细节解读3.1 结构组成这小家伙的结构也挺有意思,主要由喷嘴、挡板、液压油路和电磁铁组成。
喷嘴就像是个口子,负责喷出液体;挡板则像是一扇门,开关自如;而电磁铁则负责接收电信号,控制挡板的开合。
听起来是不是很神奇?就像一个精密的舞蹈团,每一个成员都在为整体的表演而努力。
3.2 工作过程工作时,电信号一发,电磁铁立马反应过来,挡板打开,液压油呼啸而出。
这时候,压力就像气球一样被鼓起来,液体流动的速度也随之加快。
你可得小心哦,这可是个快节奏的活儿,稍不注意,机器就可能会“失控”,哎呀,真是要命。
反之,若是电信号减弱,挡板又会慢慢闭合,液体流动也会减缓,真是一种微妙的平衡。
就像在跳舞时,节奏一变,舞者的动作也得跟着来,简直是天衣无缝!4. 应用场景4.1 工业生产喷嘴挡板式电液伺服阀在工业生产中的应用可谓是广泛得很。
电液伺服阀工作原理
电液伺服阀工作原理Working Principle of Electro-Hydraulic Servo Valve。
Electro-hydraulic servo valve is a device that converts electrical signals into hydraulic power to control the flow rate and direction of fluid in a hydraulic system. It is widely used in various industrial applications, such as aerospace, automotive, marine, and military fields. In this article, we will discuss the working principle of electro-hydraulic servo valve in detail.1. Basic Structure of Electro-Hydraulic Servo Valve。
Electro-hydraulic servo valve consists of a valve body, a spool, a torque motor, a feedback mechanism, and acontrol circuit. The valve body is a housing that contains the spool and the hydraulic ports. The spool is a sliding element that regulates the flow of fluid through the valve ports. The torque motor is an electrical device that generates a rotational force to move the spool. Thefeedback mechanism is a sensor that measures the position of the spool and sends a signal to the control circuit. The control circuit is an electronic circuit that receives the input signal from the user and sends a command signal to the torque motor.2. Working Principle of Electro-Hydraulic Servo Valve。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电液伺服阀原理
电液伺服阀是一种常用的自动控制元件,其工作原理是通过电信号控制阀芯的运动,进而调节液压系统中的液压流量和压力。
在电液伺服阀的工作过程中,电信号从控制电路输入,经过转换和放大等处理后,作用于阀芯或阀芯驱动部分。
根据电信号的大小和方向,阀芯会产生相应的位移和速度,从而改变阀芯的通道面积,控制液压油流的通断和流量的大小。
电液伺服阀内部通常由阀芯、阀套、阀体和控制电磁铁等部件组成。
阀芯的移动通过控制电磁铁的磁力来实现。
当电磁铁受到电信号的激励后,产生的磁力会使阀芯受力,产生位移。
阀芯的位移会改变阀芯与阀套之间的通道面积,从而调节流体的通过量。
根据不同的工作原理,电液伺服阀可以分为直动式和间接式两种。
直动式电液伺服阀是通过电信号直接控制阀芯的运动,使阀芯产生位移,改变阀芯与阀套之间的通道面积。
而间接式电液伺服阀则是通过电信号控制阀芯驱动部分的运动,进而间接地改变阀芯与阀套之间的通道面积。
总之,电液伺服阀是一种通过电信号控制阀芯运动的自动控制元件,通过改变阀芯与阀套之间的通道面积,调节液压系统的液压流量和压力。
在工程和工业领域中,电液伺服阀广泛应用于各种液压控制系统中,实现精确的自动化控制。