第15章 整式的乘除与因式分解综合复习测试(三)及答案
《整式乘除与因式分解》综合测试题(A)
信 心 就 是放 胆 让 心 去超 越 眼 所 能 见 的界 限 。— — 托 马 斯 ・ 卡 莱 尔
) .
B . 3 a 2 b一3 a b+6 6=3 b ( t l 2 一口+2 D . 一 +4 x y 一6 x z =- 2 ( x+2 y一
1 5 . 若( —n ) ( —b ) = + p x +q , 则 P与 9的值 分别 为 (
A. P = 口+b, q=a b
1 9 . ( 8 分) 计算 : ( 1 ) ( 3 x ) ・ ( 一 2 ) ÷( 一 6 矿) ;
( 2 ) [ ( 2 x 一 ) , ) ( 2 x 十 Y ) +
T h e o n l y l i mi t t o o u r r e a l i z a t i o n o f t o mo  ̄o w w i l l b e o u r d o u b t s o f t o d a y .
、
、
、
Ho p e i s i t s e l f a s p e c i e s o f h a p p i n e s s t h a t t h i s wo r l d a f o r d s .
~ 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 ~ 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 ~ 一 一 一 ~ 一 一 一 一 一 一 一 一 一 一 一 一 一 一
、
。
‘
、
、
希 望 本身 是 一 种 幸福 , 也是 这 个 世 界 能提 供 的 主要 幸 福 。— — 塞缪 尔 . 约 翰 逊
整式的乘除及因式分解综合检测(人教版)(含答案)
整式的乘除及因式分解综合检测(人教版)一、单选题(共10道,每道10分)1.当时,的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:代入求值2.的相反数是( )A.4B.C. D.答案:D解题思路:试题难度:三颗星知识点:负指数幂的运算3.下列各式运算正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:整式的运算4.要计算的值,小明是这么思考的:令,则,因此.仿照以上推理,计算出的值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:同底数幂的乘法5.将分解因式,结果是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:因式分解--运用公式法6.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:因式分解--分组分解法7.已知,则的值是( )A.4B.2C.1D.答案:A解题思路:试题难度:三颗星知识点:整体代入8.若,则的值为( )A.0B.3C.9D.12答案:D解题思路:试题难度:三颗星知识点:整体代入9.已知实数满足条件:,那么的平方根是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:因式分解的应用10.若,则的值为( )A.0B.1C.-1D.无法确定答案:A解题思路:试题难度:三颗星知识点:因式分解的应用。
整式的乘除与因式分解综合练习题含答案
整式的乘除与因式分解综合练习题一、选择题1.下列计算中,运算正确的有几个( )(1) a 5+a 5=a 10(2) (a+b)3=a 3+b 3(3) (-a+b)(-a-b)=a 2-b 2(4) (a-b)3= -(b-a)3A 、0个B 、1个C 、2个D 、3个2.当a =-1时,代数式(a +1)2+ a (a +3)的值等于( )A.-4B.4C.-2D.23、下列各式中,能用平方差公式计算的是( )A 、B 、C 、D 、4.若x 2+2(m-3)x+16是完全平方式,则m 的值等于( )A.3B.-5C.7.D.7或-15.若,则的值为 ( ) A . B .5 C .D .26、计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.9601))((b a b a +--))((b a b a ---))((c b a c b a +---+-))((b a b a -+-7、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ( )A 、p=0,q=0B 、p=3,q=1C 、p=–3,–9D 、p=–3,q=18.如果一个单项式与的积为,则这个单项式为( ) A. B. C. D.9、对于任何整数,多项式都能( )A 、被8整除B 、被整除C 、被-1整除D 、被(2-1)整除10.已知,,则与的值分别是 ( )A. 4,1B. 2,C.5,1D. 10,二、填空题11、(1)化简:a 3·a 2b=12、把边长为12.75cm 的正方形中,挖去一个边长为7.25cm 的小正方形,则剩下的面积为 。
13.已知31=-a a ,则221a a + 的值等于 。
14、有一串单项式:……,(1)第2006个单项式是 ;(2)第(n+1)个单项式是 .三、解答题。
m 9)54(2-+m m m m 234,2,3,4,x x x x --192019,20x x -15、化简(1)3x2y·(-2xy3); (2)2a2(3a2-5b);(3)(-2a2)(3a b2-5a b3). (4)(5x+2y)(3x-2y).1)2009 (5)(3y+2)(y-4)-3(y-2)(y-3);(6)(-3)2008·(316、因式分解(1)xy+a y-by; (2)3x(a-b)-2y(b-a);(3)m2-6m+9;(4) 4x2-9y2(5) x4-1; (6) x2-7x+10;17、先化简,再求值(a+b)(a-2b)-(a+2b)(a-b),其中a=2, b=-1 18.已知x-y=1,xy=3,求x3y-2x2y2+xy3的值.19、如图是L 形钢条截面,试写出它的面积公式。
15章 整式的乘除与因式分解综合测试A.pdf
()
A.被 2n + 4 整除 B.被 n + 2 整除 C.被 20 整除 D.被 10 整除和被 2n + 4 整除
10.(x2+px+8)(x2-3x+q)乘积中不含 x2 项和 x3 项,则 p,q 的值 (
)
A.p=0,q=0
B.p=3,q=1 C.p=–3,–9
D.p=–3,q=1
二、填空题(每题 3 分,共 30)
2.下列计算正确的是( ).
