线性稳压电源设计
什么是线性电源如何设计线性电源
什么是线性电源如何设计线性电源线性电源是一种将交流电转换为所需电压或电流的电子设备。
它以其稳定性和低噪音等特点而广泛应用于许多领域,如通信、工业控制、仪器仪表和电子产品等。
本文将介绍线性电源的基本工作原理和常见设计方法。
一、线性电源的基本工作原理线性电源主要由变压器、整流电路、稳压电路和滤波电路组成。
主要分为两个阶段,一是交流电的转换,二是直流电的稳定输出。
在第一个阶段,变压器将输入电源的高压交流电转换成所需的较低电压交流电。
然后,通过整流电路将交流电转换为直流电。
这种转换过程减小了电压的峰值,使得波形更为平滑。
在第二个阶段,稳压电路通过对电压进行采样和调节,确保输出电压始终稳定在所需的数值范围内。
滤波电路可以进一步降低输出电压中的噪音和纹波,提供更纯净的直流输出。
二、线性电源的设计方法设计线性电源时,需要考虑以下几个方面:1.电源输入和输出参数首先,确定所需的输入电压范围和输出电压/电流参数。
输入电压应该包括电源的额定电压和波动范围,以确保电源能够正常工作。
输出电压和电流参数应与目标设备的需求相匹配。
2.变压器和整流电路设计根据输入电压和输出电压的转换比,选择合适的变压器。
同时,设计合适的整流电路以将交流电转换为直流电。
常见的整流电路包括单相桥式整流电路和中心引线整流电路。
3.稳压电路设计设计稳压电路以保持输出电压稳定。
常见的稳压电路包括二极管稳压、三端稳压、调整器和反馈调节等。
根据输出电压的需求和所需的稳压精度,选择适合的稳压电路。
4.滤波电路设计滤波电路用于去除输出电压中的噪音和纹波。
它可以包括电容滤波和电感滤波等。
选择合适的滤波元件和设计参数,以提高输出电压的纯净度。
5.保护电路设计为了保护电源和目标设备,设计适当的过载保护、过压保护和短路保护电路。
这些保护电路可以在电源工作时监测和响应异常情况,以防止设备损坏或安全事故发生。
总结:线性电源是一种常见的电子设备,它通过使用变压器、整流电路、稳压电路和滤波电路将交流电转换为所需的直流电。
基于TL431的线性精密稳压电源的设计方案
基于TL431的线性精密稳压电源的设计方案1.引言TL431 是一个有良好热稳定性能的三端可调精密电压基准集成芯片,具有体积小、价格低廉、性能优良等特点:它的输出电压用两个电阻就可以任意地设置到从参考电压(2.5V)到36V 范围内的任何值,典型动态阻抗仅为0.2Ω,电压参考误差为±0.4%,负载电流能力从1.0mA 到100mA,温度漂移低,输出噪声电压低等。
基于以上特点,不仅可以用于恒流源电路、电压比较器电路、电压监视器电路、过压保护电路等电路中、还广泛应用于线性稳压电源、开关稳压电源等直流稳压电源电路中,本文对TL431 在线性稳压电源中的并联和串联型两种电源进行了详细的介绍。
2.TL431 的内部结构和功能2.1 TL431 的符号该器件的符号如图1,三个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF),参考电压为2.5V.2.2 TL431 的内部电路图由内部电路图图2 可以看出,它由多极放大电路、偏置电路、补偿和保护电路组成,其中晶体管V1 构成输入极,V3、V4、V5 构成稳压基准,V7 和V8 组成的镜像恒流源与V6、V9 构成差分放大器作中间级,V10、V11 形成复合管,构成输出,其它一些电阻、电容、二级管分别起偏置、补偿和保护作用,在原理上它是一个单端输入、单端输出直流放大器。
然而其等效功能示意图如图3 所示,由一个2.5V 的精密基准电压源、一个电压比较器和一输出开关管等组成,参考端的输出电压与精密基准电压源Vref 相比较,当参考端电压超过2.5V 时,TL431 立即导通。
因为R 端控制电压误差为±1%,所以参考端能精确地控制TL431 的导通与截止。
3.并联稳压电路设计3.1 基本并联稳压电路原理TL431 内部含有一个2.5V 的基准电压,所以当在Vref 端引入输出反馈时,器件可以通过从阴极到阳极很宽。
线性直流稳压电源详解之线性直流稳压电源设计电路图分析
线性直流稳压电源详解之线性直流稳压电源设计电路图分析线性直流电源线性模式,是指调整管工作在线性状态下(就是工作在放大区啊)的直流稳压电源。
就比如三极管,有放大、饱和、截止三种工作状态一样,调整管工作在线性状态下,可这么来理解:RW是连续可变的,亦即是线性的。
而在开关电源中则不一样,开关管是工作只有开、关两种状态:开电阻接近很小;关电阻很大接近于无穷大。
工作在开关状态下的管子显然不是线性状态。
所以直流稳压电源,会分为线性模式直流电源和开关模式直流电源。
线性直流电源(Linearpowersupply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。
要达到高精度的直流电压,必须经过稳压电路进行稳压。
稳压过程稳压过程,是稳压电源的一个核心,所以对这里大致说明一下。
细细的讲的话会很复杂,不过只要我们知道一个规律,分析起来就很方便了。
稳压过程如输出电压误差放大管基极电压误差放大管基极电流误差放大管集电极电流调整管基极电流(减小的那部分基极电流哪去了?被误差放大管集电极分流了,调整管等效电阻输出电压,完成了调整的目的。
反之也一样,变,掌握了这个规律,对于理解这个概念会很有帮助。
由于调整管相当于一个电阻,电流流过电阻时会发热,所以工作在线性状态下的调整管,一般会产生大量的热,导致效率不高。
这是线性稳压电源的一个最主要的缺点。
但线性稳压电源的优点也是开关电源不可比的:调整速度快、纹波小、干扰小,正是这些优点,使得线性稳压电路在数字电路、CPU供电(家电中的)、信号处理等对电源质量要求较高的电路中得到了广泛应用。
基本工作原理线性直流电源主回路的工作过程是输入电源先经预稳压电路进行初步交流稳压后,通过主。
线性稳压电源的设计
Ke y w o r d s : s t a b l i z e ; r e c t i y; f i f l t e r ; d i r e c t c u r r e n t o u t p u t
中图分类号 : T M4 4
文献标识 码: B
文章编号 :1 9 9 4 — 3 0 9 1 ( 2 0 1 3 ) 0 3 — 1 3 _ 4 — 1 3 6
il f t e r a nd 3-t e r mi na l r e g ul a t o r s t o s t a b l i z e .I n t he p r a c t i c e , 3一t e r mi na l i nt e g r a t e d r e g u l a t o r s C W 7 81 5 a nd CW 7 9 1 5 a r e u s e d a s s t a b l i z e r t o a c hi v e t he d e s i r e d e f f e c t .
圈组 成 , 线 圈两 个或两个 以上 的绕组 , 其 中接 电源的绕组
叫初级线 圈, 其余 的绕组 叫次级线圈 。 输入 电网电压 由额定值变化 - c ' 1 0 %时,稳压 电源输 出 电压 的相对 变化量 , 有 时也 以绝对值表示 。一般稳压 电源
的电网调整率等于或小于 1 %、 0 . 1 %, 甚至 0 . 0 1 %。
A me i Zh a n g
( Xi ’ a n i n t e r n a t i o n a l u n i v e r s i t y X i ’ a n 7 1 0 0 7 7 C h i n a )
Abs t r a c t : Li ne a r p owe r s u p p l y c o nv e r t s t he i np u t 2 2 0 v ol t a g e lt a e r na t i v e c u r r e n t i nt o t h e r e q ui r e d 1 5 a nd
线性稳压电源设计中的电容器选择
线性稳压电源设计中的电容器选择在线性稳压电源设计中,电容器的选择是非常重要的。
电容器作为电源滤波电路的关键元件,能够减小电源波动,提供稳定的电源电压。
以下是在线性稳压电源设计中电容器选择的一些关键考虑因素:1.电容器容值选择:电容器的容值决定了其提供的电源滤波效果。
通常情况下,较大的电容器容值能够提供更好的滤波效果,使得输出电压更加稳定。
电容器容值的选择要基于负载电流的需求,一般可以通过以下公式来估算:C=(ΔI×t)/ΔV其中,C为所需电容器容值,ΔI为负载变化的电流范围,t为所需的电源纹波时间(通常为50Hz或60Hz的重复周期),ΔV为所需的输出电压纹波的最大允许值。
2.电容器类型选择:在线性稳压电源设计中,常见的电容器类型有电解电容器、陶瓷电容器和钽电容器。
它们各自具有不同的特点和应用场景:-电解电容器:容量较大,成本较低,适合大电流负载情况和较低频率的电源滤波。
但是,电解电容器有电压极性限制,容易发生漏液和爆炸等问题。
-陶瓷电容器:容量较小,工作频率范围广,抗高温能力强。
陶瓷电容器常用于高频稳压电源设计中。
-钽电容器:容量中等,具有较低的串扰和ESR(等效串联电阻),适用于高频稳压电源设计中。
但是,钽电容器的价格相对较高,而且具有电压极性限制。
3.电容器的温度特性:在线性稳压电源中,电容器的温度特性也是需要考虑的因素之一、电容器会受到温度变化的影响,其容值会随温度不同而有所变化。
因此,在选择电容器时应考虑其温度特性,并根据实际使用环境的温度范围选择合适的电容器。
4.电容器的尺寸和安装方式:根据实际的电源设计需求,要选择合适尺寸和安装方式的电容器。
尺寸较大的电容器容量一般较大,但在实际安装时占用的空间也会增大。
此外,还要考虑电容器的引脚类型(如贴片式、螺钉式等)是否与电源设计需求匹配。
总的来说,在选择电容器时,需要考虑容值、类型、温度特性、尺寸和安装方式等关键因素,以满足电源设计的稳压要求。
线性可调直流稳压电源的设计
目录:.一、设计目的.二、设计任务和要求.三、电路原理分析与方案设计四、仿真过程及结果五、心得体会.六、参考文献资料.七、实物图一、目的稳压管稳压电路输出电流较小,输出电压不可调,不能满足很多场合下的应用。
串联型稳压电路以稳压管稳压电路为基础,利用晶体管的电流放大作用,增大负载电流;在电路中引用深度电压负反馈使输出电压稳定;并且,通过改变反馈网络参数使输出电压可调。
二、设计任务与要求要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。
指标:1、输出电压6V、9V两档,同时具备正负极性输出;2、输出电流:额定电流为150mA,最大电流为500mA;3、在最大输出电流的时候纹波电压峰值▲Vop-p≤5mv;任务:1、了解带有放大环节串联型稳压电路的电路图;2、识图放大环节串联型稳压电路的电路图;3、仿真电路并选取元件;4、安装调试带有放大环节串联型稳压电路;5、用仪器表对电路调试和测量相关;6、撰写设计报告、调试;三,电路原理分析与方案设计1、方案比较与确定基本思路:先对输入的220V 交流电压进行降压,然后就用单相桥式二极管对电压进行整流。
整流后利用电容的充放电效应,对其进行滤波,使输出电压平滑。
之后再通过稳压电路的功能使输出直流电压基本不受电网波动和负载电阻变化的影响,从而获得足够高的稳定性。
方案1:220V 交流电压经过基本部分降压整流后,将经过稳压部分对其进行稳压,稳压部分如下图,利用稳压管和三极管组成的稳压单元电路,同过D1 电压作为三极管Q1 的基准电压,电路引入电压负反馈,使电网电压波动不会对Q1 的基极电位产生很大的影响,则有U BE U B U E 可知,U BE 变化将导致发射极电流的变化,从而稳定R 两端电压,达到稳压的效果。
方案二:经过整流后,脉动电流通过滤波电路,其中滤波电路我采用RC 型滤波电路,先用电容值较大的电解电容对其进行低频滤波,靠近输出端处使用较低电容值的陶瓷电容进行高频滤波,使滤波后电压能够变得比较平滑和波动小。
LDO线性稳压器设计报告
LDO线性稳压器设计报告LDO(Low Drop-Out)线性稳压器是一种常用的电源管理元件,用于提供一个恒定的输出电压。
在电子系统中,由于电源噪声、电源波动以及负载变化等因素的存在,往往需要对电源进行稳压处理。
本报告将介绍如何设计一个LDO线性稳压器。
一、LDO线性稳压器工作原理1.输入电源经过稳压器的调整,提供给误差放大器和负载。
2.参考电压源提供一个参考电压,并与误差放大器的输出进行比较。
3.误差放大器对比参考电压和输出电压,产生一个误差信号,并通过调整稳压器的控制信号,使输出电压稳定在设定值。
二、LDO线性稳压器设计步骤1.确定所需输出电压和最大输出电流:根据系统需求,确定所需输出电压,以及最大输出电流。
2.选择稳压器芯片:根据所需输出电压和最大输出电流,选择合适的稳压器芯片。
考虑稳压器的参数,如输入电压范围、输出电压范围、负载调整能力等。
3.进行稳压器外围电路设计:根据稳压器芯片的推荐电路,设计稳压器的外围电路,包括输入滤波电容、输出滤波电容、稳压器控制电路等。
输入滤波电容用于抑制输入电源噪声,输出滤波电容用于抑制输出电压波动。