A. 2a5 + a5 = 3 a10
B. a2 a3 = a6
B. m2n 不是整式 5
D. 3x 2 − y + 5xy2 是二次三项式
C. (a2 )3 = a5
D. a10 a2 = a8
( ) ( ) 3.已知 x2 x2 −16 + m = x2 − 8 2 ,则 m 的值为(
学无 止 境
五、解答题(29 题 10 分,30 题 12 分,共 22 分)
29.某商店积压了 100 件某种商品,为使这批货物尽快脱手,该商店采取了如下销售
的强度是105 ;摩托车发出的声音是 110 分贝,它表示声音的强度是1011 ,那么摩
托车的声音强度是说话声音强度的_______倍。
17.用图中所示的正方形和长方形卡片若干张,拼
成一个长为 2a + b ,宽为 3a + 2b 的矩形,需要 A 类
卡 片______ 张 , B 类 卡 片 ______ 张 , C 类 卡 片
252 = 2 (2 +1) 100 + 52
352 = 3 (3 + 1) 100 + 52
《整式的乘除与因式分解》培优训练及答案
整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。
整式的乘除与因式分解测试题及答案
整式的乘除与因式分解测试题及答案整式的乘除与因式分解测试题及答案题目:1.(4分)下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6 2.(4分)(x﹣a)(x2+ax+a2)的计算结果是()A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a33.(4分)下面是某同学在一次检测中的计算摘录:①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2其中正确的个数有()A.1个B.2个C.3个D.4个4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是()A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+15.(4分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为()A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab答案:1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
1923992分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;B、应为a4÷a=a3,故本选项错误;C、应为a3a2=a5,故本选项错误;D、(﹣a2)3=﹣a6,正确.故选D.点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.2.考点:多项式乘多项式。
初中数学九年级下册-数学:第15章整式的乘除与因式分解整章测试
第十五章 整式的乘除与因式分解测试一、填空题(每题2分,共32分)1.2221(2)2xy x y = . 2.3(2)a a b c --+= . 3.(2)(2)m b b m -+= .4.2007200831()(1)43⨯-= .5.++xy x 1292 =(3x + )26._________________,,6,4822===+=-y x y x y x 则. 7.已知:________1,5122=+=+aa a a . 8.(________)749147ab aby abx ab -=+--.9.多项式5545y y x x n +-是五次三项式,则正整数n 可以取值为 .10.分解因式:a a 43-= ,222221y xy x +-= .11.如果=-+=-k a a k a 则),21)(21(312 .12.若===+-+-b a b b a a ________,,02910422则 .13.正方形面积为)0,0(2212122>>++b a y xy x 则这个正方形的周长是 .14.写一个二项式,使它可以先提公因式,•再运用公式来分解,•你写的二项式是_________,因式分解的结果是___ ___.15.已知8,6x y x y +=-=,求代数式2222x y x y ---= .16.如图1在边长为a 的正方形中,挖掉一个边长为b 的小正方形(a>b ),把余下的部分拼成一个矩形,如图2,通过计算两个图形(阴影部分)的面积,•可以验证一个等式,则这个等式是___ __.二、解答题(共68分)17.(4分)计算:2(1)(23)a a a +-+.18.(4分)计算:25(2)(31)2(1)(5)y y y y y --+-+-.19.(4分)因式分解:222510m mn n -+.20.(4分)因式分解:212()4()a b x y ab y x ---.21.(5分)先化简,再求值(32)(23)(2)(2)a b a b a b a b +----,其中11.5,4a b =-=.22.(5分)已知:2226100x x y y ++-+=,求,x y 的值.第16题图1 第16题图223.(5分)已知x (x -1)-(x 2-y )=-2.求222x y xy +-的值.24.(6分)已知2410a a --=,求(1)1a a -;(2)21()a a+.25.(6分)一个长80cm ,宽60cm 的铁皮,将四个角各裁去边长为bcm 的正方形,•做成一个没有盖的盒子,则这个盒子的底面积是多少?当b=10时,求它的底面积.26.(6分)某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)27.(7分)本市出租车的收费标准为:3千米以内(含3千米)收费5元,超过3千米的部分每千米收费1.20元(不足1千米按1千米计算),另加收0.60元的返空费. 用x 表示出应收费y 元的代数式; (1)设行驶路程为千米(x ≥3且取整数),(2)当收费为10.40元时,该车行驶路程不超过多少千米?路程数在哪个范围内?x28.(12分)由多项式的乘法法则知:若2()()x a x b x px q ++=++,则,p a b q a b =+=;反过来2()().x px q x a x b ++=++要将多项式2x px q ++进行分解,关键是找到两个数a 、b ,使,,a b p a b q +==如对多项式232x x -+,有3, 2.1,2,p q a b =-==-=-此时(1)(2)3,(1)(2)2,-+-=---=所以232x x -+可分解为(1)(2),x x --即232(1)(2)x x x x -+=--.(1)根据以上分填写下表:(2)根据填表,还可得出如下结论:当q 是正数时,应分解成两个因数a 、b 号,a 、b 的符号与 相同;当q 是负数时,应分解成的两个因数a 、b 号,a 、b 中绝对值较大的因数的符号与 相同.(3)分解因式.212x x --= ;276x x -+= .。
第15章《整式的乘除与因式分解》单元测试题(含答案)[
《整式的乘除与因式分解》单元测试题一、选择题(共5小题,每小题4分,共20分)1、下列运算正确的是 ( )A 、 933842x x x ÷=B 、2323440a b a b ÷=C 、22m m aa a ÷= D 、2212()42abc ab c ÷-=- 2、计算(32)2013×1.52012×(-1)2014的结果是( ) A 、32 B 、23 C 、-32 D 、-23 3、下列多项式乘法中可以用平方差公式计算的是( ) A 、))((b a b a -+- B 、)2)(2(x x ++ C 、)31)(31(x y y x -+ D 、)1)(2(+-x x 4、 把代数式ax ²- 4ax +4a ²分解因式,下列结果中正确的是( )A 、a (x -2) 2B 、 a (x +2) 2C 、a (x -4) 2D 、a (x -2) (x +2)5、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )。
A 、a 2+b 2=(a +b )(a -b )B 、(a +b )2=a 2+2abC 、(a -b )2=a 2-2ab +b 2D 、a 2-b 2=(a -b )2二、填空题(共5小题,每小题4分,共20分)6、运用乘法公式计算:(32a -b )(32a +b )= ;(-2x -5)(2x -5)= 7、计算:534515a b c a b -÷=8、若a +b =1,a -b =2006,则a 2-b 2=9、在多项式4x 2+1中添加一个单项式,使其成为完全平方式,则添加的单项式为 (只写出一个即可)10、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 2y -2xy 2,商式必须是2xy ,则小亮报一个除式是 。
第15章 整式的乘除与因式分解测试卷(含答案)
第15章 整式的乘除与因式分解 测试卷注意事项:本卷共八大题,计23小题,满分150分.考试时间120分钟. 一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A ,B ,C ,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题;选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.若32144mnx y x y x ÷=,则m 、n 满足条件的取值为 ( ). A .m =6,n =1 B .m =5,n =1 C .m =5,n =0 D .m =6,n =0 2.下列各式可以用平方差公式的是( ).A .(4)(4)a c a c -+-B .(2)(2)x y x y -+C .(31)(13)a a ---D . 11()()22x y x y --+ 3.下列各式中是完全平方公式的是( ).A .224a x + B .2244x ax a +-- C .2444x x ++ D . 2412x x ++-4.在(1)623[()]a a -⋅-;(2)34)(a a -⋅;(3)2332)()(a a ⋅-;(4)43()a --中,计算结果为12a -的有( ).A .(1)和(3)B .(1)和(2)C .(2)和(3)D .(3)和(4)5.为了应用平方差公式计算()()a b c a b c -++-,必须先适当变形,下列各变形中,正确的是( ).A .()()a c b a c b +--+⎡⎤⎡⎤⎣⎦⎣⎦B .()()a b c a b c -++-⎡⎤⎡⎤⎣⎦⎣⎦C .()()b c a b c a +--+⎡⎤⎡⎤⎣⎦⎣⎦D .()()a b c a b c --+-⎡⎤⎡⎤⎣⎦⎣⎦ 6.下列多项式相乘的结果为1242--x x 的是( ).A .)4)(3(-+x xB .)6)(2(-+x xC .)4)(3(+-x xD .)2)(6(-+x x 7.计算24(1)(1)(1)(1)x x x x -++-+的结果是( ).A .0B .2C .-2D .-5 8. 下列多项式中,含有因式)1(+y 的多项式是( ). A .2232x xy y --B .22)1()1(--+y yC .)1()1(22--+y yD .1)1(2)1(2++++y y9.如图:(如图①)在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是( ).图 ① 图 ② A . a 2-b 2 =(a +b )(a -b ) B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .(a +2b )(a -b )= a 2+ab -2b 210.观察下列等式:170=,771=,4972=,34373=,240174=,…,由此可判断1007的个位数字是( ).A .3B .7C .1D .9二、填空题(本题共4小题,每小题5分,满分20分)11.不等式22(21)(21)x x --+≤2(3)x -的解集是_______________.12.已知2ma =,16nb =,则382m n+=____________.13.已知)3)(8(22q x x px x +-++的展开式中不含2x 项和3x 项,则q p +的值=______.14.如图,从直径是2x y +的圆中挖去一个直径为x 的圆和两个直径为y 的圆,则剩余部分的面积是_______________. 三、(本题共2小题,每小题8分,满分16分) 15.化简:(1)82()()mn mn ÷ (2) )9()15()3(24322y x xy y x -⋅-÷16.用乘法公式计算:(1)49.850.2⨯; (2)2298.四、(本题共2小题,每小题8分,共16分)17.已知x 是有理数,y 是无理数,请先化简下面的式子,再在相应的圆圈内选择你喜欢的数代入求值:2()(2)x y y x y -+-.18.利用简便方法计算:222111(1)(1)(1)234--- (22)11(1)(1)910--五、(本大题共2小题,每小题10分,满分20分) 19.因式分解:(1)x x x 2718323+- (2)()222164x x -+20.先化简,再求值:22(1)(2)22()ab ab a b ab ⎡⎤+--+÷-⎣⎦;其中3,2a b 4==-3.13-,, 121.223,,, 1.50-,六、(本题满分12分)21.一个正方形的一边增加3cm ,另一边减少3cm ,所得到的长方形与这个正方形的每一边减少1cm 所得到的正方形的面积相等,求原来正方形的面积. 七、(本题满分12分)22.如图,图1是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图2的形状拼成一个正方形。
《整式乘除与因式分解》综合测试题(B)
因式分 解 : ( —y ) 一( Y— ) =
.
_ 一
—
若 n—b=1 , 则 ( a 2 +b ) 一a b=
—
.
—
‘
若 0+b=2 , b+c =3 , 0 +c=1 4 , 则a 2 一C 是值 是
— —
解 答题 ( 共3 2分 )
计算 ( 每题 4分 , 共1 6分 )
B . 2 8 C . 1 2
c ・ 古
。 ・ 一 ☆
Wh e r e t h e r e i s n o h o p e , t h e r e c a n b e n o e n d e a v o r .
哪 里没有希望 , 哪里就不可能有努力 。—— 塞缪 尔・ 约翰逊
不要垂头丧气, 即使 失 去 一 切 , 明 天仍 在 你 的 手 里 。—— 奥 斯 卡 ・ 王 尔 德
为 某 个 信念 而 死 并 不难 。 难 的是 实 践 该信 念 。— — 威廉 ・ 萨 克雷
四、 解 答题 ( 每题 5分 , 共2 0分 )
1 9 . 已知 , 一5 x=1 4 . 求( 一1 ) ( 2 x 一1 ) 一( +1 ) +1 的值.