4.确定参考电压源:选择合适的参考电压源,作为误差放大器的参考电压。
参考电压源可以是一个电压参考芯片、电压分压电路等。
5.进行误差放大器设计:根据所选的参考电压源,设计误差放大器,其功能是将参考电压与输出电压进行比较,并产生误差信号,反馈给稳压器调整输出电压。
6.进行稳压器性能分析:对设计的稳压器进行性能分析,包括稳压器的稳定性、负载调整能力、线性调整率等。
通过仿真或实验,优化稳压器的性能。
7.进行稳压器的布局设计:根据稳压器的外围电路设计,对稳压器进行布局设计。
要保持输入、输出电压线和地线的分离,并合理布置滤波电容和其他电路元件。
8.进行稳压器的参数调整和测试:对设计的稳压器进行参数调整,并进行测试。
通过测试,验证稳压器的设计是否满足要求。
三、LDO线性稳压器设计注意事项1.稳压器的输入与输出电容选择要合适,过小可能导致输出电压波动较大,过大可能导致系统响应时间变慢。
设计_5V_1A可调直流线性稳压电源
《设计5V 1A可调直流线性稳压电源》实验报告设计题目设计5V 1A可调线性稳压电源姓名杜骏学号2009512445年级20092012年6月8日一、设计要求:........................................................................................................................ - 3 -二、设计任务: (4)三、实验原理: (4)(一)、线性稳压电源的基本原理: (4)1.电源变压器............................................................................................................ - 4 -2.整流电路................................................................................................................ - 4 -3.滤波电路................................................................................................................ - 4 -4.稳压电路 (5)(二)、稳压电源的性能指标及测试方法 (5)1、稳压系数及电压调整率 (5)2、输出电阻(也称等效内阻或内阻).................................................................... - 5 -3、纹波电压.............................................................................................................. - 5 -四、电路设计: (6)(1)变压部分设计............................................................................................................ - 7 - 变压器的主要参数有:.............................................................................................. - 7 -变压部分参数设计: (7)(2)整流、滤波电路 (7)整流部分的设计:...................................................................................................... - 8 - (3)稳压电路. (8)电路参数计算如下: (8)(1)确定稳压电路的最低输入直流电压Ui,min (8)(2)确定电源变压器副边电压、电流及功率。
线性稳压电源设计
线性稳压电源设计本实验中设计的直流稳压电源,主要由变压器、整流、滤波电路和稳压电路组成。
其中变压器用于将市电的交流电转换为所需的直流电,整流电路用于将交流电转换为半波或全波直流电,滤波电路用于平滑输出电压,稳压电路用于稳定输出电压。
在本实验中,采用单相桥式整流电路,将交流电转换为全波直流电。
接着,通过滤波电路对电压进行平滑处理,去除电压波动和纹波。
最后,通过三端集成稳压器对电压进行稳定,保证输出电压的稳定性和精度。
四、实验过程1、搭建电路板:按照电路图和PCB图进行布线和焊接,注意元器件的正确安装和连接方式。
2、调试电路:接通电源,使用万用表测量电路各点电压和电流,检查电路是否正常工作。
3、测试电路:连接负载,测量输出电压和电流,检查电路是否满足要求。
五、实验结果经过调试和测试,本实验设计的直流稳压电源能够稳定输出+5V、12V的电压,且输出电流不小于2A,满足实际应用需求。
六、元器件清单本实验所需元器件包括:变压器、整流二极管、滤波电容、稳压器、电阻、电容、LED等。
七、心得体会本实验通过对直流稳压电源的设计和实验,加深了对电源电路的理解和掌握。
同时,也提高了自己的动手实践能力和解决问题的能力。
八、附录:PCB图本实验的PCB图如下图所示,可以根据需要进行修改和优化。
便于估算,假设为理想锯齿波,纹波电压的峰峰值urpp和有效值Ur分别为:其中f=50Hz。
2.线性集成稳压器集成稳压电源分为线性和开关型两类。
线性稳压器具有外围电路简单、输出电阻小、输出纹波电压小、瞬态响应好等优点,但功耗大、效率低,一般用于输出电流5V以下的稳压电路中。
我们选择了LM78xx系列芯片,其中78xx系列为正电压输出,79xx系列为负电压输出,xx为输出电压的值。
根据试验要求,我们选择了LM7805用于输出+5V的直流电压,LM7812和LM7912用于输出±12V的直流电压。
芯片内集成了恒流源、基准电压源、采样电阻、比较放大、调整管、过热过流保护电路、温度补偿电路等,所有电路集成在单块硅片上,只有输入输出公共三个引出端,故名三端式。
12V线性稳压电源的设计
1 1 2 线 性稳 定 电 源 ..