2 0 . 当 口=3时 , 求( 一l 6 ) ÷( + 4 ) 的值.
因式 分解 ( 每小题 4分 , 共1 6 分)
( 1 ) 。 一4 x ; ( 2 ) 1 6 a 2 一( 3 a+ 4 6 ) ;
( 3 ) 一8 + 1 6 ;
( g ) ( + ) 一 4 2 ) , 2 .
I t ’ s n o t d y i n gf o r af a i t ht h a t ’ s S Oh a r d. i t ’ sl i v i n gu pt oi t .
人教版八年级上册数学《整式的乘除与因式分解》单元测试卷(含答案)
人教版八年级上册数学《整式的乘除与因式分解》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列运算正确的是A .321ab ab -=B .246a a a ⋅=C .()325x x = D .232x x x ÷=2.如果22()()4a b a b +--=,则一定成立的是( )A .a 是b 的相反数B .a 是b -的相反数C .a 是b 的倒数D .a 是b -的倒数3.若23x =,45y =,则22x y +的值为( )A .15B .2-C .654.下列分解因式正确的是( )A 、2x 2﹣xy ﹣x=2x (x ﹣y ﹣1)B 、﹣xy 2+2xy ﹣3y=﹣y (xy ﹣2x ﹣3)C 、x (x ﹣y )﹣y (x ﹣y )=(x ﹣y )2D 、x 2﹣x ﹣3=x (x ﹣1)﹣35.在多项式①x 2+2xy ﹣y 2;②﹣x 2﹣y 2+2xy ;③x 2+xy+y 2;④4x 2+1+4x 中,能用完全平方公式分解因式的有( )A 、①②B 、②③C 、①④D 、②④6.若a*b=a 2+2ab ,则x 2*y 所表示的代数式分解因式的结果是( )A 、x 2(x 2+2y )B 、x (x+2)C 、y 2(y 2+2x )D 、x 2(x 2﹣2y )7.已知2011200920102010201020092011X =⨯⨯﹣,那么X 的值是( )A 、2008B 、2009C 、2010D 、20118.若m >﹣1,则多项式m 3﹣m 2﹣m+1的值为( )A 、正数B 、负数C 、非负数D 、非正数9.若(p ﹣q )2﹣(q ﹣p )3=(q ﹣p )2E ,则E 是( )A 、1﹣q ﹣pB 、q ﹣pC 、1+p ﹣qD 、1+q ﹣p10.把x 2﹣y 2﹣2y ﹣1分解因式结果正确的是( )A 、(x+y+1)(x ﹣y ﹣1)B 、(x+y ﹣1)(x ﹣y ﹣1)C 、(x+y ﹣1)(x+y+1)D 、(x ﹣y+1)(x+y+1)二 、填空题(本大题共5小题,每小题3分,共15分)11.若87a =,78b =,用含a 、b 的代数式表达5656为12.计算:⑴232223(2)8()()()______x y x x y -+⋅-⋅-=⑵2(2)(2)()______a b a b a b +--+=⑶22()()()_______x y x y y x -+--+=13.已知32131a a x x x x +⋅⋅=,则a 的值为14.⑴如果多项式219x kx ++是一个完全平方式,那么k 的值为⑵如果多项式24x kx -+是一个完全平方式,那么k 的值为15.填空:(1)222()______a b a b +=+-;(2)222()______a b a b +=-+;(3)22()()_______a b a b -=+-;三 、解答题(本大题共7小题,共55分)16.如果12m x =,3n x =,求23m n x +的值17.分解因式:2x x5129+---2383x x18.分解因式:22--=x xy y12111519.计算(1)2-+(2)(2)(2)x y(23)--a b b a(3)2222++-+(4)(22)(22) ()()a ab b a ab b-+-+x y y x20.已知实数a、b满足2a b()25-=,求22+=,2()1a b++的值.a b ab21.计算:222222224--÷+.(3)()(4)89xy x y x y y x y22.分解因式:5544+-+()x y x y xy人教版八年级上册数学《整式的乘除与因式分解》单元测试卷答案解析一 、选择题1.B2.C3.A4.C5.D6.A7.B ;已知20102011﹣20102009=2010x ×2009×2011,则有20102009×2009×2011=2010x×2009×2011,则有x=2009.8.C ;多项式m 3﹣m 2﹣m+1=(m 3﹣m 2)﹣(m ﹣1)=m 2(m ﹣1)﹣(m ﹣1)=(m ﹣1)2(m+1),∵m >﹣1,∴(m ﹣1)2≥0,m+1>0,∴m 3﹣m 2﹣m+1=(m ﹣1)2(m+1)≥0,故选C .9.C ;(p ﹣q )2﹣(q ﹣p )3=(q ﹣p )2(1﹣q+p ).故选C .10.A ;原式=x 2﹣(y 2+2y+1)=x 2﹣(y+1)2=(x+y+1)(x ﹣y ﹣1).故选A .二 、填空题11.()()()78565687567878=⨯=⨯,当87a =,78b =时,原式78a b =12.⑴原式=6316x y -;⑵原式=22232a ab b ++;⑶原式=44x y -13.914.完全平方:2222()a ab b a b ±+=±, ⑴参看公式我们可以发现23k =±,学生在此极易少答案;⑵4k =±. 15.⑴2ab ;⑵2ab ;⑶4ab ;三 、解答题16.()()2323m n m n x x x +=⋅,12m x =,3n x =,∴原式274=17.2383(31)(3)x x x x --=+-;25129(3)(53)x x x x +-=+-18.22121115(35)(43)x xy y x y x y --=-+19.(1)原式222(23)4129x y x xy y =-=-+(2)原式22222(2)(44)44a b a ab b a ab b =--=--+=-+-(3)原始22224224()()a b ab a b ab a a b b ⎡⎤⎡⎤=+++-=++⎣⎦⎣⎦(4)原式222[2(2)][2(2)]4(2)444x y x y x y x xy y =+---=--=-+-20.2222()()132a b a b a b ++-+==,22()()64a b a b ab +--==-,227a b ab ++=. 21.原式2222442249()1689x y x y x y y x y =--÷+422442244299297x y x y x y x y x y =--+=22.原式44()()x x y y x y =---44()()x y x y =--22()()()()x y x y x y x y =--++222()()()x y x y x y =-++。
章复习 第15章 整式的乘除与因式分解
章复习 第十五章 整式的乘除与因式分解一、整式的乘法1、幂的运算法则⑴同底数幂的乘法.同底数幂相乘,底数______,指数______.即____________(m ,n 都是正整数). 注:三个或三个以上同底数幂相乘时也具有这一性质,如p n m a a a ⋅⋅=______(m ,n ,p 都是正整数).⑵幂的乘方.幂的乘方,底数______,指数______.即____________(m ,n 都是正整数).⑶积的乘方.积的乘方,等于把积的每一个因式____________,再把所得的幂______.即()n ab =______(n 为正整数).幂的运算法则的异同:2⑴单项式与单项式的乘法法则单项式与单项式相乘,把它们的______、____________分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注:①此法则可利用乘法交换律、结合律及同底数幂的运算性质推导;②几个单项式的积仍是一个______,其次数等于原来各个单项式的次数之______.⑵单项式与多项式的乘法法则单项式与多项式相乘,就是用单项式去乘多项式的______,再把所得的积______.注:①此法则是由乘法分配律推导的,即m (a +b +c )= ma + mb + mc .②单项式乘多项式,如果单项式不为0,那么结果仍是多项式,积的项数与原多项式的项数相同.⑶多项式与多项式的乘法法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.注:①此法则实质上是将多项式乘多项式转化为单项式与多项式相乘.即:++=++)())((n m a n m b a bn bm an am n m b +++=+)(②使用法则时,应按一定的顺序相乘,避免重项、漏项,要注意“三数及整理”,“三数”即项数、次数、系数;“整理”即合并同类项.3、乘法公式⑴平方差公式两个数的______与这两个数的______的______,等于这两个数的平方差.即:________________________注:平方差公式的特征:①必须是两个二项式相乘;②两因式中的一对数相同,另一对数互为相反数.⑵完全平方公式两数和(或差)的______,等于它们的______,加上(或减去)它们的____________.即: ________________________或________________________注:a 与b 可以是数,也可以是整式.运用乘法公式计算,有时要在式子中添加括号,去括号法则即:()a b c ++=____________,()-+a b c =____________,()--a b c =____________.反过来可得添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都要变号.即:(后两项添括号)a b c ++=____________,a b c --=____________,a b c -+=____________.二、整式的除法1、同底数幂的除法同底数幂相除,底数不变,指数相减.即:____________,n m a ,,0=/都是正整数,并且n m >.注:应用法则时,不要忽略幂的指数为“1”的情况.如a a a =÷2,而不是a a ÷2=)0(202=/=-a a a . 2、零指数幂任何不等于0的数的0次幂都等于______.即:____________.注:①零次幂的底数不能为0,0的零次幂无意义;②a 0不能理解成0个a 相乘,)0(0=/a a 是一种规定,这种规定的合理性可由同底数幂的除法说明:∵m m a a ÷0a a m m ==-,又m m a a ÷=1,∴)0(10=/=a a .3、整式的除法⑴单项式除以单项式.单项式相除,把______与____________分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的______作为商的一个因式.注:单项式相除的步骤:①将单项式除法“转化”为有理数的除法或同底数幂的除法;②进行有理数或同底数幂的除法运算.⑵多项式除以单项式,多项式除以单项式,先把这个多项式的______除以____________,再把所得的商______.注:此法则是将多项式除以单项式问题转化为单项式除以单项式问题,即:÷+=+am+÷+++÷=÷bmcmba(c).mmammbmcmm三、因式分解1、因式分解⑴概念:把一个多项式化成几个______的______的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注:①因式分解专指多项式的恒等变形;②因式分解的结果必须是几个整式的积的形式.⑵因式分解与整式乘法的关系.因式分解与整式乘法是______方向的变形,它们互为______.2、提公因式法⑴公因式.多项式各项都含有的公共的因式叫做这个多项式各项的公因式.⑵提公因式法.一般地,如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.注:①提公因式法关键是确定公因式,确定公因式的步骤是:(a)取各项系数的______作为公因式的系数,(b)取相同字母____________的积;②公因式可以是单项式,也可以是多项式.3、公式法⑴公式法的概念把乘法公式反过来运用,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做公式法.⑵平方差公式两个数的平方差,等于这两个数的______与这两个数的______的______.即:__________________注:公式中所说的“两个数”是a,b,而不是a2、b2,其中a,b既可以是单项式,也可以是多项式.⑶完全平方公式.两个数的______加上(或减去)这两个数的______的2倍,等于这两个数的______(或______)的______.即__________________注:符合以下特点的多项式才能运用完全平方公式分解因式:是三项式,其中首末两项分别是两个式子(可以是单项式,也可以是多项式)的平方,且这两项的符号相同,中间一项是这两个式子的积的2倍,符号正负均可.*四、公式2()()()++=+++x p x q x p q x pq 、十字相乘法五、典型例题例1 下列数中能整除20062005(8)(8)-+-的是( )A.3B.5C.7D.9例2 若2312a b c ++=,且222a b c ab bc ca ++=++,求23a b c ++的值.