2、 具 体 设 计
21总 系统 方案 及分 析 .
2. . 系 统 方 案 11
线性稳定 电源有一个共 同的特点就是它 的功率器件调整管 工 作在 线性 区 , 靠调整管之 间的电压 降来稳定输出 。 由于调 整管静态 损耗 大 , 要 安 装一 个 很 大 的散 热器 给 它 散 热 。 需 而且 由于 变 压 器 工 作 在 工 频 (0 ) , 以重 量 较 大 。 5 Hz上 所 该 类 电源 优 点 是稳 定 性 高 , 波 小 , 纹 可靠 性 高 , 做 成 多 路 , 易 输 出连续可调的成品 。 缺点是 体积 大、 较笨重 、 效率相 对较低 。 输出 从 值 来 看 可 分 定 点 输 出 电源 、 段 开 关 调 整 式 和 电位 器 连 续 可 调 式几 波 种。 输出指示上可分指针指 示型和数字显 示式型等等 。 从
1 1 3 开 关 型 直 流稳 压 电源 ..
电源主要由变压整流滤波模块 , 稳压模块和显示模块三大部分 组 成 。 压 整 流 滤 波 模 块 是 将 2 0 压 电源 电能 降 低 整 流 滤 波 后 变 2V高 传递 给 稳 压 模 块 , 馈 回 路是 对 输 出条 件 下 电压 检 测 的工 作 状 态 的 反 回路 , 稳压模 块通过反馈 回路 ( DJ一 系列相关 的变换 , A ) 使系统 输 出 电压 达 到 稳 定 的 要 求 显示 模 块对 电源 可 进 行 实 时 监 控 。 统 总 系 体 设 计 如 图 一所 示 。
设 计 开 发
l字 术 数技 i 4
1 V线性稳压 电视 大 学农 垦 河 西分校 甘 肃 酒泉 750) 甘 300
使用STM32单片机进行线性稳压电源的设计方案详细资料说明
使用STM32单片机进行线性稳压电源的设计方案详细资料说明任务来源
随着计算机技术与电子信息技术的快速发展,在实际应用中根据调整管不同的工作状态把电源区分为开关电源、线性电源和开关线性复合电源。
在了解比较线性电源与开关电源各自的优缺点后,其中线性稳压电源具有稳定输出、较小的纹波噪声和瞬态响应好的优点。
本任务设计来源于指导老师的有关电源的毕设课题的提出,并基于实验室拥有的基础条件(如有示波器、万用表、电烙铁等多种设备可供使用)和结合课堂学习到的模电及嵌入式知识,最终确定选择制作基于TLC5615中文数据手册》;《STM32固件库使用手册的中文翻译版》;《STM32中文参考手册》;《模拟电子技术基础--童诗白》等。
设计标准
本文介绍了利用数/模转换电路、辅助电源电路、放大电路等组成的直流稳压电源电路,提出了基于STM32线性稳压电源的设计方案,其输出电压电流在一定区间内连续可调。
并通过按键控制其输出电压以0.1V步进,电流以10mA步进。
该电源的核心控制芯片选用STM32F1系列的单片机,主电路采用线性比较调节器,通过比较反馈和后端分压电路来获得输出端不同的电压。
最终设计出一款线性稳压电源的方案,并提供部分主要的硬件电路和软件程序的设计思路和方法。
设计原则
硬件上利用晶体管的电流放大作用,增加负载电流,在电路中引入深度电压负反馈使输出电压稳定,通过按键改变输入的数字量改变DA输出的基准电压值,基准电压与负载电压变化趋势经过运算放大器比较放大反馈到功率管的基极,从而使输出功率管的基极电压发生变化,间接地改变输出电压的大小。
采用软件方法实现电压的步进控制,数据显示和电路保护等功能,使系统硬件更加简洁,各类功能易于实现。
高稳定度低纹波的线性稳压电源设计
高稳定度低纹波的线性稳压电源设计中心议题:∙高稳定度低纹波的稳压电源" title="线性稳压电源">线性稳压电源系统总体方案设计∙线性稳压电源的主要功能模块分析∙电源性能测试本文设计制作了一款基于LT1083/LT1033 系列大功率低压差三端稳压芯片的高稳定度低纹波直流电源,介绍了降压、整流滤波、线性稳压、LC 低通滤波等主要构成模块。
测试结果表明,本电源具有输出电压稳定度高、输出电流大、低纹波、低功耗等特点。
线性稳压电源被广泛应用于科研、电力电子、电镀、广播电视发射、通信等领域,是大专高等院校、实验室等进行电子电路研究不可或缺的仪器设备。
但是传统线性稳压电源存在变压器转换效率低、稳压芯片压差大、滤波电路不够完善等缺点,时常出现输出纹波大、效率低、发热量大、间接地给系统增加热噪声等问题。
在历年的电子设计竞赛中,作品在比赛场地测试正常,但在指定测试场地测评时,电路突然烧毁或者性能指标达不到原先水平的现象时有发生,一个重要的原因就是测评场地提供的稳压电源电压波动大、供电电流不稳定、正负电压不匹配。
因此,高稳定性、低纹波的稳压电源是科研创新和电子设计竞赛不可或缺的保障。
1 系统总体方案设计本设计由降压模块、整流滤波模块、线性稳压模块和低通滤波模块组成,如图1 所示。