例3 分解因式: ⑴214x x -+ ⑵2221a ab b -+-例4 在实数范围内分解因式:44x -.例5 计算:++-+-+- 22222295969798991002212-.注:逆用平方差公式,常常可以简化运算.*例6 如图,D 、E 分别是△ABC 的边BC 和AB 上的点,△ABD 与△ACD 的周长相等,△CAE 与△CBE 的周长相等,设BC=a ,AC=b ,AB=c .(1)求AE 和BD 的长;(2)若∠BAC=90°,△ABC 的面积为S .求证:S=AE·BD.第十五章 整式的乘除与因式分解 测试题一、选择题(每小题3分,共24分)1.下列计算中正确的是( )A .5322a b a =+B .44a a a =÷C .842a a a =⋅D .()632a a -=- 2. ()()22a ax x a x ++-的计算结果是( )A .3232a ax x -+B .33a x -C .3232a x a x -+D .322322a a ax x -++3.下面是某同学在一次测验中的计算摘录,其中正确的个数有( )①()523623x x x -=-⋅; ②()a b a b a 22423-=-÷;③()523a a =; ④()()23a a a -=-÷- A .1个 B .2个 C .3个 D .4个4.已知被除式是x 3+2x 2-1,商式是x ,余式是-1,则除式是( )A .x 2+3x -1B .x 2+2xC .x 2-1D .x 2-3x+15.是完全平方式的是( )A .412+-x x B .21x + C .1++xy x D .122-+x x 6.把多项式)2()2(2a m a m -+-分解因式等于( )A .))(2(2m m a +-B .))(2(2m m a --C .m (a -2)(m -1)D .m (a -2)(m +1)7.如()m x +与()3+x 的乘积中不含x 的一次项,则m 的值为( )A. –3B. 3C. 0D. 18.若153=x ,53=y ,则y x -3等于( )A .5B .3C .15D .10二、填空题(每空3分,共21分)9.=--+-)32)(32(n n n m ___________. 10.=--2)2332(y x ______________. 11.当x ___________时,()04-x 等于__________.12.若=,,则b a b b a ==+-+-01222. 13.已知31=+a a ,则221aa +的值是 . 三、解答题(共55分)14.计算题(每小题5分,共15分)(1) 22)1)2)(2(xx x x x +-+--((2) ()()[]xy y x y x 222÷--+(3)用简便方法计算:1198992++15.因式分解:(每小题5分,共20分)(1)3123x x - (2)a a a 1812223-+-(3)()()x y b y x a -+-2249; (4)()()122++++y x y x16.先化简,再求值. (10分)2)3)(3()2)(3(2-=-+-+-a a a x x 其中,x =117.(本题10分)对于任意的正整数n ,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由.。
人教版八年级数学上册 章节专项提高练习《整式的乘除与因式分解》(含答案)
2020年人教版八年级数学上册 章节专项提高练习《整式的乘除与因式分解》1.若(x ﹣2)(x 2+ax+b)的积中不含x 的二次项和一次项,求(2a+b+1)(2a ﹣b ﹣1)﹣(a+2b)(﹣2b+a)+2b 的值.2.(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为 .(2)若(4x ﹣y)2=9,(4x+y)2=169,求xy 的值.3.比较下列四个算式结果的大小(在横线上填“>”“<”或“=”).(1)42+52_______2×4×5;(2)(-1)2+22_______2×(-1)×2;(3)(-3)2+312______2×(-3)×31; (4)32+32_______2×3×3;(5)请通过观察归纳,写出反映这种规律的一般结论.4.观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)= .5.在日历上,我们发现某些数会满足一定的規律,比如2016年1月份的日历,我们设计这样的算法:任意选择其中的2×2方框,将方框中4个位置上的数先平方,然后交叉求和,再相减请你按照这个算法完成下列计算,并回答以下问题[2016年1月份的日历](1)计算:(12+92)﹣(22+82)= ,﹣= ,自己任选一个有4个数的方框进行计算(2)通过计算你发现什么规律,并说明理由.6.阅读:已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到x,y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试!已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.7.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?8.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)图1中阴影部分面积为,图2中阴影部分面积为,对照两个图形的面积可以验证公式(填公式名称)请写出这个乘法公式.(2)应用(1)中的公式,完成下列各题:①已知x2﹣4y2=15,x+2y=3,求x﹣2y的值;②计算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.9.在形如a b=N的式子中,我们已经研究过两种情况:已知a和b求N,这是乘方运算:已知b和N求a,这是开方运算,现在我们研究第三种情况:已知a和N求b,我们称这种运算为对数运算.定义:如果23=8,所以log28=3:因为32=9,所以log39=2,根据以上信息回答下列问题:(1)计算:log381= ,log33= ,log636= ,log x16=4,则x= .(2)设a x=M,a y=N(a>0,且a≠1,M>0,N>0),猜想log a MN和log a的结果,并证明.(3)计算:①log2(2×4×8×16×32×64);②log3;③log93+log927.10.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.