变压器将220 V/50 Hz 交流电分别降压到±16 V、±6 V、+6 V, 通过整流桥堆整流以及大容量电容滤波后,进入正(负)线性稳压模块,再经过低通滤波模块滤除直流以外的干扰信号,分别输出±15 V、±5 V、+5 V 的稳定电压。
图1 系统结构框图2 主要功能模块分析2.1 整流滤波模块整流滤波电路主要由整流桥堆和大容量滤波电容组成,如图2 所示。
整流桥堆具有体积小巧、输出电流大、安装方便等优势,并能代替由4 只二极管组成的传统桥式整流电路。
滤波电路采用大容量电解电容滤波,增加了输出电压的稳定性。
如何设计一个简单的稳压电路
如何设计一个简单的稳压电路电源的稳定性对电子设备的正常运行非常重要,特别是在各种电压波动和电流变化的情况下。
稳压电路能够确保所提供的电压稳定在设定的数值范围内,从而保护电子设备免受电压波动的影响。
本文将介绍如何设计一个简单的稳压电路,以提供可靠的稳定电源。
一、选择稳压器类型稳压器是稳定电源电压的核心组件,可以根据需求选择适当的稳压器类型。
常见的稳压器有线性稳压器和开关稳压器两种。
1. 线性稳压器(Linear Regulator):线性稳压器包括三个主要部分:输入电路、调整电路和输出电路。
通过输入电压的降压和约束调整电路来稳定输出电压。
线性稳压器简单易用,成本较低,适用于较小电流和较低功率的应用。
2. 开关稳压器(Switching Regulator):开关稳压器将输入电压转换成高频脉冲,并通过电感和电容进行滤波,稳定输出电压。
开关稳压器效率较高,但设计和调整较为复杂,适用于高电流和高功率的应用。
根据具体需求和应用场景,选择合适的稳压器类型。
二、设计稳压器电路1. 确定输入电压范围:首先,确定设备所需的输入电压范围。
输入电压范围应包含设备所需电压的上下波动范围,以确保稳压器能够稳定输出所需电压。
2. 确定输出电压:根据设备的要求和需要,确定所需的输出电压。
稳压器的设计目标是将输入电压稳定在设定的输出电压上。
3. 选择适当的稳压器芯片:在市场上选择适当的稳压器芯片,该芯片应具备所需的输入电压范围和输出电压范围。
同时还应考虑芯片的效率、温度稳定性以及其他特性。
4. 添加输入滤波电路:为了减少输入电压的噪声和波动对稳压器的影响,可以添加输入滤波电路,如电容和电感等。
这样可以提供更稳定和干净的输入电压。
5. 连接稳压器芯片和输出负载:将稳压器芯片的输入引脚连接到输入电源,输出引脚连接到输出负载,如电路板或其他设备。
6. 调整稳压器:根据稳压器芯片的技术参数,通过调整相关的电阻等元件,以满足所需的输出电压和电流。
5V12V直流稳压电源的设计
5V12V直流稳压电源的设计在5V和12V直流稳压电源的设计中,我们需要考虑多个因素,包括输入电压范围,输出电流需求,稳压精度要求以及保护功能等。
下面是一个基于线性稳压器的5V和12V直流稳压电源的设计方案。
1.设计参数:-输入电压范围:15V-20V-输出电压:5V和12V-输出电流:1A2.设计原理:该设计方案基于线性稳压器的原理,使用集成稳压器芯片来实现稳压功能。
线性稳压器将输入电压降低到所需的稳定输出电压。
该设计方案选用了LM7805和LM7812稳压芯片来实现5V和12V稳压功能。
3.电路图:电路图中包括以下组件:-变压器-整流桥-滤波电容-稳压芯片-输入和输出电容-电源指示灯4.设计步骤:-步骤1:选择适当的变压器来降低输入电压。
根据输出电流需求和线性稳压器的效率,选择合适的变压器。
-步骤2:将变压器输出的交流电经过整流桥整流为直流电,然后通过滤波电容来滤除纹波。
-步骤3:使用稳压芯片来实现稳定的输出电压。
选择LM7805和LM7812芯片,并根据芯片的数据手册连接芯片引脚。
-步骤4:在输入和输出端加入合适的电容来稳定电源电平。
-步骤5:加入电源指示灯来显示电源工作状态。
5.稳压精度要求:LM7805和LM7812芯片具有固定的输出电压,分别为5V和12V。
根据芯片的数据手册,稳压精度可以达到2%左右。
6.保护功能:为了保护电源和连接设备,我们可以在输入端加入过压保护电路、过流保护电路和过温保护电路等功能。
这些保护功能可以使用过压保护芯片、电流限制电路和温度传感器等元器件实现。
7.总结:通过基于线性稳压器的设计方案,我们可以实现一个稳定的5V和12V直流电源。
在设计过程中,我们需要选择合适的变压器、稳压器芯片以及添加适当的保护功能。
该设计方案可以满足输出电流为1A的需求,并具备较高的稳压精度和保护功能。
线性直流稳压电源设计
线性直流稳压电源设计日记权限:公开一.前言线性直流稳压电源的设计,应该综合应用已经学过的电子技术知识来完成这个设计任务,在做这个电子电路设计之前,我们应该复习已经学过的知识,必要时也要针对的学习必要的新知识,为设计做好充分的准备。
该实验主要是对以前所学知识的一个总结与回顾,通过实验对一般设计方法有一定的认识,也对以后的毕业设计有一定的帮助。
二.设计方案的要求:(1)输出的电压V0=18V*(1+20%)(2)输出电流为I0=0~3A(3)效率要间量要高≥50%(4)算出性能指数参数三.实验目的通过直流稳压电源的设计、安装和调试,要学会:⑴选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电流;⑵掌握直流稳压电路的调试及主要技术指标的测试方法。
(3)了解各个三极管的作用设计电路图:四.电路原理⒈交流电源电压经电源变压器变换成整流电路所需的交流电压值后,通过整流电路变换成单向脉冲电压,再由滤波电路滤去其中的交流分量,得到较平滑的直流电压,最后经稳压电路获得稳定的直流电压。
2.Vin由开关电路的输出端提供,Vin大小的调整是通过单片机控制继电器的开合来实现不同个数的开关电路输出端的电容的串联来实现的。
因为Vin 是随着输出给定Vc变化的,Vc小Vin也小,Vc大Vin也大,故当输出电压在0~30V间变化时,三端可调稳压器的输入端与输出端的压差均不会很大,这样既保证了精确调压,又减少了线性电路部分的损耗。
3.Q1的作用是调整管压降达到稳定电压,Q2的作用是驱动电路,Q3的作用是提供取样基准电压,Q4作用是保护电路,防止电流过大。
五.参数计算设计电路要达到的参数指标V0=18V;I0=0~3A;可调范围为±20%,效率尽量要高,η≥50%,78系列要大约为1.5A.整流滤波电路半波整流:RLC≥(3~5)T:Vo=Vin(带C)RLC≥(3~5)T/2;Vo=1.2Vin(带C)串联型稳压电源:取样比0.5~0.8;VCE一般为3~8V。
线性直流稳压电源
1设计任务描述1.1设计题目:线性直流稳压电源1.2 设计要求1.2.1 设计目的(1)掌握线性直流构成原理与设计方法;(2)熟悉模拟元件的选择,使用方法。
1.2.2 基本要求(1)220V交流输入电压,12V直流输出电压;(2)使用集成三端稳压器进行稳压输出,输出纹波系数<1%;(3)输出功率>5%。
1.2.3 发挥部分(1)输出电压线性可调;(2)估算出线性电源高效率(>50%)的使用范围。
2 绪论根据小功率稳压电源的构成,它是由电源变压器、整流、滤波和稳压器等四部分组成的,其结构图和稳压过程如下所示:直流稳压电源的作用是将交流电网的电压转化为直流电压,为放大电路提供直流工作电源。
各部分的工作过程是:(1) 电源变压器将交流电网提供的电压V1=220V变为所需要的V2=12V的交流电压;(2)通过整流电路将交流为12V的电压转变为脉动的直流电压V R,其峰值仍然为12V;(3)由于脉动的直流电压V R中还含有较大的纹波,必须通过滤波电路加以滤除,所以此过程是用滤波电路将纹波滤除,从而得到平滑的直流电压V F;(4)因为得到的直流电压V F还会随着电网电压的波动、负载和温度的变化而变化,因而在进行了整流、滤波之后,还需要进行稳压处理。
此过程中稳压电路的作用是当电网电压波动、负载和温度发生变化时,进一步滤波,维持输出直流电压为12V的稳定性和带载能力。
通过上述四个大过程,就大体上完成了直流稳压电源的工作。
然后,根据每一个部分的工作原理,可以进一步对电路的元器件进行选择和对电路进行连接。
整流电路的作用是将交流电变换成直流电完成这一任务主要是靠二极管的单向导电性的作用,因此二极管是构成整流电路的关键原件,在选择二极管的时候要了解其工作的电压,以方便对它合理的选择。
在一般的小功率整流电路中,常见的几种整流电路有单向、半波、全波桥式和倍压整流电路。
在分析整流电路时,一般二极管都是用其理想模型来进行处理,即正向导通电阻为零,反向电阻为无穷大。
线性直流稳压电源的设计
电路设计
输入滤波电路
作用:滤除电源输入端的高频噪声和杂波干扰
组成:通常由电容、电感和电阻等元件组成
工作原理:利用电容的隔直通交特性,将高频噪声旁路到地,同时利用电感和电阻的滤波 作用,进一步滤除电源输入端的杂波干扰
设计要点:根据电源输入端的高频噪声和杂波干扰情况,选择合适的电容、电感和电 阻等元件,并合理设计电路布局和布线,以确保输入滤波电路的滤波效果和稳定性
调整管电路
调整管的作用:控制输出电压的稳定 调整管的类型:晶体管、场效应管等 调整管的参数选择:电压、电流、功率等 调整管的保护措施:过流、过压保护等
输出滤波电路
作用:滤波电容、滤波电感等
工作原理:利用电容的充放电特性, 将高频噪声滤除
设计要点:根据负载需求和电源噪 声水平选择合适的滤波电容和电感, 以及合理的电路布局和布线
保护电路
过压保护电路:当输出电压 过高时,自动切断电源,防 止电压过高损坏电路
过流保护电路:当负载电流 过大时,自动切断电源,防 止电流过大烧毁电路
短路保护电路:当负载发生 短路时,自动切断电源,防
止短路造成电路损坏
温度保护电路:当温度过高 时,自动切断电源,防止温