参考答案1.解:(x﹣2)(x2+ax+b)=x3+ax2+bx﹣2x2﹣2ax﹣2b=x3+(a﹣2)x2+(b﹣2a)x﹣2b,∵(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,∴a﹣2=0且b﹣2a=0,解得:a=2、b=4,(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b=(2a)2﹣(b+1)2﹣(a2﹣4b2)+2b=4a2﹣b2﹣2b﹣1﹣a2+4b2+2b=3a2+3b2﹣1,当a=2、b=4时,原式=3×22+3×42﹣1=12+48﹣1=59.2.解:(1)(b+a)2﹣(b﹣a)2=4ab(2)(4x+y)2﹣(4x﹣y)2=16xy=160,∴xy=10.3.解:(1)>.(2)>.(3)>.(4)=.(5)结论:对于任意有理数a,b,都有a2+b2≥2ab.当a≠b时,a2+b2>2ab;当a=b时,a2+b2=2ab.4.解:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b20175.解:(1)(12+92)﹣(22+82)=1+81﹣4﹣64=14﹣=100+324﹣121﹣289=14,(32+112)﹣(42+102)=9+121﹣16﹣100=14,故答案为:14;(2)计算结果等于14,理由是:设最小的数字为n,则其余三个分别为n+8,n+1,n+7,所以[n2+(n+8)2]﹣[(n+1)2+(n+7)2]=n2+n2+16n+64﹣n2﹣2n﹣1﹣n2﹣14n﹣49=14.6.原式=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab,7.解:(1)找规律:2244120=⨯=-,22124342=⨯=-,22204564=⨯=-,22284786=⨯=-,…… 2220124503504502=⨯=- ,所以28和2012 都是神秘数.(2)()()()22222421k k k +-=+,因此由这两个连续偶数22k +和2k 构造的神秘数是4的倍数.(3)由(2)知,神秘数可以表示成()421k +,因为21k +是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为21n +和21n -,则()()2221218n n n +--=,即两个连续奇数的平方差是8的倍数. 因此,两个连续奇数的平方差不是神秘数.8.解:(1)图1中阴影部分面积为a 2﹣b 2,图2中阴影部分面积为(a+b)(a ﹣b), 对照两个图形的面积可以验证平方差公式:a 2﹣b 2=(a+b)(a ﹣b).故答案为:a 2﹣b 2,(a+b)(a ﹣b),平方差,a 2﹣b 2=(a+b)(a ﹣b).(2)①∵x 2﹣4y 2=(x+2y)(x ﹣2y),∴15=3(x ﹣2y),∴x ﹣2y=5;②(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(22﹣1)(22+1)(24+1)(28+1)……(264+1)+1=(24﹣1)(24+1)(28+1)……(264+1)+1=(28﹣1)(28+1)……(264+1)+1=(264﹣1)(264+1)+1=2128﹣1+1=2128.9.解:(1)log 381=log 334=4,log 33=1,log 636=log 662=2,log x 16=4,则x=2;答案为:4;1;2;2;(2)log a MN=log a M+log a N ;log a =log a M ﹣log a N ;证明:log a MN=log a a x •a y =log a a x+y =x+y ;log a M+log a N=x+y ,则log a MN=log a M+log a N ; log a =log a =log a a x ﹣y =x ﹣y ;log a M ﹣log a N=x ﹣y ,则log a =log a M ﹣log a N ;(3)①原式=log22+log24+log28+log216+log232+log264=1+2+3+4+5+6=21;②原式=log3243﹣log381=5﹣4=1;③原式=log93×27=log981=2.一、综合题10.解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=﹣1,a=3,则a﹣b=4;(2)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a++2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(2)∵x+y=2,∴y=2﹣x,则x(2﹣x)﹣z2﹣4z=5,∴x2﹣2x+1+z2+4z+4=0,∴(x﹣1)2+(z+2)2=0,则x﹣1=0,z+2=0,解得x=1,y=1,z=﹣2,∴xyz=2.。
《整式的乘法与因式分解》单元测试(含答案)
C.x2-xy+y2=(x-y)2D.2x-2y=2(x-y)
5.若 ,那么 值是
A. B. C. D.
6.如果 ,那么 的值为
A. B. C. D.
7.计算 的结果是
A. B. C. D.
8.已知 ,则 的值等于 .
A. B. C. D.
9.下列各式中与 相等的是
A. B. C. D.
10.如果 的左边是一个关于 的完全平方式,则 的值为
【点睛】本题考查了提公因式法和运用公式法因式分解的综合运用,分解因式时,要分解到每一个因式都不能够在分解即可.
12.计算 _______________.
【答案】
【解析】
【分析】
把(-2)2014写成(-2)×(-2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.
【详解】原式=
故答案为2.
【点睛】考查有理数的乘方运算,掌握乘方运算法则是解题的关键.
13.分解因式: ____________________________.
【答案】(x-6)(x+1)
【解析】
因为-6×1=-6,-6+1=-5,所以利用十字相乘法分解因式为: =(x-6)(x+1).
故答案为(x-6)(x+1)
【解析】
【分析】
(1)先利用完全平方公式和多项式除单项式的方法计算,再合并同类项,再进一步代入求得数值即可;
(2)利用平方差公式和单项式乘以多项式进行计算,再进一步合并同类项,最后代入求得数值即可.
【详解】(1)原式=
=
当 , 时,原式=
(2) ,
当 , 时, .
【点睛】考查整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.