度过高导致电路故障
元件选择与计算
调整管选择
类型选择:根 据输出电流和 电压选择合适 的调整管类型
额定值选择: 根据最大输出 电流和电压选 择调整管的额
定值
功耗选择:考 虑调整管的功 耗,确保其正
常工作
稳定性选择: 选择稳定性好 的调整管,确 保电源的稳定
性
滤波电容选择
滤波电容的作用:滤除交流成分,提高输出电压稳定性 滤波电容的容量选择:根据负载电流和电压波动范围计算 滤波电容的耐压选择:根据输入电压和最大输出电压选择 滤波电容的纹波电流选择:根据负载电流和电压波动范围计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性稳压电源设计
作者:郑传霞
班级:自动化1001 学号:10212029
摘要:直流稳压电流源是将电网提供的50Hz,220V(单相)或380V(三相)正弦波先通过电源变压器变为所需幅值的低压交流电,再通过整流电路把交流电变为直流电,然后通过滤波器滤除交流信号,最后通过稳压电路使电压稳定的输出。
本设计主要采用了集成稳压芯片及相关的电路,经变压、整流、滤波、稳压过程将电网中的交流电压变为稳定输出的直流电压,最终为实验室提供稳定的直流电源。
关键词:直流稳压芯片;变压;整流;滤波;直流稳压源电路
正文:
1、稳压电路的组成
直流稳压电源组成框图:
220V
50Hz
直流稳压电源组成图图1
本实验室通过该电路输出给一般芯片供电的恒定电压正负15V
2、根据各功能设计相应电路
1.1变压器
电压变压器的作用是降低电压,将220V或380V的电网电压降低到所需要的幅值电压。
变压电路是一个较为简单的电路,仅用一个单相变压器变可以将电网中的高电压转换为实验室所需要的低交流电压。
通过理想变压器的电磁感应原理饿哦们可以知道:U1/U2=N1/N2,其中,N1、N2是变压器的匝数比,也是理想变压器的唯一参数。
所以变压器电路为:
电网高电压输入
220V、50Hz
后级低电压输
出24V
变压器图2
1.2整流电路
整流电路是利用二极管的单项导电性将电源变压器输出的交流信号变换成脉动的直流电压。
经过整流电路输出的电压虽然是直流电压,但有很大的交流分量。
压输入220V 、50Hz
1.2.1 工作原理
当变压器的上端输出正电压时,由二极管的单向导通性我们可以知道VD1、VD4导通,而VD2、VD3截止,所以电流的走向是VD1-后级电路-VD4,而当上端为负电压时,VD2、VD3导通,VD1、VD4截止,电流由VD3-后级电路-VD2。
这样使得后级电路始终有电流产生,且电流的方向没有变化,既输出电压的方向没有变化,完成了将交流电变为直流的工作。
1.2.1二极管的选择
根据分析原理我们可以知道输出的平均电压约为0.9U 2(U 2为有效值)二极管所要承受的最大反向电压为。
根据其特性我们可以看出桥式整流电路的有点是输出电压高,纹波电压小,整流管所承受的最大反向电压较低,电源变压器的利用率高。
由于这种电路需要较多的二极管,所以目前使用的是不同性能指标的“整流桥堆”器件。
1.3滤波器
滤波电路是利用储能元件(电感电容)将整流电路的脉动输出的脉动直流电压中的交流成分滤除,输出比较平滑的直流电压。
负载较小的一般采用电容滤波器,负载较大的多采用电感滤波器,对滤波器效果要求较高的多采用电容、电感和电阻组成复杂滤波电路。
1.3.1电容滤波器
压输入220V 、50Hz
(1) 工作原理
由图4所示的即为单相桥式整流滤波器电路,电路是在图3所使得整流电路的输出端并联电容。
因为此电容的容量较大,通常采用有极性的电容,所以使用时一定要注意电容的正负极性不要接错。
图5所示电路图中,红线是单相桥式整流滤波器加了电容之后的输出电压。
在电路中,整流输出电阻除了向负载供电外,还要为电容充电。
在a 点之后,电压U 2大于电容两端的电压U c ,VD1、VD4导通,而VD2、VD3截止,电容充电,输出电压与电容两端电压相等,所以电容到达b 点。
之后U 2小于电容两端电压,二极管都截止,电容给后级电路放点,如图b-c 所示。
在达到c 点时,U 2大于U c ,VD1、VD4导通,而VD2、VD3截止,电容充电。
如此周而复始,电容有规律周期性的充、放电,使整流输出电压得到平滑。
整流滤波后的电压图5
a
b
c
另一方面我们也可以利用电容对交、直流分量的差别来理解。
正式由于电容对交流信号有旁路作用,可以进行分流,而使负载电阻上交流电流减小,输出电压的波纹减小。
(2) 滤波电容的选择
从理论山分析,滤波电容越大,放电效果越慢,输出电压越平滑,平均值越高。
但是,在实际中,电容量大,不但体积大,而且会使二极管流过的冲击电流更大。
因此,对于桥式整流电路通常选择的滤波器应满足RC>(3~5)T/2,所以一般选择几十到几千违法的电解电容。
1.3.2电感滤波器
压输入220V 、50Hz
因为电感的电抗为wL ,对于直流分量的电抗近似为0,交流分量的电抗可以很大,所以此电容会阻止交流电的变化。
由理论分析可以知道,负载的阻值越小,输出的交流分量就越小,滤波的效果就越好。
所以电感滤波器多用于负载电流交大的电路。
1.3稳压电路
稳压电路使利用自动调整的原理,使输出电压在电网电压波动和负载电流变化时保持稳定,即输出的直流电压基本不变。
稳压电路的主要性能指标包括输出电压、输出电流、稳压系数、输出电阻和纹波电压。
1.3.1稳压原理
在此我们通过最简单的稳压电路来分析稳压电路的原理:
压输入220V 、50Hz
稳压电路 图7
在图7所示电路中,(1)设负载
R L 不变,当电网中的电压升高使输入电压增大时,输出电压U O
也随之增大,则稳压管两端的电压也增大,根据稳压管的伏安特性曲线可知,稳压管两端的电压有微小增加时,会使稳压管两端电流急剧增大。
这会使R1两端的电流急剧增大,使得R1两端的电压U1也急剧增加,最后保持了稳压管两端电压U O 基本不变。
同理也可以分析得出,电网中电压降低时,U O 基本保持不变。
(2)设输入电压保持不变,当负载R L 变小,即负载电流I O 增大,则R1两端的电流急剧增大,使得R1两端的电压U R 也急剧增加,使得U O 减小。
而U O 的减小会使稳压管两端的电
压减小,由稳压管的伏安特性可以知道稳压管电流会急剧减小,从而导致R1两端的电流急剧减小,使得R1两端的电压U R也急剧减小,最终两者调节使输出电压U O基本不变。
同理可知,当负载R L 增大时,U O也可以保持不变。
通过以上分析我们可以知道,当外界条件改变时,稳压电路能够很好的保证输出电压不变。
1.3.2不同集成稳压电路的比较
①固定输出三端稳压器
固定稳压输出稳压器是只能输出固定电压值的集成电路。
其中主要包括78**系列和79**系列,其中,78**系列输出的是正电压,79**系列输出的是福电压,**表示的是电压的输出值。
三端稳压电路基本应用电路图8
②可调式三端稳压器
W117、W217、W317是一类可调式三端稳压器,在工作时需要输入端和输出端的电压差在3~14V 之间,否则不能保证稳压管的工作在放大区。
W117的典型应用图9
图中输出的电压U O=(1+R1/R2)*1.25。
③两种电路进行比较
稳压型稳压管型直流稳压电源电路设计比较简单,稳压管中不需要在额外加入输入信号,其效率比较高,但输出的直流电压在起始段有一段时间的延迟,而且直流电压幅值的调节很不方便。
而可调稳压电路在基本调整管稳压电路的基础上引入放大环节,构成具有放大环节的串联型稳压电路,使输出电压可调,增加了稳定性。
3、比较不同设计方案的优缺点
通过以上个部分的功能分析及电路原理的介绍和电路的分析,最终确定了24V输出电压的变压器、桥式整流电路以及电容式的滤波电路和可调的三端稳压电路。
最终电路图如图所示:
压输入220V、50Hz
4、将最终设计的稳压电路进行模拟仿真分析
4.1最终设计的模拟正负可调输出电路
模拟正负可调电压同时输出电路
图11
4.2 在总的电路图上,分别分析电压通过每个电路部分后的电压波形
①电网中220V正弦波电压信号
选用的是200V的衰减,由通道A测量值我们可以看出电压是幅值约为220V的正弦波
②通过变压器后的电压
有测量波形图我们可以看出,经过变压器后输出的电压为24.608V,与实际要求的输出电压较为接近。
③通过整流电路后输出的电压
a.示波器接在下端电路时
通过整流电路后输出的波形变为脉动直流电压,且不接负载时幅值为-24V左右
b.示波器接在上端电路时
④通过电容整流电路后的波形
通过模拟仿真的结果我们可以看出,经过滤波电路后,输出的电压已经比较平稳,而且在实验过
程中我们会发现,改变电路的时间常数,及RC对输出的电压波形会有明显的影响,在电容滤波电路中,后级负载电阻越大,波形越平滑,这也与理论的负载电流较小时多采用电容滤波器相符合。
⑤经最后稳压电路后输出的波形
最终模拟得到的波形是一对可调的稳压电路,在实验过程中改变负载以及电网中的电压,输出的波形都没有明显的变化,而且通过改变电路中的滑动变阻器,我们可以看到,直流稳压电源可以输出不同的电压值。
5、分析比较
通过multisim模拟软件进行仿真对比分析,我们们可以看出电容滤波器有很好的滤波效果,在最终输出的波形开始会有不平稳的电压,这是又与电路电路中的大电容引起的延时,在实验允许的条件下也是可以视为正常的。
对比分析可知,在模拟实验中,是理想的情况下产生的直流稳压电源,能够很好的达到理论设计要求。
参考文献
[1]刘颖.模拟电子技术[M].北京,清华大学出版社;北京交通大学出版社.2008.3:319-338.
[2]侯建军.电子技术基础实验、综合设计实验与课程设计[M].北京,高等教育出版社.2001.10:126-131.。