第15章 整式的乘除与因式分解综合复习测试(二)及答案
第十五章 整式的乘除与因式分解综合复习测试度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每题3分,共30分)1、44221625)(______)45(b a b a -=+-括号内应填( )A 、2245b a +B 、2245b a +C 、2245b a +-D 、2245b a -- 2、下列计算正确的是( )A 、22))((y x x y y x -=-+ B 、22244)2(y xy x y x +-=+- C 、222414)212(y xy x y x +-=-D 、2224129)23(y xy x y x +-=-- 3、在2222222)())(3(,)()2(),5)(5()5()1(b a b a y x y x x x x +=--+=+-+=-+ (4)ab ab ab a b b a =-=--23)2)(3(中错误的有( ) A 、1个 B 、2个 C 、3个 D 、4个4、下列各式中,能用平方差公式计算的是( )A 、))((b a b a +--B 、))((b a b a ---C 、))((c b a c b a +---+-D 、))((b a b a -+- 5、如果:=-==+-222)32,5,0168y x x y xy x 则(且( )A 、425 B 、16625 C 、163025 D 、16225 6、计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.9601 7、如果k x x ++82可运用完全平方公式进行因式分解,则k 的值是( )A 、8B 、16C 、32D 、64 8、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ()A 、p=0,q=0B 、p=3,q=1C 、p=–3,–9D 、p=–3,q=1 9、对于任何整数m ,多项式9)54(2-+m 都能( )A 、被8整除B 、被m 整除C 、被m -1整除D 、被(2m -1)整除10.已知多项式2222z y x A -+=,222234z y x B ++-=且A+B+C=0,则C 为( )A 、2225z y x -- B 、22253z y x -- C 、22233z y x -- D 、22253z y x +-二、填空题(每题3分,共30分) 11、++xy x 1292=(3x + )212、2012= , 48×52= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
a b b 图1 图2
(第10题图) 第十五章 整式的乘除与因式分解综合复习测试
题号 一1 二2 三3 四4 五5 六6 七7 八8 得分
度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题
1、下列计算正确的是 ( )
A 、3x -2x =1
B 、3x+2x=5x 2
C 、3x·2x=6x
D 、3x -2x=x 2、如图,阴影部分的面积是( ) A 、
xy 2
7
B 、
xy 2
9
C 、xy 4
D 、xy 2
3、下列计算中正确的是( ) A 、2x+3y=5xy B 、x·x 4=x 4 C 、x 8÷x 2=x 4 D 、(x 2y )3=x 6y 3
4、在下列的计算中正确的是( ) A 、2x +3y =5xy ; B 、(a +2)(a -2)=a 2+4; C 、a 2•ab =a 3b ; D 、(x -3)2=x 2+6x +9
5、下列运算中结果正确的是( )
A 、633
·
x x x =; B 、422523x x x =+;C 、5
32)(x x =; D 、2
2
2
()x y x y +=+. 6、下列说法中正确的是( )。
A 、
2t 不是整式;B 、y x 3
3-的次数是4;C 、ab 4与xy 4是同类项;D 、y
1是单项式 7、ab 减去2
2b ab a +-等于 ( )。
A 、222b ab a ++;
B 、222b ab a +--;
C 、222b ab a -+-;
D 、2
22b ab a ++-
8、下列各式中与a -b -c 的值不相等的是( ) A 、a -(b+c ) B 、a -(b -c ) C 、(a -b )+(-c ) D 、(-c )-(b -a ) 9、已知x 2+kxy+64y 2是一个完全式,则k 的值是( ) A 、8 B 、±8 C 、16 D 、±16
10、如下图(1),边长为a 的大正方形中一个边长为b 的 小正方形,小明将图(1)的阴影部分拼成了一个矩形, 如图(2)。
这一过程可以验证( ) A 、a 2+b 2-2ab =(a -b )2 ; B 、a 2+b 2+2ab =(a +b )2 ;
C 、2a 2-3ab +b 2=(2a -b )(a -b ) ;
D 、a 2-b 2
=(a +b ) (a -b )
二、填空题
11、(1)计算:32()x x -=· ;(2)计算:32
2
(3)a a -÷= .
第2题图
12、单项式z y
x n 1
23-是关于x 、y 、z 的五次单项式,则n ;
13、若2
44(2)()x x x x n ++=++,则_______n =
14、当2y –x=5时,()()6023252
-+---y x y x = ;
15、若a 2+b 2=5,ab =2,则(a +b )2= 。
16、若4x 2+kx +25=(2x -5)2,那么k 的值是 17、计算:1232-124×122=______ ___.
18、将多项式42
+x 加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整式: , , . 19、一个多项式加上-3+x -2x 2 得到x 2-1,那么这个多项式为 ; 20、若1003x y +=,2x y -=,则代数式2
2
x y -的值是 .
三、解答题
21、计算:2
2
()()a b a ab b +-+;
22、已知2x -3=0,求代数式x (x 2-x )+x 2(5-x )-9的值。
23、计算:
()()x y x y -+-2
(x-y )
24、(1)先化简,再求值:(a –b)2+b(a –b),其中a=2,b=–12。
(2)先化简,再求值:2
(32)(32)5(1)(21)x x x x x +-----,其中13
x =-
25、李老师给学生出了一道题:当a=0.35,b= -0.28时,
求3
3
2
3
3
2
3
76336310a a b a b a a b a b a -+++--的值.题目出完后,小聪说:“老师给的条件a=0.35,b= -0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?
26、按下列程序计算,把答案写在表格内:
(2)请将题中计算程序用代数式表达出来,并给予化简.
27、如图为杨辉三角表,它可以帮助我们按规律写出(a+b )n (其中n 为正整数)•展开式
的系数,请仔细观察表中规律,填出(a+b )4的展开式中所缺的系数. (a+b )1=a+b ;(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3; (a+b )4=a 4+_____a 3b+_____a 2b 2+______ab 3+b 4
28、阅读下列题目的解题过程:已知a 、b 、c 为ABC ∆的三边,且满足2
2
22
4
4
c a c b a b -=-,试判断ABC ∆的形状。
解:2
2
22
4
4
c a c b a b -=-
2222222222()()()()
()ABC c a b a b a b B c a b C ∆∴-=+-∴=+∴是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)错误的原因为: ; (3)本题正确的结论为:
参考答案
一、1、D ;2、A ;3、D ;4、C ;5、A ;6、B ;7、C ;8、B ;9、D ;10、D 二、11.(1)-x 5;(2)9a 4;12.3; 13.2;14.50;15.9;16.-20;17.1;18.4x,-4x,-4;19.2
33x x ; 20.2006;
三、21.a 3+b 3;22.0;
23.原式=2
2
2
2
(2)()x xy y x y -+--= 2
2
2
2
2x xy y x y -+-+ =2
22y xy -;
24.(1)(a -b)(a -b+b)=a(a -b),原式=1;
25.原式=3
3
2
(7310)(66)(33)0a a b a b +-+-++-=,合并得结果为0,与a 、b 的取值
无关,所以小明说的有道理. 26.解:代数式为:2()n n n n ,化简结果为:1
27.4;6;4;
28.(1) C ;(2)没有考虑2
2
0a b -=;(3)ABC ∆是直角三角形或等腰三角形
可以编辑的试卷(可以删除)。